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With the rapid development of unmanned aerial vehicles (UAVs) technology and the advent of the 5G era, the role of UAV-
enabled mobile edge computing (MEC) system has attracted much attention, especially in the event of some emergencies.
However, considering the limited battery life and computing capabilities of UAVss, it is challenging to provide energy-efficient
services for mobile devices. To solve this challenge, we propose an energy-efficient dynamic task migration algorithm (EDTM) that
minimizes the total energy consumption of the system while ensuring UAVs system load balance. Based on the improved ant
colony algorithm and path elimination strategy, the proposed algorithm comprehensively considers task migration distance
between UAVs, the load situation of UAVs, and environmental factors (e.g., wind speed and air density) and finally plans a
reasonable task migration path. The simulation results show that the performance of the proposed EDTM is superior to the

benchmark schemes.

1. Introduction

In recent years, 5G communication technology and the
Internet of Things (IoTs) have developed rapidly. Mobile
edge computing (MEC) attracts much attention, which
can leverage the proximate computing resources to
provide latency-critical and computation-intensive tasks
for mobile users [1, 2]. The computation tasks generated
by mobile devices (MDs) can be offloaded to the nearby
edge server, such as base stations. However, these edge
servers are static. It is difficult to provide powerful and
stable computing services for MDs when encountering
emergency calls, disaster response, and rural environ-
ments. In these cases, UAVs can act as mobile edge
servers to provide more flexible and dynamic services [3].
Compared with cellular-based MEC, UAVs have the
advantages of fast, high mobility, and controllable mobile
management [4].

Despite the advantages of UAV-enabled MEC, there are
several challenges. First, the energy capacity of UAVs is
constrained. To guarantee the quality of service (QoS) of
MDs, it is crucial to consider the energy consumption of task
migration. Second, the computation capabilities of UAVs is
limited, a single UAV cannot support high computation
loads, it is necessary to perform task migration with other
UAVs, while ensure load balance among UAVs system.
Third, an energy-efficient path planning strategy is also a
challenge in UAV-enabled MEC. With an optimal task
migration path, UAVs can pay less migration energy cost
under load balancing. In the literature, there have been some
studies focused on task migration [5-9] in MEC and op-
timization UAV-assisted network [10-14]. However, on the
one hand, these research works mainly focus on energy
consumption optimization, while neglecting considering
load balance in MEC system. Therefore, the works related to
dynamic task migration in MEC system cannot be efficiently
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applied in the UAV-enabled MEC systems. On the other
hand, the existing works targeted on UAV-assisted network
did not comprehensively considers task migration distance
between UAVs, the load situation of UAVs, and environ-
mental factors for the path planning of task migration with
load balance within the UAV's systems, which is significant
for task migration in UAV-assisted network.

In this paper, we consider a joint optimization problem
that simultaneously considers the above challenges have not
been sufficiently investigated and considering actual envi-
ronmental factors, such as wind speed and air density. To
address these challenges, we propose an energy-efficient
dynamic task migration algorithm (EDTM) in a UAV-en-
abled MEC system, which minimizes the total energy
consumption of the system under load balance. The main
contributions of the paper are summarized as follows:

(i) We formulate a system model in the UAV-enabled
MEC system, which consists of communication
model, task computation model, and energy con-
sumption model. We fully consider the energy costs
of the MDs and UAVs, including local computation
energy consumption on MDs, edge computing
energy consumption on UAVs, task migration
energy consumption.

(ii) We improve the ant colony algorithm and propose
an EDTM algorithm to migrate computation tasks.
Considering the load balance of UAVs, we design a
path planning elimination strategy, which com-
prehensively considers task migration distance be-
tween UAVs, the load situation of UAVs, and
environmental factors.

(iii) We conduct extensive experiments and the simu-
lation results demonstrate that the proposed EDTM
algorithm can achieve superior performance than
the benchmark schemes, which can effectively re-
duce the total energy consumption of the system
while ensuring the load balance of the UAVs system.

The remainder of the paper is organized as follows.
Section 2 introduces related works. In Section 3, the system
model and problem are described. Section 4 presents the
EDTM algorithm to solve the joint optimization problem. In
Section 5, we evaluate the performance of the proposed
EDTM with extensive simulation results. Finally, we con-
clude the paper in Section 6.

2. Related Works

We review the related works by two categories, i.e., dynamic
task migration and UAV-assisted networks in MEC.

2.1. Dynamic Task Migration. There are some research ef-
forts on dynamic task migration [5-9]. Wang et al. [5]
described the task migration problem as a Markov decision
process and designed an optimal service migration strategy
in MEC. Kuang et al. [6] studied the partial offloading
scheduling and power distribution problem for single-user
MEC system. They proposed an iterative algorithm to reduce
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energy consumption and achieve optimal delay perfor-
mance. Moreover, the authors of [7] proposed a task mi-
gration energy optimization strategy by considering
resource caching. Meanwhile, Anajemba et al. [8] studied
cooperative offloading scheme in energy-efficient multi-
access edge computing and proposed a Lagrangian subop-
timal convergent computation oftfloading algorithm. Zhou
et al. [9] studied dynamic task offloading in MIMO MEC
system with energy harvesting. The authors proposed an
algorithm to minimize the time average of a weighted sum of
energy consumption and execution delay, meanwhile sta-
bilizing the battery energy queue. However, the above re-
search works focus on energy consumption optimization,
while neglecting considering load balance in the MEC
system. Therefore, they cannot be efficiently applied in the
UAV-enabled MEC systems.

2.2. UAV-Assisted Networks. UAVs have been deployed to
enhance the network capacity and provide services to mobile
users with or without infrastructure coverage which attracts
much attention in the literature [10-14]. Particularly, the
paper [10] studied energy-efficient resource management in
UAV-assisted MEC. The goal is to jointly minimize the
energy consumption at the JoT devices and the UAVs during
task execution. Liu et al. [11] proposed a machine learning
framework for trajectory design and power control for
multi-UAV assisted networks. In addition, Li et al. [12]
studied UAV-assisted MEC with the objective to optimize
computation offloading with minimum UAV energy con-
sumption. They adopted the Dinkelbach algorithm and the
successive convex approximation technique to solve it. Wu
et al. [13] considered a multi-UAV enabled wireless com-
munication system, where multiple UAV-mounted aerial
base stations are employed to serve a group of users on the
ground. Existing UAV communication and trajectory
schemes are inefficient as they assume limited drone mo-
bility and static transmission power. Garg [14] considered a
multi-UAV system where UAV-mounted mobile base sta-
tions serve users on the ground and proposed an iterative
approach using block gradient descent. To summarize, al-
though some research problems related to UAV-assisted
networks have been investigated. However, they did not
comprehensively consider task migration distance between
UAVs, the load situation of UAVs, and environmental
factors for the path planning of task migration with load
balance within the UAVs systems, which is significant for
task migration in UAV-assisted network and motivates our
research in this paper.

3. System Model

3.1. System Architecture. We consider a MEC system with
multiuser and multiedge servers with dynamic task mi-
gration. The system consists of M MDs and N UAVs
that integrate MEC servers and communication circuits.
We define M ={1,2,...,M},me M, and U =1{1,2, ...,
t,...,U}, Yu € U to represent the set of MDs and UAVs,
respectively. As for the total time T for task migration
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completion in the system, it is divided into F time slots on
average. Weuse T- = {0, 1, ..., F},t € T to represent the set
of time slots, where the length of all time slots ¢ is 7.
Moreover, the length of the time slot is small enough to
ensure that the position of the UAVs during each time slot is
approximately unchanged. The definitions of the main
symbols involved in this paper are shown in Table 1.

In this paper, due to the strong mobility of MDs,
UAVs will have dynamic task migration in the process of
providing services (task processing) to MDs. In order to
facilitate the understanding of dynamic task migration, we
describe task migration in the UAV-enabled MEC system
architecture with multi-user and multiedge server, as
shown in Figure 1. Among them, UAVs are distributed
around MDs to provide computing services for MDs. We
select MD m for the paper detailed description. Initially,
MD m was within the service coverage of UAV u. When
MD m moved from the initial position 1 to position 2, MD
m had already left the service range of UAV u. During the
mobile process of MD m, its service quality will be se-
riously affected and even service termination will occur. In
order to ensure the quality of the service, we need to
migrate the tasks that were initially processed on UAV u.
In addition, task migration also needs to consider whether
location 2 is the endpoint of the MD m move. If position 2
is the endpoint of MD m during the movement, MD m will
stop moving after reaching position 2; otherwise, MD m
will continue to move after reaching position 2. This
greatly increases the difficulty of dynamic task migration.
The above constitutes the most basic dynamic task mi-
gration process of a mobile device. In Figure 1, dum, dim,
and dj; , represent the distance between UAV u, UAV 4,
UAV U and MD m in time slot t, respectively. While d Wl
d, 4 and d. wu represent the distance between UAV u and
UAV 1, UAV 4, and UAV U in time slot ¢, respectively.

To facilitate the description of the dynamic task mi-
gration path, we also define the positions of UAVs and MDs
in all time slots. We define the initial position of MDs at the
origin (0,0,0) of the spatial rectangular coordinate system,
and the direction in which the MDs are connected from
position 1 to position 2 is the x-axis of the spatial rectangular
coordinate system. Therefore, a line perpendicular to the x-
axis on the horizontal plane is the y-axis. The vertical plane
can get the z-axis perpendicular to the x-axis and y-axis.
Specifically for a certain UAV, we use x!, and y!, to represent
the coordinates of the UAV u on the horizontal x-axis and y-
axis in time slot ¢, that is, the horizontal position of the UAV
u in time slot . Based on the particularity of UAVs, we add a
height variable 2!, to represent the position of UAV u in the
vertical direction in time slot t. Therefore, the position of
UAV u in time slot t is finally defined as the triple
I, = (x!,y!,2.). Similarly, the position of a particular MD,
such as the position of MD m in time slot t is defined as a

. 7 ~t ~ - ~
binary groups [, = (X!, 7., where X!, and J', represent the
coordinate positions of MD m in time slot ¢ on the horizontal
x-axis and y-axis, respectively.

Because UAVs are widely distributed around MDs, and
each MD can access a groups of UAVs within the broadcast
range, MDs can offload computing tasks to UAV's within

the accessible range [15]. We use N!, € M to represent the
set of MDs in the service range of UAV u in time slot ¢, and
the UAVs set in its communication range are defined as
V! € U. And because only the digital description of the
distance between UAVs and MDs and UAVs can
guide the task migration process. Next, we define the
distance set d!, between UAV u and the MDs included in
the set N, in time slot ¢ and the distance set d,, between
UAV u and the UAVs included in the set V!. Among

them, df,, =/ (x!, ~ X,)* + (5, ~ 7,)° + () and d,, =
\/(x; —x) + (= y4)? + (2!, - 2%)* represent the dis-
tances between UAV u and MD m and UAV uand UAV 1

in time slot ¢, respectively. And and satisfy and respec-
tively. Furthermore, we can get the relative position of

. . . ~t
UAV u in time slot t, that is, L = (d',d,).

3.2. Communication Model. In this section, we introduce the
communication model and give the uplink transmission rate
when MDs offload computation tasks to UAVs. We define
H,, as the channel gain between MD m and UAVs. At the
same time, because the research focus of this paper is to
offload the computing tasks that have been offloaded by
MDs from the original UAVs to UAVs with relatively low
load and close to MDs, then we assume H,, less variable.
Therefore, we add a constant error value ¢ for H,,, and
satisfying the following equation:

Hm:HO+C) (1)

where H,, indicates the channel gain in the initial state.

In [16], the uplink transmission power of MDs is
mainly determined by the channel gain and channel
bandwidth. As UAVs are used in this paper to provide
edge service functions, the uplink transmission power of
MDs is also greatly affected by the dynamic change of the
distance between MDs and UAVs. When the distance
between MDs and UAVs increases, in order to ensure that
the task offload is not affected, the uplink transmission
power of MDs will increase accordingly. Otherwise,
the uplink transmission power of MDs will decrease
accordingly. Specifically, the wuplink transmission
power of MD m to offload tasks to UAV u in time slot ¢ is
defined as

2 t
— (I/Bacmally'T) 1 o du,m
p mu - H
m

2 t
_ <2 (I/Bmuauy ) _ 1) g du,m,

Hy+g

(2)

where ¢ and B,y represent the noise power and the
actual network bandwidth in the uplink transmission pro-
cess, respectively. And p} , satisfies the following equality,
ie,

0< P, <Poay, MmMeMueUteT, (3)
max

where pii is the maximum transmission power of MDs.



4 Complexity
TaBLE 1: Definition of main symbols.

Symbols Definition

M The set of MDs

U The set of UAVs

T. The set of time slots

L The position of UAV u in time slot ¢

Itm The position of MD m in time slot ¢

Nt The set of MDs in UAV u service range at time slot ¢

v The set of MDs in UAV u communication range at time slot ¢

d, The set of distances between UAV u and MDs contained in set in time slot ¢

3; The set of distances between UAV u and UAVs contained in set in time slot ¢

H,, The channel gain between MD m and UAVs

. The uplink transmission power of MD m to offload tasks to UAV u in time slot ¢
L The CPU cycle frequency of MD m in time slot ¢
o The computing resources of UAV u allocate to MD m in time slot ¢

v, The total number of tasks processed by MD m in time slot ¢

r, The total number of tasks that MD m offloaded to UAVs in time slot ¢

QM D (1) The dynamic task backlog queue of UAV u in time slot ¢

Ef m The task processing energy consumption of MD m in time slot ¢
o The energy consumption for processing offloaded tasks of UAV u in time slot ¢
tram The transmission energy consumption of MD m offloads tasks to UAV u in time slot ¢
trau The task migration energy of UAV u migrates tasks to UAV 1 in time slot ¢
fly,u The flight energy consumption of UAV u in time slot ¢

Eluy The total energy consumption of all UAVs in time slot ¢

El The total energy consumption of the entire system in time slot ¢

UAV 1

~—» MDs move
—— distance
) service range of UAVs

UAV 4

F1GUre 1: The UAV-enabled MEC system architecture.

At the same time, because this paper uses UAVs to
perform edge computing functions, the information
transmission between UAVs and MDs and between
UAVs is wireless communication [17]. In the process of
wireless communication, the theoretical bandwidth and
actual bandwidth will be different, because network loss
and line attenuation will occur in real scenarios. Table 2
is a set of actual measured data, which shows the

relationship between the channel bandwidth and the
theoretical download speed as well as the actual download
speed.

According to the data in Table 2, we can get the rela-
tionship between the actual bandwidth and the theoretical
bandwidth of the network, that is,

B = 88% - Btheory' (4)

actually
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TaBLE 2: Relationship between network bandwidth, theoretical
download speed, and actual download speed.

Network bandwidth Theoretical Actual download
(M) download speed speed

2 256 kB/s 225kB/s

4 512kB/s 450 kB/s

6 768 kB/s 675kB/s

8 1.024 MB/s 901 kB/s

10 1.28 kB/s 1.126 kB/s

In this paper, we do not consider downlink transmission
delay and packager loss, because the data size of the result
after the task is processed is usually smaller than the data size
before the task processed [18], and the downlink trans-
mission rate from UAVs to MDs will be higher than the
uplink transmission rate from MDs to UAVs.

3.3. Task Computation Model. In this section, we introduce
the computational model of the system. The main research
direction of this paper is the task migration strategy in
mobile edge computing systems.

In this paper, we define f! asthe CPU cycle frequency of
MD m in time slot ¢, and f},, is defined as the computing
resource that UAV u allocates to MD i in time slot ¢ for
processing the computing tasks offloaded by MD m. And f*,

and f]  satisfy the following equality, respectively, that is,
0< fi <frvn, meM,teT,
0< qum<fUAV’ ueU,teT, ()
meM

where fp and f{73, represent the maximum cycle fre-
quencies of MDs and UAVs, respectively.

Whether it is an UAV or a MD, the tasks in the task
queue are processed according to the “first come, first
served” rule. In particular, the unit of the task amount is
unified as bits, and the CPU cycle required to process one bit
of any type of computing task is c. We assume that task
arrival MDs are a random model and that task arrival is
independent. The total number of tasks processed by MD m
in time slot ¢ is y!,, that is,

t_fin'T 6
Vi =T (6)

While the total number of tasks that MD m offloads to
UAVs is 1t .

When MDs oftload some tasks to UAVs, UAVs will
process these tasks. Although the computing power of UAVs
is much stronger than that of MDs, the computing power of
UAVs is extremely limited compared to cloud servers. UAV
u handles the number of tasks from MD m oftload at time
slot ¢ is b}, . Therefore, we can get the dynamic task backlog
queue of UAV u, ie.,

UAV(t+1) ( UAV () - Z bi,m

meM meM
— t
- (fu,m

) + Y (D)

where b!, - 7/c). And QUAY (1) satisfies equality (8).

Z bumSQUAV (t), ueU,teT, (8)
meM

In a real application scenario, some MDs will offload
tasks to UAVs, while some MDs may not [19]. So,
Y mem?h, = 0. In addition, because our optimization goal is to
ensure that each UAV achieves load balancing in each time
slot as much as possible, that is, the number of tasks that each
UAV needs to process in each time slot is approximately
equal. Therefore, we define the limiting conditions as shown
in equality (9), so that the number of tasks of each UAV in
each time slot cannot exceed 10\% of the average number of
tasks in the queue of all UAVs. Furthermore, MDs can make
full use of the computing resources of UAV's without causing
a waste of resources.

QM (== Z Q1) (1+10%), ueUteT. (9

Next, we introduce the system energy consumption
model in detail.

4. Energy Consumption Model

First, the task processing energy consumption includes the
energy consumption of MDs and UAVs when processing
tasks. According to the capacitance theory, whether it is a
MD or an UAYV, the processing energy consumption is
mainly determined by the CPU performance of the elec-
tronic device, that is, chip architecture [20]. In the paper
[21], we can know that the CPU cycle frequency varies with
the CPU voltage and is linearly related. Therefore, the task
processing energy consumption of MD m and the energy
consumption of UAV u processing offloaded tasks are re-
spectively expressed as (9) and (10), that is,

Ef:om,m =K (fin)3 T (10)

Eiom,u = Z K- (ftu,m)3 T (11)

meM

Among them, x represents the effective capacitance
switch of the CPU, and the value of « is determined by the
performance of the CPU.

Secondly, the communication energy consumption
consists of the energy consumption of the MDs offload task
and the energy consumption of task migration between
UAVs. As mentioned earlier, if MD m chooses to offload
computing tasks to UAV u through the uplink, then the
transmission energy consumption of MD m oftloads tasks to
UAV u in time slot ¢ can finally get and show as follows:

tmm pmu' : (12)

In addition, the dynamic task migration from UAV u to
UAV 1 is shown in Figure 2. In Figure 2, MD 3 is initially in
the service range of UAV u, so MD 3 offloads tasks to UAV
u. However, with the movement of MD 3, MD 3 eventually
moves away from the service range of UAV u. In order to
ensure the normal service of MD 3, UAV u needs to reselect
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> UAV trajectory
--» Uplink transmission

_______________________________________________

— Service migration

- -» Downlink transmission

FIGURE 2: The dynamic process of task migration from UAV u to UAV 1.

anew UAV and migrate the tasks to the new UAV according
to the load of each UAV and the distance from each UAV
within its communication range V*. As shown in Figure 2,
the new UAV is UAV 1. At this time, we can get the task
migration energy consumption of UAV u migrates the tasks
to UAV 1, that is,

t t
Etm,u =Py T (13)
where p} | is the transmission power between UAV 1 and
UAV u, and its specific computation method is similar to (2)
in Section 3.2. And p!, cannot exceed the maximum
transmission power of UAV, that is,
ueU,teT.

max

0< Ptu,1 < Puav (14)

Finally, in addition to the energy consumption of task
computation and task migration for UAVs, the energy
consumed by UAVs for a flight cannot be ignored. Most of
the papers only consider the flying speed of UAVs as the
independent variable when studying the flight energy
consumption of UAVs. However, it shows that the flight
energy consumption of UAVs depends not only on the speed
of UAVs but also on the acceleration of UAVs [21-23]. Next,
we define the velocity and acceleration of UAV u in time slot
t, which are expressed as follows:

P |

u

(15)

Therefore, we can get the flight energy consumption of
UAV u in time slot ¢, that is,

tn2
s (1141
v\ g

Among them, k,; =05-p-G,-7, k,,=(2-G-1/
(mpARS,)). G, represents the weight of UAV u, and g
represents the acceleration of gravity. p stands for air density
(kg/m’). A! and S', represent the number of revolutions per
second of the propeller of UAV u and the speed of the wind
around the UAV u (m/s) in time slot ¢, respectively.

Regarding the flight of UAVs, there are three special
restrictions that need to be specified. First, the flying speed of
every UAV at each moment should be less than the max-
imum flying speed v™*, that is,

V| <v™, ueU,teT.

E:ly,u = ku,lllvtu"3 + (16)

(17)

Equality (18) restrict the position of UAVs. The meaning
of equality (18) means that each UAV’s own trajectory
history cannot be changed. The meaning of equality (18)
means that during the total time T, each UAV has an initial
position and a final position. The specific restrictions are as
follows:

T-1
MYt -t<n ueU, teT,
t=0

18
- (18)

=1

u,start>

ueU,

u,end?

where 7 is a small nonnegative value. [ .. and [ .4 rep-
resent the initial and final positions of UAV u, respectively.

In summary, the total energy consumption of all UAVs
in the system in time slot ¢ is defined as follows:
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t t t t
EUAV = Z[:](Ecom,u + Etra,u te Eﬂy,u)’ (19)
ue

where ¢ is a nonnegative penalty coefficient, which represents
the ratio of the flying energy consumption Ej , to the total
energy consumption Ef;,,, of UAVs. The larger the value of &
the greater the proportion of Eﬂ ” in Ef; .. Otherwise, the
smaller the proportion of Et , in EU 4v- Inthe MEC system, we
adjust the ¢ value to ach1eve a balance between UAVs flight
energy consumption and UAVs computation migration energy
consumption. Similarly, we can get the total energy con-
sumption of the entire system in time slot #, that is,

t t
Etotal = - Z (Ecomm + Etm m) + @, - EUAV’ (20)
meM

where @, and @, represent energy consumption weighting
factors of MDs and UAVss, respectively, and satisfy 0 <@, <1,
0<®,<1, and ®; + ®, = 1. When @, increases, @, will de-
crease accordingly. At this time, the energy consumption ratio
of MDs becomes larger and the energy consumption ratio of
UAVs becomes smaller. Conversely, the energy consumption
ratio of MDs becomes smaller, and the energy consumption
ratio of UAVs becomes larger. In this model, we can dy-
namically adjust @, and @, according to the actual situation to
meet the priority energy demand, and finally, achieve the
energy balance between MDs and UAVs.

4.1. Problem Formulation. Next, we mainly optimize from
two aspects of energy consumption, UAVs load balancing
(that is, to ensure that the task queue of UAVs in each time
slot in the system has a minimum backlog), and compre-
hensively consider performance indicators such as task
oftloading, CPU cycle frequency allocated by UAV's to MDs
oftfloaded tasks and flight energy consumption of UAVs.
Finally, we worked out the problem of minimizing the
energy consumption of the system under the premise of
UAVs load balancing, that is,

Z E total?

s.t. (3), (5), (8), (10), (11), (15), (18), (19), (20),

P: m1n
(21)

where X represents a migration decision, which is a set of
nodes on a migration path. For example, X = {1, 3,4} means
that tasks are migrated from UAV 1 to UAV 3 first, and then
they are migrated from UAV 3 to UAV 4. The research focus of
this paper is to find the optimal edge servers (ie., UAVs)
migration path that is most suitable for tasks to complete the
migration while ensuring that each edge server is load balanced,
so that edge servers are not overloaded. Especially, the optimal
migration path with the lowest energy consumption.

5. Joint Optimization Strategy of Task
Migration and Load Balancing

5.1. Description of the Dynamic Migration Algorithm. In this
section, we propose a new and improved iterative algo-
rithm, called Energy-eflicient Dynamic Task Migration

(EDTM). The proposed EDTM algorithm is modified
on the basis of the ant colony algorithm. The traditional
ant colony algorithm is a heuristic optimization algo-
rithm. Although the initial optimization results of the
problem can be obtained by the traditional ant colony
algorithm, it has the disadvantages of being easily
trapped into a local optimum and slower convergence
speed [24]. In this paper, we combine the specific research
content of this paper to improve the traditional ant
colony algorithm. According to the inspiration of [25],
the proposed EDTM algorithm has adaptive consistency
and is more suitable for MEC. The main improvements
are as below.

First, we modified the pheromone update strategy in the
ant colony algorithm. The idea of the ant colony algorithm
originally originated from the process of ants finding the best
path. An ant leaves an odor when walking through a certain
path. This odor is called a pheromone. The ants behind it
would be based on the pheromone concentration to choose a
path, the greater the pheromone concentration, the higher
the probability that an ant will choose this path, and vice
versa. In this model, the proposed EDTM algorithm will also
select the next UAV node according to the number of
different UAV nodes and the location of each UAV node in
each time slot. It can prevent the proposed EDTM algorithm
from falling into a local optimum too quickly, and at the
same time increase the global search capability of the
algorithm.

Secondly, based on the goal of this paper is to jointly
optimize UAV load balancing and reduce the total energy
consumption of the system, so we add the task queue of
UAVs as a variable to the formula transition probability. The
meaning of transition probability is the probability that the
ant chooses the next UAV node. This helps us find a rea-
sonable migration path.

Thirdly, in the initial iterative process of the ant colony
algorithm, the ant has to try all possible paths in order to find
the optimal path, which will cause the algorithm to be re-
dundant and increase the complexity. In the proposed
EDTM algorithm, we propose a method of path elimination.
By setting the “number of pathfinding nodes” to control the
number of iterations of the algorithm. On the basis of en-
suring the accuracy of the algorithm results, the complexity
of the algorithm is further reduced, and the algorithm ex-
ecution efficiency is improved.

The proposed EDTM algorithm comprehensively
considers the migration distance, the UAVs load situa-
tion, and the migration cost to finally plan a reasonable
task migration path. The algorithm has a very strong
ability to find solutions to combined optimization
problems. In addition, it has the advantages of distributed
computing and the advantages of easy integration with
other algorithms. In particular, it can show a high degree
of flexibility and robustness in dynamic environments
[26, 27]. Because the scenario in this paper uses UAVs as
edge servers to provide services to users, we attach great
importance to the advantages of mutual cooperation
between UAVs.Finally, these UAVs process the sub-tasks
and return corresponding results to MDs.



5.2. Solution to Problem P. In this section, we specifically
explain how the proposed EDTM algorithm solves problem
P In the prev10us model, we have deﬁned the UAVs set

={1,2, UL VueU, and d represents the
distance between UAVs nodes in time slot . Specifically, our
description of the proposed EDTM algorithm is divided into
the following seven steps.

Step 1. Initialize. In this paper, UAVs nodes can commu-
nicate with each other, so we initialize the pheromone on
each edge to a small constant value, and then randomly
assign A ants to U UAVs nodes. At the same time, we set the
starting UAV node to the tabu list. One thing that needs to
be explained here is that the reason why we did not initialize
the pheromone directly to zero is that the ants choose the
next hop UAV node will receive the influence of the
pheromone concentration.

Step 2. Each ant will select the next UAV node according to
formulas (22) and (23), and update the tabu list.

arg max{ [<pij(t)] . [gvij (t)]ﬁ' [Xij(t)])t}) if g<qq,
j = j#Y,
p?j, otherwise,
(22)

wherei € U, j € U, and Y, is a set, that is, tabu table. Y, is
used to record the UAV nodes passed by ant a. The tabu table
Y, will be updated as the algorithm iterates. ¢;; (¢) indicates
the value of the pheromone transferred from UAV node i to
UAV node j in time slot ¢. The greater the value of the
pheromone, the greater the probability that the ant chooses
the UAV node as the migration node, and the two show a
proportional relationship. ¢;; (t) is the heuristic information
of the ant transferred from UAV node i to UAV node j in
time slot ¢, and the heuristic information will affect the
probability that the ant chooses the next node. In this paper,
we take the distance between UAV node i and UAV nodej as
the independent variable of the heuristic information, so we
define ¢;; (t) = I/d The longer the distance between UAV
node i and UAV node j, the smaller the value of heuristic
information; otherwise, the larger the value of heuristic
information. Next, we named the y; i (t) in formula (22) as a
statin, which represents the value of the statin of the ants
from UAV node i to UAV node j in time slot ¢. The effect of
statin is opposite to that of pheromone. The greater the value
of statin, the lower the probability that the ant will choose the
UAV node as the migration node, and the two show an
inverse relationship. The optimization goals of this paper are
two aspects, namely, to ensure the load balance of UAV
groups and reduce the total energy consumption of the
system. Therefore, we specifically represent the statin y;; ()
in formula (22) as Xij (t) =k QUAV (t). It can be seen that
the larger the load of the UAV node (that is, the longer the
task backlog queue length of the UAV node in time slot ),
the larger the statin of this path. Similarly, the smaller the
load of the UAV nodes in this path is, the smaller the statin
of this path is. Therefore, x;; (t) and Q;JAV (t) have a function
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proportional relationship, where k; is used as the coefficient
of the function expression. It should be noted that g, € [0, 1]
is a parameter initially set by the system, and g is a random
number and satisfies g € [0,1]; finally, pf, represents the
probability that the ant a moves from UAV node i to UAV
node j. The specific expression is as follows,

() CC) NP 10)
2 =4 Zaer {19001 [0 1 [ O}

0,jeY,.
(23)

In particular, formula (22) and formula (23) contain the
weighting factors of pheromone, heuristic information, and
statin, which represent the importance of pheromone on
paths i and j, represent the importance of heuristic infor-
mation and represent the importance of statin on paths i
and j.

Step 3. Local update of pheromone. According to the idea of
bionics in biology, if an ant passes a certain path, then the
pheromone concentration on this path will increase again.
The specific formula for the pheromone update is as follows,

¢y (t+ 1) =(1L—pu)g; (1) +u(t)-A¢;, i€U, jeU,
(24)

where p(t) is called the pheromone volatility factor, which
indicates the volatility coefficient of the pheromone in time
slot t. The setting of y (¢) in the proposed EDTM algorithm is
very important, it directly affects the execution efficiency
of the algorithm. p;, is the minimum value of the
pheromone volatilization rate set by the system in ad-
vance, and its role is to prevent the convergence speed of
the proposed EDTM algorithm from being too low due to
u(t) too small. At the beginning of the algorithm, p(t)
should take a larger value. The advantage of this is that it
can speed up the convergence speed of the algorithm.
With the increase of the number of iterations, in order to
prevent the convergence from falling too quickly into a
local optimum, the value of u(t) should be gradually
reduced to improve the global search capability of the
proposed EDTM algorithm. Therefore, this model uses the
method shown in (25) to adaptively adjust p ().

0.95u(t = 1),  0.95u(t = 1)> i
u(t) =<l

(25)
Hmin> 095‘[1(1' - 1) < Umin-

In addition, A¢?, in (24) represents the amount of
ij
pheromone left on the path when ant a passes through UAV
node i and UAV node j. The specific expression of A¢{; is
shown:

——, when ant a walks across the path of UAV nodeiand j,
Agli=1 "

0, otherwise,

(26)
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where Q represents the total amount of information released
by ant a for one week, and it is a constant; D, i is the length of
the path that ant a has traveled from the starting UAV node
to the current UAV node.

Step 4. Compute the best path. After A ants have walked
through all UAV nodes, we need to choose a path suitable for
migration among these paths. In the task migration, in
addition to the load of the nodes, we also need to consider
the energy consumption caused by the migration [28, 29]. In
the model part of the paper, equation (13) defines the mi-
gration cost, so we use migration cost as a measure of
optimal path quality. The specific formula is as follows:

Epg = min{E,}, (27)
where E, is the migration cost caused by the path taken by
ant a.

Step 5. Path elimination rules. In this paper, we set the
“number of pathfinding nodes” B to control the number of
iterations of the algorithm, and we define B = [20% - U]. It
can be seen that the number of pathfinding nodes is related

good
A¢ij =

0, otherwise,

where D4 represents the length of the optimal path.
Step 7. In this paper, as the number of iterations increases,
the change of the migration node-set X will stabilize.
Therefore, we set a search number in the proposed EDTM
algorithm. If the specified search number is not reached, the
tabu list is cleared and the above process is repeated.

5.3. Path Elimination Rules. The path elimination rule is a
process of determining the number of valid UAV nodes. If
the subset of UAV nodes that can be the most likely to
become valid nodes can be filtered first, this will greatly
reduce the running time and complexity of the proposed
EDTM algorithm. Before the proposed EDTM algorithm
starts to execute, we can determine the valid nodes from the
source nodes. This is a pre-processing process.

In Step 5 of Section 5.2 of this paper, we mentioned
“Number of Pathfinding Nodes” B. These UAV nodes are the
possible UAV nodes closest to the initial UAV node. At the
same time, these UAV nodes are also the most likely to
become valid UAV nodes. Therefore, we have reason to
believe that the probability that the optimal path passes
through these nodes will be relatively large. In addition, B
meets B<U — 1, and U is the total number of UAV nodes in
the system. The value of B can only be a constant between 1
and U-1. The value of B will directly affect the convergence
speed and accuracy of the proposed EDTM algorithm.

to the total number of nodes in the entire system. When the
proposed EDTM algorithm starts to run, A ants do not have
to iterate over all UAV nodes, but only needs to filter out the
B nodes closest to the initial UAV node in the system for
access. After each iteration is completed, the algorithm
automatically executes Step 4 to find the optimal migration
path from path set, and the remaining paths no longer
participate in the operation of subsequent algorithms.

Step 6. Global update of pheromone. After the ants have
walked through all UAV nodes, we need to distinguish the
best path from the normal path. Therefore, we process the
pheromone on the best path according to formula (28) to
convert the old pheromone ¢§’}d (t) into the new pheromone

¢?fw(t)'
new _ old
¢ij (t)=(1- G)(pij (t)+o- A¢ij: (28)
where o is the global pheromone volatility coefficient, A¢;;
represents the sum of the pheromone amount of all ants

passing through the path between i and j, and A¢;; is defined
as follows:

, if the global optimal solution across the path of UAV nodeiand j,

(29)

To facilitate understanding, we use Figures 3-5 to il-
lustrate the process of obtaining the optimal migration path
after MD m oftloads tasks to UAV 1. In detail, Figure 3 shows
that it is currently in the initial state and no task migration
has occurred. There are 6 UAV nodes distributed from UAV
node 1 to UAV node 6, respectively. Furthermore, node 1 is
the initial node and node 6 is the destination node. All we
need to do is plan an optimal path from node 1 to node 6.
Before we start using the path elimination method, we first
introduce the situation of the traditional ant colony algo-
rithm in the early iteration, as shown in Figure 4. When the
algorithm started running, UAV node 1 had to calculate the
transition probability with the remaining 5 UAV nodes and
then make a judgment, which means that the time com-
plexity of the first iteration is O(n). As the number of it-
erations increases, the running time of the algorithm will
increase at an exponential rate, that is, O ("~ 2*1).

To sum up, the traditional ant colony algorithm does
have certain defects in the initial iteration. We start with the
path elimination method, and the (a-e) graph contained in
Figure 5 corresponds to the five processes of optimal path
acquisition.

There are 6 nodes in Figure 5(a), so it can be computed
by the formula B=[20%"-6]=[1.2] =2. As shown in
Figure 5(a), the two nodes closest to node 1 are node 2 and
node 3. The next-hop UAV node can be obtained by
computing the transition probability. We assume that the
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FiGUre 3: Initial state.

FIGURE 5: The situation of the traditional ant colony algorithm in the early iteration.
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computation result is node 3. Figure 5(b) shows two
computation possibilities for the next node. For node 3, we
only need to compare its transition probability with node 4
and node 6. We assume that the computation result is that
node 4 as the next hop UAV node. Since the ant has searched
for the destination node in the process of finding a valid
node, we first update the migration node-set to
X! ={1,3,6}. Next, it is node 4 to start searching for new
valid nodes. At this time, the two nodes closest to node 4 are
node 1 and node 2. But since node 1 is the initial node, node
1 is excluded from the valid nodes. At this time, we need to
compute the transition probability of node 2 and 5. We
assume that the computation result is that node 2 as the
next-hop node, as shown in Figure 5(c). As shown in
Figure 5(d), the two nodes closest to node 2 and not yet
visited are node 5 and node 6. Then we need to continuously
compare the total migration cost with the migration cost of
the previous migrated nodes set X!, = {1, 3, 6} and select the
optimal migration path. Finally, the migration node-set X" is
updated. Now, only the last UAV node is left, it is shown in
Figure 5(e).

5.4. The Proposed EDTM Algorithm. In this section, we
mainly introduce the specific process of the proposed EDTM
algorithm to solve the joint optimization problem of load
balancing and total energy consumption in the system. The
number of target UAV nodes that we screenisr = [15% - U].
We select r UAV nodes with the shortest task backlog queue
length (that is, the lowest load) as the target UAV nodes.
After clarifying the target UAV node, we begin to use the
proposed EDTM algorithm to compute the optimal mi-
gration path. Because the target UAV node is not unique, the
final migration path must also be unique. We can divide the
task and then migrate to these UAV nodes. These UAV
nodes will perform the distributed processing on the task,
and finally, return the results to MDs. The detailed process of
the proposed EDTM algorithm is shown in Algorithm 1. In
Algorithm 1, e represents the number of iterations, QUA" (¢)
represents the task backlog queue set of all UAVs nodes in
the system at time slot t.

Besides, the special nature of the proposed EDTM al-
gorithm, the task migration efficiency of multiple users will
be higher. Because the ants look for UAV nodes and paths
are based on the pheromone left by the previous ants, when
there are multiple MDs that need task migration, it is no
longer necessary to run the proposed EDTM algorithm to
replan the migration path.

5.5. Experimental Results. In this experiment, we simulated a
600 m x 600 m rectangular area in which a UAV group flies
and provides services to MDs. The horizontal movement
range of each UAV is 240 square meters. There is no limit to
the flight trajectory of each UAV, but one thing we need to
emphasize is that the initial position and end position of
each UAV is always the same. We assume that the number of
UAVs and MDs is 15 and 100, respectively. Besides, the
service radius of each UAV is 150 m. The main parameters
are defined in Table 3.
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5.6. Setting of Experimental Parameters. In this experiment,
we simulated a 600 m x 600 m rectangular area in which a
UAV group flies and provides services to MDs. The hori-
zontal movement range of each UAV is 240 square meters.
The flight trajectory of each UAV can be the same or dif-
ferent, but one thing we need to emphasize is that the initial
position and end position of each UAV is always the same.
We assume that the number of UAVs and MDs is 15 and
100, respectively. Besides, the service radius of each UAV is
150 m. In summary, each UAV is flying within a fixed range
as an edge server and each MD offloads tasks that it cannot
process or has a large amount of computation to the UAVs.
The main parameters are defined in Table 3.

For some parameters in the proposed EDTM algorithm,
we define a=3, f=2, A=15 A=100, u(0)=0.5
Umin = 0.1, Q =20000, g, =0.7, 0 =0.3. And we set the
number of iterations of the entire algorithm during the run
to 4500. Besides, we need to explain that if the values of («a/f)
and (a/A) are too large, the ant has a strong dependence on
the pheromone when choosing the path, which will easily fall
into a local optimum; otherwise, the ant will not rely on the
pheromone left by other ants to make judgments.

5.7. The Effect of B and r on the Proposed EDTM Algorithm.
In this paper, to accelerate the early convergence speed of the
proposed EDTM algorithm, we introduce the variable B. The
value of B will directly affect the convergence speed and the
accuracy of the results. The B value selected in Figure 6 and
Figure 7 are 10% - 1, 15% - u, 20% - u, 25% - u. Since we have
a small number of UAVs, our percentage difference during
the experiment is 5%. In Figure 6, the time points at which
25% - u, 20% - u, 15% - u, and 10% - u converge are 3560 ns,
4516 ns, 5231 ns, and 6010 ns, respectively. Especially, 25% -
u has the fastest convergence speed and requires the fewest
actual iterations. 10% - u has the slowest convergence speed,
and it has the most iterations. In Figure 7, the ordinate
represents the length of the optimal path. Also, we can know
that 10% - u has the slowest convergence speed but it has the
shortest optimal path length. And 25% - u has the fastest
convergence speed, but its optimal distance is proportional
to the other three best paths. In this paper, we need to
consider both the convergence speed of the proposed EDTM
algorithm and the accuracy of the results, so we choose
B =120% - U]. Next, we continue to analyze the effect of r
value on the proposed EDTM algorithm. To guarantee the
users Qos, we split the tasks and then migrate them to
multiple UAVs. These UAVs jointly perform the task and
then return the final computation result to the MDs. One of
our research priorities is how many UAVs we migrate to
during this process. As shown in Figures 8 and 9, we
consider the impact of r value on the proposed EDTM al-
gorithm from two aspects: migration cost and load bal-
ancing. In Figure 8, the migration costs corresponding to
5% -u, 10%-u, 15%-u and 21% -u increase with time.
Among them, the migration cost of 5% - u is the lowest, and
the migration cost of 21% - u is the highest. This is because
the larger the number of target UAVs, the higher the final
migration cost. Also, we can find from Figure 8, the
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Input: QUAY (1), qo> &% B> A, Q,num, A, v
Output: QU4 (t + 1), X!
(1) Initialize the target UAV node Set and initial UAV nodes
(2) for e=1: num do
(3)  the ant looks for the next hop UAV node according to formula (23)
(4) get ¢ij Ay according to formula (24)-(26)
(5)  Update the tabu table
(6)  Update local pheromone ¢;;
(7)  Update global pheromone ¢ by formula (29)
8) forueU
) B =1[20%-U]
(10) Update migration node set X
(11) U=U-B
(12) Compute total migration cost Ef
(13) Remove invalid UAV nodes and eliminate nonoptimal paths
(14) end for
(15) end for
ALGORITHM 1: The proposed EDTM algorithm.
TaBLE 3: The definition of the main experimental parameters.
Parameters Value
The theoretical communication bandwidth 10M
The channel gain H, =170, ¢=15.5
The noise power 2x107°W
The maximum transmission power of the MDs 1.7W
The maximum transmitting power of the UAVs 100 W
The maximum CPU cycle frequency of the MDs 1.8 GHz
The maximum CPU cycle frequency of the UAVs 20 GHz
The maximum memory of the UAVs 1T
The CPU effective capacitance switch of the MDs 1.2x 107V
The CPU effective capacitor switch of the UAVs 3x 10716
The density of processing tasks 10° cycles/bit
The mass of each UAV 19.7kg
The maximum speed of the UAVs 13m/s
The initial height of the UAV's 50 m
The gravitational acceleration 9.8 m/s?
The air density 1.293 kg/m?®
The range of the UAV propeller rotations per second [50, 160]

The wind speed range

[3.5m/s, 10 m/s]

migration cost of the system rises rapidly between 2263 ns
and 3700 ns, which is because the requirements of the mi-
gration task conform to Poisson distribution.

In Figure 9, the ordinate indicates the extreme difference
of the UAV task queue length as a percentage of its max-
imum task queue length at the current moment. We use the
computation method of extreme difference to judge the load
balancing of UAVs in the MEC system. As shown in Fig-
ure 9, 0.9 represents 90%, 0.8 represents 80%, and the fol-
lowing values are deduced by analogy. In the previous paper,
we explained that our optimization goal is to ensure that the
task queue length of each UAV does not exceed 10% of the
average number of tasks in the queues, so we set a baseline in
the experiment. Also, we can learn that 5% -u, 10% - u,
15% - 1, 21% - u will all converge to 10%, which proves that
the proposed EDTM algorithm can make the load of the
UAV group reach equilibrium, but their convergence speed

will be different. Among them, 21%-u has the fastest
convergence speed, and 5% - u has the slowest convergence
speed.

In summary, we choose r = [15% - U, which ensures the
convergence speed of the proposed EDTM algorithm, and
the system migration cost is low.

5.8. The Analysis of Weight Factor. In formula (20), we use
two weighting factors, i.e., ®, and @,. Due to 0<®, <1,
0<®,<1and @, +®, = 1, we just need to choose the value
of ®,. As shown in Figure 10, we selected ®, =0, ®, = 0.1,
®, =0.2 and ®, =0.5. As @, decreases, ®, will increase
accordingly. At this time, the MEC system will tend to
minimize the energy consumption of MDs. And the average
energy consumption (AEC) of the UAVs will also increase
with the acceleration. When the acceleration changes from
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40 m/s® to 47 m/s?, the AEC of the UAVSs has a growth
jump, which mainly comes from two aspects. One is because
we set the wind speed in the entire area as a random number
in [3.5m/s,10m/s], a sudden increase in wind speed will
increase the flight energy consumption of the UAVs, which
in turn will increase the AEC of the UAVs.

In summary, we can find that the smaller the ®@,, the
larger the AEC of the UAVs. When @, = 0, the AEC of the
UAVs is the largest because the system goal is only to focus
on minimizing the energy consumption of MDs.

5.9. The Analysis of the Proposed EDTM Algorithm
Performance. In this section, we analyze the performance of
the proposed EDTM algorithm. As shown in Figure 11, the
proposed E DTM algorithm converges after approximately
2650 iterations, while the ACO algorithm enters a
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convergence state after approximately 3460 iterations. Ob-
viously, under the same conditions, the proposed EDTM
algorithm converges faster than the ACO algorithm.

As shown in Figure 12, the abscissa represents time, and
the ordinate represents the extreme difference of the UAV
task queue length as a percentage of its maximum task queue
length at the current moment in the UAV group. In this
experiment, we assume that the process of task arrival
conforms to the Poisson distribution, so we can know from
Figure 12 that the task queue extreme value of the UAV
group between 1500 ns and 2700 ns becomes large and rises
very quickly. Between 2700 ns and 5000 ns, the proposed
EDTM algorithm makes the extreme difference smaller and
stays around 0.1 in the end.

According to the above experiment, the proposed EDTM
algorithm is superior to the ACO algorithm in terms of
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convergence speed and optimization of load balancing ef-
ficiency of the UAV group. At the same time, we have also
proven that the proposed EDTM algorithm can help the
UAV group achieve load balancing.

Besides, part of the current research work solves the task
migration problem in MEC by setting up Markov Decision
Process (MDP). For example, researchers proposed an MDP
algorithm based on static distance (MDP-SD). Next, we
compare the performance of the proposed EDTM algorithm
and the MDP-SD algorithm in terms of migration cost and
average load percentage of the UAV groups. As shown in
Figure 13, the reason why the curve changes as shown is
because we assume that the computation task request

Time (nano seconds)

-a— EDTM
—A— MDP-SD

FIGURE 13: The comparison of total migration cost between the
proposed EDTM algorithm and the algorithm MDP-SD algorithm.

conforms to the Poisson distribution. When ¢ =0, there is no
computation task in the system, so the migration cost of
UAVs is 0. When 0<t <1650 ns, the computation task
request amount over time slowly rising, and the migration
cost of the MDP-SD algorithm is slightly higher than that of
the proposed EDTM algorithm. This is because the MDP-SD
algorithm consumes more computing resources than the
proposed EDTM algorithm when it uses the value iterative
method to solve the migration strategy in the early stage.
When 1650 <t <3800 ns, the amount of computation task
requests rises rapidly, and the migration cost of the two
algorithms also increases rapidly. When ¢>3800 ns, the
amount of computation task request decrease and the rate of
increase in migration costs begin to decrease.
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TaBLE 4: The performance comparison.

Convergence Total energy Maximum system
time (ns) consumption (J)  load status (%)
ACO 3550 101120 89
MDP 3611 91312 81
EDTM 2000 89991 35

After comparing the migration costs of the proposed
EDTM algorithm and the MDP-SD algorithm, next, we
compare the performance of the two algorithms from the
average load percentage of the UAV groups. As shown in
Figure 14, 0.9 means that the task queue of the UAV groups
at this time accounts for 90% of the total length of the task
queue. Besides, the percentage of the task queue length
under the MDP-SD algorithm is higher than the proposed
EDTM algorithm. This is because we considered the small
storage space and computing power of the UAVs when
designing the proposed EDTM algorithm. So that the
proposed EDTM algorithm does not occupy too much
UAV resources. Also, because the amount of computation
task request conforms to the Poisson distribution, when
0<t <2800 ns, the average task queue percentage of the
UAYV groups will increase. And when t = 2800 ns, whether
it is the proposed EDTM algorithm or the MDP-SD al-
gorithm, the average task queue percentage of the UAV
groups will reach the highest point. Until ¢ >2800 ns, the
average task queue percentage of the UAV groups slowly
decrease. Obviously, from the perspective of the entire
process, the average task queue percentage of the UAV
groups under the proposed EDTM algorithm is always
lower than the MDP-SD algorithm. Therefore, the pro-
posed EDTM algorithm is more suitable for UAV-enabled
MEC systems.

To sum up, we compare the performance of the algorithm
from the following three aspects, including convergence time,
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energy consumption and maximum system load status. The
experimental results are shown in Table 4.

6. Conclusion

In this paper, we formulated the joint optimization problem
in UAV-enabled MEC system, which considers migration
costs, total system energy consumption, and load balance. To
address this problem, we then propose the EDTM algorithm
and path elimination rules, the weight factors and the
pheromone update strategy in the algorithm show the sta-
bility and robustness of the system. Finally, simulation
experiments demonstrate the efficacy of the proposed
EDTM algorithm. For future works, we plan to apply the
algorithm in a real environment and test its performance.
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