Energy Efficient Sleep/Wake Scheduling for Multihop Sensor Networks: Non-convexity and Approximation Algorithm

Yan Wu, Sonia Fahmy, Ness B. Shroff In Proc. INFOCOM 2007

Presented by David (Bong Jun) Choi ECE, University of Waterloo (2012-01-11)

Presentation Outline

- Introduction
- System Model
- Optimal Sleep/Wake Scheduling Problem
 - PART I: Single-hop Intra-Cluster
 - PART 2: Multi-hop
- Conclusion

Introduction

Contribution of the Paper

- When to wakeup/sleep?
 - Single-hop
 - Multi-hop
- Uniqueness of the problem
 - Consider synchronization error
- Technical merit of the paper
 - Non-convex Optimization
 - □ Formulate into Convex Optimization
 - □ Approximation Method (0.73-approximation algorithm)

Introduction

Motivation

- Idle listening consumptions a proportion of total energy
- Impact of synchronization error is non-negligible

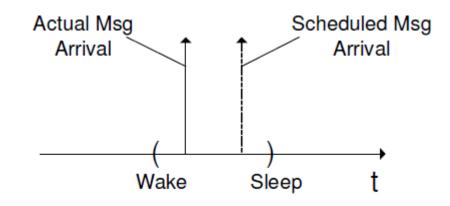


Fig. 3. Wake up interval to capture the message

- Tradeoff
 - Energy consumption vs. Message delivery performance

Introduction

Optimal sleep/wake scheduling algorithm

- Goal: min energy consumption (max lifetime)
- Condition: Satisfies QoS
 - Single-hop: per-hop message capture probability threshold
 - Multi-hop: source (sensors) to destination (BS)

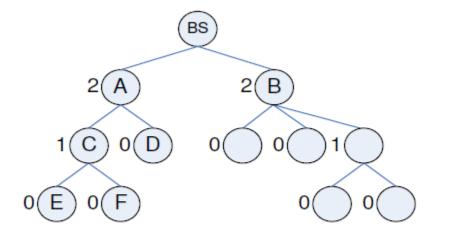


Fig. 1. A three-level cluster hierarchy

System Model

Cluster Hierarchy

 Existing clustering algorithms

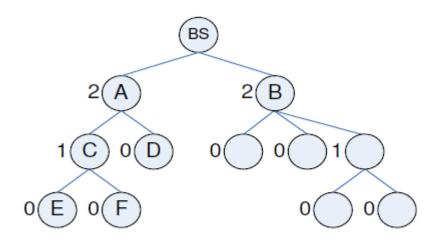


Fig. 1. A three-level cluster hierarchy

- Scheduling
 - TDMA (Sync + MTx)
 - CH CMs

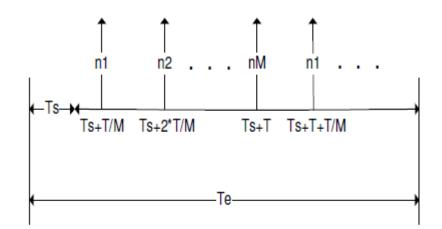
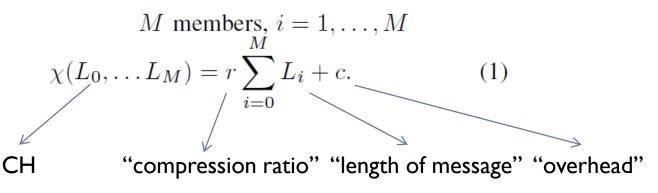


Fig. 2. Equispaced upstream transmissions

System Model

Assumptions

- Neighboring clusters do not interfere with each other
 - Orthogonal frequency channel (1000's of channels available)
- Data aggregation
 - Length of the aggregated message:



- Negligible collision probability
 - Iarge separation distance between transmissions
- Negligible propagation delay

Problem Formulation

Synchronization

- Phase offset
- Clock skew

$$t_{i}(j,k) = a_{i}(j)C(j,k) + b_{i}(j) + e_{i}(j,k),$$
(2)

"node i time" "CH time"

Problem Formulation

Goal

When to wake/sleep?

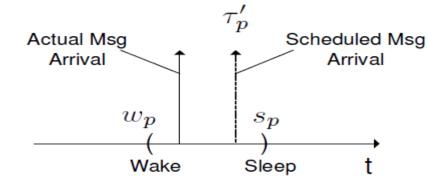


Fig. 3. Wake up interval to capture the message

 $E = (if arrival outside wp and sp \rightarrow E_idle) + (if arrival inside wp and sp \rightarrow E_idle + E_receive)$

(A) Min
$$E = (s_p - w_p)\alpha_I Prob\{\tau'_p \notin (w_p, s_p)\} + \longrightarrow$$
 Outside

$$\int_{w_p}^{s_p} \{(x - w_p)\alpha_I + \frac{L_p}{R}\alpha_r\}f_{\tau'_p}(x)dx \longrightarrow$$
such that $Prob\{\tau'_p \in (w_p, s_p)\} \ge th$, Inside
 $f_{\tau'_p}(\cdot)$ (PDF) of τ'_p

Single-hop

Simplification

Normal distribution: $f_{\tau'_p}(\cdot)$ (PDF) of τ'_p

(A) Min $E = (s_p - w_p)\alpha_I Prob\{\tau'_p \notin (w_p, s_p)\} + \int_{w_p}^{s_p} \{(x - w_p)\alpha_I + \frac{L_p}{R}\alpha_r\}f_{\tau'_p}(x)dx$ such that $Prob\{\tau'_p \in (w_p, s_p)\} \ge th$,

$$E(\tau_p') = \tau_p, \tag{4}$$

$$VAR(\tau'_{p}) \equiv \sigma_{p}^{2} = \frac{\sigma_{0}^{2}}{a_{i}^{2}(j)} \frac{1}{N_{s}} \left[1 + \frac{(\tau_{p} - C(j,k))^{2}}{C^{2}(j,k)} - (\overline{C(j,k)})^{2}\right],$$

where $\overline{C(j,k)} = \frac{\sum_{k=1}^{N_{s}} C(j,k)}{N_{s}}, \overline{C^{2}(j,k)} = \frac{\sum_{k=1}^{N_{s}} C^{2}(j,k)}{N_{s}}.$
 $\hat{\tau} = \frac{\tau'_{p} - \tau_{p}}{\sigma_{p}}, w = \frac{w_{p} - \tau_{p}}{\sigma_{p}}, s = \frac{s_{p} - \tau_{p}}{\sigma_{p}}$

(A1) Min
$$F(w,s) = (s-w)\sigma_p\alpha_I - [Q(w) - Q(s)]s\sigma_p\alpha_I + [g(w) - g(s)]\sigma_p\alpha_I + [Q(w) - Q(s)]\frac{L_p}{R}\alpha_r$$
,
such that $Q(w) - Q(s) \ge th$,

 $Q(\cdot)$ is the PDF for the standard normal distribution. $Q(\cdot)$ is the complementary cumulative distribution function. Part 1: Single-hop

Non-Convexity of (AI)

Hessian Matrix

(A1) Min
$$F(w,s) = (s-w)\sigma_p\alpha_I - [Q(w) - Q(s)]s\sigma_p\alpha_I + [g(w) - g(s)]\sigma_p\alpha_I + [Q(w) - Q(s)]\frac{L_p}{R}\alpha_r$$
,
such that $Q(w) - Q(s) \ge th$,

Proposition 1: For Problem (A1), any optimal solution (w^*, s^*) satisfies $Q(w^*) - Q(s^*) = th$.

(A2) Min
$$G(w) = (1 - th)s(w) - w + g(w) - g(s(w))$$
,
such that $s(w) = Q^{-1}(Q(w) - th)$ and $w < Q^{-1}(th)$

(Convex Optimization) Second derivative of G(w) > 0

Single-hop

Finally!

D

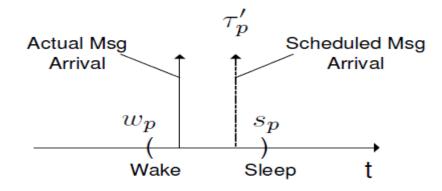


Fig. 3. Wake up interval to capture the message

After we obtain w^* , s^* , we compute the optimal sleep/wake schedule as $(w_p^* = \tau_p + w^*\sigma_p, s_p^* = \tau_p + s^*\sigma_p)$.

Part 2: Multi-hop

Different from the single hop

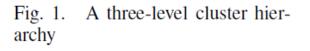
• Per-hop threshold \rightarrow Src. to Dest. QoS

System Model (Modified)

- Cluster Head of node n: H(n)
- d(n): hop distance to node n from H
- M(n): members of node n
- D(n): descendants of node n

$$H^{(d(n))}(n) \equiv \underbrace{\overset{}{\underbrace{H(H(\ldots, H(n) \ldots))}}_{d(n)}}_{BS.} = BS.$$

Ex) <u>node A = n</u> H(A) = BSd(n) = IM(n) = C, DD(A) = C, D, E, FBS В 0(DE 0(



Goal

(B) Max
$$T_L$$

such that $\prod_{i=0}^{d(n)-1} z(H^{(i)}(n)) \ge \Lambda, \forall n \in S,$
 \searrow
 $z(n): capture probability threshold of H(n)$
Solution
Satisfy "leaf node" \rightarrow Satisfy "all ancestors" (on the path to the leaf node)
(B) Max T_L
such that $\prod_{i=0}^{d(n)-1} z(H^{(i)}(n)) \ge \Lambda, \forall n \in LF,$

System Model

Message Aggregation

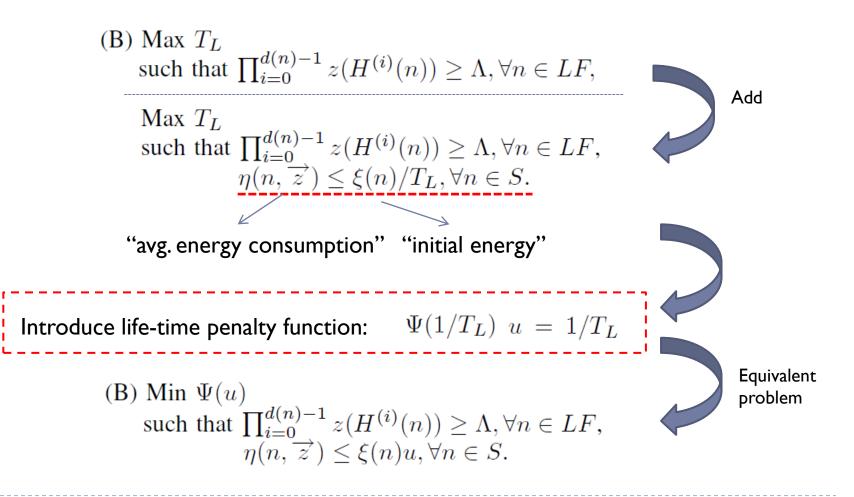
$$L^{avg}(n) = r(l + \sum_{i \in M(n)} z(i) L^{avg}(i)) + c.$$

$$L^{avg}(n) = rl + c + \sum_{i \in D(n)} (rl + c) \prod_{k=0}^{d(i)-d(n)-1} [rz(H^{(k)}(i))].$$
(8)

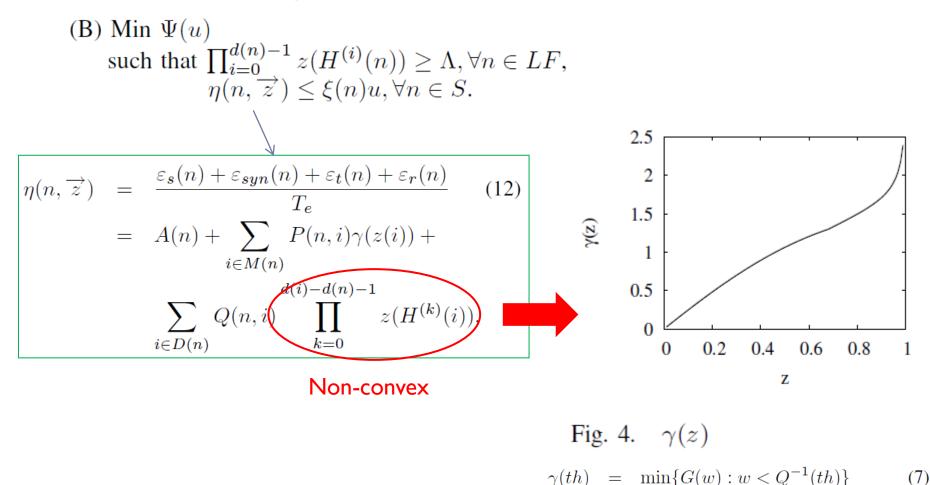
- Energy Consumption
 - Avg. Consumption by node n

$$\begin{split} \eta(n, \overrightarrow{z}) &= \frac{\varepsilon_s(n) + \varepsilon_{syn}(n) + \varepsilon_t(n) + \varepsilon_r(n)}{T_e} \quad (12) \\ &= A(n) + \sum_{i \in M(n)} P(n, i)\gamma(z(i)) + \\ &\sum_{i \in D(n)} Q(n, i) \prod_{k=0}^{d(i)-d(n)-1} z(H^{(k)}(i)), \\ &= Q(n, i) = \frac{1}{T_e} \sum_{h=1}^N \alpha_I \sqrt{\frac{\sigma_0^2 \frac{1}{N_s} [1 + \frac{(T_s + \frac{\theta(i)T}{|M(n)|} + hT - \frac{1+N_s}{2N_s} \frac{T_s}{N_s})^2]}{N_s}}{Q(n, i) = \frac{1}{T_e} \frac{rN\alpha_t(n) + N\alpha_r}{R} (rl + c)r^{d(i)-d(n)-1}. \end{split}}$$

Formulation + Energy Conditions



Non-Convex Optimization Problem



Approximation

Proposition 3: (1) For $z \ge 0.86$, $\gamma(z)$ is strictly convex; (2) For $z \in [0, 0.99]$, $1.86z < \gamma(z) < 2.52z$.

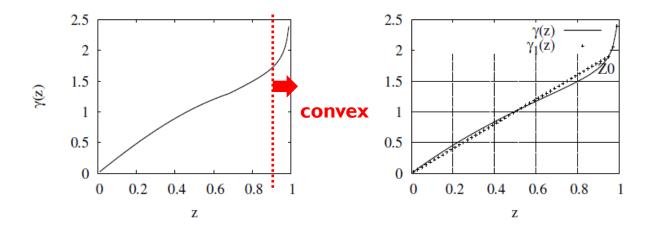


Fig. 4. $\gamma(z)$

Fig. 5. Approximating $\gamma(z)$

Approximation (Fig. 5): $\gamma_1(z) = \begin{cases} 2z + 0.001z^2 & 0 \le z \le Z_0 \\ \gamma(z) & Z_0 \le z < 1 \end{cases}$ $Z_0 \approx 0.95$.

How close is the approximation to the optimal?

Achievable approximation ratio: 0.73

Proposition 4: (1) $0.929 \le \gamma(z)/\gamma_1(z) \le 1.26$; (2) $\gamma_1(z)$ is strictly convex.

 $T_L(\overrightarrow{z^*}) \leq 1/(0.929u_1^*)$ $T_L(\overrightarrow{z^*}) \geq 0.73T_L(\overrightarrow{z^*})$

Solve BI ...

D

$$(B1') \operatorname{Min} \Psi(u)$$
such that $\sum_{i=0}^{d(n)-1} v(H^{(i)}(n)) \ge \ln \Lambda, \forall n \in LF,$
 $\eta'_1(n, \overrightarrow{v}) = A(n) + \sum_{i \in M(n)} P(n, i)\gamma_1(e^{v(i)}) +$ convex constrains

$$\sum_{i \in D(n)} Q(n, i)e^{\sum_{k=0}^{d(i)-d(n)-1} v(H^{(k)}(i))} \le \xi(n)u, \forall n \in S.$$

$$\max_{\overrightarrow{\lambda} \ge 0, \overrightarrow{\mu} \ge 0} \Phi(\overrightarrow{\lambda}, \overrightarrow{\mu}), \qquad \overrightarrow{\lambda}, \overrightarrow{\mu} \text{ are Lagrange multipliers}$$

$$\Phi(\overrightarrow{\lambda}, \overrightarrow{\mu}) = \min_{u \ge 0, \overrightarrow{v} < 0} \Psi(u) + \sum_{n \in LF} \lambda_n (\ln \Lambda - (15))$$

$$d(n) - 1$$

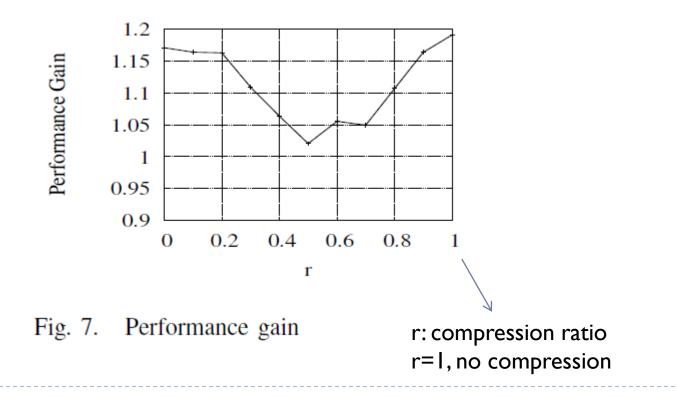
$$\sum_{i=0}^{d(n)-1} v(H^{(i)}(n))) + \sum_{n \in S} \mu_n(\eta'_1(n, \overrightarrow{v}) - \xi(n)u).$$

> Then, use "subgradient method" to solve dual problem.

Simulation Results

Vs. scheme with "equal" thresholds

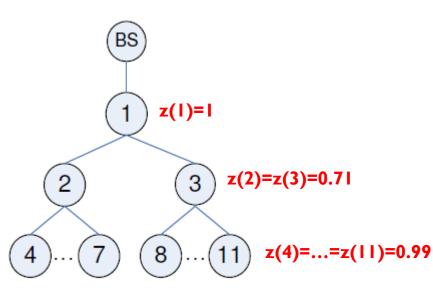
Capture probability: 0.7



Simulation Results

r=l(no compression)

Node I becomes
 bottleneck, z(2) and z(3)
 should be small



r=0 (high compression)

 Node 2 and 3 becomes bottleneck (to receive from more member nodes)

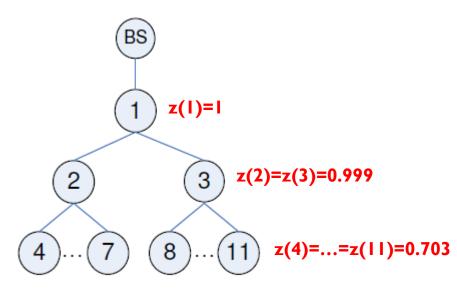


Fig. 6. Simulation topology

Fig. 6. Simulation topology

Conclusion

- Sleep/wake scheduling for low duty-cycle sensor networks
- Consider synchronization error
- Achieve given capture probability threshold with min energy consumption
 - Non-convex optimization
 - 0.73-approximation algorithm
 - Correctly identifies the bottlenecks to extend the network lifetime