
Energy-efficient Static Task Scheduling on VFI based

NoC-HMPSoCs for Intelligent Edge Devices in

Cyber-Physical Systems

UMAIR ULLAH TARIQ∗ and HAIDER ALI∗, University of New South Wales

LU LIU, (corresponding author) University of Leicester, United Kingdom

JOHN PANNEERSELVAM, University of Derby, United Kingdom

XIAOJUN ZHAI, (corresponding author) University of Essex, United Kingdom

The interlinked processing units in modern Cyber-Physical Systems (CPS) creates a large network of connected
computing embedded systems. Network-on-Chip (NoC) based Multiprocessor System-on-Chip (MPSoC)
architecture is becoming a de-facto computing platform for real-time applications due to its higher performance
and Quality-of-Service (QoS). The number of processors has increased significantly on the multiprocessor
systems in CPS therefore, Voltage Frequency Island (VFI) recently adopted for effective energy management
mechanism in the large scale multiprocessor chip designs. In this paper, we investigated energy-efficient
and contention-aware static scheduling for tasks with precedence and deadline constraints on intelligent
edge devices deploying heterogeneous VFI based NoC-MPSoCs (VFI-NoC-HMPSoC) with DVFS-enabled
processors. Unlike the existing population-based optimization algorithms, we proposed a novel population-
based algorithm called ARSH-FATI that can dynamically switch between explorative and exploitative search
modes at run-time. Our static scheduler ARHS-FATI collectively performs task mapping, scheduling, and
voltage scaling. Consequently, its performance is superior to the existing state-of-the-art approach proposed
for homogeneous VFI based NoC-MPSoCs. We also developed a communication contention-aware Earliest
Edge Consistent Deadline First (EECDF) scheduling algorithm and gradient descent inspired voltage scaling
algorithm called Energy Gradient Decent (EGD). We introduced a notion of Energy Gradient (EG) that guides
EGD in its search for islands voltage settings and minimize the total energy consumption.

Conducted the experiments on 8 real benchmarks adopted from Embedded Systems Synthesis Benchmarks
(E3S). Our static scheduling approach ARSH-FATI outperformed state-of-the-art technique and achieved an
average energy-efficiency of ∼ 24% and ∼ 30% over CA-TMES-Search and CA-TMES-Quick respectively.

CCS Concepts: · Computer systems organization→ Embedded systems; Redundancy; Robotics; · Net-
works→ Network reliability.

Additional Key Words and Phrases: CPS, SNS, Task, DAG, Mapping, Scheduling, Contention, Heterogeneous,

VFI-NoC-HMPSoCs, Energy-efficiency

∗Both authors contributed equally to this research.

Authors’ addresses: Umair Ullah Tariq, tariqu@cse.unsw.edu.au; Haider Ali, h.ali@derby.ac.uk, University of New South
Wales, Sydney, Australia, 2052; Lu Liu, (corresponding author) University of Leicester, Leicester, United Kingdom,
l.liu@leicester.ac.uk; John Panneerselvam, University of Derby, Derby, United Kingdom; Xiaojun Zhai, (corresponding
author) University of Essex, Colchester, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
XXXX-XXXX/2019/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Tariq and Ali, et al.

ACM Reference Format:

Umair Ullah Tariq, Haider Ali, Lu Liu, John Panneerselvam, and Xiaojun Zhai. 2019. Energy-efficient Static
Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices in Cyber-Physical Systems. 1, 1
(June 2019), 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Key aspect of the Smart Networked Systems (SNS) is interlinking physical and virtual worlds
using sensors, digital devices, and actuators. These systems that tightly interlink physical and
cyber worlds referred to as Cyber-Physical Systems (CPS). Specifically, a CPS is the łintegration
of computation with physical processes ž [44, 51]. In the modern CPS real-world is monitored in
real-time through intelligent edge devices and relevant data is transferred into the cyberspace for
further cyber services, applications and, visualizations. The interlinked processing units in CPS
produce a large network of connected computing embedded systems [40, 44]. Wireless Sensors
Network (WSN) is one of the technologies that is core to the concept of SNS. WSN deploying
intelligent edge devices is widely used for numerous smart applications e.g. manufacturing process
automation, security, and surveillance [5, 8, 31].

The ever-growing demand for real-time applications has initiated to use Multiprocessor System-
on-Chips (MPSoCs) in modern embedded systems for CPS/WSN applications [2, 16, 44]. MPSoCs
integrate I/O units, memory, processors, and busses on a single silicon chip. Moreover, MPSoCs
guarantee high performance, exceptional reliability, and remarkable Quality-of-Service (QoS).
These overwhelming qualities make MPSoCs an ideal computing platform for numerous real-time
applications [2, 52]. For example, MPSoC systems play a vital role in CPS for mobile systems such as
automated robots autonomous cars, telecommunication, environmental/industrial monitoring, and
automotive robots [15, 46]. The use of MPSoCs is not limited to CPS and Internet-of-Things (IoT)
applications nowadays, they are being widely used in consumer electronic devices such as smart-
phones, tablets, and personal computers [14, 15]. Xilinx Zynq® UltraScale+TM MPSoCs and Renesas
R-Car H3 nona-core are the examples of MPSoCs commercially available for CPS applications.
Similarly Samsung Exynos 9810, Apple A11 Bionic, Xilinx Zynq® UltraScale+TM RFSoCs, Intel®

Stratix® 10, Tilera TILE-Gx72TM, and EZchip TILE-Mx100TM are high performance multiprocessor
architectures for consumer digital systems [2, 45].
In the near future multiprocessor systems will consist of hundreds of processors consequently,

bus-based traditional MPSoCs will become a bottleneck because of their congestion and scalability
issues. Network-on-Chip (NoC) based interconnects alternatively offer an improved scalability with
higher flexibility [2, 7]. Recently Voltage Frequency Island (VFI), Globally Asynchronous Locally
Synchronous (GALS) paradigm is introduced to NoC interconnect where the tiles are partitioned
into islands. Each island in MPSoC system is optimized with its own threshold voltage, operating
frequency, and supply voltage to reduce the overall energy consumption [21]. VFI based NoC-MPSoC
is a suitable choice of selection for data-extensive applications due to its higher throughput, energy-
efficiency, and lower complexity [26]. VFI based MPSoCs curtail the overall system’s complexity
by reducing the number of voltage level converters (VLCs) and multiple clock first-in-first-out
(MCFIFO) circuitry requirement [33]. VFI based MPSoC with fine-grained power management
capability can seamlessly combine with task scheduling algorithm in order to optimize over all
system’s energy. It is worth noticing that state-of-the-art commercially available multiprocessor
systems e.g. Intel Itanium i7 and IBM Power 7 series use VFI based MPSoC architectures [22, 23].
Static task scheduling describes a mechanism to suitably allocate tasks on processors before

the embedded systems run while fulfilling certain obligations such as energy consumption and/or
performance [11, 24]. Proper scheduling approach can drastically increase the reliability of an
embedded system [17]. Static task schedulers can be used in applications e.g. surveillance, human

, Vol. 1, No. 1, Article . Publication date: June 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 3

recognition, person tracking, gait analysis, advanced healthcare, crowed and traffic monitoring
[1, 42]. Meeting the constraints such as deadlines, performance, and QoS of the battery constrained
multiprocessor systems in CPS applications play a critical role [49]. For example, missing a deadline
for an application can reduce QoS and performance [15]. Moreover, energy-aware computing is
a critical challenging facet in modern embedded systems because higher energy consumption
not only causes an increased carbon dioxide (CO2) emission but also limits their life [19, 41, 49].
Dynamic Voltage and Frequency Scaling (DVFS) is a technique applied to MPSoC architectures
in order to reduce the power overhead while maintaining the desired performance. In DVFS, the
energy-efficiency is achieved by reducing the supply voltage and processor’s clock frequency [6].

In this paper, we investigated first time ever the problem of energy-efficient and contention-aware
static scheduling on the edge computing devices using heterogeneous VFI based NoC-MPSoC (VFI-
NoC-HMPSoC) system with DVFS-enabled processor for a set of tasks with precedence constraints
and deadline. Our main contributions and innovations are given as follows:

(1) We performed task mapping, ordering, and voltage scaling in an integrated way using a novel
search based meta-heuristic called ARSH-FATI. Our static scheduler also considers energy
performance profiles of the processors, voltage levels within each processor, contention at
the NoC links, and inter-VFI communications during task scheduling.

(2) Our meta-heuristic ARSH-FATI can dynamically switch between different search modes to
achieve a satisfactory trade-off between explorative and exploitative search during run-time.
Moreover, we presented a new a contention-aware Earliest Edge Consistent Deadline First
(EECDF) scheduling algorithm and gradient descent inspired Energy Gradient Decent (EGD)
voltage scaling technique.

(3) We compared the energy performance of our static scheduler ARSH-FATI with state-of-the-
art CA-TMES-Search and CA-TMES-Quick [16] energy management approaches using 8
real benchmarks adopted from E3S benchmark suit. Our meta-heuristic based static task
scheduler achieved an average energy-efficiency of ∼ 24% and ∼ 30% respectively.

We organize the rest of the paper as follows: Section 2 reviews the existing search based algorithms
and state-of-the-art energy optimization approaches. Section 3 presents the application, computing
platform, and powermodels. In Section 4we discuss our static contention-aware energy optimization
scheme. The simulation results on different benchmarks are discussed in Section 5, while in Section
6 we conclude this paper.

2 LITERATURE REVIEW

Task mapping and scheduling on multiprocessor architectures is an NP-hard problem and different
heuristics have been proposed based on mathematical formulation such as Integer Linear Program-
ming (ILP), Non Linear Programming (NLP), Linear Programming (LP) and Mixed Integer Linear
Programming (MILP). Similarly, search based heuristic algorithms using selection, crossover, muta-
tion, and elitism are also widely deployed. The popular examples of these search based algorithms
are Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Particle Swarm Optimization
(PSO). Among these algorithms, GA is widely adopted for task mapping and scheduling [2, 34].
These evolutionary algorithms belong to stochastic generate and test algorithms which are based
on (1) exploration of the search space and (2) exploitation of the promising information already
found. Exploration primarily describes the ability of an algorithm to discover the unseen regions
while exploitation demonstrates the capability to proceed in the desired direction for improvement.
For example in GAs, mutation and crossover are hypothetically considered to perform exploration
and exploitation respectively [10, 47]. However, there is strong criticism that crossover does not
possess a competitive advantage over mutation [47]. Nevertheless, these search based algorithms

, Vol. 1, No. 1, Article . Publication date: June 2019.

4 Tariq and Ali, et al.

fail to efficiently exploit the available chunk of information i.e. schemata. Moreover, exploration
and exploitation are the two opposing forces and a well-found balance between them determines
the success of a search based algorithm.

Motivated by the fact that multiprocessor systems are reliable and high-performance computing
platforms for edge devices in CPS, several researchers have investigated task mapping and schedul-
ing. One of the earliest work in scheduling includes a scheme developed by Olafsson in order to
efficiently distribute the tasks i.e. workload on heterogeneous multiprocessor system [38]. Aydin et
al. [4] provided DVFS based energy-efficient scheduling algorithm with O(n2loдn) complexity for
independent real-time tasks with different power consumption characteristics on multiprocessors
system. They formulated the scheduling problem as an NLP and assigned constant speed to the
tasks while maintaining the optimality. Other energy management studies used DVFS technique
for energy optimization. For example, Zhang et al. [50] presented a meta-heuristic scheduling
algorithm called Shuffled Frog Leaping Algorithm (SFLA) by integrating the gains of PSO and
Memetic algorithms while compared the energy-efficiency of SFLA with GA. Kumar and Vidyarth
[25] integrated task mapping and voltage assignment in a single optimization loop of GA. They
used DVFS technique to assign voltages to the tasks such that the dynamic energy consumption
is reduced with an acceptable performance trade-off. Wang et al. performed preemptive periodic
independent tasks scheduling using Discrete Event System (DES) supervisory control [48]. Liu
and Qi mapped the tasks using Weighted Earliest Finish Time (WEFT) algorithm and executed
the tasks with lowest possible earliest completion time [30]. These investigations reduced energy
consumption of independent tasks running on MPSoC architectures without explicitly considering
the precedence constraints.
Huang et al. [18] used an extended ILP formulation for energy optimization on heterogeneous

NoC based MPSoC systems and developed a heuristic called Simulated Annealing with Timing
Adjustment (SA-TA). Fundamentally SA-TA optimizes energy consumption by reaching near to the
global optimum under timing constraints. Gammoudi et al. scheduled real-time periodic tasks on
homogeneous NoC based MPSoC in order to meet deadline, energy and communication constraints
using a heuristics manipulated by deterministic strategy [15]. Ali et al. performed integrated task
mapping, scheduling, and voltage assignment on NoC based heterogeneous MPSoC (HMPSoC)
systems using a heuristic called EIMSVS for reducing processing and communication energies
[3]. Ishak et al. investigated a non-preemptive scheduling for tasks with precedence constraints
and individual deadlines. They used NLP and ILP to assign optimal voltages to the tasks and
communications on NoC links [20]. A similar ILP based approach is followed by Tariq et al. [46]
using Iterative Offline Energy-aware Task and Communication Scheduling (IOETCS) algorithm
for total energy consumption reduction. Ali et al. developed an energy-efficient task scheduling
approach using Contention-aware Integrated Task Mapping and Voltage Assignment (CITM-VA)
meta-heuristic algorithm. CITM-VA integrated DVFS and DPM to achieve maximum energy savings
by reducing both static and dynamic power consumptions while considering the contention at NoC
links [2]. Ding et al. presented a Hybrid Heuristic Genetic Algorithm with Adaptive Parameter
(HGAAP) for energy-aware task mapping on heterogeneous multiprocessor architectures [13].
However, these studies consider MPSoC systems for tasks with precedence constraints but perform
mapping and scheduling on single processor per VFI.
Ninomiya et al. [36] developed a task scheduling scheme for VFI based MPSoC architecture

using SA based algorithm for energy consumption reduction and generated an optimal schedule
for set of tasks under deadline constraints. Pagani et al. [39] presented a scheduling scheme called
Single Frequency Approximation (SFA) to map the tasks and assign optimal voltage and frequency
levels to each VFI. Liu and Guo [29] developed a Voltage Island Largest Capacity First (VILCF)
algorithm for mapping the tasks on active VFI first in order to fully utilize it before activating

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 5

other inactive VFIs. Shin et al. [43] studied communication-aware VFI partitioning approach and
developed a task mapping, voltage assignment algorithm for reducing inter-VFI communications.
These investigations in [29, 36, 39, 43] deploy bus-based VFI-MPSoC systems for independent tasks
mapping and scheduling. Some other researchers considered NoC based VFI-MPSoC systems for
instance, Jang and Pan [21] performed energy-aware scheduling for dependent tasks by reducing
VFI’s power overheads. Digalwar et al. [12] presented a scheduling algorithm in order to optimize
the total energy consumption for periodic tasks with hard deadline. Han et al. [16] developed
a contention-aware static mapping and scheduling scheme for a set of tasks with precedence
constraints in order to minimize the make-span and inter-VFI communications. They developed a
contention and energy-aware task mapping and edge scheduling (CATMES) heuristics to assign
tasks to processors while scheduling the edges on NoC. Two approaches CA-TMES-Quick and
CA-TMES-Search were developed to select the processor for a task where it can start earliest among
all processor. CA-TMES-Quick first performs task assignment and then determines routes for the
communications that are sent to this task. CA-TMES-Search calculates start time for each task
while considering communication contention. The processor offering earliest start time for a task
is selected by CA-TMES-Search. Specifically, CA-TMES-Search relatively performs better than CA-
TMES-Quick because it coordinates the task mapping in an exhaustive way therefore, make-span
significantly reduces. We use these CA-TMES-Quick and CA-TMES-Search energy management
schemes as baseline in order to determine the performance of our static task scheduling approach.

Though these state-of-the-art studies [12, 16, 21, 36, 43] addressed the energy-efficiency on VFI
based NoC-MPSoC systems but non of them performed investigation on heterogeneous computing
platform while considering processor energy performance profiles for achieving higher energy
savings. Specifically, to the best of our knowledge non of the prior work focused on contention-aware
and energy-efficient task scheduling on VFI-NoC-HMPSoC using DVFS technique for dependent
tasks with precedence constraints and common deadline .

3 PRELIMINARIES

In this section first we present the relevant application model, second we discuss our VFI-NoC-
HMPSoC architecture and finally we explain the energy model. Moreover, In this paper, we use the
term tile and processor interchangeably.

3.1 Application Model

We characterize a real-time workload or application by Directed Acyclic Graph (DAG): G(V ,E,X)
shown in Fig. 1. Where V = {v1,v2,v3, . . . ,vn} represents a set of tasks and E ⊆ V × V shows
directed edges set while each edge (vi ,vj) ∈ E denotes data dependency between two tasks. For
example, if we have an edge from task vi to task vj then vi is the predecessor of vj and outputs the
data to vj , where vj is the successor of vi and it accepts input data from vi . Moreover, X indicates
set of directed edge weights while χ(i, j) is the edge-weight of an edge (vi ,vj) that shows the volume
of data (in unit of bits) sent from vi to vj . We assume all tasks in the application have a common
deadline, D.

3.2 System Architecture

We consider a VFI based NoC-MPSoC architecture withM processors P = (pe1,pe2,pe3, . . .peM)
demonstrated in Fig. 2. Each tile consists of a processor, local memory, and network interface
card. Processors of the target architecture are partitioned into a set C = {c1, c2, c3, . . . cm} ofm
heterogeneous VFIs. Where each VFI, ci ∈ C consists a set of k homogeneous processors. We assume
processors within an island (VFI) are of same type. Processors across different VFIs may be of
different types i.e. inter-VFI processors may be heterogeneous. Each VFI can operate independently

, Vol. 1, No. 1, Article . Publication date: June 2019.

6 Tariq and Ali, et al.

v1

v2

v3

v4

v5

v6 v7

10

15

8

1

1

10

15

3

v8

5

Fig. 1. Directed Acyclic Graph

at a set {(Vdd1 , f1), (Vdd2 , f2), (Vdd3 , f3), . . . , (Vddn , fn)} of n discrete voltage and frequency levels
while a common supply voltage is shared by intra-VFI processors and routers.

VFI 2

VFI 3 VFI 4

VFI 1

RRR R R

R R R R R

RR R R R

R

R

R

RRRRRR

Local

Memory

Processor

Network

Interface

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Fig. 2. VFI based Heterogeneous NoC-MPSoC Architecture

3.3 Communication Model

We assume a 2D-mesh topology NoC for communication architecture of the VFI based hetero-
geneous NoC-MPSoC (VFI-NoC-HMPSoC) shown in Fig. 3. Each tile of the computing system
associated with a router to communicate with other processors. In NoC buffers are used in routers
to host the incoming flits when immediate transfer to next processor and/or Intellectual property
(IP) is not possible because of the congestion. NoC mesh consists of NR rows and NC columns
therefore, number of processors in VFI-NoC-HMPSoC is equal to NR × NC . Each router has five
ports, four ports are used to communicate with the neighbor routers and one is dedicated for the
purpose of communicating with the processor. A link is used to connect two routers and/or a router
with a processor. We consider that all links are identical, full duplex, and have the same bandwidth,
bw .

3.3.1 Switching Technique. Virtual cut-through (VCT) and wormhole (WH) are the two most
popular packet switching techniques for NoC interconnects. In WH each packet is split into small
pieces known as FLITS. When in the network a packet traverses the WH immediately determines
its next hop, forwards it and then the subsequent FLITS worm their way through the network. In
VCT routing the buffer size is large and the entire packet is sent to the next node Thus, VCT has
lower latency, higher link utilization, and lesser packet blocking probability. Though WH switching
is simple and possesses higher efficiency of flow control over VCT in case of congestion occurrence,

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 7

Router

west switch

0

(0,0)

1

(1,0)

2

(2,0)

3

(0,1)

4

(1,1)

5

(2,1)

6

(0,2)

7

(1,2)

8

(2,2)

b
u

ff
e
r

buffer

b
u

ff
e
r

Crossbar

 Switch
buffer

north switch

south switch

east switch

processor

Fig. 3. 2D-mesh topology NoC interconnect

the stalling packet can block all the links and produces a low link utilization. Therefore, we consider
VCT packet switching technique in this paper.

3.3.2 Routing Technique. Routing technique in a network decides the path of a packet from source
to the destination router. We use a well-known XY deterministic routing on NoC which is most
suitable option for 2D-mesh topology networks. Moreover, XY routing is a simple but yet effective
approach additionally one of the major advantages includes that a deadlock does not occur in it. In
XY routing the packets at the routers are routed in X-direction first and later on in the Y-direction.

3.4 Energy Model

We adopt the energy model described in [37]. The total energy consumption of an application is the
sum of processing and communication energy consumption Ep and Ec respectively. The parameter
Ep is the energy consumed in the execution of tasks on the processor, whereas communication
energy is consumed in transmission of communications on the network that includes switch fabric,
links, and buffers. Ep and Ec are discussed in detail in [37].
The total energy E consumed by an application is given given as follows:

E = Ep + Ec (1)

Concisely, we consider DAG applications and heterogeneous VFI -NoC-HMPSoC architecture
with VCT switching, XY routing, and energy consumptions that occur due to processors and
communications.

4 STATIC CONTENTION-AWARE ENERGY OPTIMIZATION APPROACH

VFI-NoC-HMPSoCs consist of processors with different power-performance profiles. These pro-
cessors operate at distinctive frequency and voltage i.e. speed levels. Furthermore, precedence
constraints and the deadline of the tasks essentially must be observed. Subsequently, the execution
order of the tasks and communications could significantly affect the total energy consumption.
A substantial amount of energy could be saved by assigning priorities to the tasks with shorter
deadline because DVFS can efficiently utilize the available idle slack by assigning a lower speed
to the tasks. Therefore, the obtained quality of the solution is influenced by three factors: (1) task
mapping, (2) ordering, and (2) voltage assignment. The state-of-the-art approach by [27] performs
task orderings and voltage scaling in an integrated manner and performs task mapping separately.
However, we think task and communication ordering and voltage scaling can be helpful in steering
the task mapping optimization process towards more energy-efficient solution. This is one of the
major factors that we consider in the design of our energy-aware integrated mapping, scheduling

, Vol. 1, No. 1, Article . Publication date: June 2019.

8 Tariq and Ali, et al.

and voltage scaling (ARSH-FATI) algorithm. ARSH-FATI algorithm considers mapping, scheduling,
and voltage scaling in an integrated manner.

Algorithm 1: ARSH-FATI

input :A DAG G, tasks Deadlines, an MPSoC, total number of iterations Ω and population size µ
output :Task to processor mappingmap and islands voltage levels vol
Construct two matrices Π and Ψ of zeros having dimensions µ × |V | and a vector f of zeros having
dimension µ × 1;

for η ← 1 to µ do

for each vi ∈ G do

Π[η][i] ← ⌈rand()(|P | − 1) + 1⌉;

end

for each c j ∈ C do

Ψ[η][j] ← maximum island voltage;

end

end

for η ← 1 to µ do

Generate the extended graph Ge ;

[m, e] ← IVS(G,Ge ,Π,Ψ,η);

f [η] ← f itness(m, e);

end

while stopping criteria is not satisfied do

Find the best solution πb and the worst solution πw ;

for η ← 1 to µ do

f ′
b
← −∞;

for each vi ∈ G do

r ← rand();

θ ← Π[η][i];

Π[η][i] ←

{

ϒ(θ ,πb [i],πw [i]) if r ≤ DR

Π[η][i] otherwise

end

Construct an extended graph Ge given a mapping ;

[m, e] ← IVS(G,Ge ,Π,Ψ,η);

f [η] ← f itness(m, e);

if f ′
b
< f [η] then

f ′
b
← f [η];

end

end

DR ←

{

DR
λ

if f ′
b
> fb

λDR otherwise

end

Setmap and vol to mapping and islands voltage settings respectively with the highest fitness in the
population;

The details of ARSH-FATI are given in Algorithm 1. Before we start explaining our algorithms
we first define an extended graphGe illustrated in Fig. 4. In an application, there are two kinds of

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 9

events communications and tasks. In order to schedule communications using traditional DAG
based scheduling approaches we transform a DAG i.e.G into an extended graphGe . Given a task to
processor mapping an extended graphGe is constructed by inserting an additional nodevs to graph
G for each edge (vi ,vj) whose tail node vi and head node vj are mapped on different processors.
The edge (vi ,vj) in extended graph is replaced by two edges (vi ,vs) and (vs ,vi). The additional
inserted nodes are called communication nodes. The extended graph is represented byG(V +V ∗,E),
where V is a set of the task nodes, V ∗ is a set of the communication nodes, and E is a set of the
edges.

v1

v2

v3

v4

v5

v6 v7

V48

v8

V14

V13

V46 V67

V57V35V12

V36

Communication NodeTask Node

Fig. 4. Extended Graph

ARSH-FATI is a population-based algorithm in which only the best and worst solutions of the
previous population are used to generate µ number of candidate solutions for the current population.
Such kind of selection algorithms in the literature are commonly referred to as (1 + µ) selection
algorithms.
Robustness of ARSH-FATI algorithm lies in the notion of updating the parameter dimensional

rate (DR) at run-time during the searching process. Our algorithm attains a satisfactory trade-off
between the exploitation and exploration attributes of the search process. We define the parameter
DR as the percentage of tasks that are re-mapped probabilistically to generate a new solution
(mapping) form current (best and worst) solutions. The need for only re-mapping a percentage of
tasks and not all the tasks stems from the sensitivity of energy consumption to task mapping in
this (energy optimization) problem. In other words re-mapping, even a small subset of tasks may
generate a schedule with energy consumption significantly different than the schedule generated
by original mapping. Hence, the role of DR is to adjust at run-time the exploitation and exploration
features of ARSH-FATI algorithm that we explain in the following.
Step1. Initial population generation: First we generate a matrix Π of dimensions µ × |V |,

where each row in this matrix represents a task to processor mapping. Each row is in matrix Π is
generated by randomly mapping tasks to processors.
Step2. Evaluation:We define the following fitness function to gauge the quality of each member

of the population:

f itness(m, e) =

{

1
e

ifm ≤ D

−∞ otherwise

We define the following two terms:

(1) Best solution: is a member of the population that has the highest fitness value.
(2) Worst solution: is a member of the population that has the lowest fitness value.

, Vol. 1, No. 1, Article . Publication date: June 2019.

10 Tariq and Ali, et al.

Step3. Setting parameter DR: We set the value of DR to 0.3 for the initial population. This value
is determined empirically after extensive experiments. The DR value for the other populations
generated during the optimization process is determined as follows:

DR =

{

DR
λ

if the best solution is improved

λDR otherwise
(2)

According to equation (2) if the best solution found so far is improved in the previous iteration then
the value of DR is increased by dividing it by 0 < λ < 1 otherwise we decrease DR by multiplying it
with λ. We refer to λ as the dimensional rate adaption parameter as it determines the new value of
DR during the optimization process. The larger the value of DR the more explorative the search is
as this enables the moves in the search space by re-mapping many tasks at the same time, thereby
leading to large and unconstrained step sizes. Compared to this a small value of DR motivates
a more exploitative search by allowing small and conservative steps in the search space. The
motivation behind equation (2) is to encourage the re-mapping of more tasks and thus, support
more explorative search if the energy consumed by the schedule generated by the mapping in the
previous iteration reduces. On the other hand if the energy does not reduce then the explorative
search is rather restricted and ARSH-FATI takes small steps near the current mapping.
It is worth noticing that ARSH-FATI also reduces the communication contention. The energy

function has two components, the communication energy, and the processing energy. Notice that
the most effective mechanism of minimizing communication energy is to reduce the traffic over
the network. As the traffic over the network reduces so does the communication contention. In
scenarios where the communication energy dominates the total energy, ARSH-FATI will choose
the solution that minimizes the traffic over the network and consequently, reduced contention
among the communications. The prime objective of ARSH-FATI is to minimize the total energy.
Therefore, in scenarios where the total energy is dominated by processing energy, it may choose a
solution that generates high contentions between communications but minimizes the total energy
consumption. Steps involved in the working principle of ARSH-FATI are given as follows:
New population: In every iteration for each candidate solution, we only remap a subset of

tasks. These tasks are selected based on the value of DR. We remap the selected task vi as follows:

Π[η][i] =

{

ϒ(θ ,πb [i],πw [i]) if r ≤ DR

Π[η][i] otherwise

where θ is the processor where vi is currently mapped, r is a random numbers and πb [i] and πw [i]
are the processor where vi is mapped in the best and worst solutions respectively. The function
ϒ(θ ,πb [i],πw [i]) is defined as follows:

ϒ(θ ,πb [i],πw [i]) =

{

|υ(θ ,πb [i],πw [i])| if υ ≤ |P |

|P | otherwise

υ(θ ,πb [i],πw [i]) is defined as follows:

υ(θ ,πb [i],πw [i]) = ⌈θ + r1(πb [i] − θ) − r2(πw [i] − θ)⌉ (3)

where r1 and r2 are random numbers. The term r1(πb [i]−θ) reflects the likelihood of the solution to
move closer to the best solution in the population and the term r2(πw [i] − θ) reflects the likelihood
of the solution to avoid the worst solution.

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 11

4.0.1 Earliest edge consistent deadline first (EECDF) algorithm. Before we describe EECDF given
in Algorithm 2 we define some notations. The worst case execution time of a task node vi mapped

on processor pek operating at frequency fj is et(vi) =
NCC(vi ,k)

fj
, where NCC(vi ,k) is the worst

case clock cycles ofvi on processor pek . The start and finish times of a task nodevi are respectively
denoted by ρ(vi) and ζ (vi). Similarly for a communication node vj (corresponding to edge (va ,vb))
the transmission time on a link L between processors pes and ped is et(vj ,L) =

χa,b
bw min{fs ,fd }

,

where bw is the link width, fs and fd are the frequencies of pes and ped respectively. The start
and finish time of vj on link L are respectively denoted by ρ(vj ,L) and ζ (vj ,L), where ζ (vj ,L) =
ρ(vj ,L) + et(vj ,L).

Algorithm 2: EECDF

input :A DAG G, an extended DAG Ge , matrix Π, matrix Ψ and current chromosome index η
output :Energy e and make-spanm of schedule
Calculate the ECD, d ′i of each task in vi ∈ G;

Insert all source node in a ready queue R;

while there are ready nodes in R do

Find a node vi in R with smallest d ′i while ties are broken in favour of smallest index;

if vi is a task node then

Schedule vi subject to rules R1, R2 and R3;

end

else

Schedule vi subject to rules R4, R5, R6 and R7;

end

Delete vi from R;

Insert all ready nodes in R;

end

Calculate the energy e and make-spanm of the schedule;

Scheduling, in general, is an NP-hard problem. Hence, in this work, we propose an earliest
edge consistent deadline first (EECDF) heuristic algorithm. EECDF is a static list scheduler that
prioritizes nodes with shorter edge consistent deadline (ECD) over nodes with longer ECD. The
motivation behind this is to allow the DVFS algorithm to efficiently utilize the available slack.

Given task to processor mapping, operating frequencies of processors and a DAGG we calculate
the ECD by the following dynamic programming algorithm.
Traverse the DAG G in the reverse topological order of G. If the task vi is a sink node then its

ECD, d ′i is equal to its pre-assigned deadline di otherwise:

d ′i = min{di ,min{d ′j − etj : ∀vj ∈ ISucci }} (4)

where ISucci is a set of immediate successors of vi . The ECD, d ′j of a communication node is same
as its parent (task) node.
The EECDF algorithm is described in Algorithm 2. We performs four major steps.

(1) Calculate the ECD of each task vi ∈ G (Line 1).
(2) Create a ready queue R and insert all the source nodes in Ge to R (Line 2).
(3) Find a node vi that has minimum ECD in R and schedule it. Then delete vi from R and insert

all the ready nodes in Ge to R. Repeat this until R is empty (Line 3-10).
(4) Calculate the energy E and make-spanm of the schedule.

, Vol. 1, No. 1, Article . Publication date: June 2019.

12 Tariq and Ali, et al.

We define seven rules to schedule the highest priority node vi ∈ R. The first three rules deal with
the schedule of a task node and the remaining four deal with the schedule of a communication
node.

Task scheduling rules: The schedule of a task node vi is obtained by applying the following rules
collectively in order:

• R1: The start time of vi is equal to release time of vi , ρ(vi) = r(vi).
• R2: The release time of each node vj ∈ ISucc(vi) is equal to r (vj) = max{ζ (vi), r (vj) : ∀vj ∈
ISucc(vi)}.
• R3: The release time of each unscheduled task node vj mapped on same processor of vi is
r (vj) = max{ζ (vi), r (vj)}.

R3 enforces EECDF rule on the schedule of task nodes. Under this rules task nodes with shorter
ECD have higher priority than task nodes with longer ECD. High priority tasks are scheduled
earlier in time than low priority tasks.

Communication scheduling rules: In communication scheduling, network resources such as links
are treated as processors in a way that each communication can only use one resource at a time.
Hence, communication nodes are scheduled on the links for the time they occupy them.

Consider a communication node vj whose source is mapped on pesrc and destination is mapped
on pedest , the routing algorithm used by the network generates the route R j from pesrc to pedst .
The route R j =< L1,L2, . . . ,Ll > is an ordered list of links, where L1 is the first link and Ll is the
last link on the route.

Note that the route depends only on the source and destination of the communication because in
our network model we assume deterministic (XY) routing. Furthermore, the entire communication
must be transmitted on the established route because in the network model we suppose circuit
switching. A communication node utilizing this route must be scheduled on all the links (of this
route). The data traverses these links in the order they appear in the route vector.
Link causality constraints: The schedule of a communication node vj on links of route R j must

abide by the link causality constraints defined as follows:

ρ(vj ,L1) ≤ ρ(vj ,Lk) (5)

ζ (vj ,Lk−1) ≤ ζ (vj ,Lk) (6)

f or 1 < k ≤ l

The causality constraints impose bounds on the schedule of vj on the links of R j . The finish time of
vj must not be sooner on link Lk than its predecessor link Lk−1.

Given a communication node vj whose parent node is va and child node is vb , the schedule of a
vj on R j =< L1,L2, . . . ,Ll > is obtained by applying the following rules collectively in order:

• R4: The start time of vj is equal to finish time of va , ρ(vj) = ζ (va).
• R5: The start time of vj on each link Lk ∈ R j is:

ρ(vj ,Lk) =

{

max{β, ρ(vj)} if k = 1

max{β,α , ρ(vj ,L1)} if k > 1

where α = ζ (vj ,Lk−1) − et(vj ,Lk) and β is the finish time of latest communication node
scheduled on link Lk . On the link L1 the start time of vj is constrained only by the finish
time of its parent node va and on all subsequent links the schedule of vj follows the causality
constraints. Note that R5 enforces the EECDF rule on the schedule of communication nodes.
Under rule R5 communication nodes with shorter ECD have priority over nodes with longer
ECD.
• R6: The finish time of vj is equal to the finish time of vj on the last link Ll , ζ (vj) = ζ (vj ,Ll).

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 13

Algorithm 3: Energy Gradient Descent (EGD)

input :A DAG G, an extended DAG Ge , matrix Π, matrix Ψ and index η.
output :Schedule make-spanm and energy e .
[e,m] ← EECDF (G,Ge ,Π,Ψ,η);

if m ≤ D then

while there are extensible islands do

Γ ← −1;

for each extensible island c j ∈ C do

EGbest ← −∞;

Find the voltage V L
dd

of island c j exactly one level lower than current voltage level Ψ[η][j];

for each Vdd ∈ {V
min
dd
, . . . ,V L

dd
} do

temp ← Ψ[η][j];Ψ[η][j] ← V L
dd

;

[e ′,m′] ← EECDF (Ge ,Π,Ψ,η);

Ψ[η][j] ← temp;

end

if m ≤ D then

Calculate EG(c j);

if EGbest
< EG(c j) then

EGbest ← EG(c j);

Γ ← Vdd ;τ ← j;e ′′ ← e ′;m′′ ←m′;

end

end

end

if Γ , −1 then
Ψ[η][τ] ← Γ;e ← e ′′ ;m ←m′′;

end

end

end

• R7: The release time of vb is equal to finish time of vj , r (vb) = ζ (vj)

4.0.2 Energy gradient descent (EGD). EGD in Algorithm 3 is inspired by gradient descent. Given
task mapping and the initial islands operating voltages, EGD explores the solution space to find
voltage settings for islands such that total energy consumption is minimized and the resulting
schedule under these settings is feasible.
Before we describe EGD we define the two terms, an extensible island and an island energy

gradient.
An island c j ∈ C is extensible, if by reducing its operating voltage the resulting schedule under

the new voltage settings is feasible.
EGD is guided by energy gradient in its search for the island voltage setting that minimize

energy consumption. Given the operating voltage Vdd of an island c j , the energy consumption E

and make-spanm of the schedule, the energy gradient of c j is defined as:

EG(c j ,E,m,E
′
,m′) =

{

γ (E − E ′) if E > E ′,m ≥ m′

E−E′

m′−m
otherwise

where γ is a large number, E ′ andm′ is the energy consumption and make-span of the schedule
respectively, when c j operates at V ′dd , where V

′
dd

is a voltage level lower than Vdd .

, Vol. 1, No. 1, Article . Publication date: June 2019.

14 Tariq and Ali, et al.

EGD repeats the following two steps until there are no extensible islands:
Step 1: First find a set of extensible islands. Then for each extensible island c j do the following:

• Find a set {Vmin
dd
, . . . ,V L

dd
} of operating voltages, where V L

dd
is the maximum operating

voltage of c j under which the energy consumption of the schedule reduces.
• Tentatively adjust the operating voltage of c j to each voltage level in set {Vmin

dd
, . . . ,V L

dd
},

call EECD to calculate the make-span, the energy consumption of the schedule under new
voltage settings and calculate the EG.

Step 2: Find the island c j and its operating voltage Vdd that maximizes the energy gradient and
adjust the operating voltage of c j to Vdd .
EGD may repeat the above mentioned two steps several times before it converges. In each

iteration EGD can find many extensible islands and can adjust their operating voltages to many
different levels. Each of these island voltage pairs may lead to some reduction in energy consumption.
EGD chooses the pair that maximizes the EG . This is because for each island voltage pair the energy
consumption of the schedule under the new voltage settings reduces without or with an increase in
the make-span of the schedule. Both of these cases are reflected in the EG function. The first case is
an ideal one because energy is reduced without any reduction in the available slack. Hence, the EG
gives more weight to island voltage pairs that lie in case 1 by multiplying the energy difference with
a large integer λ. In the second case energy reduces but with an increase in schedule make-span. In
this case EG is the ratio between energy difference and the make-span difference. Higher the ratio
the better the island voltage pair. A large value of this ratio is an indication of a large numerator and
a small denominator. A large numerator reflects a big energy difference. This is desirable because
it indicates that by changing the voltage level the schedule under new voltage settings reduces
energy significantly. A small numerator reflects a small make-span difference. This is also desirable
as this indicates more slack will be available for the nodes in the subsequent iterations.

5 EXPERIMENTAL SETUP AND RESULTS

In this section, we explain the experimental set up used for simulation. We also generate energy
consumption values for different real benchmarks and discuss the results.

5.1 Experimental Setup

We use 8 real benchmarks in our experimental analysis on VFI-NoC-MPSoC computing architecture
while generate results for different scenarios. The real benchmarks are adopted from Embedded
System Synthesis Benchmarks Suite (E3S) which is a widely used benchmark suit in the task map-
ping and scheduling research [9]. Automatic Target Recognition (ATR) benchmark is a real-time
streaming application used for pattern recognition. Benchmark MP3-decoder performs Huffman de-
coding and Inverse Discrete Transform (IDCT). JPEG-encoder contains tasks for Huffman encoding
and Discrete Cosine Transform (DCT). Office benchmark contains tasks for text processing, image
rotation, and gray-scale to binary conversion. Auto-industry represents an embedded application
that includes tasks such as Fast Fourier Transform (FFT), finite/infinite impulse response filter,
IDCT, Inverse Fast Fourier Transform (IFFT), matrix arithmetic, table lookup, road speed calculation,
and interpolation. Consumer-1 and Consumer-2 benchmarks perform JPEG compression and/or
decompression, conversions such as from RGB to CMYK and RGB to YIQ.
We use Samsung Exynos 5422 chip power and energy model for our simulations adopted from

[28] and use two types of processors i.e. type 1: high-performance Cortex A15 (big) and type 2:
low-power Cortex A7 (little). The Cortex A7 consumes ∼ 6 − 12 times less power compared to
Cortex A15 [32]. The operating frequencies and relative power consumption of both types are

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 15

Table 1. Operating Frequency and Power Consumption of Type 1 and Type 2 Processors

Type 1 (Cortex A15)

Frequency (GHz) 2.0 1.8 1.6 1.4 1.2 1.0 0.8
Power (mW) 2500 1750 1350 1000 850 650 400

Type 2 (Cortex A7)

Frequency (GHz) 1.4 1.2 1 0.8 0.6 0.4 0.2
Power (mW) 82.0 76.0 74.0 72.0 68.0 66.0 64.0

Table 2. The 70 nm Processor Technology Parameter Values

Parameter Value Parameter Value

K1 0.063 K2 0.153
K3 5.38 × 10−38 K4 1.83
K5 4.19 K6 5.26 × 10−12

Cef f 4.30 × 10−10 α 2.00
Ij 4.80 × 10−10 Lд 4.00 × 106

Vbs - 0.70 Vth 0.244

given in Table 1. Moreover, we adopt 70 nanometers (nm) processor technology parameters from
Ali et al. [2] listed in Table 2.

We built the simulation environment in Matlab version R2016a moreover, we conducted the
experiments using hardware platform of Intel (R) Xeon (R), i5-3570 CPU with the clock frequency
of 3.50 GHz and 16.00 GB memory, 10 MB cache. We also use intlinprog solver for programming ILP
problems. We first select real-world then synthetic benchmarks and report on the energy-efficiency
evaluation of our ARSH − FAT I meta-heuristic.

Fig. 5 shows the impact of DR on ARSH − FAT I performance. We set DR = 0.3 initially though
it can acquire values 0.1 ≤ DR ≤ 0.5 with small impact on the total energy performance for static
task scheduling. The results indicate that the energy performance of the ARSH − FAT I slightly
decreases when DR = 0.1 and DR = 0.5. However, our algorithm automatically sets the DR value to
produce maximum energy-efficiency but initially setting DR = 0.10 means ARSH − FAT I performs
an insufficient exploration while DR = 0.5 leads to an excessive exploration. Thus, DR = 0.3 is
the nominal initial value for our meta-heuristic. ARSH − FAT I converges i.e. DR value relatively
stabilizes at 200 number of iterations (NI) and a minute variation occurs till 500 while no variations
occur when NI > 500. Therefore, we consider NI = 500, µ = 5, and λ = 0.9 for our experiments.

5.2 Results

We generate results for four scenarios considering different metrics such as homogeneous MPSoC
platform, heterogeneous multiprocessing computing system, PPI, deadline, and CCR. In this section,
we refer to different parameters listed in Table 3.

5.2.1 Scenario 1. We set the default parameters NVFI = 4, PPI = 2 × 2, M = 16, DR = 0.30,
and perform experiments on 8 real benchmarks deploying both homogeneous and heterogeneous
VFI-NoC-MPSoC computing architectures.

, Vol. 1, No. 1, Article . Publication date: June 2019.

16 Tariq and Ali, et al.

0.5

0.4

0.3

0.2

0.1

0.0

D
R

5004003002001000

Iterations

 JPEG-encoder
 Consumer-2
 ATR
 Auto-1
 Office
 MP3-decoder
 Auto-2
 Consumer-1

Fig. 5. Dimensional rate parameter variations

Table 3. List of Parameters Used In Results

Parameters Description

NVFI Number of Voltage Frequcny Island
PPI Processors per Voltage Frequency Island
M Total number of processors
CCR Communication to Computation Ratio
MULT Multiplier
∆E Change in Energy
Task Set-1 ATR, MP3-decoder, JPEG-encoder
Task Set-2 Office, Auto, Consumer

Table 4. Real Benchmarks Energy Consumption Comparison in Joule (J) at NVFI = 4 and PPI = 2 × 2

Benchmarks
ARSH − FAT I

(Homogeneous)
ARSH − FAT I

(Heterogeneous)

ARSH − FAT I

+EGD
(Heterogeneous)

CA −TMES

(Search)
CA −TMES

(Quick)

ATR 1.1201 1.0324 0.9586 1.2115 1.2501
MP3-decoder 1.3208 1.2828 1.1627 1.4950 1.5793
JPEG-encoder 1.3808 1.3593 1.2396 1.5439 1.6415
Office 0.4431 0.4107 0.3981 0.4906 0.4910
Auto-1 0.5136 0.4931 0.4682 0.5748 0.5791
Auto-2 0.2850 0.2546 0.2381 0.2915 0.3064
Consumer-1 0.4321 0.4121 0.3917 0.4701 0.4920
Consumer-2 0.3802 0.3602 0.3334 0.4043 0.4201

We compare the energy performance of ARSH − FAT I with state-of-the-art CA-TMES-Search
and CA-TMES-Quick [16]. First, we consider a homogeneous VFI-NoC-MPSoC system where all
the processors are of type 1. We set the operating frequencies of the processors to their maximum
(fmax = 2.0 GHz). Second, we use a VFI-NoC-HMPSoC deploying both type 1 and type 2 processors
without voltage scaling technique. We randomly select the type of processor for each VFI to
generate a heterogeneous computing platform in order to ensure unbiased experimentation. Third,
we consider a VFI-NoC-HMPSoC computing architecture and use EGD in order to efficiently avail

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 17

the slack in the processors. Table 4 summarizes the energy consumption values for these three
cases on 8 real benchmarks.

Fig. 6 demonstrates the energy performance of our static task scheduler ARSH − FAT I compared
to CA-TMES-Search and CA-TMES-Quick. X-axis denotes real benchmarks while y-axis represents
energy consumption in joule (J). Not surprisingly when all the processors are of type 1, (ARSH −
FAT I)homoдeneous consumes lower energy because our population-based meta-heuristic performs
better solution space exploration during task mapping and subsequently, reduces communication
energy. In other words (ARSH − FAT I)homoдeneous schedules dependent tasks closer to each other
in order to avoid energy dissipation occurring due to the utilization of links, switches, and buffers
for communications. Specifically, (ARSH −FAT I)homoдeneous achieves an average energy-efficiency
of ∼ 15%, ∼ 8% over CA-TMES-Qucik and CA-TMES-Search respectively.
The energy savings further increases when both type 1 and type 2 processors are deployed to

form VFI-NoC-HMPSoC system. Task scheduler, (ARSH − FAT I)heteroдeneous attains an average-
efficiency of ∼ 13%, ∼ 20% compared to CA-TMES-Search and CA-TMES-Qucik respectively.
Unlike, CA-TMES-Quick and CA-TMES-Search energy management approaches our static scheduler
(ARSH − FAT I)heteroдeneous is aware of the energy performance profiles and generates a task
schedule such that higher energy consuming tasks are mapped on low performance and high
energy-efficient processor.
Our static scheduler ARSH − FAT I when integrated with voltage scaling algorithm EGD i.e.
(ARSH − FAT I)heteroдeneous+EGD achieves the highest energy-efficiency. It produces an average
energy savings of∼ 24%,∼ 30% over CA-TMES-Search and CA-TMES-Quick respectively. EGD tends
to find the voltage settings for islands such that energy consumption is minimized and the deadline
constraints are satisfied. In other words, EGD reduces the computation energy consumption by
intelligently exploiting the available slack in the processors.

Summarizing the observations in these experiments in scenario 1,ARSH −FAT I reduces both the
communication and computation energy consumptions while not sacrificing the constraints. Our
approach ARSH − FAT I for static task scheduling on VFI-NoC-MPSoC architecture outperforms
both CA-TMES-Search and CA-TMES-Qucik.

1.6

1.2

0.8

0.4

0.0E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J
)

A
T
R

M
P3-

dec
od

er

JP
E
G

-e
nco

der

O
ff
ic

e

A
uto

-1

A
uto

-2

C
on

su
m

er
-1

C
on

su
m

er
-2

Benchmarks

 (ARSH-FATI)Homogeneous

 (ARSH-FATI)Heterogeneous

 (ARSH-FATI)Heterogeneous+EGD

 CA-TMES-Search
 CA-TMES-Quick

Fig. 6. Energy Consumption at NVFI = 4 and PPI = 2 × 2

5.2.2 Scenario 2. Next, we examine the impact of PPIs on energy consumption while determining
the ability of ARSH − FAT I to utilize the resources experimenting on 9 real benchmarks. We set
NVFI = 4, heterogeneous computing system, and systematically upgrade PPI = 2 × 2, 4 × 2, 4 × 3
i.e. M = 16, 32, 64.
Fig. 7 illustrates that except MP3-decoder, JPEG-encoder, and Robot other benchmarks do not

show a significant decrease in the energy consumption when PPI is gradually increased. These

, Vol. 1, No. 1, Article . Publication date: June 2019.

18 Tariq and Ali, et al.

1.2

0.8

0.4

0.0E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J
)

A
T
R

M
P3-

dec
od

er

JP
E
G

-e
nco

der

O
ff
ic

e

A
uto

-1

A
uto

-2

C
on

su
m

er
-1

C
on

su
m

er
-2

Becchmarks

4

3

2

1

0

Robot

 2x2 PPI
 4x2 PPI
 4x3 PPI

Fig. 7. Energy Consumption using NVFI = 4 and Different PPI

benchmarks contain relatively higher number of task nodes and degree of parallelism. MP3-decoder
consumes 1.1627 J energy at PPI = 2 × 2 while it decreases to 1.0936 J and 1.0728 J for PPI = 4 × 2
(∆E = 0.0.0691 J), and PPI = 4 × 3 (∆E = 0.0899) respectively. Similarly, JPEG-encoder depletes
1.2396 J energy at PPI = 2 × 2 and this energy consumption reduces to 1.1722 J (∆E = 0.0674 J),
1.1517 J (∆E = 0.0879 J) at PPI = 4 × 2, 4 × 3 respectively. We also evaluate the performance of
our static scheduler ARSH − FAT I on more complex real benchmark, Robot containing 88 tasks.
Compared to PPI = 2 × 2 (M = 16), ARSH − FAT I achieves energy savings of ∼ 13% and ∼ 18% for
robot when PPI = 4 × 2 (M = 32) and PPI = 4 × 3 (M = 64) respectively. These results demonstrate
that our meta-heuristic ARSH − FAT I can efficiently utilize the resources and degree of parallelism
in the benchmarks to reduce the total energy consumption.

5.2.3 Scenario 3. We now conduct experiments to analyze the robustness of ARSH-FATI under
deadline variations and compare its performance with CA-TMES-Search. We consider voltage
scalable heterogeneous computing architecture with NVFI = 4, PPI = 1 × 2 andM = 8. We set the
base-line deadline for each benchmark in set 1 and set 2 (described in TABLE II) to the make-span of
the schedule generated by CA-TMES-Search under the condition of all VFIs operating at maximum
frequencies.

Fig. 8 and Fig. 9 show the energy consumption of ARSH − FAT I and CA-TMES-Search for set-1
and set-2 respectively. The MULT represents the factor multiplied to the baseline-deadline. For
example,MULT = 1.00 at horizontal axis in Fig. 8, 9 indicates the deadline of each benchmark is
set to 1.00 × baseline-deadline. The dotted lines represent our ARSH − FAT I while the straight
lines show CA-TMES-Quick. The conditionMULT < 1 indicates a strict deadline whileMULT > 1
shows a relaxed deadline.

1.8

1.6

1.4

1.2

1.0

0.8

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J
)

1.041.021.000.980.96

Multiplier

Fig. 8. Set-1 Energy Consumption using NVFI = 4 and PPI = 2 × 2

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 19

0.6

0.5

0.4

0.3

0.2

0.1E
n

er
g
y
 C

o
su

m
p

ti
o
n

 (
J
)

1.041.021.000.980.96

Multiplier

Fig. 9. Set-2 Energy Consumption using NVFI = 4 and PPI = 2 × 2

The energy-efficiency of ARSH-FATI gradually reduces starting from MULT < 1 to MULT =

0.95. This increase in energy consumption occurs due to the reduction in slack. Though, energy
consumption slightly increases under the strict deadline conditions (ofMUL < 1), ARSH − FAT I
can still successfully generate a feasible schedule. Moreover, as deadline decreases ARSH-FATI tends
to schedule more tasks on high-performance processors. These processors reduce task execution
time at a cost of higher energy consumption. This is another reason in the increase of energy
consumption along with the reduction in slack. The same is not true for CA-TMES-Search because
it neglects to consider the energy performance profiles of the processors during the task mapping
phase. The EECDF prioritizes nodes with shorter ECD thereby, increasing the chance of generating
a feasible schedule. This is because ECD of a node depends on the pre-assigned deadline. As
the deadline varies so does ECD consequently, the relative urgency of nodes may change. This
additional information reflected by ECD can be exploited by EECDF . On the contrary, CA-TMES-
Search uses b-level to reflect the relative urgency of tasks. The metric b-level is independent of
the application deadlines hence, the CA-TMES-Search is unaware of the deadline variations and is
unable to respond accordingly.

Under the conditionMULT > 1 the energy-efficiency ofARSH −FAT I rapidly increases.ARSH −
FAT I being aware of processor energy performance profiles tends to map more tasks on lower
performance but energy-efficient processors. Contrarily CA-TMES-Search is inadequate to avail
energy performance profiles consequently, it maps more tasks on high performance, lower energy-
efficient processors. ARSH-FATI schedules nodes in EECDF manner hence EGD can efficiently
utilize the slack because nodes with longer ECD are not blocked by nodes with shorter ECD.
The same is not true for CA − TMES − Search. Furthermore, uniform voltage scaling used by
CA −TMES − Search is an inefficient technique for a heterogeneous system.

Thus, ARSH − FAT I maintains its remarkable energy performance, robustness, and QoS for real
benchmarks at 0.95 ≤ MULT ≤ 1.05.

5.2.4 Scenario 4. Now, we evaluate the energy performance of ARSH − FAT I at NVFI = 4, PPI =
2 × 2,M = 16, and CCR = 0.2 − 3.0.
Fig. 10 illustrates the impact of CCR on ARSH − FAT I energy performance while CA-TMES-

Quick (represented by blue line) being used as a baseline. Evidently, ARSH − FAT I static scheduler
consumes lesser energy compared to CA-TMES-Search due to performing task mapping, scheduling,
and voltage scaling in an integrated manner. With the increase in communication volume, the
energy consumption of ARSH − FAT I reduces and reaches to its minimum value at CCR = 1.0.
ARSH − FAT I maps the dependent tasks (parent and child nodes) on the same processor when
0.2 ≤ CCR ≤ 1.0 in order to decrease the communication energy. ARSH − FAT I at CCR > 1
tends to map all the dependent tasks on the closest possible processors which leads to a slight
increase in energy consumption. Our static scheduler ARSH − FAT I performs relatively better

, Vol. 1, No. 1, Article . Publication date: June 2019.

20 Tariq and Ali, et al.

Table 5. ARSH-FATI Energy Performance Summary

Our Static Scheduler CA-TMES-Search CA-TMES- Quick

(ARSH − FAT I)Homoдeneous 08% 15%
(ARSH − FAT I)Heteroдeneous 13% 20%
(ARSH − FAT I)Heteroдeneous+EGD 24% 30%

when 0.5 ≤ CCR ≤ 2.0 i.e. when network contention is medium. Our static schedulerARSH −FAT I
outperforms CA-TMES-Search in terms of energy-efficiency for 0.2 ≤ CCR ≤ 3.0.

1.0

0.8

0.6

0.4

N
o
rm

a
li

ze
d

 E
n

er
g
y

3.02.52.01.51.00.5

CCR

CA-TMES-Quick

CA-TMES-Search

ARSH-FATI

Fig. 10. CCR impact on ARSH-FATI at VFI = 4 and PPI = 2 × 2

Table 5 summarizes the energy performance of ARSH − FAT I compared to the base-line state-
of-the-art CA −TMES − Search and CA −TMES −Quick energy management approaches when
NVFI = 4 and PPI = 2 × 2 in the multiprocessor computing system. Energy consumption of
the dependent DAG tasks decreases when computing platform is changed from homogeneous to
heterogeneous. The energy-efficiency further improves when voltage scaling technique EGD is
deployed. Concisely, ARSH − FAT I outperforms CA-TMES-Search and CA-TMES-Quick in terms
of energy savings while maintains higher robustness.

6 CONCLUSION

Cyber-Physical Systems (CPS) integrate computation with physical processes using battery con-
strained intelligent edge devices. The computational complexity of real-time applications in CPS
is rapidly increasing. Consequently, Network-on-Chip (NoC) based Voltage Frequency Islands
(VFIs), Globally Asynchronous Locally Synchronous (GALS) are widely adopted in large scale
multiprocessor chip designs due to their higher performance, simple architecture, and energy-
efficiency. Unlike, other scheduling techniques [16, 35, 38, 48], we investigated a harder scheduling
problem i.e. contention-aware and energy-efficient DAG tasks scheduling on heterogeneous VFI
based NoC-MPSoC (VFI-NoC-HMPSoC) computing architecture with DVFS-enabled processors.
We proposed a novel static task scheduler ARSH-FATI that performs task mapping, scheduling, and
voltage scaling in an integrated manner while considering the energy performance profiles of the
processors and contention at the NoC links. Our meta-heuristic ARSH-FATI can intelligently switch
at run-time between explorative and exploitative search modes for performance trade-off. We
also integrated communication contention-aware Earliest Edge Consistent Deadline First (EECDF)
scheduling approach and Energy Gradient Decent (EGD) algorithm for voltage scaling in ARSH-
FATI to reduce the computation energy consumption. We performed experiments on eight real
benchmarks considering different scenarios. Our static scheduler outperformed state-of-the-art

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 21

CA-TMES-Search and CA-TMES-Quick [16] energy management approaches and achieved ∼ 24%
and ∼ 30% an average energy-efficiency respectively.

REFERENCES

[1] Imran Ahmed, Awais Ahmad, Francesco Piccialli, Arun Kumar Sangaiah, and Gwanggil Jeon. 2018. A Robust Features-
Based Person Tracker for Overhead Views in Industrial Environment. IEEE Internet of Things Journal 5, 3 (2018),
1598ś1605.

[2] Haider Ali, Umair Ullah Tariq, Yongjun Zheng, Xiaojun Zhai, and Lu Liu. 2018. Contention & Energy-Aware Real-Time
Task Mapping on NoC Based Heterogeneous MPSoCs. IEEE Access 6 (2018), 75110ś75123.

[3] Haider Ali, Xiaojun Zhai, Umair Ullah Tariq, and Lu Liu. 2018. Energy Efficient Heuristic Algorithm for Task Mapping
on Shared-Memory Heterogeneous MPSoCs. In 2018 IEEE 20th International Conference on High Performance Computing

and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data

Science and Systems (HPCC/SmartCity/DSS). IEEE, 1099ś1104.
[4] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejía-Alvarez. 2001. Determining optimal processor speeds for

periodic real-time tasks with different power characteristics. In Real-Time Systems, 13th Euromicro Conference on, 2001.

IEEE, 225ś232.
[5] Mossaad Ben Ayed and Mohamed Abid. 2017. An Automated Surveillance System based on Multi-Processor System-

on-Chip and Hardware Accelerator. International Journal of Advanced Computer Science and Applications 8, 9 (2017),
59ś66.

[6] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016. Energy-aware scheduling for real-time
systems: A survey. ACM Transactions on Embedded Computing Systems (TECS) 15, 1 (2016), 7.

[7] Guilherme Castilhos, Marcelo Mandelli, Guilherme Madalozzo, and Fernando Moraes. 2013. Distributed resource
management in NoC-based MPSoCs with dynamic cluster sizes. In 2013 IEEE Computer Society Annual Symposium on

VLSI (ISVLSI). IEEE, 153ś158.
[8] Feng-Cheng Chang and Hsiang-Cheh Huang. 2016. A survey on intelligent sensor network and its applications. J.

Netw. Intell 1, 1 (2016), 1ś15.
[9] Yuanqing Cheng, Lei Zhang, Yinhe Han, and Xiaowei Li. 2013. Thermal-constrained task allocation for interconnect

energy reduction in 3-D homogeneous MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 2
(2013), 239ś249.

[10] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and exploitation in evolutionary algorithms: A
survey. ACM Computing Surveys (CSUR) 45, 3 (2013), 35.

[11] Ewerson Luiz de Souza Carvalho, Ney Laert Vilar Calazans, and Fernando Gehm Moraes. 2010. Dynamic task mapping
for MPSoCs. IEEE Design & Test of Computers 27, 5 (2010), 26ś35.

[12] Mayuri Digalwar, Praveen Gahukar, and Sudeept Mohan. 2018. Energy Efficient Real Time Scheduling on Multi-core
Processor with Voltage Islands. In 2018 International Conference on Advances in Computing, Communications and

Informatics (ICACCI). IEEE, 1245ś1251.
[13] Shan Ding, Jinhui Wu, Guoqi Xie, and Gang Zeng. 2017. A hybrid heuristic-genetic algorithm with adaptive parameters

for static task scheduling in heterogeneous computing system. In 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE, 761ś766.
[14] Christian El Salloum, Martin Elshuber, Oliver Höftberger, Haris Isakovic, and Armin Wasicek. 2013. The ACROSS

MPSoCśA new generation of multi-core processors designed for safetyścritical embedded systems. Microprocessors

and Microsystems 37, 8 (2013), 1020ś1032.
[15] Aymen Gammoudi, Adel Benzina, Mohamed Khalgui, and Daniel Chillet. 2018. Energy-Efficient Scheduling of Real-

Time Tasks in Reconfigurable Homogeneous Multicore Platforms. IEEE Transactions on Systems, Man, and Cybernetics:

Systems (2018).
[16] Jian-Jun Han, Man Lin, Dakai Zhu, and Laurence T Yang. 2015. Contention-aware energy management scheme for

NoC-based multicore real-time systems. IEEE Transactions on Parallel and Distributed Systems 26, 3 (2015), 691ś701.
[17] Menglan Hu, Jun Luo, Yang Wang, and Bharadwaj Veeravalli. 2017. Adaptive scheduling of task graphs with dynamic

resilience. IEEE Trans. Comput. 66, 1 (2017), 17ś23.
[18] Jia Huang, Christian Buckl, Andreas Raabe, and Alois Knoll. 2011. Energy-aware task allocation for network-on-chip

based heterogeneous multiprocessor systems. In Parallel, Distributed and Network-Based Processing (PDP), 2011 19th

Euromicro International Conference on. IEEE, 447ś454.
[19] Jun Huang, Yu Meng, Xuehong Gong, Yanbing Liu, and Qiang Duan. 2014. A novel deployment scheme for green

internet of things. IEEE Internet of Things Journal 1, 2 (2014), 196ś205.
[20] Suhaimi Abd Ishak, Hui Wu, and Umair Ullah Tariq. 2017. Energy-aware task scheduling on heterogeneous noc-based

mpsocs. In Computer Design (ICCD), 2017 IEEE International Conference on. IEEE, 165ś168.

, Vol. 1, No. 1, Article . Publication date: June 2019.

22 Tariq and Ali, et al.

[21] Wooyoung Jang and David Z Pan. 2011. A voltage-frequency island aware energy optimization framework for
networks-on-chip. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 1, 3 (2011), 420ś432.

[22] Song Jin, Yinhe Han, and Songwei Pei. 2014. Variation-aware statistical energy optimization on voltage-frequency
island based MPSoCs under performance yield constraints. In Design Automation Conference (ASP-DAC), 2014 19th

Asia and South Pacific. IEEE, 720ś725.
[23] Arvind Kandhalu, Junsung Kim, Karthik Lakshmanan, and Ragunathan Rajkumar. 2011. Energy-aware partitioned

fixed-priority scheduling for chip multi-processors. In Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2011 IEEE 17th International Conference on, Vol. 1. IEEE, 93ś102.
[24] Shin-haeng Kang, Hoeseok Yang, Sungchan Kim, Iuliana Bacivarov, Soonhoi Ha, and Lothar Thiele. 2014. Static

mapping of mixed-critical applications for fault-tolerant MPSoCs. In Design Automation Conference (DAC), 2014 51st

ACM/EDAC/IEEE. IEEE, 1ś6.
[25] Neetesh Kumar and Deo Prakash Vidyarthi. 2017. A GA based energy aware scheduler for DVFS enabled multicore

systems. Computing 99, 10 (2017), 955ś977.
[26] David E Lackey, Paul S Zuchowski, Thomas R Bednar, Douglas W Stout, Scott W Gould, and John M Cohn. 2002.

Managing power and performance for system-on-chip designs using voltage islands. In Computer Aided Design, 2002.

ICCAD 2002. IEEE/ACM International Conference on. IEEE, 195ś202.
[27] Dawei Li and Jie Wu. 2016. Energy-efficient contention-aware application mapping and scheduling on NoC-based

MPSoCs. J. Parallel and Distrib. Comput. 96 (2016), 1ś11.
[28] Di Liu, Jelena Spasic, Gang Chen, and Todor Stefanov. 2015. Energy-efficient mapping of real-time streaming applica-

tions on cluster heterogeneous mpsocs. In Embedded Systems For Real-time Multimedia (ESTIMedia), 2015 13th IEEE

Symposium on. IEEE, 1ś10.
[29] Jun Liu and Jinhua Guo. 2016. Energy efficient scheduling of real-time tasks on multi-core processors with voltage

islands. Future Generation Computer Systems 56 (2016), 202ś210.
[30] Lindong Liu and Deyu Qi. 2018. An Independent Task Scheduling Algorithm in Heterogeneous Multi-core Processor

Environment. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC).
IEEE, 142ś146.

[31] Yang Liu, Jonathan E Fieldsend, and Geyong Min. 2017. A framework of fog computing: Architecture, challenges, and
optimization. IEEE Access 5 (2017), 25445ś25454.

[32] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Ronald Dreslinski Jr, Thomas F Wenisch, and Scott Mahlke.
2014. Heterogeneous microarchitectures trump voltage scaling for low-power cores. In Proceedings of the 23rd

international conference on Parallel architectures and compilation. ACM, 237ś250.
[33] Aminollah Mahabadi, SM Zahedi, and Ahmad Khonsari. 2013. Reliable energy-aware application mapping and

voltageśfrequency island partitioning for GALS-based NoC. J. Comput. System Sci. 79, 4 (2013), 457ś474.
[34] Seyedali Mirjalili and Andrew Lewis. 2016. The whale optimization algorithm. Advances in engineering software 95

(2016), 51ś67.
[35] James D Monte and Krishna R Pattipati. 2002. Scheduling parallelizable tasks to minimize make-span and weighted

response time. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 32, 3 (2002), 335ś345.
[36] Sho Ninomiya, Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu Imai. 2012. Task allocation and scheduling for

voltage-frequency islands applied NOC-based MPSOC considering network congestion. In Embedded Multicore Socs

(MCSoC), 2012 IEEE 6th International Symposium on. IEEE, 107ś112.
[37] Umit Y Ogras, Radu Marculescu, Diana Marculescu, and Eun Gu Jung. 2009. Design and management of voltage-

frequency island partitioned networks-on-chip. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17, 3
(2009), 330ś341.

[38] Sverrir Olafsson. 1995. A general model for task distribution on an open heterogenous processor system. IEEE

transactions on systems, man, and cybernetics 25, 1 (1995), 43ś58.
[39] Santiago Pagani, Jian-Jia Chen, and Minming Li. 2015. Energy efficiency on multi-core architectures with multiple

voltage islands. IEEE Transactions on Parallel and Distributed Systems 26, 6 (2015), 1608ś1621.
[40] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-physical systems: the next computing

revolution. In Design Automation Conference. IEEE, 731ś736.
[41] Tifenn Rault, Abdelmadjid Bouabdallah, and Yacine Challal. 2014. Energy efficiency in wireless sensor networks: A

top-down survey. Computer Networks 67 (2014), 104ś122.
[42] Amin Safaei, QM Jonathan Wu, and Yimin Yang. 2018. System-on-a-chip (soc)-based hardware acceleration for

foreground and background identification. Journal of the Franklin Institute 355, 4 (2018), 1888ś1912.
[43] Dongkun Shin, Woojoong Kim, Soontae Kwon, and Tae Hee Han. 2011. Communication-aware VFI partitioning for

GALS-based networks-on-chip. Design Automation for Embedded Systems 15, 2 (2011), 89ś109.
[44] Eric Simmon, Kyoung-Sook Kim, Eswaran Subrahmanian, Ryong Lee, Frederic De Vaulx, Yohei Murakami, Koji Zettsu,

and Ram D Sriram. 2013. A vision of cyber-physical cloud computing for smart networked systems. US Department of

, Vol. 1, No. 1, Article . Publication date: June 2019.

Energy-efficient Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices

in Cyber-Physical Systems 23

Commerce, National Institute of Standards and Technology.
[45] Umair Ullah Tariq and Hui Wu. 2017. Energy-Aware Scheduling of Periodic Conditional Task Graphs on MPSoCs. In

Proceedings of the 18th International Conference on Distributed Computing and Networking. ACM, 13.
[46] Umair Ullah Tariq, Hui Wu, and Suhaimi Abd Ishak. 2018. Energy-Aware Scheduling of Conditional Task Graphs on

NoC-Based MPSoCs. In Proceedings of the 51st Hawaii International Conference on System Sciences.
[47] Fatemeh Vafaee and Peter C Nelson. 2010. An explorative and exploitative mutation scheme. In IEEE Congress on

Evolutionary Computation. IEEE, 1ś8.
[48] Xi Wang, Zhiwu Li, and Walter Murray Wonham. 2017. Optimal priority-free conditionally-preemptive real-time

scheduling of periodic tasks based on DES supervisory control. IEEE Transactions on Systems, Man, and Cybernetics:

Systems 47, 7 (2017), 1082ś1098.
[49] Jiao Zhang, Xiping Hu, Zhaolong Ning, Edith C-H Ngai, Li Zhou, JiboWei, Jun Cheng, and Bin Hu. 2018. Energy-latency

tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet of Things Journal 5, 4 (2018),
2633ś2645.

[50] Weizhe Zhang, Enci Bai, Hui He, and Albert MK Cheng. 2015. Solving energy-aware real-time tasks scheduling
problem with shuffled frog leaping algorithm on heterogeneous platforms. Sensors 15, 6 (2015), 13778ś13804.

[51] Zhiwei Zhao, Geyong Min, Weifeng Gao, Yulei Wu, Hancong Duan, and Qiang Ni. 2018. Deploying edge computing
nodes for large-scale IoT: A diversity aware approach. IEEE Internet of Things Journal 5, 5 (2018), 3606ś3614.

[52] Junlong Zhou, TongquanWei, Mingsong Chen, Jianming Yan, Xiaobo Sharon Hu, and YueMa. 2016. Thermal-aware task
scheduling for energy minimization in heterogeneous real-time MPSoC systems. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 35, 8 (2016), 1269ś1282.

, Vol. 1, No. 1, Article . Publication date: June 2019.

	Abstract
	1 Introduction
	2 Literature Review
	3 Preliminaries
	3.1 Application Model
	3.2 System Architecture
	3.3 Communication Model
	3.4 Energy Model

	4 Static Contention-aware Energy Optimization Approach
	5 Experimental Setup and Results
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

