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Abstract: In this paper we propose a novel energy efficient approach for the recog-
nition of human activities using smartphones as wearable sensing devices, targeting
assisted living applications such as remote patient activity monitoring for the disabled
and the elderly. The method exploits fixed-point arithmetic to propose a modified
multiclass Support Vector Machine (SVM) learning algorithm, allowing to better pre-
serve the smartphone battery lifetime with respect to the conventional floating-point
based formulation while maintaining comparable system accuracy levels. Experiments
show comparative results between this approach and the traditional SVM in terms of
recognition performance and battery consumption, highlighting the advantages of the
proposed method.
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1 Introduction

Remote patient monitoring is nowadays allowing disabled and elderly patients
a continuous health and well-being supervision while they perform regular ac-
tivities throughout the day. Recent population benchmarks show that world
population is aging rapidly. As an example, the projections of changes in pop-
ulation structure by main age groups in Europe are showing that by 2060 the
elderly (namely people over 65 years) will be near 30% of its population [Eur,
2011]. This represents an alarming growth of more than 70% of this age group,
bringing new challenges to the research community, which aims to find beneficial
alternatives for ensuring healthy living to the people.

An extensive research has been particularly focused on Home Care Monitor-
ing and the development of Smart Homes [Silva et al., 2012; José et al., 2010;
Garćıa-Vázquez et al., 2010] for specific applications such as in elderly care and
child care. In general, these novel households are arranged with multimodal tech-
nologies involving environmental sensors, user interfaces, computing devices and
actuators which aim to guarantee supervision and fast response to people with
frailty or chronic diseases such as Parkinson’s disease (PD) and visual impair-
ments.

Even though patients spend most of their time at home, they also commute
from one place to another: for example, to buy groceries, to walk their dogs
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or to visit neighbors and friends. Home environmental sensors are limited by
their infrastructure and cannot provide monitoring outside the house boundaries.
Contrariwise, on-body sensors can improve and enlarge the range of operation
of the patient monitoring task, not only by being capable of measuring a variety
of body signals (e.g. physiological, motion, location) but also providing portable
and off-site patient supervision. Unfortunately there are also limitations that
arise with the use of body sensors such as patient discomfort while wearing them
and energy-limited mobile devices. In this work we deal with these two issues by
exploring the use of smartphones as monitoring devices for the classification of
Activities of Daily Living (ADL).

Smartphones emerge from the integration of new services and features to
mobile phones that complement the traditional telephony service (e.g. Internet
access, gaming, location–based services and multisensing capabilities,etc.). They
are playing an important role in the exploration of novel alternatives for the re-
trieval of information directly from the users. It is foreseen that these devices
will be able to monitor and learn from our actions effectively and unobtrusively,
and consequently assist us to better decide about our future behavior [Cook and
Das, 2012]. Human Activity Recognition (HAR) is a research field that aims to
identify the actions carried out by one or more subjects through the gathering
and understanding of context information about the user state and its surround-
ing environment. This is done by the exploitation of environmental and on-body
sensors, and distributed computing resources. Accelerometry is one of the mech-
anisms used for the retrieval of body motion information and which has been
applied for the recognition of human activities [Allen et al., 2006]. One of the
advantages of the recent smartphone technologies is that they are incorporating
inertial sensors such as accelerometers, gyroscopes and magnetometers. These
sensors were initially purposed for allowing enriched user interfaces and aug-
mented gaming options, but they are now being exploited for HAR through the
use of supervised Machine Learning (ML) approaches for a wide range of new
applications that benefit from the phone’s processing and opportunistic sensing
capabilities.

In this paper, we employ smartphones for HAR targeting potential applica-
tions in areas such as healthcare and assisted living technologies. We concentrate
efforts in dealing with energy efficiency, which is currently a limitation of these
mass-marketed devices, and propose a novel approach that requires fewer system
resources for its operation and aims to balance the trade-off between recognition
accuracy and computational cost. For such purposes, we introduce the exploita-
tion of the MultiClass Hardware-Friendly Support Vector Machine (MC-HF-
SVM) approach, which makes use of fixed-point arithmetic for the recognition
of activities instead of the conventionally used floating-point arithmetic algo-
rithms. MC-HF-SVM allows to vary fixed-point number representation (number
of bits) to control over model accuracy and complexity, leading to improvements
in terms of both recognition accuracy and battery energy sparing. Being this
contribution an extension of the research presented in [Anguita et al., 2012a], a
demonstration of MC-HF-SVM benefits is also exposed on the subject of Statis-
tical Learning Theory (SLT). In order to verify the effectiveness of the proposed
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approach, a collection of human physical activities (standing, sitting, laying,

walking, walking upstairs and walking downstairs) were selected for classifica-
tion and an experimental setup was arranged for data collection. Body motion
signals were read from the smartphone embedded triaxial accelerometer while
a group of volunteers performed the aforementioned activities, and then used
for developing and testing the MC-HF-SVM approach, as well as for comparing
MC-HF-SVM against conventional SVM-based techniques.

The paper has been structured in the following way: Section 2 presents a
comprehensive collection of research literature including recent works on HAR,
wearable systems and ML. Then in Section 3, the proposed HAR methodology
is described from the experimental setup to the mathematical formulation of the
MC-HF-SVM algorithm and its relationship with SLT. Moreover in Section 4,
we show experimental results comparing the traditional SVM with the hardware-
friendly approach in terms of system accuracy and energy consumption. Finally
conclusions and future directions are portrayed in Section 5.

2 Related Work

Several approaches have been previously proposed in literature for the recogni-
tion of human activities covering diverse application domains such as healthcare,
smart homes, ubiquitous computing, ambient assisted living, surveillance and
security [Choudhury et al., 2008; Cedras and Shah, 1995; Turaga et al., 2008;
Poppe, 2010]. These approaches can be categorized according to many different
criteria: by sensor type, which is reliant on the signals measured (e.g. inertial,
vision-based and physiological [Lara and Labrador, 2012b]); by sensor location,
namely external sensing when sensors are located in fixed positions in the envi-
ronment and wearable sensing when they are body-attached [Yang and Yacoub,
2006]; by modeling principle, which can be data- or knowledge-driven depend-
ing on whether the HAR models are built given pre-existing datasets or from
the exploitation of prior knowledge regarding a particular domain [Chen et al.,
2012a,b]; by learning approach, which can be either supervised, semi-supervised
or unsupervised [Kwapisz et al., 2011; Stikic et al., 2011; Wyatt et al., 2005].
In this work we focus on a supervised smartphone-based HAR approach that
make use of wearable inertial sensors (accelerometers) following a data-driven
perspective.

Wearable systems have particularly grabbed the attention of the HAR re-
search community [Bao and Intille, 2004; Lukowicz et al., 2004; Lee and Mase,
2002; Mantyjarvi et al., 2001] due to the ease of obtaining activity information
(e.g. body motion, temperature and heart rate) directly from the user, unobtru-
sively and virtually at any location without the need of fixed infrastructure as
opposed to vision-based systems. The work presented in [Bao and Intille, 2004]
was pioneer in developing an approach for the classification of ADL using five
body-worn accelerometers and employing well-known ML classifiers. Since then,
other approaches have been also proposed [Lara and Labrador, 2012b] target-
ing different applications: for example, from the medical standpoint, monitoring
systems have been presented for the detection of different attributes in elder
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PD patients such as gait parameters, motion disorders and falls using on-body
accelerometer [Sama et al., 2012; Herrlich et al., 2011].

More recently, research efforts have concentrated on exploiting smartphones
for HAR. Smartphone-based applications offer various benefits when compared
with other well-known wearable HAR alternatives that use special-purpose de-
vices or body sensor networks attached to the body (e.g. [Mannini and Sabatini,
2010; Vinh et al., 2011]). Their main advantages relies on the easy device porta-
bility, the unobtrusive sensing provided by its embedded sensors and the pro-
cessing power of nowadays devices that allow to perform online expensive com-
putations all in one place. Several smartphone-based approaches that make use
of various smartphone-embedded sensors (e.g. accelerometer, gyroscope, GPS,
magnetometer) have been investigated [Mannini and Sabatini, 2010; Lara and
Labrador, 2012b,a; Cook and Das, 2007; Berchtold et al., 2010; Kwapisz et al.,
2011].

Machine Learning approaches that have been already applied for the recog-
nition of activities include: Naive Bayes [Jatoba et al., 2008], and Markov chains
[Mannini and Sabatini, 2010], Decision Trees [Maurer et al., 2006a], and Sup-
port Vector Machines (SVMs) [Vapnik, 1995]. Our approach exploits SVMs for
the classification of activities similarly to other works which have successfully
employed them [Maurer et al., 2006b; Khan et al., 2010; He and Jin, 2009; Ravi
et al., 2005]. Furthermore, they have shown to be effective in heterogeneous types
of recognition such as in handwritten characters [LeCun et al., 1995] and speech
[Ganapathiraju et al., 2004]. SVMs have also been selected for this work because
they provide a good compromise between accuracy and training time while also
count with a variety of publicly available learning tools for experimentation such
as LIBSVM [Chang and Lin, 2011]. However, while characterized by several ap-
pealing characteristics, one of the main drawbacks of SVM consists in its näıve
two-class nature, that makes generalization to multiclass problems (as in the
typical case of HAR) not straightforward.

Different approaches have been explored for targeting this issue [LeCun et al.,
1995]. The two most commonly used methods are: One-Vs-All (OVA) and One-
Vs-One (OVO), where each particular class is compared using a binary classifier
against the rest of classes either all together (OVA) or one by one (OVO) to
determine the most likely class for each new sample. In particular, we have
selected the One-Vs-All (OVA) method and customized it to the fixed-point
arithmetic case. The performance of the OVA approach is comparable to the
OVO classification as it has previously been confirmed in [Rifkin and Klautau,
2004]. Moreover its produced model needs less memory when compared against
the OVO method, bringing up an advantage taking into account the limited
resources available.

Exploiting SVM models for HAR on smartphones, however, requires several
floating-point operations to be carried out per second: despite not being an issue
from a theoretical point of view, this could lead to battery discharge after few
hours of continuous operation, making this approach unfeasible to allow people’s
mobility. In this work we will thus explore a fixed-point arithmetic based refor-
mulation of the conventional SVM, targeted towards multiclass classification.

1298 Anguita D., Ghio A., Oneto L., Parra X., Reyes-Ortiz J.L.: Energy ...



Up to date we have no knowledge of other research works that have incorpo-
rated fixed-point arithmetic into the learning algorithms for the classification
of human activities. However, extensive research on fixed-point arithmetic has
been developed to integrate ML models on hardware with limited resources (e.g.
[Wawrzynek et al., 1993]). This was initially motivated because the assemble of
devices with floating-point units was unavailable. Moreover, limited devices are
usually preferred for specific-purpose applications if they demonstrate similar
performance to traditional processing units as their production (and/or acquisi-
tion) costs are generally lower. Nowadays, it has become particularly interesting
to retake these approaches and apply them in the development of software ap-
plications for portable devices such as smartphones which are highly demanding
in terms of energy consumption and system resources management. The term
Hardware-Friendly SVM (HF-SVM) was first presented in [Anguita et al., 2007].
This method was designed for binary classification problems by employing fixed-
point arithmetic in the feed-forward phase of the SVM classifier, with the purpose
of allowing its use in hardware-limited devices. In this work, we adapt the model
for the multiclass problem targeted towards HAR on smartphones.

In the last decades several works have been devoted to adapt Machine Learn-
ing (ML) approaches to specific hardware platforms [Genov and Cauwenberghs,
2003; Lee et al., 2003; Irick et al., 2008; Epitropakis et al., 2010] and, in par-
ticular, to analyze the effects of parameter quantization on the training and
feed-forward phases [Anguita et al., 2007; Lesser et al., 2011; Neven et al., 2009].
Motivations for these activities are usually linked to application-specific require-
ments but also to the basic principle of the Statistical Learning Theory (SLT)
[Vapnik, 1995] where we have to search for the easiest model that correctly clas-
sifies the available data. The introduction of bit–based hypothesis spaces brings
widespread benefits on the learning process of classifiers (i.e. classes of functions
where models are described through a limited number of bits). This is due to the
fact that reducing the number of bits largely influences the complexity of the hy-
pothesis space [Anguita et al., 2013], which is a key issue in Machine Learning as
underlined in [Shawe-Taylor et al., 1998; Bartlett et al., 2005]. If we are able to
reduce the complexity of the hypothesis space without affecting the ability of the
algorithm to learn the function with low empirical error, in practice, we are able
to learn more effectively [Shawe-Taylor et al., 1998; Herbrich and Williamson,
2003].

3 Methodology

3.1 HAR Dataset

A set of trials with volunteers was required to create and develop the human
activity recognition dataset. In total, 30 people with ages from 19 to 48 years
participated in this research and performed a set of motion sequences comprising
the 6 proposed ADL (standing, sitting, laying, walking, walking upstairs and
walking downstairs). Each subject performed the experiment protocol twice,
and each activity was at least performed two times on each trial to simulate
repeatability (refer to Table 1 for further details). Also, a timeout of 5 seconds
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No. Static Time (sec) No. Dynamic Time (sec)
0 Start (Standing Pos) 0 7 Walk (1) 15
1 Stand (1) 15 8 Walk (2) 15
2 Sit (1) 15 9 Walk Downstairs (1) 12
3 Stand (2) 15 10 Walk Upstairs (2) 12
4 Lay Down (1) 15 11 Walk Downstairs (1) 12
5 Sit (2) 15 12 Walk Upstairs (2) 12
6 Lay Down (2) 15 13 Walk Downstairs (3) 12

14 Walk Upstairs (3) 12
15 Stop 0

Total 192

Table 1: Protocol of activities for the HAR Experiment.

 

x 
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z 

(a) (b)

Figure 1: Samsung Galaxy S2 Smartphone. (a) arrows show the axis orientation
of the accelerometer. (b) the smartphone case and belt used for the experiments

in which people remained still was arranged between each activity in order to
separate each task and simplify the data labeling process.

The obtained database was partitioned into training and test sets in a propor-
tion of 70% to 30%. The partition was randomized but assuring that no samples
were from the same user in both subsets. The training data was employed for
training different multiclass SVM classifiers which are described in Section 3.3.
The Samsung I9100 Galaxy S II smartphone was the device utilized for the ex-
periments with its embedded triaxial accelerometer. Acceleration signals were
logged at a constant rate of 50Hz which is sufficiently fast for acquiring human
body motion information [Karantonis et al., 2006]. The manual labeling process
was done by selecting the videos recorded from the experiments as the ground
truth and comparing them with the log files of the inertial signals. Figure 1 de-
picts the waist-mounted smartphone used for the experiments highlighting its
casing and axis orientation of its inertial sensor. Additionally, Figure 2 shows
examples of two (out of the six) performed activities during the trials.
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Figure 2: Human activity recognition experimental setup. Two of the six activ-
ities performed during experimentation and their triaxial acceleration signals:
(a) walking, (b) walking upstairs.

3.2 Signal Processing

Sensor signals were preprocessed by the application of a series of filters for condi-
tioning. First, noise was reduced with a median filter and a third order low-pass
Butterworth filter with a cutoff frequency of 20 Hz. This frequency threshold
was selected from the work presented in [Karantonis et al., 2006] which states
that the energy spectrum of the human body motion lies mainly within the
range of 0 Hz to 15 Hz. From these processes, a clean triaxial total accelera-
tion A was obtained. This signal, which can be also expressed as the sum of
two acceleration vectors, namely the gravitational component G and the body
motion acceleration BA, was segmented using another low-pass filter and as-
suming that the gravitational component only influences the lowest frequencies.
Our experiments in segmenting these two signals found that 0.3 Hz was the op-
timal cutoff frequency to attain a constant gravity G. This result was achieved
by varying the cutoff frequency from 0.0 to 1.0 Hz in small increments of 1/40
Hz and estimating the minimum square error of the filtered gravity signal minus
the standard gravity constant

(

9.81 m/s2
)

. In addition, the acceleration time
derivative (dA/dt), also known as Jerk, was estimated.

After segmentation, fixed-width sliding windows were captured from the pre-
processed acceleration time signals, each with a span of 2.56 sec and an overlap
of 50% which has confirmed to be successful in other HAR approaches such as
in [DeVaul and Dunn, 2001; Van Laerhoven and Cakmakci, 2000]. The window
length has been selected given the following reasons:
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Figure 3: Activity Recognition process pipeline.

Feature Vector

Measure Applied to
SMA AT, JT, BAT, BJT
Mean ATX, ATY, ATZ

STD ATX, ATY, ATZ

Corr ATX–ATY, ATX–ATZ, ATY–ATZ

Entropy AFX, AFY, AFZ, AMF
A:Triaxial acceleration, B:Body, J:Jerk
T:Time F:Frequency, M:Magnitude

Table 2: List of measures for computing feature vectors.

– The cadence range of an average person walking is [90, 130] steps/min [Ben-
Abdelkader et al., 2002] which denotes a minimum speed of 1.5 steps/sec;

– At least a full walking cycle of two steps is desirable on each window sample;

– People with slower cadence such as the disabled and elderly should also
benefit from this approach. We have chosen a minimum speed of 50% the
average human cadence;

– Frequency domain signals require the Fast Fourier Transform (FFT) which
is optimized for power of two vectors (2.56sec× 50Hz = 128cycles).

From each window, a vector of features was extracted which contained 17
features estimated from a set of measures in the time and frequency domain
using previously suggested features [Bao and Intille, 2004; Lovell et al., 2007;
Sama et al., 2010]: e.g. Signal Magnitude Area (SMA), mean, standard deviation
(STD), entropy and signal-pair correlation (Corr). The Fast Fourier Transform
(FFT) was used to find the frequency components for each window. The measures
extracted to obtain the feature vector are depicted in Table 2. A feature vector
was calculated from each experiment window sample and used as an input for
the learning algorithm. The HAR process with its main components is illustrated
in Figure 3.

3.3 The MultiClass HF-SVM (MC-HF-SVM) model

3.3.1 The binary HF-SVM model

Consider a dataset composed of l patterns. Each one corresponds to an ordered
pair (xi, yi) ∀i ∈ [1, ..., l], xi ∈ R

m, and yi = ±1. A standard SVM can be
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learned by solving a Constrained Quadratic Programming (CQP) minimization
problem. This is formulated by:

min
w,b,ξ

1

2
‖w‖2 + CrT ξ (1)

yi
(

wTxi + b
)

≥ 1− ξi, ξi ≥ 0, ∀i ∈ [1, ..., l] , (2)

where C is the regularization parameter of the ‖w‖
2
term and rT ξ is the term

representing upper bound of the number of misclassifications with ri = 1 ∀i.
This formulation is called the primal problem. Moreover, this problem can

be reformulated and solved more easily by using the Lagrange multipliers αi.
This new representation is called the dual formulation and it is given by:

min
α

1

2
αTQα− rTα (3)

0 ≤ αi ≤ C ∀i ∈ [1, ..., l] , yTα = 0, (4)

where Q is the kernel matrix and is a symmetric positive semidefinite l× l matrix
where qij = yiyjK (xi,xj).

Once solved the CQP problem, new patterns can be classified by applying the
SVM Feed-Forward Phase (FFP) which is given by the following formulation:

f (x) =

l
∑

i=1

yiαiK (xi,x) + b. (5)

where b is the bias term and can be estimated by following the approach proposed
in [Keerthi et al., 2001].

Evidently, the obtained output is invalid for its use in fixed-point arithmetic
because the αi values belong to the group of real numbers limited between 0
and C. To overcome this issue, a normalization process can be employed with-
out affecting the classifier output sign but its magnitude and keeping the SVM
accuracy unchanged. The original HF-SVM was described in [Anguita et al.,
2007] and proposed the use of a new vector β which is defined as:

βi = αi

2k − 1

C
, (6)

where k is the number of bits. Moreover the bias term b is removed as its value is
quite difficult to control [Anguita et al., 2007], in order to allow a prediction with
only integer parameters. This modification has no influence on the classification
performance of the trained model as far as a Radial Basis Function (RBF) kernel,
such as the Gaussian or the Laplacian ones, is exploited [Poggio et al., 2002].
This modification yields the following formulation:

min
β

1

2
β
TQβ − sTβ s.t. 0 ≤ βi ≤

2k − 1

C
∀i ∈ [1, ..., l] , (7)
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where si =
(

2k − 1
)

/C ∀i ∈ [1, ..., l]. Once Problem (7) is solved, β can straight-
forwardly target fixed-point arithmetic through a simple nearest-integer normal-
ization [Anguita et al., 2007]. Note, moreover, that the cost function does not
change and the second constraint of Eq. 4 is taken away from the formulation,
so to set the bias term b = 0.

To finally have a full FFP with only integer values, it is needed to modify
the representation of the the kernel K (·, ·) and the input vector x in terms of
number of bits (u and v bits respectively) [Anguita et al., 2007]. This produces:

0 ≤ K (xi,x) ≤ 1− 2−u ∀i ∈ [1, ..., l] , (8)

0 ≤ xi ≤ 1− 2−v ∀i ∈ [1, ...,m] . (9)

Consequently the modified Fixed-Point FFP formulation vector is:

f (x) =

l
∑

i=1

yiβiK (xi,x) . (10)

In particular, we opted for a Laplacian kernel because it is more appropriate for
devices with limited hardware [Anguita et al., 2007] K (xi,xj) = 2−γ‖xi−xj‖1 ,
where the Manhattan norm is defined as ‖x‖1 =

∑m
i=1 |x| and γ > 0 is the kernel

hyperparameter.

3.3.2 Generalization of HF-SVM to the Multiclass Case

The SVM FFP output range diverges on each binary classifier because these are
not normalized. For extending the binary problem into a multiclass problem,
we used the OVA method for comparing each class c against the other classes.
However before this, a procedure to permit the comparison within the group
of SVM classifiers was required. As a result, we decided to measure probability
estimates for each SVM pc (x) and select the actual class c∗ as the one with the
highest probability output for a given test sample. The probability estimation
was implemented using the approach presented in [Platt, 1999] in which the
training set and the SVM model were employed to fit the FFP output values
f (x) with a sigmoid function of the following form:

p (x) =
1

1 + e(Γf(x)+∆)
, (11)

in which p (x) is the probability estimate, and Γ and ∆ are function parameters
which are properly fitted on the available learning samples.

Considering the fixed-point arithmetic limitation, the sigmoid function, which
works also with real numbers, cannot be directly used for estimating p (x). This
can be solved by means of Look-Up-Tables (LUTs). First, a fixed number of
bits t must be defined and then the probability estimates p (x) can be mapped
given f (x) without the need of floating-point arithmetic. Our experiments have
showed that t = 8 is suitable value for this application and it simply requires
LUTs with 256 elements. The complete MC-HF-SVM process is illustrated in
Figure 4.
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Figure 4: MC-HF-SVM using LUTs for probability estimates

3.4 HF–SVM and Statistical Learning Theory

In this section we investigate how the adoption of a fixed-point arithmetic affects
the generalization ability of a classifier in the form of Eq. (10). In order to do
this we describe each parameter βi as an integer value of k bits:

βi =

k−1
∑

i=1

bji2
j, (12)

where bji is a binary valued variable bji ∈ {0, 1} and therefore βi can be expressed

as an integer variable such that 0 ≤ βi ≤ 2k − 1. Since each bji belongs to
a finite set, for a fixed training set of cardinality l and a fixed kernel (with
its hyperparameter), the number of classifiers that we can represent is finite.
According to the notation of [Vapnik, 1995] we call N l

f the number of classifiers

that we can build with bji , i ∈ {1, . . . , l} and j ∈ {0, . . . , k − 1}. Consequently we
can exploit the well-known Vapnik’s generalization bounds for finite hypothesis
sets [Vapnik, 1995] which uses N l

f as measure of complexity. Let then dβ be the
number of nonzero parameters (βi 6= 0) then:

N l
f (k, d

β) ≤

dβ

∑

i=1

(

l

dβ

)[

(

2k − 1
)dβ

−
(

2k−1 − 1
)dβ

]

, (13)

where we take into account the fact that if all the parameters are even numbers,
they can be divided by two without changing the class estimate. If, instead, db

is the number of nonzero parameters, bji 6= 0, then

N l
f (k, d

b) ≤

db

∑

i=1

(

l k

db

)

. (14)
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In the Statistical Learning Theory and Structural Risk Minimization frameworks
[Vapnik, 1995], a good generalization capability on previously unseen data can
be guaranteed [Vapnik, 1995; Anguita et al., 2012b] if a nested structure of the
available hypothesis sets with increasing complexity is defined (H1 ⊆ H2 ⊆ . . .).
In this way, the generalization capability of a model can be controlled by choosing
the set that achieves the best compromise between complexity and learning error.

In our case the complexity of the class can be defined through two quantities,
k and dβ (or db). Starting from the set H1 with complexity N l

f(1, 1) we can
increase the complexity by increasing the number of bits k → k + 1 or by
decreasing the sparsity of the representation dβ , db → dβ , db + 1. In other words
we have to search the best class which is as sparse as possible (smaller dβ or db)
and represented with the minimum number of bits k. Obviously a classifier that
belongs to a space with smaller complexity is also more energy efficient respect
to the one that belongs to a space with higher complexity, as will also be shown
in the subsequent experiments.

Increasing the complexity of the space has also direct consequence on the
generalization ability of the classifier since according to the bound of Vapnik
[Vapnik, 1995], which holds with probability (1− δ):

π ≤ ν +

√

√

√

√

ln
[

N l
f (k, d)

]

− ln (δ)

2l
(15)

where π is the generalization error and ν is the error obtained by the learning
machine on the dataset.

This result is similar to the one presented in [Neven et al., 2008]. The im-
portant outcome of this section is that the number of bits in the HF–SVM has
a strong regularization effect with an impact on the generalization ability of the
classifier. Between two classifiers with approximately the same performance, we
have to choose the one that can be represented with less number of bits since it is
more energy efficient and it has more capacity of performing well on previously
unseen data.

Finally we want to highlight that the bound in Eq. (15) is very loose since it
is data independent and does not take into account the quality of the available
samples for its estimation. In the last few years, proposed data dependent bounds
[Bartlett and Mendelson, 2003; Bartlett et al., 2005] are becoming tighter and
providing better interpretation of the generalization ability of classifiers. They
have shown to work well on the performance estimation of real world problems
such as in [Anguita et al., 2012b]. For these reason, the understanding of the
influence of fixed–point arithmetic approaches in the estimation of these bounds
is an interesting topic of research.

4 Experimental results

The performance of the MC-HF-SVM was evaluated through a collection of
experiments using the HAR dataset described in this paper. The test data con-
sisted of 789 samples made of 17 features nearly balanced with respect to each
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Figure 5: Comparison between error rates obtained with MC-SVM (red dotted
line) and MC-HF-SVM (blue line) as k is varied.

activity. 10 MC-HF-SVM models were learned differing in the number of bits k
for fixed-point representation ranging from 4 to 16 bits. Their performance was
assessed in terms of test data error and compared against the standard conven-
tional floating-point MultiClass SVM (MC-SVM). The classification results for
each model are showing in Figure 5.

The test error curve shows a plateau which values appear to be stable (near
1% variation) for k ranging from 6 to 16 bits and are equivalent to the error
obtained with the floating-point MC-SVM (represented with the dotted red line).
In addition, the experiment shows that for this HAR dataset, k = 6 bits are
sufficient for obtaining a recognition performance similar to the MC-SVM [see
1]. Once the numbers of bits drops below this value, the test error significantly
increases by around 50%.

Moreover, it is also noticeable from the graph that some of the error values
with fixed-point representation were smaller than the one found with the MC-
SVM approach. This finding coincides with what observed elsewhere in literature
(e.g. [Neven et al., 2008]). It is worth noting that we can remarkably reduce the
number of bits (form ∞ to 8 bits) without losing the possibility of representing
the functions that are characterized by good performance on the training set
(as underlined in [Koltchinskii, 2006; Anguita et al., 2011, 2013]): these func-
tions will be most likely chosen by the learning process and, then, there seem
to be no reasons to search for more complex spaces. Moreover, note that few
bits are required in order to represents these functions, thus contemplating an
infinite-dimension space appears to be unmotivated by practical needs [Anguita
et al., 2013]. Broadly speaking, the approach is theoretically feasible. In the SRM

[1] From a practical point of view, however, it is worth underlining that fixed-point
libraries allow to use only values of k which are powers of 2, as will be also detailed in
the forthcoming subsection: in the subsequent discussion, we will thus consider k = 8
as our reference value.
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Walking 109 0 5 0 0 0 95.6
Upstairs 1 95 40 0 0 0 69.8
Downstairs 15 9 119 0 0 0 83.2
Standing 0 5 0 132 5 0 93.0
Sitting 0 0 0 4 108 0 96.4
Laying 0 0 0 0 0 142 100
Precision % 87.2 87.2 72.6 97.1 95.6 100 89.3

Table 3: Confusion Matrix of the classification results on the test data using the tradi-
tional floating-point MC-SVM. Rows represent the actual class and columns the pre-
dicted class. The diagonal entries (in bold) show the number of test samples correctly
classified.

Method MC-HF-SVM k = 8 bits
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Walking 109 2 3 0 0 0 95.6
Upstairs 1 98 37 0 0 0 72.1
Downstairs 15 14 114 0 0 0 79.7
Standing 0 5 0 131 6 0 92.2
Sitting 0 1 0 3 108 0 96.4
Laying 0 0 0 0 0 142 100
Precision % 87.2 81.7 74.0 97.8 94.7 100 89.0

Table 4: Confusion Matrix of the classification results on the test data using the MC-
HF-SVM with k = 8 bits.

framework we have to search for the simplest hypothesis space (before looking
at the training set [Vapnik, 1995]) that guaranties the best trade off between
accuracy on the training set and complexity of the space. Then the introduc-
tion of a bit–based hypothesis space is also encouraged by the basic ML idea to
search for the simplest class of functions capable of solving the problem under
examination.

In Tables 3 and 4, the confusion matrices of the MC-SVM and the MC-
HF-SVM with k = 8 bits for the test data are depicted. In them, measures of
overall accuracy, recall and precision are also given and exhibit very similar val-
ues in both approaches. Small variations are noticed in the recognition accuracy
of dynamic activities within the two SVM approaches such as in the walking

downstairs and walking upstairs activities, which also display some misclassifi-
cations mainly to their movement similarities. Static activities on the other hand
performed better, such as laying, for which we reported 0% classification error.
Furthermore, a small misclassification overlap was found between standing and
sitting, which is attributed to the waist-mounted smartphone physical location
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and the difficulty to discriminate between them: this is mainly due to the slight
inclination difference of the phone with respect to the vertical axis when these
activities are performed and largely depends on the user’s body type. These
classification errors could be in some way improved by incorporating new types
of features or sensors into the HAR system (e.g. inclusion of gyroscopes or addi-
tional accelerometers in different body parts), while they seem to be unrelated
to the type of classification approach selected (being it a fixed-point or floating-
point one).

4.1 Battery Consumption

Preliminary tests were performed on the smartphone to determine the advan-
tages of using this novel hardware-friendly approach in terms of battery con-
sumption: we expect that avoiding the use of the floating-point unit for complex
calculations can lead to energy sparing on a stand-alone device. We used a Sam-
sung Galaxy S II smartphone equipped with a Li-Ion 1650 mAh battery with
up to 610 hours of stand-by operation and the Android Gingerbread version
2.3.4 operating system. The code was written in Java for the user interface and
in C for implementing the most expensive operations such as signal processing
and Machine Learning algorithms more efficiently. The use of the C program-
ming language on Android was possible thanks to the Native Development Kit
(NDK) which allows embedding native code components into Android OS appli-
cations. Most of the phone services were turned off (e.g. Wi-Fi and 3G Network)
and also the phone screen was switched off as this is in general the most energy
consuming phone part. The idea was to isolate this process as much as possible
to obtain an approximate estimation of the battery consumption of our proposed
mobile app.

The accelerometer sensor was constantly reading the triaxial signal at a fixed
frequency as described in Section 3.2 in a circular buffer. Every 1.28 sec an inter-
ruption started the activity recognition process using the last available window
sample taking into account the 50% overlap between windows and their 2.56 sec
length. The experiments were carried out following two directions: processing
time and battery consumption.

A simulation of the HAR process was implemented on the smartphone with
the possibility of adjusting the number representation. This could be either fixed-
point or floating-point including the unsigned default data types available in C
from 8 to 64 bits. They were selected because the available libraries have only
power of two number representations. The time of the activity recognition pro-
cess from the sensor reading to determining the SVM FFP output was measured
to estimate the average prediction rate for each approach. Table 5 shows the
obtained results. It is worth highlighting the large difference between the rates
using the fixed-point representation instead of the floating-point and also the
proportional relationship between the number of bits used and the processing
time. For instance, the 32-bits integer model outperforms in speed the 32-bit
float model by almost 7 times.

An additional test was carried out aimed to measure battery consumption
with the floating-point and fixed-point representations. The experiment con-
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Data Type No. Bits No.Predictions/sec
Fixed-Point Representation
char 8 315.35
short int 16 241.54
int 32 185.00
long int 64 141.70
Floating-Point Representation
float 32 27.04
double 64 20.68

Table 5: Estimated prediction rates on the smartphone with basic data types.

sisted of running three times the HAR smartphone application continuously and
measure the time of battery discharge from a fully charged state until a mini-
mum level of 10% was reached. We found that the average battery time using
the 32-bit float model was of 89 hours and the time with the 32-bit integer was
of 112 hours. This is equivalent to an increase of 25% of the battery life when the
application is running alone. These results are highly dependent on the hardware
and operating system used but they are showing a trend on the improvements
that can be reached with this hardware-friendly approach. For obtaining a more
reliable measure of the relationship between the battery savings and processing
time more experimental tests with different devices and operational conditions
would be required. In current scenarios, even small savings in battery consump-
tion make a big difference in deciding whether or not to use a mobile app, such
as in cases where the HAR application is required to deliver activity information
to other higher-level decision applications (e.g. phone apps for maintaining a
healthy lifestyle through HAR [Lane et al., 2012]), thus implying sharing system
resources. In general, we aim to build a device able to operate at least during a
full day so the battery recharges can occur during the night time. These results
are a good indicator of the benefits that this method can offer for saving battery
life and the possibility of being integrated into devices for everyday life.

5 Conclusions

In this work we presented a novel energy efficient approach for the classification
of Activities of Daily Living using smartphones. It has been constructed based
on a modified Support Vector Machine model that works with fixed-point arith-
metic. The proposed model was supported in terms of Structural Risk Minimiza-
tion principles, where simpler models are always preferred if they have (almost)
equivalent ability to learn when compared to more complex approaches.

The scope of this work is to apply the current technology for ambient intelli-
gence applications such as in remote patient monitoring and smart environments
(e.g. in long term smartphone-based activity monitoring systems). Its advantages
include faster processing time, and the use of less system resources which in result
provide savings in energy consumption while maintaining comparable recogni-
tion performance when compared with other traditional approaches. Also the
possibility of using this approach in low-cost devices (e.g. fixed-point hardware)
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that could eventually be used in applications such as distributed or disposable
wearable sensing.

The experimental results confirmed that it is possible to substitute the stan-
dard Multiclass SVM model with more efficient fixed-point representations but
further experimentation is required to evaluate the system in more realistic con-
ditions, such as when the smartphone system shared resources are allocated for
different applications. Finally, future works will also explore algorithms, able to
improve adaptability to the user and to the smartphone setting on different po-
sitions: for example, fast kernel methods [Bordes et al., 2005], allowing for online
learning on the device, will be analyzed, both in terms of accuracy and ability
to refine the models without (remarkably) compromising energy consumption
and/or computational resources usage.
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