
Energy Efficient TDMA Sleep Scheduling in
Wireless Sensor Networks

Junchao Ma, Wei Lou
Department of Computing

The Hong Kong Polytechnic University
Kowloon, Hong Kong

{csjma, csweilou}@comp.polyu.edu.hk

Yanwei Wu, Xiang-Yang Li
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616, USA
ywu24@iit.edu, xli@cs.iit.edu

Guihai Chen
State Key Lab of Novel Software Technology

Nanjing University
Nanjing, P. R. China

gchen@nju.edu.cn

Abstract—Sleep scheduling is a widely used mechanism in
wireless sensor networks (WSNs) to reduce the energy con-
sumption since it can save the energy wastage caused by the
idle listening state. In a traditional sleep scheduling, however,
sensors have to start up numerous times in a period, and thus
consume extra energy due to the state transitions. The objective
of this paper is to design an energy efficient sleep scheduling for
low data-rate WSNs, where sensors not only consume different
amounts of energy in different states (transmit, receive, idle
and sleep), but also consume energy for state transitions. We
use TDMA as the MAC layer protocol, because it has the
advantages of avoiding collisions, idle listening and overhearing.
We first propose a novel interference-free TDMA sleep scheduling
problem called contiguous link scheduling, which assigns sensors
with consecutive time slots to reduce the frequency of state
transitions. To tackle this problem, we then present efficient
centralized and distributed algorithms that use time slots at
most a constant factor of the optimum. The simulation studies
corroborate the theoretical results, and show the efficiency of our
proposed algorithms.

Keywords: energy efficient algorithms, sleep scheduling, wireless
sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of a large number
of wireless sensor nodes that organize themselves into multi-
hop radio networks. The sensor nodes are typically equipped
by power-constrained batteries, which are often difficult and
expensive to be replaced once the nodes are deployed. There-
fore, it is a critical consideration on reducing the power
consumption in the network design.

Previous work [1], [2] has shown that the idle listening
state is the major source of energy wastage. In fact, it can
consume almost the same amount of energy as required for
receiving. Therefore, nodes are generally scheduled to sleep
when the radio modules are not in use [3]. After the sleep
scheduling, nodes could operate in a low duty cycle mode that
they periodically start up to check the channel for activity.
Keshavarzian et al. [4] analyzed different sleep scheduling
schemes and proposed a scheduling method that can decrease
the end-to-end overall delay. This method did not, however,
provide an interference-free scheduling, in which every node
can start up and transmit or receive its messages without inter-
ference during the assigned time slots. One popular approach
to avoid interference is to adopt the time division multiple

access (TDMA) MAC protocols, which can directly support
low duty cycle operations and has the natural advantages of
having no contention-introduced overhead and collisions [1].
Moreover, TDMA can guarantee a deterministic delay bound.
Thus, we are interested in designing an efficient TDMA sleep
scheduling for WSNs.

TDMA protocols divide time into slots, which are allocated
to sensor nodes that can turn on the radio during the assigned
time slots, and turn off the radio when not transmitting or
receiving in the sleep scheduling. In order to be interference-
free, a simple approach is to assign each communication link
a time slot, and thus, the number of time slots is equal to the
number of communication links of the network. This scheme
requires much more time slots than necessary, which increases
the delay and reduces the channel utilization significantly.
This is because multi-hop networks are able to make space
reuse in the shared channel, and multiple transmissions can be
scheduled in one time slot without any interference. TDMA
link scheduling attempts to minimize the number of time slots
assigned while producing an interference-free link scheduling,
and it has been shown that the problem is NP-complete [5],
[6]. Several approximate algorithms have been proposed in
the link scheduling problem [7]–[10]. However, if the TDMA
link scheduling is used as the startup mechanism in the
sleep scheduling, a node may start up numerous times to
communicate with its neighbors. Note that the typical startup
time is on the order of milliseconds, while the transmission
time may be less than that if the packets are small [11].
Consequently, the transient energy consumption during the
startup process can be higher than the energy during the actual
transmission. If a sensor node starts up too frequently, it not
only needs extra time, but also costs extra energy for the state
transition. Therefore, the state transition, e.g., from the sleep
state to the active state, should be considered for an energy
efficient TDMA sleep scheduling in WSNs.

In this paper, we use a new energy model, where the energy
consumption of the state transition is considered. We propose
a novel interference-free TDMA sleep scheduling problem
called contiguous link scheduling to reduce the frequency of
state transitions. In the scheduling, links incident to one node
are scheduled together to obtain consecutive time slots so
that nodes can only start up once to monitor the channel

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

978-1-4244-3513-5/09/$25.00 ©2009 IEEE 630

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



in one scheduling period T . Especially, if the topology is
a tree, a node only needs to start up twice in a period,
once for receiving data from its children nodes and once for
transmitting its data to its parent node.

The main contributions of this paper are summarized as
follows: (1) We address the scheduling problem in a new
energy model, which is closer to realistic sensors. (2) We
propose the contiguous link scheduling problem in WSNs,
and prove it to be NP-complete. (3) We present centralized and
distributed algorithms that have theoretical performance bound
to the optimum of the problem. (4) We develop simulations
to show the efficiency of the proposed algorithms.

The remainder of this paper is organized as follows. Section
II reviews the related works. Section III describes the system
model and then formulates the contiguous link scheduling
problem. Section IV presents the centralized algorithm and
Section V presents the distributed algorithm for the contigu-
ous link scheduling. Section VI describes and analyzes the
simulation results for the proposed algorithms. Section VII
concludes the paper.

II. RELATED WORK

Several approximate algorithms have been proposed in the
TDMA scheduling problem, including broadcast scheduling
[12]–[14] and link scheduling [7]–[10]. Broadcast and link
scheduling are time slot assignments to nodes and links,
respectively. Ramaswami and Parhi [12] presented an efficient
and interference-free centralized and distributed broadcast
scheduling in a multi-hop packet radio network. In [13], the
broadcast scheduling problem was modeled as a distance-2
coloring problem, and Krumke et al. proposed approximation
heuristic algorithms for various geometric graphs. In [14], Ngo
et al. presented a centralized genetic-fix algorithm to reduce
the search space based on a within-two-hop matrix. However,
the performance of broadcast scheduling is worse than link
scheduling in WSNs, especially in terms of energy conser-
vation. In the broadcast scheduling, when a node wants to
transmit, all the neighbors have to turn on their radio and start
up, no matter whether they are the intended receiver or not.
In contrast, only the intended receiver needs to start up in the
link scheduling. Ramanathan and Lloyd [7] considered both
the tree networks and arbitrary networks, and the performance
of the proposed algorithms is bounded by the thickness of a
network. In [8], Gandham et al. proposed a link scheduling
algorithm involving two phases. In the first phase, a valid
edge coloring is obtained in a distribution fashion. In the
second phase, each color is mapped to a unique time slot, and
the hidden terminal and the exposed terminal problems are
avoided by assigning each edge a direction of transmission.
The overall scheduling requires at most 2(δ + 1) time slots,
when the topologies are acyclic. In [9], Wang et al. proposed
both centralized and distributed algorithms with performance
guarantee to obtain a good interference-free link scheduling
to maximize the throughput of the network. In the algorithms,
the sensors are scheduled individually in a predefined order
without consecutive assignment of time slots, and each node

is assigned the best possible time slot to transmit or receive
without causing interference to the already-scheduled sensors.
Djukic and Valaee [10] proposed an efficient min-max delay
scheduling method to find schedules with minimum round
trip delay in the link scheduling. The previous studies in the
TDMA scheduling did not consider the energy consumption of
radio in the state transition. Compared to broadcast scheduling
and link scheduling, the contiguous link scheduling could
reduce the frequency that sensor nodes start up, and thus
achieve better energy efficiency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model consisting of
a network model, an interference model and an energy model,
then we formulate the contiguous link scheduling problem and
prove it to be NP-complete.

A. System Description

Network Model. We assume that a WSN has n static sensor
nodes, which are all equipped with single omni-directional
antennas, and there exists a sink node to collect the data from
other sensor nodes. With the assumption that all the sensors
have the same communication range r, the network can be
represented as a communication graph G = (V, E), where V =
{v1, v2, · · · , vn} denotes the set of nodes, and E denotes the set
of edges referred to all the communication links. If {vi, v j} ⊆ V ,
the edge e = (vi, v j) ∈ E if and only if v j is located within
the transmission range of vi. In a directed graph, the edge e
is called incident from vi, and incident to v j.

Two types of network topologies for data collection and
aggregation are discussed in this paper, data gathering tree and
directed acyclic graph (DAG). A data gathering tree is a tree
routed at a sink node, where each intermediate node collects
the data from its children nodes and then forwards the data
to its parent node. A DAG is a graph with no directed cycles,
that is, there is no path that starts and ends at the same vertex.
The depth of a vertex in a DAG is the length of the longest
path from that vertex to a sink.

Interference Model. In wireless networks, the packets trans-
mitted by a node may be received by all the nodes within
its transmission range. Therefore, interferences may occur
among these nodes due to the broadcast nature of the wireless
medium. There are two types of interferences: primary inter-
ference and secondary interference [7]. The primary interfer-
ence occurs when a node has more than one communication
task in a single time slot. Typical examples are sending and
receiving at the same time and receiving from two different
transmitters. The secondary interference occurs when a node
tuned to a particular transmitter is also within the transmission
range of another transmission intended for other nodes. Both
primary interference and secondary interference are considered
in this paper.

The interference between two links in the network depends
on the interference model, and we use the protocol model [15],
[16] in this paper. In the protocol model, each node vi has a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

631

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



Sleep

T ransient

A ctive

Sleep

T ransient T ransient

A ctive A ctive

A ctive

T ransient

Sleep Sleep

SleepSleep

(a)

(b)

time

time

Fig. 1. The energy model: (a) Before active time slots merged, (b) After
active time slots merged.

fixed transmission range r and an interference range R, where
R > r. We denote the ratio between the transmission range
and the interference range as γ = R

r . In practice, 2 ≤ γ ≤ 4. A
transmission from vi to v j is successful if any node vk located
within a distance R from v j is not transmitting.

TABLE I
TIME AND POWER CONSUMPTION IN THE STARTUP PROCESS FOR A MICA2

MOTE WITH A CC1000 TRANSCEIVER

Operation process Time Power consumption
Sleep — 90μW
Radio initialization 0.35ms 18mW
Turn on Radio 1.50ms 3mW
Switch to RX/TX state 0.25ms 45mW
Receive 1 byte 0.416ms 45mW
Transmit 1 byte 0.416ms 60mW

Energy Model. In B-MAC [17], Polastre et al. presented the
energy consumption of sampling the channel in low-power
listening (LPL) on a Mica2 mote. The startup process from
the sleep state to the active state includes radio initialization,
radio and its oscillator startup, and the switch of radio to
receive/transmit state. The startup process is slow due to the
feedback loop in the phase-locked loop (PLL) [18], and a
typical setting time of the PLL-based frequency synthesizer
is on the order of milliseconds. The startup time and energy
consumption in the startup process can also be found in the
channel polling in [19]. Table I lists the time and power
consumption in the startup process for a Mica2 mote with
a CC1000 transceiver. We can see that the time to activate a
sensor is 2.1ms, and the energy consumption is about 22μJ.

Our energy model is similar to the one used in [20]. In
our model, we assume that each node operates in three states:
active state (transmit, receive and listen), sleep state, and tran-
sient state (state transition). The energy consumption of sensor
nodes in the sleep state is much less than the consumption in
the active state, and a significant energy saving can be achieved
if the sleep state is employed during the periods of inactivity.
The transient state comprises two processes: startup (from the
sleep state to the active state), and turndown (from the active
state to the sleep state). The energy model is illustrated in
Fig. 1 (a), and there is a significant energy consumption and
time overhead when the sensor’s radio powers on and off.

(a)

N ode a

N ode h

N ode g

N ode f

N ode e

N ode d

N ode c

N ode b

(b) (c)

T ransmit Receive

a

hg

c

fe

db

N ode a

N ode h

N ode g

N ode f

N ode e

N ode d

N ode c

N ode b

Fig. 2. Link scheduling and contiguous link scheduling: (a) Network
topology, (b) Link scheduling, (c) Contiguous link scheduling

Fig. 1 (b) shows that merging the sensor’s active time slots
together can reduce the startup frequency so as to save both
energy and time, which benefits the duty cycle network design.

B. Problem Formulation

In a TDMA sleep scheduling, each link li j is assigned a
time slot, in which both sender node vi and receiver node v j

should start up to communicate. After the allocated time slot,
nodes vi and v j change to sleep. When using the traditional link
scheduling algorithms (e.g. [9], called degree-based heuristic
in this paper) which schedule the communication links one by
one, node v j may start up wj times to monitor the channel in a
period T , where wj is the number of neighbors. As addressed
before, the frequent startup would consume a large amount
of extra energy and time. A reasonable design is to assign
consecutive time slots to all directed links incident to the
same node, and then a node only needs to start up once to
receive all the packets from its neighbors. We refer to such an
interference-free scheduling as the contiguous link scheduling.
A contiguous link scheduling is said to be valid if all the links
incident to one node are assigned consecutive time slots.

Fig. 2 shows a sample of the contiguous link scheduling. In
Fig. 2 (a), the given network is a data gathering tree routed
at node a, in which any two links interfere with each other.
Fig. 2 (b) shows an interference-free link scheduling, where a
node starts up numerous times in a period. Fig. 2 (c) shows the
contiguous link scheduling that a node can start up only once
for receiving data from its neighbors. Note that the contiguous
link scheduling can be applied to both a tree topology and a
mesh topology, such as DAG. Especially, if the network is
a data gathering tree where each node only has one parent,
a node just needs to start up twice at most in a period:
once for receiving data from its children nodes and once for
transmitting its data to its parent node.

An interval vertex coloring [21], [22] is an assignment of a
set S (i) of wi consecutive colors to each node vi in such a way
that S (i)∩S ( j) = ∅ for any two adjacent nodes vi and v j. In the
following part of this section, we show that a valid contiguous
link scheduling can be obtained by the interval vertex coloring
in the merged conflict graph, and we prove that the contiguous
link scheduling problem is NP-complete.

Merged Conflict Graph. Given an interference model, the in-
terference of the links in the communication graph G = (V, E)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

632

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



a

b

c d

e f

abl

bdlbcl

cel dfl

(1)aL (2)bL

(1)cL (1)dL

(a) C ommunication graph (b) C onflic t graph (c) M erged conflic t graph

Fig. 3. Communication graph and corresponding conflict graphs

can be represented as a conflict graph Gc [16]. Corresponding
to each directed link between vi and v j in G, the conflict
graph contains a vertex (denoted by li j), and there is an edge
between vertices li j and lpq in the conflict graph if li j interferes
with lpq in the network. Notice that the conflict graph in the
protocol model is a directed graph, since the links may not
interfere with each other. In [9], the link scheduling problem is
modeled as the vertex coloring in the conflict graph. Different
from the conflict graph, we propose a merged conflict graph
Gmc to model the contiguous link scheduling problem. The wi

directed links incident to the same node in G correspond to a
vertex in Gmc, and there is an edge between any two vertices
in Gmc if and only if at least one pair of the corresponding
links in G interfere with each other. In Gmc, we use Lvi (wi) to
denote the corresponding wi links incident to node vi, and
wi is the weight of vertex Lvi (wi). For example, the links
lbc and lbd in Fig. 3 (b) correspond to Lb(2) in Fig. 3 (c).
For the sample communication graph shown in Figs 3 (a), if
the interference range is two hops, the corresponding conflict
graph and merged conflict graph are shown in Figs 3 (b) and
3 (c), respectively. In Fig. 3 (c), we can see that the number
of vertices in Gmc is equal to the number of receiving nodes
in G, and wi is the number of links directed to the same node.
Obviously, we could obtain a valid contiguous link scheduling
by the interval vertex coloring in the merged conflict graph.

Theorem 1. The contiguous link scheduling problem is NP-
complete.

Proof: The problem is clearly in NP since an assignment
can be verified in polynomial time.

We transform the interval vertex coloring to the contiguous
link scheduling, and the interval vertex coloring problem is
proved to be NP-complete [22]. Suppose that each vertex
vi in a weighted graph Gw has a weight of wi, and the
number of adjacent vertices of each vertex vi is w′i , which
is no less than wi. We construct a communication graph
G′ by replacing each vertex vi in Gw with a node v′i , and
each node v′i randomly chooses wi nodes as adjacent nodes
(or neighbors) in the corresponding w′i adjacent vertices in
Gw. Then, each node v′i in G′ has wi incident links. The
remaining w′i −wi adjacent vertices of vi in Gw can be seen as
interference in the communication graph. This transformation
can be performed in polynomial time and we could obtain a

r

R -r

r

r

vkvivj

vq

vp

vs vt

d

Fig. 4. Interference of links in the protocol model

contiguous link scheduling in G′ by an interval vertex coloring
in Gw, therefore, the problem is NP-complete.

IV. CENTRALIZED ALGORITHMS

In this section, we propose the centralized contiguous link
scheduling algorithms, centralized scheduling and centralized
scheduling with spatial reuse (recursive backtracking and
minimum conflicts heuristic).

A. Centralized Scheduling

We first study a centralized algorithm to the contiguous
link scheduling problem. In stead of scheduling a time slot
individually for each communication link, each node vi will be
assigned wi consecutive time slots, where wi is the number of
links incident to vi. Each node can only start up once to receive
all the data from its neighbors. In the centralized scheduling,
we color the nodes in the decreasing order of their weight.
Since each node vi is assigned the smallest wi consecutive time
slots which are not assigned to other nodes that interfere with
vi in the merged conflict graph Gmc, our scheduling algorithm
is interference-free. The centralized scheduling is described in
Algorithm 1.

We assume R/r = γ, where r and R are the transmission
and interference range of node vi, respectively. We use D(vi, x)
to denote the disk centered at node vi with radius x, and ‖
L(vi)− L(v j) ‖ to denote the distance between nodes vi and v j.

Lemma 1. Let I(e) be the links that interfere with a link e
in the corresponding weighted conflict graph Gmc under the
protocol model, then at least |I(e)|/C1 time slots are needed
to schedule all links in I(e), where C1 =

9(γ+1)2

(γ−1)2 and |I(e)| is
the number of links in I(e).

Proof: If a node v j can communicate with node vi,
then node v j must be in D(vi, r). Fig. 4 shows that, if a
link incident to vp interferes with l ji in Gmc, vp must be in
D(vi,R + r), and the link must be in D(vi,R + 2r), because
there is at least one adjacent node of vp in D(vi,R) to interfere
with vi, such as vq. We observe that the distance between
two nodes transmitting simultaneously without interference
in Gmc should be at least R − r. For example, if l ji and lts
are interference-free, the distance between vi and vt is larger

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

633

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Centralized scheduling (Centralized)

Input: A communication graph G = (V, E).
Output: A valid contiguous link scheduling.

1: Construct the merged conflict graph Gmc, and initialize an
empty stack S .

2: Push the vertices in Gmc in the non-decreasing order of
weight wi to the stack S .

3: while S is not empty do
4: Pop the vertices in S sequentially and assign each vertex

Lvi (wi) the smallest wi consecutive time slots for node
vi to receive, which are not yet assigned to any of its
neighbors in Gmc.

5: Schedule the wi time slots for transmitting sequentially
for each adjacent node of node vi in G.

than R, and the distance between node v j and vt should be
d �‖ L(vi) − L(vt) ‖ − ‖ L(vi) − L(v j) ‖� R − r. There are at
most C1 =

π[R+2r+0.5(R−r)]2

π[0.5(R−r)]2 =
9(γ+1)2

(γ−1)2 links with radius (R− r)/2
that can be placed in D(vi,R+2r). Thus, there exists a link set
with the size at least |I(e)|/C1 such that each pair of links in
the set interferes with each other. Therefore, at least |I(e)|/C1

time slots are needed to schedule all links in I(e).

wi1gi1 gi2 gi3 ...... giL

T

wi2 wiwiLwi3

Fig. 5. The time slots that conflict with vi in Gmc when vi is scheduled

Theorem 2. The number of time slots used by Algorithm 1 is
at most a constant factor of the optimum.

Proof: Suppose that vi is the sensor node to be scheduled
in the last wi time slots, and all the other sensors have already
been scheduled, as shown in Fig. 5. In the figure, wil (1 � l �
L) is the number of consecutive time slots occupied by the
links incident to node vil that interfere with the links incident
to vi in the merged conflict graph Gmc, and gi1 , gi2 , · · · , giL

represent the gaps occupied by other non-conflicting links. The
links are scheduled in the non-increasing order of weight, so
wil (1 � l � L) is not smaller than wi. Since each vertex vi is
assigned the smallest wi consecutive time slots, which do not
interfere with vi, gil (1 � l � L) is smaller than wi. The total
number of time slots used by our scheduling is

T =
L∑

l=1

gil +

L∑

l=1

wil + wi < L · wi +

L∑

l=1

wil + wi

� 2(
L∑

l=1

wil + wi)

The number of links that interfere with the links incident
to vi in Gmc is

∑L
l=1 wil + wi. We denote Topt as the mini-

mum number of time slots used by any scheduling, i.e., the
minimum scheduling period. From Lemma 1, we know that

Topt �
∑L

l=1 wil+wi

C1
. Then, we get T � 2C1 ·Topt = C ·Topt, where

C = 2C1.

a

hgfed

cb

(a) (b)

7

1 2 3

8

5 64

a

hgfed

cb

5

3 2 1

6

2 34

Fig. 6. Contiguous link scheduling: (a) Centralized scheduling, (b) Central-
ized scheduling with spatial reuse

B. Centralized Scheduling with Spatial Reuse

In the contiguous link scheduling, it is possible to assign
the vertices Lvi (wi) and Lvj (wj) the same time slots when
Lvi (wi) interferes with Lvj (wj) in Gmc, because not every link
in Lvi (wi) interferes with every link in Lvj (wj). A sample is
illustrated in Fig. 6. The given network is a directed acyclic
graph (DAG), and the interference range of each node is two
hops. Since La(2), Lb(3) and Lc(3) interfere with each other in
the merged conflict graph, and the time slots assigned using
Algorithm 1 are shown in Fig. 6 (a). We could also get a
valid contiguous link scheduling shown in Fig. 6 (b), which
uses fewer time slots. Based on the observation, we propose
the centralized scheduling with spatial reuse to improve the
centralized scheduling by re-arranging the time slots in an
interference matrix.

Definition 1. An interference matrix of node vi is an m × n
matrix M = (mj,k)m×n (1 � j � m, 1 � k � n) that shows
whether a time slot could be assigned to a link incident to vi

without interference. In the matrix M,

mj,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

− : link lk could not use time slot t j (inter f erence)
0 : link lk could use time slot t j (inter f erence- f ree)
1 : link lk selects time slot t j (selection)

where “−” denotes interference with the already-scheduled
links, “0” denotes interference-free and “1” denotes the se-
lected (or assigned) time slot for the link (selection).

Note that the number of columns n is equal to the number
of links incident to node vi, and the number of rows m is the
number of time slots assigned in the scheduling. A sample
of the interference matrix is shown below. In the matrix M0,
node vi has 5 incident links {l1, l2, l3, l4, l5}, and the time
slots which have been used by other links that interfere with
links l1, l2, l3, l4, l5 are {t1, t2, t6}, {t2, t4, t7}, {t1, t2, t5}, {t2,
t3, t6} and {t2}, respectively.

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 l2 l3 l4 l5
t1 − 0 − 0 0
t2 − − − − −
t3 0 0 0 − 0
t4 0 − 0 0 0
t5 0 0 − 0 0
t6 − 0 0 − 0
t7 0 − 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

634

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



Definition 2. An assignment in the interference matrix M =
(mj,k)m×n of node vi is said to be valid if there is only one “1”
in each row and each column, and there are n consecutive rows
that have “1” in each row in the matrix. The links incident to
vi could be scheduled consecutive time slots by obtaining a
valid assignment in the interference matrix.

Definition 3. An interference submatrix is an n × n matrix
M′ = (mj,k)n×n, which consists of n consecutive rows in the
interference matrix M.

Algorithm 2 Centralized scheduling with spatial reuse

Input: A communication graph G = (V, E).
Output: A valid contiguous link scheduling.

1: Construct the merged conflict graph Gmc, construct an
interference matrix for each vertex Lvi (wi), and initialize
an empty stack S .

2: Push the vertices in Gmc in the non-decreasing order of
weight wi to the stack S .

3: while S is not empty do
4: Pop the vertices in S sequentially and assign each vertex

Lvi (wi) the smallest wi consecutive time slots, using
Algorithm 3 or Algorithm 4 in the interference matrix
M to find a solution.

5: vi broadcasts the time slot assignments to the nodes
whose incident links interfere with the links incident to
vi, then the nodes update their interference matrixes.

Algorithm 2 describes the centralized scheduling with spa-
tial reuse. In order to reduce the time slots assigned, the
recursive backtracking algorithm is used to make sure that a
node is assigned the smallest available consecutive time slots.
In the algorithm, when a node vi is assigned time slots, it will
broadcast the information to all the nodes whose incident links
interfere with the links incident to vi. Then each node in the
network would have an interference matrix to indicate the time
slots that its incident links could not use. The algorithm first
finds the smallest n consecutive rows that have “0” in each row
in the interference matrix M, and constructs an interference
submatrix M′ which consists of the n rows. Then it starts the
first selection in the first row, and the second selection in the
second row without interference to the selection in the first
row. The algorithm continues the selection to the next row
until a valid assignment is found. During the process of each
selection in a row, there may be several candidates “0”, and
the selected candidate is referred to as predecessor, and the
candidates “0” in the next row are referred to as successors of
the predecessor. If a successor fails in the selection, it then
executes the backtracking procedure: the algorithm checks
whether the next successor of the predecessor satisfies the
condition that there is only one “1” in each column. If
the successors are exhausted, the algorithm backtracks to
the previous predecessor and tries the next successor of the
previous predecessor. If there are no more predecessors, the
algorithm adds a new time slot interference-free to all the links

incident to vi, and the corresponding interference matrix adds
a zero row vector (0)1×n in the last row. The details of the
recursive backtracking algorithm are shown in Algorithm 3.

Algorithm 3 Recursive backtracking

Input: An interference matrix M = (mj,k)m×n.
Output: A valid assignment in M.

1: Construct an interference submatrix M′ consisting of the
smallest n consecutive rows that have “0” in each row.

2: Start the first selection in the first row.
3: Continue the selection in the next row satisfying the

condition that there is only one “1” in each column, until
a valid assignment is obtained.

4: if a selection fails to obtain a valid assignment then
5: Execute the backtracking procedure.
6: if the recursive backtracking fails then
7: Add a zero row vector in the last row of M, and delete

the first row in the n consecutive rows. Update M, and
repeat the recursive backtracking in M.

The recursive backtracking algorithm is a brute-force search
algorithm, which is too complex for sensor networks. There-
fore, we present a fast algorithm called minimum conflicts
heuristic, as shown in Algorithm 4.

Definition 4. A conflict matrix is an n×n matrix MC = (c j,k)n×n

that describes the number of conflicts in the interference
submatrix M′ = (mj,k)n×n, and each element c j,k in the
matrix is the number of conflicts, which is the sum of the
selections “1” in the row and column that include c j,k. That
is, c j,k =

∑n
l=1 ml,k +

∑n
l=1 mj,l − mj,k, if mj,k � −.

The minimum conflicts heuristic algorithm first constructs
an interference submatrix M′ which consists of n consecutive
rows, and then starts with a random initial configuration in
M′, e.g., with one selection per column or per row. One initial
configuration of matrix M0 is shown in the matrix M′1. The
corresponding conflict matrix of matrix M′1 is shown in the
matrix MC1 . The algorithm then uses a heuristic to determine
how to reduce the interference by moving the selection “1”
with the largest number of conflicts to the position in the
same column where the number of conflicts is minimum. The
first step of improvement is shown in the matrix M′2, and the
corresponding conflict matrix of matrix M′2 is MC2 . It continues
to reduce the interference until there is no interference or the
initial configuration fails. If the initial configuration fails, it
will add a new time slot and continue. Though the algorithm
converges much faster, the minimum conflicts heuristic may
get stuck on a local optimum, thus, it does not guarantee a
solution to find the consecutive time slots which actually exist.

M′1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 − 1
0 − 0 1 0
0 1 − 0 0
− 0 0 − 0
0 − 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,MC1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 4 3 − 3
2 − 2 1 2
2 1 − 2 2
− 1 1 − 1
1 − 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

635

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



M′2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 − 1
0 − 0 1 0
0 1 − 0 0
− 0 0 − 0
1 − 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,MC2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 2 − 2
2 − 2 1 2
2 1 − 2 2
− 1 1 − 1
1 − 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Algorithm 4 Minimum conflicts heuristic

Input: An interference matrix M = (mj,k)m×n.
Output: A valid assignment in M.

1: Construct an interference submatrix M′ consisting of the
smallest n consecutive rows that have “0” in each row.

2: Initialize the matrix M′ with a random configuration.
3: Count the number of conflicts in M′, and obtain the

conflict matrix MC .
4: Use a heuristic to reduce the interference, moving the

selection “1” with the largest number of conflicts to
the position in the same column, where the number of
conflicts is minimum.

5: if the minimum conflicts heuristic fails then
6: Add a zero row vector in the last row of M, and delete

the first row in the n consecutive rows. Update M, and
repeat the minimum conflicts heuristic in M.

As Algorithm 2 reduces the number of time slots compared
to Algorithm 1, it also follows a constant bound performance
guarantee of Algorithm 1. Note that two vertices that conflict
with each other in the merged conflict graph may overlap some
time slots in Algorithm 2.

Corollary 1. The number of time slots used by Algorithm 2
is at most a constant factor of the optimum.

V. DISTRIBUTED ALGORITHMS

Wireless sensor networks are self-organized and distributed,
centralized algorithms could not be used without a predefined
leader. Therefore, it is necessary to design efficient distributed
algorithms. In this section, we propose two distributed algo-
rithms, distributed scheduling and distributed scheduling with
efficient delay.

A. Distributed Scheduling

In the distributed scheduling, we use a random order rather
than a global decreasing order of the weight, and we assume
that there is a contention-based MAC (e.g. S-MAC [1])
available for a node to compete the channel and to obtain an
interference-free contiguous link scheduling. The distributed
scheduling is simple and efficient so that each sensor node can
run the scheduling without extra computation. The distributed
scheduling is shown in Algorithm 5.

Theorem 3. The number of time slots used by Algorithm 5 is
at most a constant factor of the optimum.

Proof: Suppose that node vi is scheduled in the last wi

time slots, and all the other nodes have already been scheduled.
We denote K = wi

wmin
, where wmin = min

1�l�L
wil .

Algorithm 5 Distributed scheduling (Distributed)

1: Each node vi monitors and competes for the channel.
2: if node vi obtains the channel then
3: vi assigns the smallest wi consecutive time slots sequen-

tially to its incident links which do not interfere with
the links that have already been scheduled.

4: vi broadcasts the information to the nodes that are in
the interference range of vi, and these nodes could not
transmit in the time slots due to the interference.

5: else
6: vi waits for a random time, then goes to step 1.

Case 1: If K is a constant, the number of time slots used is
at most a constant factor of the optimum, since

T =
L∑

l=1

gil +

L∑

l=1

wil + wi <

L∑

l=1

wi +

L∑

l=1

wil + wi

�
L∑

l=1

K · wil +

L∑

l=1

wil + wi � (K + 1)(
L∑

l=1

wil + wi)

� (K + 1)C1 · Topt

Case 2: If K is not a constant, we could divide the time
slots assigned before vi is scheduled into several consecutive
groups, and kg =

wgi

wgmin
is a constant in each group, where wgi is

the number of time slots assigned to the last node in group g,
and wgmin is the minimum number of time slots assigned to a
node in group g. Let Tgopt be the optimum number of time slots
in group g, and it must be that Tgopt � Topt. Then the number
of time slots used in each group is Tg � (kg + 1)C1 · Tgopt �
(kg + 1)C1 · Topt. Thus, the total number of time slots used is
T � (Kg+1)NgC1 ·Topt, where Ng is the number of groups, and
Kg is the largest kg among the groups. Note that the weight
of the nodes in the latter group is always higher order infinite
compared to the nodes in the former group, i.e., the ratio of
the weight of any node in the former group to the weight of
any node in the latter group is 0. Otherwise, we could merge
the two groups into a new group g′, and the ratio between wg′i
and wg′min

in group g′ is still a constant. Since the scheduling
is in a random order, the number of groups Ng is finite. We
define C = (Kg + 1)NgC1, then we get T � C · Topt.

B. Distributed Scheduling with Efficient Delay

v5 v1v2v3v4

e4 e3 e2 e1

(a) L ine topology of  5  nodes

e1 e1 e1 e1e2 e2 e2 e2e3 e3 e3 e3e4 e4 e4 e4

0 T 2T 3T 4T
(b) T ime delay

Fig. 7. TDMA scheduling delay

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

636

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



In the TDMA sleep scheduling, a node stays in the sleep
state for most time, and periodically starts up to check for
activity. As a forwarding node has to wait until its next-
hop neighbor starts up and is ready to receive, the message
delivery delay will increase. When packets are forwarded from
an incoming link to an outgoing link, they could only be
forwarded to the outgoing link in the next period T if the
incoming link is scheduled to be active after the outgoing link.
This kind of delay will accumulate at every hop in the network,
which may lead to a long latency. A sample is illustrated in
Fig. 7. The network topology is a line as shown in Fig. 7
(a), and the transmission sequence is e1 → e2 → e3 → e4 as
shown in Fig. 7 (b). Under this situation, the time delay for
a packet transmitting from v5 to v1 is almost 3T . However,
if the transmission is e4 → e3 → e2 → e1, v5 could transmit
the data to v1 in one period T . In order to reduce this delay,
we schedule the links from bottom to top, that is, a node with
higher depth should be scheduled earlier. Hence, a node vi can
only be scheduled until all the children nodes of vi are already
scheduled. The algorithm is described in Algorithm 6.

Algorithm 6 Distributed scheduling with efficient delay
(Distributed-delay)

1: Each node vi monitors and competes for the channel if all
the children nodes of vi are already scheduled.

2: if node vi obtains the channel then
3: vi assigns the smallest wi consecutive time slots sequen-

tially to its incident links which do not interfere with
the links that have already been scheduled.

4: vi broadcasts the information to the nodes that are in
the interference range of vi, and these nodes could not
transmit in the time slots due to the interference.

5: else
6: vi waits for a random time, then goes to step 1.

As the links are still scheduled in a random order, the
algorithm follows a constant bound performance guarantee
of Algorithm 5, that is, the number of time slots used by
Algorithm 6 is at most a constant factor of the optimum.

Corollary 2. The number of time slots used by Algorithm 6
is at most a constant factor of the optimum.

VI. SIMULATION RESULTS

In this section, we study the average-case performance
of the proposed centralized and distributed algorithms for
the contiguous link scheduling using a simulator built in
C++, and we also compare our algorithms with the degree-
based heuristic in [9]. The performance metrics used in the
evaluation are the number of state transitions, the number of
time slots assigned, and time delay.

In the simulations, nodes with a transmission range of 15m
and an interference range of 30m are deployed in a square
area of 100m× 100m. We test the networks when the number
of nodes varies from 200 to 400 in steps of 50. We construct
a breadth first search (BFS) tree and a directed acyclic graph

(a) BFS tree (b) DAG graph

Fig. 8. Maximum number of state transitions

(a) BFS tree (b) DAG graph

Fig. 9. Average number of state transitions

(DAG) rooted at the sink node as the topologies of the network.
For each case, 50 networks are randomly generated, and
the average performance over all of these randomly sampled
networks is reported.

Fig. 8 and Fig. 9 show the maximum and average number
of state transitions of the following schemes: centralized, re-
cursive backtracking, minimum conflicts heuristic, distributed,
distributed-delay, and degree-based heuristic (degree-based).
In the BFS tree model, the maximum number of state transi-
tions is two in the schemes of the contiguous link scheduling,
while many nodes need to start up numerous times under the
degree-based scheme, which is proportional to the total time
slots required by this node. In the DAG model, the number of
state transitions of the contiguous link scheduling schemes is
much less than the number of the degree-based scheme, and
the transient energy cost can be reduced.

The average number of time slots assigned in the scheduling
is shown in Fig. 10. In both the BFS tree and DAG model, the
number of time slots assigned increases as the number of nodes
increases, for the number of interference links increases when
the number of nodes increases. In the contiguous link schedul-
ing, the links incident to one node are scheduled together to
obtain consecutive time slots to avoid frequent state transitions,
and several gaps are formed among the assigned time slots
(seen in Fig. 5), which decreases the channel utilization and
requires more time slots. Fig. 10 shows that the overhead is
not high, and the recursive backtracking scheduling scheme
has performance comparable to the degree-based scheme.
Although the minimum conflicts heuristic may get stuck on a
local optimum, it almost has the same performance compared
to recursive backtracking. If the centralized scheduling with
spatial reuse is not used, the results would be a little worse,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

637

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 



(a) BFS tree (b) DAG graph

Fig. 10. Average number of time slots assigned

(a) BFS tree (b) DAG graph

Fig. 11. Average time delay

as shown in the centralized scheduling. The two distributed
algorithms have the worst performance, due to the fact that
they do not have the global information. The number of time
slots in the distributed algorithms is about 1.5 times of the
number of time slots in the recursive backtracking scheduling.

Fig. 11 shows the average time delay, and the delay
increases as the number of nodes increases in both BFS
tree model and DAG model. The distributed scheduling with
efficient delay scheme has the best performance, for the links
are scheduled from the bottom to the top in the scheduling,
which is helpful to reduce the delay.

We summarize observations from the simulation results
as follows: (1) The centralized and distributed algorithms
proposed can reduce the number of state transitions, and thus
achieve better energy efficiency. If the topology is a tree, the
nodes can only start up twice in a period. (2) Our proposed
distributed algorithms can achieve performance comparable to
the centralized algorithms. (3) The distributed scheduling with
efficient delay scheme can reduce the network delay.

VII. CONCLUSION

In this paper, we propose a new interference-free TDMA
sleep scheduling problem in WSNs, called contiguous link
scheduling. In the scheduling, a sensor node only starts up
once to receive all the data from its neighbors, and thus
can reduce the energy cost and time overhead in the state
transition. Especially, if the topology is a tree, the nodes can
only start up twice in one scheduling period. We also propose
centralized and distributed algorithms that use time slots at
most a constant factor of the optimum. The simulation results
corroborate the theoretical analysis, and show the efficiency
of our algorithms in terms of the number of state transitions,
the number of time slots assigned, and time delay.

ACKNOWLEDGMENT

This work was supported in part by grants A-PH12,
PolyU 5236/06E, PolyU 5232/07E, PolyU 5243/08E, HKUST
6169/07E, HKBU 2104/06E, NSF CNS-0832120, NSF
CCF-0515088, National Basic Research Program of China
(2006CB30300), National High Technology Research and
Development Program of China (2007AA01Z180), and China
NSF grants (60573131, 60673154, 60721002, 60828003).

REFERENCES

[1] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in Proc. of IEEE INFOCOM, 2002.

[2] T. Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol
for wireless sensor networks,” in Proc. of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2003.

[3] Y. Sun, S. Du, O. Gurewitz, and D. B. Johnson, “DW-MAC: a low
latency, energy efficient demand-wakeup MAC protocol for wireless
sensor networks,” in Proc. of ACM MobiHoc, 2008.

[4] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in
wireless sensor networks,” in Proc. of ACM MobiHoc, 2006.

[5] E. Arikan, “Some complexity results about packet radio networks,” IEEE
Transactions on Information Theory, vol. 30, no. 4, pp. 681–685, 1984.

[6] A. Ephremedis and T. Truong, “Scheduling broadcasts in multihop radio
networks,” IEEE Transactions on Communications, vol. 38, no. 4, pp.
456–460, 1990.

[7] S. Ramanathan and E. L. Lloyd, “Scheduling algorithms for multihop
radio networks,” IEEE/ACM Transactions on Networking, vol. 1, no. 2,
pp. 166–177, 1993.

[8] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in sensor
networks: Distributed edge coloring revisited,” in Proc. of IEEE INFO-
COM, 2005.

[9] W. Wang, Y. Wang, X. Y. Li, W. Z. Song, and O. Frieder, “Efficient
interference-aware TDMA link scheduling for static wireless networks,”
in Proc. of ACM MobiCom, 2006.

[10] P. Djukic and S. Valaee, “Link scheduling for minimum delay in spatial
re-use TDMA,” in Proc. of IEEE INFOCOM, 2007.

[11] A. Wang, S. Cho, C. Sodini, and A. Chandrakasan, “Energy efficient
modulation and MAC for asymmetric RF microsensor systems,” in Proc.
of the 2001 International Symposium on Low Power Electronics and
Design (ISLPED), 2001.

[12] R. Ramaswami and K. Parhi, “Distributed scheduling of broadcasts in
a radio network,” in Proc. of IEEE INFOCOM, 1989.

[13] S. Krumke, M. Marathe, and S. Ravi, “Models and approximation al-
gorithms for channel assignment in radio networks,” Wireless Networks,
vol. 7, no. 6, pp. 575–584, 2001.

[14] C. Y. Ngo and V. O. K. Li, “Centralized broadcast scheduling in
packet radio networks via genetic-fix algorithms,” IEEE Transactions
on Communications, vol. 51, no. 9, pp. 1439–1441, 2003.

[15] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[16] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of
interference on multi-hop wireless network performance,” in Proc. of
ACM MobiCom, 2003.

[17] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proc. of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2004.

[18] R. E. Best, Phase-locked Loops: Design, Simulation and Applications.
McGraw-Hill, 2003.

[19] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle MAC with
scheduled channel polling,” in Proc. of the 4th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2006.

[20] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation
optimization,” IEEE Transactions on Wireless Communications, vol. 4,
no. 5, pp. 2349–2360, 2005.

[21] D. de Werra and A. Hertz, “Consecutive colorings of graphs,” Mathe-
matical Methods of Operations Research, vol. 32, no. 1, pp. 1432–2994,
1988.

[22] M. Kubale, “Interval vertex-coloring of a graph with forbidden colors,”
Discrete Mathematics, vol. 74, no. 1-2, pp. 125–136, 1989.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

638

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on August 26, 2009 at 01:15 from IEEE Xplore.  Restrictions apply. 


