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Abstract

Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental

impact. There has been significant amount of research on dynamic power management, which shuts down unutilized

equipment in a datacenter to reduce energy consumption. The main consumers of power in a datacenter are servers,

communications network and the cooling system. Optimization of power in a datacenter is a difficult problem because

of server resource constraints, network topology and bandwidth constraints, cost of VM migration, the heterogeneity

of workloads and the servers. The arrival of new jobs and departure of completed jobs also create workload

heterogeneity in time. As a result, most of the previous research has concentrated on partial optimization of

power consumption, which optimizes either server and/or network power consumption through placement of

VMs. Temporal load aware optimization, minimization of power consumption as a function of time has vastly

been studied. When optimization also included migration, then solution had been divided into two steps, in the

first step optimization of server and/or network power consumption is performed and in the second step migration of

VMs has been taken care of, which is not an optimal solution. In this work, we develop joint optimization of power

consumption of servers, network communications and cost of migration with workload and server heterogeneity

subject to resource and bandwidth constraints through VM placement. Optimization results in an integer quadratic

program (IQP) with linear/quadratic constraints in number of VMs assigned to a job on a server. IQP can only be solved

for very small size systems, however, we have been able to decompose IQP to master and pricing sub-problems which

may be solved through column generation technique for systems with larger sizes. Then, we have extended the

optimization to manage temporal heterogeneity of the workload. It is assumed that time-axis is slotted and at the end

of each slot jobs makes probabilistic complete/partial release of the VMs that they are holding and there will also

be new job arrivals according to a Poisson process. The system will perform re-optimization of power consumption at

the end of each slot that also includes the cost of VM migration. In the re-optimization, VMs of unfinished jobs may

experience migration while new jobs are assigned VMs. We have obtained numerical results for optimal power

consumption for the system as well as its power consumption due to two heuristic VM assignment algorithms.

The results show optimization achieves significant power savings compared to the heuristic algorithms. We

believe that our work advances state-of-the art in dynamic power management of datacenters and the results

will be helpful to cloud service providers in achieving energy saving.
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Introduction
The datacenters have been growing exponentially and

together with that their power consumption. The energy

consumption results in high operational cost and large

impact on the environment. It is expected that the elec-

tricity demand for datacenters to rise more than 66%

over the period 2011–2035 [1]. As a result, there has

been significant research on how to reduce power con-

sumption of the datacenters. The main consumers of

power in a datacenter are servers, communications net-

work and the cooling system. It has been determined

that an idle server consumes about 70% of its peak

power [2]. Dynamic power management together with

server consolidation has been used to reduce power con-

sumption by temporarily shutting down servers when

they are not required. Server consolidation refers to mi-

gration of VMs to as few servers as possible so as to pre-

vent underutilization of the servers. However, server

consolidation is challenging because energy cost of mi-

gration and, if not carefully done, network communica-

tions cost may rise. Server consolidation may result jobs

being assigned VMs from multiple servers, which may

increase communication traffic between VMs. Thus it is

important that optimization of power consumption in-

cludes servers, network communications and cost of mi-

gration. It has been determined that network accounts

for at least 20% of the energy consumption of a cloud

computing center and it may rise upto 50% under light

job loading, which is typical of the data centers [3]. Since

dynamic power management turns off the idle servers, it

also reduces power consumption of the cooling system.

The optimization of power consumption also needs to

take into account heterogeneity of the workloads and

servers. Cloud workloads often have very large variations

in their resource requirements, arrival rates and execu-

tion times. Cloud centers also have heterogeneity in

their servers. In time, datacenters update the configur-

ation of their resources and upgrade the processing cap-

abilities, memory and storage spaces. They also

construct new platforms based on the new high per-

formance servers while the older servers are still oper-

ational. The heterogeneity of both servers and workloads

increases complexity of the optimization of power

consumption.

In this paper, we developed joint optimization of

power consumptions of the servers, network communi-

cations and cost of VM migration with workload and

server heterogeneity subject to server resource and net-

work bandwidth constraints. We assumed a hierarchical

two-tier datacenter network, though the work can be

easily extended to higher tier networks. Optimization re-

sults in an integer quadratic program (IQP) with linear

and quadratic constraints in number of VMs assigned to

a server. This IQP problem is NP-hard [4] and it can

only be solved for very small size systems. Due to simi-

larity between our optimization problem and cutting

stock problem, we utilized column generation (CG)

technique to solve this optimization problem for larger

systems. Then, we have extended our solution to handle

temporal heterogeneity of the workload due to arrival

and departure of the jobs. We assumed that the time-

axis is slotted and at the end of each slot jobs are com-

pleted either partially or fully and new jobs arrive to the

system according to a Poisson process during each time

slot. In the partial completion a job releases each of its

VMs according to independent Bernoulli trials, while in

full completion each job departs from the system ac-

cording to independent Bernoulli trials. Thus at the end

of each slot, the workload load of the system consists of

new arriving jobs during the present slot and unfinished

jobs from the previous slots. We determine new VM

placement by solving this optimization problem that also

allows migration of the VMs of unfinished jobs in the

system. VMs migrate if the energy savings outweigh cost

of the migration. Management of VM migration requires

addition of new constraints to the optimization. The

main contributions of our work is as follows,

� It formulates joint optimization of server, network

and migration power consumption with bandwidth

constraints for a given network topology. It performs

power optimization and VM migration

simultaneously. The optimization problem is

expressed as an IQP with quadratic constraints,

which can only be solved for very small size systems.

� We have been able to cast this optimization

problem into an integer linear programming (ILP),

which may be solved through column generation

technique for larger size systems. It appears that

this is the first application of the column generation

technique to the solution of the optimization of

power consumption problem in cloud computing

systems.

� The work incorporates temporal variation of the

workload to the optimization, which allows general

arrival and departure of the jobs as a function of

discrete-time. This enables re-optimization of the

power consumption at the discrete-time instants.

The remainder of this paper is organized as follows:Re-

lated work is presented in section 2 and system model in

section 3. Section 4 presents IQP modeling of the

optimization problem and the section after CG modeling

of the problem. Section 6 develops the probabilistic exten-

sion of the model. Section 7 presents the temporal load

aware formulation of the optimization problem. Section 8

discusses optimization structure and complexity mitigation

and the section following that presents numerical results

Vakilinia Journal of Cloud Computing: Advances, Systems and Applications  (2018) 7:2 Page 2 of 24



regarding the analysis in the paper. Section 9 discuss the

details of assumptions made in this research. Finally, sec-

tion 10 presents conclusions of the paper.

Related work
In this section, we will present a survey of the related

work on the dynamic power management in cloud com-

puting centers. The previous work on dynamic power

management may be classified into two as with or with-

out power optimization and the first case may be further

subdivided into two depending on whether or not

optimization is joint over the servers and network power

consumption. Classification may also include other pa-

rameters such as workload and server heterogeneity

awareness and VM migration. Almost all of the previous

works present heuristics rather than solving the

optimization problem due to its complexity and then,

they perform simulation to determine accuracy of the

proposed heuristic.

First, we describe the previous work on dynamic

power management without power optimization, which

simply turns off idle servers to conserve power con-

sumption. In [5], the effectiveness of dynamic power

management in data centers had been investigated using

M/M/k queuing model with matrix analytic technique.

In [6], this analysis had been extended to the heteroge-

neous workload case.

Next we explain the previous work on dynamic power

management with optimization of network power con-

sumption, which is also referred to as traffic aware VM

placement. In [7], an ad-hoc framework has been pro-

posed which minimizes energy consumption of the data-

center network. The framework consists of two steps,

and it assumes that the traffic patterns of the jobs are

known. In the first step, VM assignment is done in a

manner that the traffic in the network is reduced. In the

second step, energy-efficient routing of the traffic is car-

ried out that minimizes the number of active switches.

In [8], it has been observed from real datacenter net-

work traces that traffic demands of different flows do

not peak at exactly the same time. As a result, [8] pro-

posed monitoring of the traffic flows in the network and

their consolidation into a small subset of links and

switches periodically and shutting down of unutilized

switches for energy saving.

Next, we describe previous work on dynamic power

management with joint optimization of server and net-

work power consumption. In [4], VM placement prob-

lem taking into account server operation and network

communication costs had been studied. There is a trade-

off between physical machine (PM) cost and network

cost where the PM cost is minimized if minimum num-

ber of servers is active. However, this may result in jobs

being assigned VMs from multiple servers, which

increases the network cost. The work proposes an algo-

rithm minimizing the network-cost with fixed PM-cost.

The proposed algorithm doesnot consider resource con-

straints of the servers, network topology and bandwidth

constraints of the links. In [9] also VM placement min-

imizing power consumption has been studied. The work

considers both server and communications network

power consumptions as well as bandwidth constraints of

the links. Server power consumption is assumed to be

function of CPU operating frequency. Network infra-

structure is assumed to have a hierarchical tree topology

and following the optimization, idle servers and switches

are turned off. They prove that job load of the servers

should be balanced to achieve minimum server power

consumption. Starting from this result, they propose a

heuristic to assign the VMs to servers, which assigns

VMs with high communication requirements among

them to the same server. The work assumes that servers

are homogeneous and doesnot consider resource con-

straints of the servers. The joint server and network

power consumption optimization has also been studied

in [10]. They proposed a unified model that combines

server and network optimization by converting the VM

assignment to a routing problem. However, optimization

problem hasnot been solved due to its complexity, and

instead the network is divided into clusters, which are

optimized in parallel. The assignment of VMs to the

servers and flows to the links in clusters are performed

using a heuristic. The [11] also studied the joint

optimization of server and network power consumption.

They formulated the problem as an integer program-

ming problem, proved that it is NP-hard and then pro-

posed two greedy algorithms for VM scheduling.

Next, we explain previous work on heterogeneity

aware dynamic power management. As mentioned earl-

ier, due to inevitable platform upgrades or enhanced

hardware resources, cloud platforms gradually become

heterogeneous over time, which makes the VM place-

ment problem more complex. In [12], the impact of

hardware heterogeneity on the performance of public

clouds had been investigated. During a two-year period,

the activities of datacenters (DCs) are measured to es-

tablish some useful performance benchmarks that might

affect the dynamic resource allocation in cloud DCs.

Then these benchmarks, such as for CPU performance

and network communication overhead, are utilized to

evaluate the impact of heterogeneity on the performance

of cloud computing centers. In [13] also heterogeneity of

workloads and PMs have been considered. According to

their resource demands and performance requirements

jobs have been divided into classes, and similarly servers

have been grouped based on their platform ID and cap-

acities for different resources. Then, heterogeneity aware

resource monitoring and management system dubbed
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“Harmony” was proposed to perform dynamic capacity

provisioning that minimizes the total energy consump-

tion and scheduling delay considering heterogeneity as

well as reconfiguration costs. The work assumes that a

job will always be placed on a single server, as a result

the optimization doesnot include network communica-

tions cost.

Next we describe the previous work on VM migration

aware dynamic power management. In [14], an algo-

rithm named as Peer VM Aggregation (PVA) has been

proposed to migrate VMs of a job with high communi-

cation demands to the same server in order to reduce

network utilization and power consumption. Simulation

results show that average network utilization is reduced

by %25. In [2], a two stage VM placement algorithm

minimizing power consumption with migration has

been proposed. In the first stage, VM placement is de-

termined by solving a bin packing problem that mini-

mizes power consumption. In the second stage, VM

migration is applied at job departure points from the

system that adapts the VM placement according to the

released resources. Both stages of the problem are for-

mulated as mixed integer linear programming (MILP)

problem. While the work includes resource constraints

of the servers in the optimization, but not network

communications cost.

The work in this paper combines several of the above

optimization problems together, therefore its results are

more comprehensive and reliable. Our work jointly opti-

mizes power consumption of servers and communica-

tions network and it includes both workload and server

heterogeneity, resource constraints of the servers, net-

work topology and link bandwidth constraints. Our

work allows optimization to be done at discrete-time in-

stants as the time evolves and some jobs depart and new

ones arrive. It also models the VM migration and its

cost, which enables adjustment of VM placement that

re-optimizes power consumption under the new work-

load. In the previous work, optimization involving mi-

gration was performed in two steps, the first step

performing VM placement that minimizes power con-

sumption and the second step performing individual

VM migration if it is cost effective. Clearly, this is not

optimal because of partitioning of the problem into two

separate sub-problems and piecemeal migration. Our

work also includes the time-dimension in the

optimization, which is absent from the previous work.

System model
In this section, we will present model of the system

under consideration for optimization of power con-

sumption through placement of VMs for the jobs. A

datacenter consists of servers and communications net-

work that provides connectivity among the servers and

they are the main consumers of power in the system.

Power consumption of a datacenter depends on its

architecture, and in this work, we assume a hierarchical

architecture, which is one of the commonly used topolo-

gies in the datacenters. It is assumed that the datacenter

consists of a collection of Performance Optimized

modular Data Centers (PoD). Each PoD consists of a

number of racks and each rack contains a collection of

servers. In Fig. 1, we show a typical two-tier datacenter

network [15, 16], which has servers housed in a rack

connected to a Top-Of-Rack (TOR) switch. The TOR

switch provides connectivity among the servers of a rack

and also connects the rack to the Core Switch (CS) of its

host PoD. Core switches depending on the datacenter

topology such as clique or fat-tree [15] may have differ-

ent types of connectivity that provides varying amounts

of bandwidths for communications among the PoDs. In

this work, we assume that connectivity of core switches

has the mesh topology.

The main activities resulting in power consumption

are processing of the jobs by the servers and the com-

munications between the servers. A job may be served

by multiple VMs, which may be located on different

servers. A job will have communications demand, when

it is assigned VMs on different servers. The magnitude

of this demand between two servers will be assumed to

be proportional to the product of the number of VMs

assigned to that job on the two servers. We assume that

servers will be in one of two states, either on or off state.

A server will be in the on state if it has at least one VM

assigned to one of the jobs and otherwise it will be in

the off state. An on server will consume constant power

and an off server zero power.

We include server and workload heterogeneity in the

model. We assume that a datacenter has T types of

servers, where each server type is determined by the

amount of different types of resources that it contains. A

server type may have K different types of resources such

as bandwidth, storage, CPU and memory. The amount

of resources owned by a server of each type are given by

a unique resource vector. We let Mt denote number of

type t servers in the datacenter, and m’th type t server as

mt ∈ {1t,…,Mt} with t ∈ {1,…,T}. Power consumption of

an on type t server will be denoted by Qt. We assume
that a server may have R different VM configurations.
Each VM configuration is determined by the amount of

different types of resources that it is allocated. We let ikr
denote the type k resource requirement of a type r VM.
We assume that there are H types of jobs, where each
job type requires a random number of VMs from a
group of VM types. Each job type has a different mix of
VM types and a geometrically distributed service time
in number of slots with a different parameter. We let
Nh denote number of type h jobs in the datacenter,
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h ∈ {1,…,H}, and vrnh denote the number of type r VMs

that job nh requires, nh ∈ {1h,…,Nh}. Let also N denote total

number of jobs in the datacenter, then, N ¼
PH

h¼1 Nh.

The optimization problem also includes communica-

tion network bandwidth constraints to prevent traffic

congestion. We assume that, there is no communica-

tion congestion between the servers located in the same

rack because they are connected to their ToR switch

with high capacity links. The communications conges-

tion may occur either in the (TORS-CS) links or in

PoD links (CS-CS). We assume that a ToR switch will

be turned off if none of the servers in that rack are be-

ing utilized. Similarly CS in a PoD will be turned off if

all the servers connected to its racks are off. We note

that an on switch consumes a constant power plus load

dependent variable power; the former will be referred

to as static and the latter as dynamic power respect-

ively. We will let PSℓ;eToRS ; PS
CS
ℓ

denote static power con-

sumption of a ToR switch on the e’th rack of PoD ℓ,

and CS switch in PoD ℓ respectively. Similarly, we will

let PDℓ;eToRS ; PD
CS
ℓ

denote dynamic power consumption

of these switches for per bit transmission rate. We also

let PWNIC denote the dynamic power consumption at

the network interface card (NIC) of a server for per bit

transmission rate.

The notation introduced in the above as well as others

for this optimization problem has been summarized in

Table 1. From this table,

Mt ¼
XL

ℓ¼1

Xdℓ

e¼1
Mt

ℓ;e ð1Þ

Mℓ;e ¼
XT

t¼1
Mt

ℓ;e ð2Þ

aℓ;e ¼ 1ℓ;e;…; ;mℓ;e; ::Mℓ;e

� �

ð3Þ

where mℓ, e denotes the m’th server on the e’th rack of

PoD ℓ. The total power consumption of the datacenter

will be minimized if the job load is served by minimum

number of servers and each job is assigned VMs from as

few servers as possible. In the next two sections, we will

model the optimization problem first using IQP and

then CG technique.

Modeling of the optimization problem with
Integer Quadratic Programming (IQP)
In this section, we will model optimization problem of

the system described in the previous section as an inte-

ger quadratic programming (IQP). The power consump-

tion of a datacenter consists of static and dynamic

power consumptions of the switches, dynamic power

consumption of the interface cards and power consump-

tion of the servers.

We first determine the dynamic power consumption

due to communications of two VMs. Let Pnh
mt ;m0

t0
denote

total dynamic communication power consumption be-

tween two VMs located on servers mt, m
0
t0 and serving

job nh, then it is given by,

Fig. 1 Hierarchical Datacenter Architecture
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In the above, it has been assumed that communication

power consumption between two VMs assigned to a job

depends on the type of job but not on the types of VMs.

As may be seen, this power depends on the location of

the servers housing the VMs and on the data rate, which

depends on the job type.

As defined in Table 1., the scheduling variable xmt
r;nh

de-

notes number of type r VMs on the server assigned to

serve job nh and connectivity variable x�mt
nh

denotes total

number of VMs assigned to job nh on the mth type t ser-

ver assigned to serve job nh, where, x�mt
nh

¼
PR

r¼1 x
mt
r;nh

.

We would like to determine optimal values of the sched-

uling variables xmt
r;nh

that minimizes the datacenter power

consumption. Next let us define the binary variables, ymt

to denote on or off status of mth type t server, ηℓ, e status

of the ToR switch serving to rack e on PoD ℓ as active

or not, and ξℓ status of the CS serving PoD ℓ as active or

not. Then from the notation introduced in Table 1.,

ymt
¼

1
PH

h¼1

PNh

nh¼1h
x�mt
nh

> 0

0
PH

h¼1

PNh

nh¼1h
x�mt
nh

¼ 0

8

<

:

ð5Þ

η
ℓ;e ¼

1
PT

t¼1

P

mt∈aℓ;e
ymt

> 0

0
PT

t¼1

P

mt∈aℓ;e
ymt

¼ 0

(

ð6Þ

ξℓ ¼
1

Pdℓ

e¼1ηℓ;e > 0

0 otherwise

(

∀e∈ 1;…; dℓf g; ∀ℓ∈ 1;…; Lf g:

ð7Þ

Then, the optimization problem for minimization of

total power consumption is given below,

Min

"

XH

h¼1

XNh

nh¼1h

XT

t¼1

XT

t0¼1

XMt

mt¼1t

XMt

mt0¼1t0
Pnh
mt ;mt0

x�mt
nh
x�
m0

t0

nh

� �

þ
XL

ℓ¼1
ξℓPS

ℓ

CS þ
Xdℓ

e¼1
η
ℓ;ePS

ℓ;e
ToR

� �

þ
XT

t¼1
Qt

XMt

mt¼1
ymt

#

ð8Þ

ST. (5), (6), (7),

x�mt
nh

¼
XR

r¼1
xmt
r;nh

∀nh∈ 1;…;Nhf g;mt∈ 1t ;…; ;Mtf g

ð9Þ

XT

t¼1

XMt

mt¼1t
xmt
r;nh

≥vrnh∀r∈ 1;…;Rf g; nh∈ 1h;…; ;Nhf g; h∈ 1;…;Hf g

ð10Þ

XH

h¼1

XNh

nh¼1h

XR

r¼1
xmt
r;nh

ikr ≤c
k
t ∀k∈ 1;…;Kf g;mt∈ 1t;…; ;Mtf g

ð11Þ

XH

h¼1

XNh

nh¼1h
ϑnh

X

mt∈aℓ;e

XL

ℓ
0¼1

Xd
ℓ0

e0¼1

X

m0
t0
∈a

ℓ0 ;e
0
x�mt
nh
x�
m0

t0
nh

� �

−

X

t0
m0∈aℓ;e

x�mt
nh
x�
m0

t0
nh

� �

� �

≤Sℓ;e∀e∈ 1;…; dℓf g; ∀ℓ∈ 1…Lf g

ð12Þ

XH

h¼1

XNh

nh¼1h
ϑnh

Xdℓ

e¼1

X

mt∈aℓ;e

Xd
ℓ0

e0¼1

X

m0
t0
∈a

ℓ0 ;e
0
x�mt
nh
x�
m0

t0
nh

� �

≤CPℓ;ℓ0∀ℓ; ℓ
0
∈ 1…Lf g; ℓ≠ℓ0

ð13Þ

We note that mt ∈ {1t,…,Mt} stands for ∀t ∈ {1,…,T}.

In the objective function, the first term corresponds to

the total dynamic communication power consumption

in the datacenter. Second term represents the static part

of communication power consumption and finally the

last term corresponds to the power consumption of the

servers. Constraint group (10) ensures that VM require-

ments of each job are satisfied and group (11) guaran-

tees that resource demands of jobs scheduled on a

server do not exceed that server’s resource capacities.

The constraints (12) and (13) ensure that bandwidth de-

mands do not violate the capacities of TORs to CS and

CS to CS links respectively. In these constraints, as de-

fined in Table 1., Sℓ, e, CPℓ;ℓ0 denote capacities of TORS

to CS and CS to CS links respectively.

From the Eqs. (8–13), the optimization problem is in

the form of Integer Quadratic Programming (IQP) in

the scheduling variables xmt
r;nh

. However, from the defini-

tions of the variables ymt
, ηℓ, e, ξℓ given in Eqs. (5–7), the

IQP problem has other nonlinear constraints. Next, we

would like to convert the nonlinearities due to ymt
, ηℓ, e,

ξℓ into a form with linear constraints, which will make

the problem simpler. This can be achieved by replacing

each of the equations in (5–7) by a pair of constraints as

follows,

XH

h¼1

XNh

nh¼1h
x�mt
nh
−ymt

≥0 ð14Þ

Pnh
mt ;m0

t0
¼

0; if mt ¼ m0
t0

ϑnh 2PWNIC þ PDℓ;eToRS
� 	

; if mt;m
0
t0∈aℓ;e;mt≠m

0
t0

ϑnh 2PWNIC þ PDℓ;eToRS þ PDCS
ℓ

þ PDToRS
ℓ;e0

� �

; if mt∈aℓ;e;m
0
t0∈aℓ;e0 ; e≠e

0

ϑnh 2PWNIC þ PDℓ;eToRS þ PDCS
ℓ

þ PDCS
ℓ
0 þ PD

ℓ
0 ; e0
ToRS

� �

; if mt∈aℓ;e;m
0
t0∈aℓ0 ; e

0; ℓ≠ℓ0
g

8

>

>

>

>

>

<

>

>

>

>

>

:

ð4Þ
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θymt
−

XH

h¼1

XNh

nh¼1h
x�mt
nh
≥0 ð15Þ

XT

t¼1

X

mt∈aℓ;e
ymt

−η
ℓ;e≥0 ∀e∈ 1;…; dℓf g; ∀ℓ∈ 1…Lf g

ð16Þ

θη
ℓ;e−

XT

t¼1

X

mt∈aℓ;e
ymt

≥0 ∀e∈ 1;…; dℓf g; ∀ℓ∈ 1…Lf g

ð17Þ

Xdℓ

e¼1
η
ℓ;e−ξℓ≥0 ∀ℓ∈ 1…Lf g ð18Þ

θξℓ−
Xdℓ

e¼1
η
ℓ;e≥0 ∀ℓ∈ 1…Lf g ð19Þ

Thus we replace Eq. (5) with inequalities (14, 15). Def-

inition in (5) implies that
PH

h¼1

PNh

nh¼1h
x�mt
nh

= 0 ⇔ ymt
=

0 and
PH

h¼1

PNh

nh¼1h
x�mt
nh

> 0 ⇔ ymt
= 1. From these obser-

vations, the inequalities in (14, 15) follow, where θ de-

notes a very large integer number. The correspondence

between (6) and (16, 17) and between (7) and (18, 19)

may be established similarly. In the remainder of the

paper, these pairs of constraints will be referred to as

“positive integer to binary linear conversion constraints”

(IBLC).

As a result, our optimization problem has been con-

verted to IQP with linear and quadratic constraints given

by (8, 19). This optimization problem is NP hard and it

can only be solved for very small size systems using the

branch and bound technique [17].

Modeling of the optimization problem with
column generation (CG) method
In this section, we will apply column generation tech-

nique to obtain another solution to our problem, which

may be used with larger size systems. This technique

originally had been applied to cutting-stock problem,

which consists of cutting a set of available stock lengths

to meet customer orders for items in required lengths

and quantities with the objective of minimizing the

wasted material [18]. Distinct combination of items in

length and quantities cut from a stock length is called a

pattern. In column generation approach, the

optimization problem is divided into two types of sub-

problems referred to as restricted master and pricing

problems [18]. The Restricted master problem (RMP)

determines if the explored patterns satisfy the job de-

mand constraints. The pricing problem finds a new pat-

tern to feed the RMP. The objective function of the

Table 1 Summary of notation

Parameters Definition

R Number of VM types.

N Number of jobs in the datacenter.

K Number of resource types.

T Number of different types of servers.

Qt Power usage of type t servers.

vrnh Number of type r VMs required by job nh.

ckt Type k resource capacity of a type t server.

ikr Amount of type k resource required by a type r VM.

L Number of PoDs in the data center.

dℓ Number of racks in PoD ℓ.

bℓ Set denoting racks in PoD ℓ.

aℓ, e Set denoting servers on rack e in PoD ℓ.

ϑnh Data rate of VMs serving job nh.

Sℓ, e Capacity of the link connecting rack e to its PoD ℓ CS
switch.

CPℓ;ℓ0 The capacity of the link connecting CS switches of PoDs ℓ
and ℓ

′.

Mt Total number of type t servers.

Mt
ℓ;e Number of type t servers in rack e of PoD ℓ.

Mℓ, e Total number of servers in rack e of PoD ℓ.

PSCS
ℓ

Static power usage rate of the CS switch in PoD ℓ.

PSℓ;eToRS Static power usage of the ToR switch on rack e in PoD ℓ.

PDToRS
ℓ;e Dynamic communication power usage of eth rack ToR

switch of PoD ℓ.

PDCS
ℓ

Dynamic communication power usage of PoD ℓ CS switch.

PWNIC Dynamic communication power usage of server NIC card
switch (for bit per second).

Pnh
mt ;m0

t0
Dynamic communication power usage between two VMs
serving job nh allocated in servers mt, and m0

t0 .

P0
nh
ℓ;e;ℓ0 ;e0 Dynamic communication power usage between two VMs

serving job nh allocated in a server in rack e of PoD ℓ and
in a server in rack e′ in PoD ℓ

′of.

PRℓ, e Power supply of rack e on PoD ℓ.

Variables Definition

xmt
r;nh

Number of type r VMs in mth type t server assigned to job
nh.

x�
mt

nh

Number of VMs in mth type t server assigned to serve job
nh.

ymt
Binary variable denoting on or off status of mth type t
server.

ηℓ, e Binary variable that assumes value of one if at least one
server on rack e in PoD ℓ is active and otherwise zero.

ξℓ Binary variable that assumes value of one if at least one
server in PoD ℓ is active and otherwise zero.

Jt Total number of configuration patterns of a type t server.

j
�

t
Configuration pattern j�t introduced by pricing problem t.

xr;nh
jt Number of type r VMs assigned to job nh on a type t

server by pattern jt.

Table 1 Summary of notation (Continued)

x
�jt

nh
Number of VMs assigned to job nh on a type t server by
pattern jt.

m
jt
ℓ;e Number of active type t servers with pattern jt in the eth

rack of PoD ℓ.
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pricing problem is in fact the reduced cost coefficient of

the RMP. The RMP and pricing problems collaborate

until reduced cost coefficients (objectives) of the pricing

problems become negative indicating optimal solution

has been reached. In our problem, there will be T pri-

cing problems, one for each server type. RMP is in the

form of integer linear program (ILP) and pricing prob-

lems are combinatorial optimization problems. RMP is

solved using continuous relaxation, which at the end re-

quires integer rounding of the results. There has been

some work for application of column generation tech-

nique in quadratic programming [19–21].

In relation to the cutting-stock problem, server types

and jobs are similar to stock and item lengths respect-

ively, however server types and jobs have multiple re-

source constraints, while stocks and items have length

as the only limit factor. Further, we have a complicated

objective function compared to cutting stock problem.

Let us define a pattern as a distinct combination of the

number of VMs from each type of VMs that a server

can accommodate. Let jt denote such a pattern and Jt
total number of patterns available for a type t server,

then jt ∈ {1t,…, Jt}. At the end of the solution, each active

server is assigned one of these patterns. The new intro-

duced notation may also been found in Table 1. Let x
jt
r;nh

denote number of type r VMs that has been assigned to

job nh in a server with pattern jt and similarly, x�
jt
nh de-

note total number of VMs assigned to job nh at a server

with pattern jt. Then, we have the following equality be-

tween the two variables,

x�jt
nh

¼
XR

r¼1
xjtr;nh

The column vector ajt
¼ x

jt
1;n1

; ::
�

; x
jt
1;nH

; ::; x
jt
r;n1 ; ::; x

jt
r;nH

; ::; x
jt
R;n1

; ::; x
jt
R;nH

ÞTr will denote j’th pattern of type t server.

Let us define binary variable y
jt
mt to denote whether or

not a given type t server has pattern jt, then,

yjtmt
¼

1 if m0th server of type t is active and has jt pattern:

0 otherwise




ð20Þ

Next, let m
jt
ℓ;e denote number of active type t servers

with pattern jt in the eth rack of PoD ℓ,

m
jt
ℓ;e ¼

X

mt∈aℓ;e
yjtmt

ð21Þ

Finally, the state of rack e on PoD ℓ as active or not is

determined as,

η
ℓ;e ¼

1
PT

t¼1

PJ t
jt¼1t

m
jt
ℓ;e > 0

0 otherwise

(

ð22Þ

We note that total dynamic communication power

consumption between two VMs located on servers mt,

m0
t0 and serving job nh is still given by Eq. (4). Then, the

optimization problem for the RMP is given by,

Min

"

XH

h¼1

XNh

nh¼1h

XT

t¼1

XT

t0¼1

XMt

mt¼1t

XMt

mt0¼1t0

XJ t

jt¼1t

XJ t0

jt 0¼1t0
Pnh
mt ;mt0

yjtmt
x�jt
nh
yjt0mt0

x�
j0
t0
nh

� �

þ
XL

ℓ¼1

ξℓPS
ℓ

CS þ
Xdℓ

e¼1
η
ℓ;ePS

ℓ;e
ToR

� �

þ
XT

t¼1
Qt

XMt

mt¼1

XJ t

jt¼1t
yjtmt

#

ð23Þ

ST. (18), (19)

~x
jt
nh

¼
XR

r¼1
xjtr;nh ; ∀nh∈ 1;…;Nhf g; jt∈ 1t ;…; ; J tf g

m
jt
ℓ;e ¼

X

mt∈aℓ;e
yjtmt

∀jt∈ 1t ;…; ; J tf g; t∈ 1;…;Tf g;

∀e∈ 1;…; dℓf g; ∀ℓ∈ 1…Lf g
XT

t¼1

XMt

mt¼1t

XJ t

jt¼1t
yjtmt

xjtr;nh ≥ vrnh ∀r∈ 1;…;Rf g;

nh∈ 1h;…; ;Nhf g;

h∈ 1;…;Hf g

ð24Þ

XH

h¼1

XNh

nh¼1h
ϑnh

XT

t¼1

X

mt∈aℓ;e

XJ t

jt¼1t
"

XL

ℓ
0¼1

Xd
ℓ0

e0¼1

XT

t0¼1

XJ t0

jt0¼1t0

X

t0
m0∈aℓ0 ;e

0
yjtmt

x�jt
nh
yjt0mt0

x�
j0
t0
nh

� �

−

X

m0
t0

∈aℓ;e yjtmt
x�jt

nh
yjt0mt0

x�
j0
t0
nh

� �

#

≤Sℓ;e∀e∈ 1;…; dℓf g; ∀ℓ∈ 1…Lf g

ð25Þ

XH

h¼1

XNh

nh¼1h
ϑnh

Xdℓ

e¼1

XT

t¼1

X

mt∈aℓ;e

XJ t

jt¼1t

Xd
ℓ0

e0¼1

XT

t0¼1

X

t0
m0∈aℓ0 ;e

0

XJ t0

jt0¼1t0
yjtmt

x� jt
nh
yjt0mt0

x�
j0
t0
nh

� �

≤CPℓ;ℓ0∀ℓ; ℓ
0
∈ 1…Lf g; ℓ≠ℓ0

ð26Þ

XJ t

jt¼1t
m

jt
ℓ;e≤M

t
ℓ;e ð27Þ

XT

t¼1

XJ t

jt¼1t
m

jt
ℓ;e−ηℓ;e≥0 ∀e∈ 1;…; dℓf g; ∀ℓ∈ 1…Lf g

ð28Þ
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θη
ℓ;e−

XT

t¼1

XJ t

jt¼1t
m

jt
ℓ;e≥0 ∀e∈ 1;…; dℓf g;∀ℓ∈ 1…Lf g

ð29Þ

We note that in the above optimization problem,

scheduling and connectivity variables x
jt
r;nh ; x

�jt
nh are

treated as constants. In the objective function, (23), the

first term corresponds to power consumption of the

interface cards and dynamic power consumption of ac-

tive switches due to communication load, second term

to static power consumption of active switches and the

third term to power consumption of active servers. Con-

straint (24) ensures satisfaction of the VM requirements

of the jobs. The constraints (25) and (26) ensure that

bandwidth demands of the jobs do not violate the cap-

acities of the TORS to CS links and CS to CS links re-

spectively. Constraint (27) ensures that the demand for

servers donot exceed the available server capacity. Con-

straints (28) and (29) are IBLC for the variable ηℓ, e de-

fined in (22). However, the variables y
jt
mt and y

j0
t0

m0
t0
defined

in (20) and their product makes the objective function

and the constraints (25, 26) nonlinear. Let us define the

following binary variable in order to remove this

nonlinearity,

φ
jt ;j

0
t0

mt ;m0
t0
¼ yjtmt

y
j0
t0

m0
t0

ð30Þ

Then,

φ
jt ;j

0
t0

mt ;m0
t0
¼ 1 if y

jt
mt ¼ y

j0
t0

t0
m0
¼ 1

0 otherwise

(

ð31Þ

The binary multiplication in the above can be linear-

ized through the following constraints,

φ
jt ;j

0
t0

mt ;m0
t0
≥yjtmt

þ y
j0
t0

m0
t0
−1 ð32Þ

φ
jt ;j

0
t0

mt ;m0
t0
≤yjtmt

;φ
jt ;j

0
t0

mt ;m0
t0
≤y

j0
t0

m0
t0
φ
jt ;j

0
t0

mt ;m0
t0
≥0 ð33Þ

Thus the constraints (32, 33) need to be added to the

above optimization problem given in (23–29).

Next, we present the T pricing problems one for each

server type. The pricing problem for server type t at-

tempts to introduce the new pattern j�t to the RMP

through solution of the following optimization problem,

Max
XH

h¼1

XNh

nh¼1h

XR

r¼1
utr;nh xj

�
t

r;nh

� �

ð34Þ

ST :
XH

h¼1

XNh

nh¼1h

XR

r¼1
xj
�
t

r;nh
ikr ≤c

k
t ∀k∈ 1;…;Kf g

ð35Þ

where x
j� t
r;nh represents number of type r VMs

assigned to job nh by pattern j
�

t . The pricing

problem’s objective function is the reduced cost

function of the RMP with respect to server type t

and utr;nh coefficients denote the values of the dual

variables of the RMP for type t server. Constraint

group (35) ensures that resource constraints of the

servers are satisfied.

As shown in Fig. 2, in the column generation tech-

nique, RMP and pricing problems are solved itera-

tively. In each iteration, following solution of the

pricing problems, the pattern of the server type t with

the highest objective function value is introduced to

the RMP. The iterations continue, as long as there

are reduced cost functions with positive values. The

algorithm terminates when all the reduced cost func-

tions become negative and as a result no new pattern

is introduced to the RMP. However, the obtained so-

lution corresponds to the continuous relaxation of the

problem, and therefore the results need to be

rounded into integer values, which will be dealt in a

later section.

We note that CG gives us a linear solution of the

problem, which reduces solution’s complexity but

this is achieved at the expense of substantial increase

in number of variables and constraints [22].

Fig. 2 Column Generation Implementation of the Optimization
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Probabilistic model
In the previous sections, we have assumed deterministic

traffic rates for communications between VMs and con-

stant power consumption for active servers; however, in

practice these quantities are random and vary as func-

tions of time. In this section, we extend the optimization

problem of the previous sections to a more realistic

model, where VM communication rates and server

power consumption are considered as random variables.

First, we assume that the data rate between two VMs

serving to a type h job, ϑnh , is a random variable. As a

result, bandwidth constraints given in (12, 13) for IQP

and (25, 26) for CG become probabilistic. For example

(12) and (25) may be expressed as,

Pr
XH

h¼1
ϑnh

XNh

nh¼1h
Ψ ℓ;e;nh > Sℓ;e

� �

≤p ð36Þ

where Ψ ℓ;e;nh for IQP and CG are given by,

Ψ ℓ;e;nh ¼
X

mt∈aℓ;e

"

XL

ℓ
0¼1

Xd
ℓ0

e0¼1

X

m0
t0∈aℓ0 ;e

0
x�mt
nh
x�
m0

t0
nh

� �

−

X

m0
t0
∈aℓ;e

x�mt
nh
x�
m0

t0
nh

� �

#

; for IQP

ð37Þ

Ψℓ;e;nh ¼
XT

t¼1

XJ t

jt¼1t

("

x�jt
nh

X

ℓ
0∈ 1; ::Lf g; ℓ≠ℓ0

Xd
ℓ0

e0¼1;

XT

t0¼1

XJ t0

j0
t0
¼1t0

X

mt∈aℓ;e

X

m0
t0
∈a

ℓ0 ;e
0
φ
jt ;j

0
t0

mt ;m0
t0

� �

x�
j0
t0
nh

#

þ

"

x�jt
nh

X

e0∈bℓ;e0≠e

XT

t0¼1

XJ t0

j0
t0
¼1t0

X

mt∈aℓ;e

X

m0
t0

∈aℓ0 ; e
0φ

jt ;j
0
t0

mt ;m0
t0

� �

x�
j0
t0
nh

#)

; for CG

ð38Þ

In the above the objective is to keep probability of link

congestion below a threshold value of p.

As in [23], we assume that total traffic rate follows a

Gaussian distribution, which from the Central Limit

Theorem remains an accurate model even if the individ-

ual flows are non-Gaussian [24, 25]. Next, we assume

that mean and standard deviation of ϑnh are given by λh
and σh respectively, then the constraint (36) may be

expressed as,

XH

h¼1
λh
XNh

nh¼1h
Ψ ℓ;e;nh

� �

þ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XH

h¼1
σh2

XNh

nh¼1h
Ψ ℓ;e;nh

� �2
r

≤Sℓ;e ð39Þ

where ζ =Φ
−1(1 − p) and Φ

−1 is the inverse function of

the normal CDF. From [25], the LHS may be bounded,

which reduces the above constraint to,

XH

h¼1
λh þ ζσhð Þ

XNh

nh¼1h
Ψ ℓ;e;nh

h i

≤Sℓ;e ð40Þ

In the previous sections, we assumed that power con-

sumption of an on type t server is a constant denoted by

Qt. In fact, power consumption is random and depends

on processing utility, I/O, load, memory usage etc. Let

qt denote power consumption of a type t server, then

from [23], qt has a general probability distribution, which

varies in the range [0.5Qt, Qt] with mean and standard

deviation denoted by ωt, δt respectively. It is better to

avoid high power consumption at the rack level in order

to prevent system failure [26]. As a result, we introduce

the following probabilistic constraint,

Pr
XT

t¼1
qt

XJ t

jt¼1t
m

jt
ℓ;e > PRℓ;e

� �

≤p ð41Þ

where PRℓ, e denotes the power supply of rack e on PoD

ℓ. As before, from the central limit theorem we assume

that the total power consumption at the rack level has a

Gaussian distribution. Similar to the analysis for Eq.

(36), Eq. (41) can be linearized as follows,

XT

t¼1
ωt

XJ t

jt¼1t
m

jt
ℓ;e þ ζ

XT

t¼1
δt
XJ t

jt¼1t
m

jt
ℓ;e≤PRℓ;e

ð42Þ

This completes the extension to a probabilistic model

with random server power consumption and link

utilization. Thus new optimization problem also includes

constraints (42) on rack’s power consumption and on

link utilization (25) is replaced by (40).

Temporal load aware VM placement
In this section, we will study VM placement with

optimization of power consumption as a function of time,

which will also be referred to as dynamic job scheduling.

As a result, it will be assumed that time-axis is slotted and

VMs are assigned to jobs in units of slot times. We will as-

sume that arrival of jobs to the system is according to a

Poisson process, though the analysis is applicable to other

arrival processes. The new arriving jobs during the present

slot and leftover jobs from the present slot will be sched-

uled for service in the next slot. We will consider two

types of service disciplines, a job either releasing its

assigned VMs simultaneously or individually according to

Bernoulli trials at the end of each slot. In the former case,

a leftover job will require full complement of its VMs and

in the latter case a subset of the VMs it’s currently holding.

At the beginning of the next slot, the system will schedule

the new arriving jobs and the leftover unfinished jobs from

the previous slot such that power consumption is mini-

mized. For the scheduling of leftover jobs, there are two

options depending whether or not VM migration is
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allowed. If VM migration is allowed, then leftover jobs are

scheduled like the new jobs, on the other hand, if no mi-

gration is allowed then the new jobs can only be scheduled

to VMs not utilized by the leftover jobs. As a result of mi-

gration, the system may end up in a state that consumes

less power, however, migration has communication and

processing overhead that optimization needs to take into

account. Let Gr denote normalized power consumption

cost of migration of type r VMs, which from [27] may be

determined as follows,

Gr ¼ VM Migration power Consumption Sourceþ Destinationð Þð Þ

�Migration Duration Time Slot Duration

Optimization will allow VM migration if power saving

due to migration offsets the cost of migration. As a result,

the optimization may result in partial VM migration.

Since jobs release their VMs according to the Ber-

noulli trials, number of leftover jobs to the next slot

will be a random variable with Binomial distribution.

However, to make the analysis tractable we will as-

sume that number of leftover jobs is a constant given

by the mean of the Binomial distribution. Let Nh0 de-

note number of the type h leftover jobs from the

current slot and Nh total number of jobs to be sched-

uled in the next slot, which include both leftover as

well as new arriving jobs. We note that Nh≥Nh0 and

nh∈ 1h; ::;Nh0 ; ::; ;Nhð Þ and the first Nh0 jobs in the set

correspond to the leftover jobs from the current slot.

Next, we will develop both dynamic IQP and CG

models for re-optimization of power consumption.

Dynamic IQP model

Let us consider nh
th job, which is in the system in the

current slot and will continue to receive service in the

next slot. Let x0
mt

r;nh
, xmt

r;nh
denote the number of type r

VMs assigned to this job over the mth type t server dur-

ing the current and next slots respectively. Based on the

new notation introduced in Table 2, we define the fol-

lowing binary variable,

βmt

r;nh
¼

1 if xmt
r;nh

−x0
mt

r;nh
< 0

0 otherwise




ð43Þ

The value of βmt

r;nh
shows whether type r VMs required

by job nh have migrated or not. In the case of VM mi-

gration from this type of server, then xmt
r;nh

< x0
mt

r;nh
and as

a result βmt

r;nh
will have a nonzero value and in all other

cases a zero value. The objective function of this

optimization problem is given by,

Min

"

8ð Þ þ
XH

h¼1

XNh0

nh¼1h

XR

r¼1

XL

ℓ¼1

Xdℓ

e¼1

XT

t¼1

X

mt∈aℓ;e
Grβ

mt

r;nh
xmt
r;nh

−x0
mt

r;nh

�

�

�

�

�

�

#

ð44Þ

where absolute value of ðxmt
r;nh

−x0
mt

r;nh
) corresponds to

number of VM migrations. In the above, migration of a

VM will be allowed if it results in power saving larger

than cost of migration. Qt in (8) also is considered as a

linear function of total number of x�mt
nh
s to better approxi-

mate the dependence of the utilization of the server in

power consumption.

Job scheduling without VM migration can be

achieved by assigning to Gr a very large value, which

prevents migration as its cost cannot be offset by any

amount of power saving. As a result, unfinished jobs

will preserve their VM assignments. Finally, we have

to add the following constraints into the optimization

problem in order to linearize Eq. (43),

xmt
r;nh

−x0
mt

r;nh
þ θβmt

r;nh
< 1 ð45Þ

xmt
r;nh

−x0
mt

r;nh
þ θβmt

r;nh
≥0 ð46Þ

where (45), (46) are ∀r ∈ {1,…, R}, mt ∈ {1,…,Mt},

t ∈ {1,…,T}, nh ∈ {1h,…,Nh}, h ∈ {1,…,H}.

Dynamic CG model

Next, we consider the dynamic CG model. Assume

that nh
th job is in the system in the current slot and

will continue to receive service in the next slot. Let

Table 2 Additional notation

Parameters Definition

x0
mt

r;nh
Number of type r VMs of server mt assigned to serve
job nh at the current time slot.

Nh0 Total number of current type h jobs

ν0
r
nh

Number of type r VMs required by job nh at current
time slot left in the system.

x0
jt
r;nh

Number of type r VMs serving job nh on a type t server
with pattern jt at current time slot

m0 jt
ℓ;e Number of active type t servers with pattern jt in the

rack of pod ℓ at the current time slot.

φ0
f ;jt
ℓ;e Binary variable denoting whether type t server on rack

e in pod ℓ which has pattern jt at current time slot is
active or not.

Gr Power consumption related to the migration of type
r VMs

x I
�
t

r;h Number of type r VMs assigned to type h jobs over the
server type t by the initialization pattern I�t .

Rh Different VM types demanded by type h jobs.
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x0jtr;nh , x
jt
r;nh denote number of type r VMs assigned to

this job over the jt’th pattern during the current and

next slots respectively. Similarly, φ0f ;jt
ℓ;e , φ

f ;jt
ℓ;e are binary

variables indicating whether f ’th type t server on rack

e in PoD ℓ is active and has pattern jt during the

current and next slots respectively. In this model, we

define binary variable β
f ;t
ℓ;e;r;nh

to show whether or not

r type VMs required by job nh have migrated or not

from a server as follows,

β
f ;t
ℓ;e;r;nh

¼
1 if

PJ t
jt¼1t

x
jt
r;nhφ

f ;jt
ℓ;e −x

0jt
r;nh

φ0f ;jt
ℓ;e

� �

< 0

0 otherwise

(

ð47Þ

We note that the summation in the above allows

the use of a different pattern at the server as long as

it preserves the number of VMs assigned by the ori-

ginal pattern to this job. The objective function of

this optimization problem is given by,

Min

"

23ð Þ þ
XH

h¼1

XNh0

nh¼1h

XR

r¼1
Gr

XL

ℓ¼1

Xdℓ

e¼1

XT

t¼1

XMt
ℓ;e

f¼1
β
f ;t
ℓ;e;r;nh

XJ t

jt¼1t
xjtr;nhφ

f ;jt
ℓ;e −x

0jt
r;nh

φ0f ;jt
ℓ;e

�

�

�

�

�

�

#

ð48Þ

As in the previous subsection, job scheduling with-

out VM migration can be achieved by setting Gr to

a very large value. Finally, similar to the previous

subsection, we have to add the following constraints

to the problem in order to linearize (47),

Table 3 Characteristics of Server types

Index (t) Model Num. of Cores ct, 1 Memory ct, 2 Num. of PMs Mt Power Supply Qt ωt, δt

1 Dell PE T110 4 16GB 1000 350 W 200 W, 20 W

2 Dell PE T410 8 128GB 300 580 W 400 W, 20 W

3 Dell PE M910 32 512GB 200 2750 W 1500 W, 100 W

4 Dell PE R810 16 512 GB 250 2200 W 1200 W, 100 W

5 Dell PE M915 64 1 TB 100 2750 W 1500 W, 100 W

6 Dell PE R910 40 2 TB 150 3000 W 1500 W, 100 W

7 HP DL320e Gen8 4 32GB 1000 350 W 200 W, 20 W

8 HP DL360e Gen8 8 384GB 500 750 W 400 W, 50 W

9 HP DL380p Gen8 8 768GB 250 1200 W 700 W, 50 W

10 HP DL360 G7 4 768GB 250 1200 W 700 W, 50 W

11 HP DL385p G7 16 768 GB 150 2000 W 1200 W, 100 W

12 HP DL370 G6 16 2 TB 100 2300 W 1150 W, 100 W

Table 4 No. of servers per type per rack of POD ℓ

Mt
ℓ;e ℓ->

t
ℓ =1 ℓ =2 ℓ =3 ℓ =4

1 12 0 22 6

2 4 0 8 8

3 6 0 8 6

4 8 0 6 6

5 12 0 8 0

6 8 0 4 4

7 0 12 0 28

8 0 10 0 10

9 0 6 0 4

10 0 2 0 8

11 0 10 0 0

12 0 4 0 0

Sum 50 44 56 80

Table 5 No. of servers per type per PoD

PoD No(ℓ) Server type(t) ℓ =1 ℓ =2 ℓ =3 ℓ =4

1 144 0 264 72

2 48 0 96 96

3 72 0 96 72

4 96 0 72 72

5 144 0 96 0

6 96 0 48 48

7 0 144 0 336

8 0 120 0 120

9 0 72 0 48

10 0 24 0 96

11 0 120 0 0

12 0 48 0 0

Sum 600 528 672 960
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XJ t

jt¼1t
xjtr;nhφ

f ;jt
ℓ;e −x

0jt
r;nh

φ0f ;jt
ℓ;e

� �

þ θβ
f ;t
ℓ;e;r;nh

< 1 ð49Þ

XJ t

jt¼1t
xjtr;nhφ

f ;jt
ℓ;e −x

0jt
r;nh

φ0f ;jt
ℓ;e

� �

þ θβ
f ;t
ℓ;e;r;nh

≥0 ð50Þ

where (49), (50) are ∀r∈ 1;…;Rf g; f ∈ 1;…;Mt
ℓ;e

n o

; t∈
1; ; ;Tf g; nh∈ 1h;…; ;Nhf g; h∈ 1;…;Hf g.

Optimization structure and complexity mitigation
In this section, we consider initialization of the

optimization and rounding of the solution of relaxed

problem to integer values.

CG initialization

We use offline initialization to reduce computation time

for the solution of the optimization problem. Without

initialization, in the first iterations, the RMP does not

contain adequate columns to provide beneficial dual in-

formation to pricing sub-problems [28]. An appropriate

initialization helps to reduce number of iterations of the

solutions of RMP and pricing problems through intro-

duction of optimal patterns, which are patterns that

maximize resource utilization of active servers. Using

the notation introduced in Table 2, we define the

initialization (optimization) problem as follows,

Max
XR

r¼1
xI
�
t

r;hi
k
r ð51Þ

ST :
X

r ¼ 1
∇ r∈Rh

R xI
�
t

r;hi
k 0

r ≤ck
0

t ∀k
0
∈ 1;…;Kf g ð52Þ

where, Rh denotes the set of VM types available to type

h jobs. Solving this problem for each {k, t, h} results in

the best Υt patterns for different types of jobs. Then, for

a type t server we will have ΥtHK initial patterns. To ob-

tain xI
�
t

r;nh
s, which are introduced in the previous sections

and are related to the initial pattern I�t , x
I�t

r;h is assigned

to a type h job while other jobs are set to zero. Hence,

for each xI�t

r;h variable there would be Nh different pat-

terns. Thus, initial number of patterns for server type t

will be equal to
PH

h¼1NhΥtK . So in the proposed

initialization, we may have separate candidate patterns

for each job. Then through collaboration of the pricing

problems and RMP, new patterns, that consider different

jobs in a server will be introduced by pricing problems.

Heuristic rounding termination algorithm

As mentioned earlier, LP problem (solvable in polyno-

mial time) has less complexity compared to ILP problem

(NP-hard optimization problem). In the CG solution of

our optimization problem, RMP has been formulated as

a LP and pricing problems as ILP type. As a result, we

need to determine the optimal ILP solution of the RMP

after the solution of the relaxed LP. Typically, this is

done through the branch and bound algorithm [18],

which is time consuming, as a result, we propose a heur-

istic method that satisfies the scheduling time constraint

[28, 29]. The proposed method will round up and down

the values of the scheduling variables, m
jt
ℓ;e , of the LP so-

lution [30, 31]. This operation will be carried out after

m
jt
ℓ;e have been sorted according to their priorities. m

jt
ℓ;es

more likely to be rounded down will be given higher pri-

ority. Following this operation, it is possible that all the

servers of a rack will become inactive in which case

TOR switch serving to that rack will be turned off to

save power.

Table 6 Characteristics of Typical Switches

Switch Type Interface data rates Product name Power (static)
PS

ToR=CS
ℓ

Power max Power (Dynamic)
PD

ToR=CS
ℓ;e

TOR 10 GbpS int NEC IP8800 25 W 145 W 65 nano w/bps

40 GbpS, ext. (Sℓ, e)

Core Switch 200 Gbps (CPℓ;ℓ0 ) HP A12500 200 W 10,700 W 10 nano w/bps

Table 7 VM configurations

Index
(r)

Model vCPU
ði1r )

Mem
(GiB) i2r

� 	

1 t2.micro 1 1

2 t2.small 1 2

3 t2.medium 2 4

4 m3.medium 1 3.75

5 m3.large 2 7.5

6 m3.xlarge 4 15

7 c3.large 2 3.75

8 c3.xlarge 4 7.5

9 c3.2xlarge 8 15

10 c3.4xlarge 16 30

11 c3.8xlarge 32 60

12 r3.large 2 15.25

13 r3.xlarge 4 30.5

14 r3.2xlarge 8 61

15 r3.4xlarge 16 122

16 r3.8xlarge 32 244

17 g2.2xlarge 8 15

18 cg1.xlarge 16 22.5
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First, let us define sℓ, e as the set of scheduling vari-

ables for the rack e on PoD ℓ,

sℓ;e ¼ m
jt
ℓ;e; jt∈ 1t ;…; ; J tf g; t∈ 1;…;Tf g

n o

and define set S as the set with its elements given by the

subsets sℓ, e as given below,

S ¼ sℓ;ej1ℓ≤e≤dℓ; 1≤ℓ≤L
� �

Next, we split S into two mutually exclusive subsets,

S ¼ S1; ; S2f g

where S1 consists of all sℓ, e that have their scheduling

variables with values strictly less than one and S2 other-

wise. The elements of S1denote potentially inactive

racks, while the elements of S2 active racks. From the

above definition, elements of S1are given higher priority

than S2 in the rounding operation. Next, we explain the

steps of the proposed heuristic, we note that Step i) ap-

plies only to S1, while the remaining steps apply both to

S1 and S2.

Step i) Sort the elements of set S1 according to the

number of active servers in a rack,
PT

t¼1

PJ t
jt¼1t

m
jt
ℓ;e , in

Table 8 Jobs Types and their VM requirements

Index (h) Job types VM type VM types Percentage Ch αh Traffic rates, ωh, σh (Mbps)

1 Graphical Processing Jobs g2.2xlarge %70 50 0.14 3, 0.2

cg1.xlarge %30

2 Scientific Jobs 1 c3.largec3 30% 100 0.14 0.7, 0.05

c3,xlarge 30%

c3.2xlarge 20%

c3.4xlarge 10%

c3.8xlarge 10%

3 Scientific Jobs 2 r3.large 30% 100 0.14 0.7, 0.05

r3,xlarge 30%

r3.2xlarge 20%

r3.4xlarge 10%

r3.8xlarge 10%

4 Scientific Jobs 3 m3.medium 50% 100 0.14 12, 2

m3.large 30%

m3.xlarge 20%

5 Data Search m3.xlarge 30% 100 0.14 1, 0.1

r3.large 20%

r3,xlarge 20%

r3.2xlarge 10%

r3.4xlarge 10%

r3.8xlarge 10%

6 Enterprise Infrastructure Services t2.micro 30% 100 0.15 3, 0.5

t2.small, 20%

t2.medium 20%

m3.medium 10%

m3.large 10%

m3.xlarge 10%

7 Peer 2 Peer Services c3.large, c3,xlarge 30%, 30% 100 0.15 10, 1

c3.2xlarge, c3.4xlarge 20%, 10%

c3.8xlarge 10%

+ + +

r3.large, r3,xlarge 30%, 30% 50

r3.2xlarge, r3.4xlarge 20%, 10%

r3.8xlarge 10%
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ascending order with the first element of S1 having the

least number of active servers. We note that the order of

the elements of S2 isnot significant for rounding

operation.

Step ii) Sort the scheduling variables in each sℓ, e sub-

set according to server type efficiency and resource scar-

city. First, we explain how to determine server type

efficiency. Depending on the job load some resources

become critical and may become performance bottle-

neck [32, 33]. As a result, we first sort resources accord-

ing to their criticalities. For a given job load, let

Lkdenote the total demand for type k resource,

Lk ¼
X

h¼1

H
XNh

nh¼1h

X

r¼1

R
vrnh i

k
r ∀k∈ 1;…;Kf g

Then, the resource types may be ordered according to

their criticality using the following formula,

maxk
Lk

PT
t¼1 Mtc

k
t

ð53Þ

Thus higher is the ratio of total demand to total

amount of that resource in the datacenter, then

higher will be the criticality of that resource. Next,

we define efficiency of a server type with respect to

resource type k as the ratio of ( ckt =Qt ) with higher

value indicating higher efficiency. Then, we order

server types according to their efficiency for the

critical resource. In the case of a tie, server efficien-

cies with respect to second critical resource will be

used to break down the ties and so on and so forth.

System will prefer to use the server types with

higher efficiencies. The scheduling variables in each

sℓ, e subset will be sorted in ascending order accord-

ing to the efficiency of their server types.

Step iii) Sort the scheduling variables with common

server type in each sℓ, e subset according to pattern

efficiency:

The patterns of each server type will be sorted in as-

cending order according to their resource utilization
PH

h¼1

PNh

nh¼1h

PR
r¼1 x

jt
r;nh i

k
r .

Step iv) Apply the rounding down operation. Fol-

lowing the completion of sorting, all the m
jt
ℓ;e s

within the set S have been assigned priority with

the first element of the set having the highest prior-

ity in rounding down operation. Initially, we round

up all the m
jt
ℓ;e variables with non-integer values.

Then, rounding down operation is applied from the

highest to lowest priority m
jt
ℓ;e s one by one. In this

operation, each m
jt
ℓ;e is decremented by one if the

demand constraints are not violated,
PL

ℓ¼1

Pdℓ
e¼1

PT
t¼1

X

jt∈J t
xjtn;r

� �

m
jt
ℓ;e < vrn.

Fig. 4 Optimal power consumption as a function of time for individual and simultaneous VM release with parameter ρh=0.3 and migration cost Gr=0.3

Fig. 3 Optimal power consumption as a function of time with migration cost Gr as a parameter
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The complexity order of the proposed algorithm may

be approximated as,

O
XT

t¼1
MtJ t minð log

XT

t¼1
MtJ t

� �

;NR
� �� �

where, Mt, N, R and Jt are number of type t servers,

number of jobs, number of VM types and number of

patterns of type t servers respectively.
PT

t¼1 MtJ tð log
PT

t¼1 MtJ t

� �� �

is due to the sorting

part and NR
PT

t¼1 MtJ t is due to the demands for

constraints part.

Numerical results
In this section, we present some numerical results re-

garding the analysis in the paper. Numerical results plot

a performance metric for assignments of VMs to new ar-

riving jobs either at an empty or non-empty system that

optimizes power consumption. In an empty system, all

the VMs are available, while in a non-empty system

some of the VMs are occupied by the jobs already in the

system. In the non-empty case, a performance metric is

plotted as a function of discrete-time and new jobs ar-

rive to the datacenter according to a Poisson process

with parameter λ and VMs of the jobs in the system are

released according to independent Bernoulli trials.

We compare performance of our optimal VM

placement algorithm with that of two heuristic VM

scheduling algorithms to be referred to as determin-

istic and random. The deterministic algorithm is

similar to the scheduling scheme proposed in [34]

that assigns a job to the PoD and rack with the

smallest index number, which has enough idle re-

sources to serve the job. In the random algorithm,

each VM of a job is placed to a randomly chosen

rack of a PoD with enough idle resources given that

communication demand does not violate the link

capacities; otherwise a new rack is randomly chosen

for the placement of VM.

IBM ILOG CPLEX version 12.4 on a machine at

3.4 GHz(core i7) with 32GB RAM is used as a platform

to solve the optimization problem. We solve the

optimization problem using both IQP and CG tech-

niques. IQP technique provides exact solution but is ap-

plicable to only small size systems, while CG is

applicable to systems with large sizes but has rounding

approximation. As a result, we test the accuracy of the

CG technique against the IQP at the end.

Fig. 6 Optimal, deterministic and random heuristic power consumptions as a function of the number of jobs in the system for random server

power consumption

Fig. 5 Optimal, deterministic and random heuristic power consumptions as a function of the number of jobs in the system for constant server

power consumption
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We assume a datacenter with the hierarchical top-

ology shown in Fig. 1. We presume that the datacen-

ter has 4 PoDs and each PoD having 12 racks. In

consonance with [35], we assumed that each rack

contains 40 to 80 servers and all the racks of each

PoD have the same server composition. Next, we

present the parameters of the system used in the gen-

eration of numerical results.

i) Servers and Server Types

Considering Amazon instances and Google clusters,

we assume T = 12 server types with two types of

resources, CPU cores and memory. Table 3 presents

the amount of resources and power consumption of

each server type. Note that Qt values are for

maximum utilization cases. Table 4 presents number

of servers per server type per rack at each PoD.

Table 5 shows number of servers per server type per

PoD, which is obtained by multiplication of each

entry of Table 4 by 12.

ii) Communication Network Parameters

Table 6 presents the performance characteristics of

the chosen switches for the communications

network. Power consumption parameter values of

the switches, PDℓ, e and PSℓ, e, are the same as given

in [36–38]. We also assume that dynamic power

consumption of a NIC is given by PWNIC =

0.6 microW. ToR switches offer a combination of

internal (int) and external (ext) interfaces. The

internal interfaces connect to NIC of the blade-

servers while the external interfaces connect to Core

switches. It is assumed that internal and external in-

terfaces support up to 10 Gbps and 40 Gbps trans-

mission rates respectively.

iii)Parameters of VM Types

We presume that number of VM types is R = 18

with their resource requirements given in Table 7.

Resources of VMs consist of number of CPU cores

and amount of memory. It is assumed that each

physical core of a CPU is utilized as a virtual CPU

(vCPU). In order to balance CPU, memory and

network resources, Amazon t2 and m3 series are

Fig. 8 Communication power consumption for the optimal placement with migration (Gr = 0.3) together with deterministic and random heuristics as

a function of time

Fig. 7 Optimal power consumption with migration (Gr = 0.3) together with deterministic and random heuristics as a function of time
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appropriate for many applications and servers,

Microsoft SharePoint, and enterprise applications. c3

series with higher ratio of vCPU to memory

represent compute-optimized Amazon instances

which are appropriate for high-traffic web sites, on-

demand batch processing, distributed analytics, web

servers, and high performance science and engineer-

ing applications. r3 series represent memory opti-

mized amazon instances and are recommended for

memory bound applications such as high perform-

ance databases and distributed cache, in-memory an-

alytics, genome assembly, and larger deployments of

SAP. cg1 and g2 are also considered for game

streaming, video encoding, 3D application streaming

and other server-side graphic workloads.

iv)Parameters of job types

We assume that the number of job types equals to

H= 7 with h = 1..H. Table 8 presents requirements

and appropriate applications for each job type. The

type of each job is determined probabilistically

through the values given in the column for

parameter αh. The number of VMs required by a

type h job is determined by the constant Ch. From

Amazon recommendations in [39, 40], the table

present the mixture of VM types required by a job

of each type. In each job type, the VMs are chosen

probabilistically from the allowed VM types

according to the percentages given in the table.

Thus, first the type of a job and the number of VMs

it requires are determined and then the types of

each of its VM.

We assume that the traffic rate between two VMs of a

job is either a random variable or a constant. In the

former case, the mean and standard deviation of the

traffic rate for each job type is given in the last column

of the Table 8. In the latter case, the traffic rate for each

job type is a constant that equals to the mean value of

the variable traffic rate (ωh). We considered both indi-

vidual and simultaneous release of VMs of jobs at the

end of a slot according to Bernoulli trials. In either case,

the success probability in a Bernoulli trial is assumed to

be ρh for a type h job. For this example, we assumed

homogeneous Bernoulli trials with ρh=0.3 ∀h ∈ {1,…,H}.

Finally for the power constraint in the probabilistic

model, we assume that power supply of a rack is PRℓ, e

= 25kW [26] and maximum power overloading probabil-

ity of the racks is set to p = 0.02. In the following results,

Fig. 10 Histogram of the number of TORS to CS links for optimal, deterministic and random placement of the jobs as a function of the link

transmission rate with variable VM traffic rate

Fig. 9 Histogram of the number of TORS to CS links for optimal, deterministic and random placement of the jobs as a function of the link

transmission rate for constant VM traffic rate
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unless otherwise stated, the arrival of new jobs will be

according to a Poisson process with parameter λ = 200

jobs/slot with constant server power consumptions and

VM traffic rates.

The Fig. 3 presents optimal power consumption of the

system as a function of the number of time slots with

VM migration cost Gr as a parameter and with individ-

ual VM release. It may be seen that optimal power con-

sumption increases with the rising cost of VM migration

cost. The zero cost migration (Gr = 0) and no migration

(Gr =∞) provide lower and upperbound for power con-

sumption with about 8% difference between them.

Figure 4 presents optimal power consumption of the

system as a function of the number of time slots for

both individual and simultaneous release of the VMs

assigned to a job and migration cost of Gr=0.3. As may

be seen, simultaneous release results in lower power

consumption compared to individual release.

Figures 5 and 6 show power consumption as a func-

tion of the number of jobs in the system for optimal

placement of VMs as well as according to the determin-

istic and random heuristics for constant and random

server power consumptions respectively. As may be

seen, in both cases, optimal placement of the jobs results

in the lowest power consumption, and next to it is deter-

ministic placement. It is also seen that the random ser-

ver power consumption results in lower system power

consumption compared to constant server power

consumption.

Figure 7 presents optimal power consumption with mi-

gration cost Gr=0.3 as a function of the number of time

slots. Also shown in the figure are the power consump-

tions of deterministic and random heuristics. It may be

seen that optimal placement results in about 15% lower

power consumption than deterministic heuristic and

lower by a bigger amount than random heuristic. For the

system of Figs. 7 and 8 shows communication component

of the power consumption. As may be seen again, optimal

placement results in lower communication power con-

sumption than the two heuristics even by larger margins

than the total power consumption.

Figures 9 and 10 show histogram of the number of

TORS to CS links as a function of the link transmission

rates for optimal, deterministic and random placement

Fig. 12 Comparison of values of the objective functions among IQP, CG/Proposed Rounding and CG/Random Rounding

Fig. 11 The number of active racks in the system at slots 5, 10, 15 and 20 for optimal with migration cost (Gr = 0.3), deterministic and random

placement of jobs
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of jobs for constant and variable VM traffic rates re-

spectively. As may be seen in both cases optimal place-

ment results in lower communication traffic compared

to the two heuristics.

Figure 11 shows the number of active racks for opti-

mal with migration cost of Gr=0.3, deterministic and

random placement of jobs at certain time slots. We note

that the total number of the racks in the system is 48.

As may be seen, optimal placement results in lower

number of active racks compared to deterministic and

random heuristics in any time slot (Time slot duration is

considered 5 min).

We were able to solve IQP exactly for small size sys-

tems, which enabled us to examine quality of the solu-

tions obtained through the CG technique. In Fig. 12, we

plotted power consumption of CG/proposed rounding

and IQP as a function of the number of jobs. The figure

also plots results of random rounding of the relaxed CG

solution, which provides an upper-bound for the per-

formance of our optimization model. It can be seen that

the optimality gap between the exact IQP results and

upper-bound is up to 6%, while between the CG/pro-

posed rounding and exact results is less than 1% for N <

50. Thus, the CG technique with the proposed rounding

algorithm results in quite accurate solutions.

Next, we look at the run time of the optimization

models in Fig. 13. It can be noticed that as the workload

(number of jobs) in the datacenter increases, the run-

time of both IQP and CG increase. However, the run-

time of the IQP grows exponentially while that of CG

almost linearly due to the fact that CG is able to deter-

mine the solution by scanning far fewer number of con-

figurations. Please note that the runtime of CG was on

the Intel Core i3-2467 M @ 1.60GHz and by application

of the parallelism on 12 icores (Since T = 12), the run

time can be reduced to few seconds. Moreover, the ap-

plication CG allows scalability of the proposed platform

for very large scales.

Discussion on assumptions
In this section, assumptions made in this work are listed

and evaluated. Proposed assumptions along with alterna-

tive possibilities are shown in in Tables 9, 10, 11 and 12

(assumptions of this paper are in italics).

The first Assumption made in this paper is related to

Topology. We assumed Fat-Tree Topology. However, the

analysis in this work, without loss of generality, can be

extended to other tree cloud topologies types. The main

reason behind this selection is that more than 70% of

the cloud datacenters have tree-based architecture and

to make the analysis realistic it is better to consider the

most common scenarios. For more information, please

refer to [41–43]. It is worth mentioning that this re-

search focused on the infrastructure of large-scale

hosted datacenters which is responsible for the manage-

ment and maintenance of the data and processing jobs

of many different companies. Thus, this research is bet-

ter suited for public cloud scenarios.

Different communication demand models are considered

in the literature. Communication demand models of cloud

jobs are investigated in different layers as represented in

Fig. 14. For instance, communication model can be defined

for a cloud-based web application or a map-reduce process-

ing job according to a graph at the application layer. Com-

munication demand among cloud components also can be

defined at transportation layer according to the socket (port

and IP). In this paper, the prevalent definition of communi-

cation model is defined according to the IP addresses at

network layer. Please note that, if at least one application

resides in a VM communicate with another application on

another VM, there is a communication link between two

Table 10 List of Assumptions and alternative possibilities:

Possible Communication Models among job components

Communication
Layer

VM-to-VM
(IP-level)

Transport
Layer Flow

Application Layer
(App. to App.)

Model Full Mesh Graph Graph Graph

References [56–60] [61] [62, 63] [64–67]

Table 11 List of Assumptions and alternative possibilities: Common

assumption on distribution of data center traffic

Traffic
Distribution

Gaussian
Process

Poisson
Process

Other Types (Self-
Similar, Weighbull)

References [68–71] [72–76] [77–80]

Table 9 List of Assumptions and alternative possibilities: Possible

Topologies of Datacenters

Topology
Type

Tree Family
(Fat-Tree,
Clos-
Network)

Cube Family
(Bcube,
MDCube,
CamCube)

DCell Ficonn Scafida Jelly
Fish

References [44–48] [49–51] [52] [53] [54] [55]

Fig. 13 Comparison of the run time between IQP and

CG/proposed rounding
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VMs. Moreover, in many cloud management platform like

OpenStack, there is always some communication overheads

among the components (ComputeNodes). Thus, in this

paper, we assumed that all the VMs of a job communicate

with each other at least once and the graph model among

the VMs can be approximated by a Full-mesh model. Con-

sequently, the magnitude of demand between two servers

will be assumed to be proportional to the product of the

number of VMs assigned to that job on the two servers.

For instance, for a job presented in Fig. 14, there is only

two communication demand (2 × 1) exist among the VMs

of a job. In Table 10 other works in the literature that as-

sume the mesh model are listed.

A workload of the cloud computing datacenters can

be approximated by different processes. Poisson and

Gaussian processes are widespread in this approxima-

tion. However, for high scale scenarios, due to the

central limit theorem, the Gaussian process is more

realistic. Many works, as listed in Table 11, applied

Gaussian process regression to approximate the Data-

center traffics. Thus, as the size of the public clouds

increases, the analysis of this research is more reliable

and trustworthy. Please also note that it is too com-

plicated to schedule the unpredicted workload in real

time. The power consumption models of cloud com-

puting servers are also listed in Table 12. Many works

have found a strong linear relationship between the

workload and total power consumption by a server so

that the power consumption by a server increases

linearly with the growth of server workload from the

value of the power consumption in the idle state up

to the power consumed when the server is fully uti-

lized. As it explained earlier, it is assumed that the

incoming workload (traffic and process) follows a

Gaussian distribution. The Linear combination (sum-

mation) of Gaussian processes also follows a Gaussian

distribution. As the best of our knowledge, the linear-

ity assumption between the power consumption and

the workload (Traffic and Process) has been contro-

versial. So, one of the limitations of this paper is that

it is constrained to this linear relationship. However,

to avoid inaccuracy, the Gaussian assumption is made

at the Rack level.

Conclusion
In this paper, we have studied optimization of power

consumption in cloud computing centers through

VM placement. We have developed joint

optimization of power consumption of servers, net-

work communications, and cost of migration with

workload and server heterogeneity subject to re-

source and bandwidth constraints for a cloud com-

puting center with hierarchical network topology.

Optimization results in an IQP that can only be

solved for systems with small sizes, then we show

application of the CG technique that enables solu-

tion of systems with larger sizes. CG technique has

an approximation as it solves continuous relaxation

of the problem, which requires rounding of the solu-

tion to integer values. Comparison of the results of

CG with IQP shows the accuracy of CG resulting in

Table 12 List of Assumptions and alternative possibilities: Power

consumption Models of servers as a function of workload

Power
consumption
model

ON/OFF DVFS

Linear Non-Linear Multi-State

References [81–84] [85–88] [89] [90–92]

Fig. 14 Communication demand models in different layers
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optimality gap less than 2%. Then, the optimization

has been extended to manage temporal variation of

the workload, which allows arrival and departure of

jobs at the discrete-time instants. The system per-

forms re-optimization of the power consumption

under the new workload that also includes cost of

migration. The numerical results show that

optimization achieves power savings compared to

the heuristic VM placement algorithms. In general,

the field is short of work that solves optimization of

power consumption problem and we hope that our

work will help to bridge this gap. As far as we know

this is the first work that applies CG technique to

solve this problem. Results of this work may also be

used to test accuracy of future heuristics for VM

placement in cloud computing centers. The pre-

sented optimization method could also be used for

the systems based on containers instead of VMs. We

believe that the proposed optimization will be help-

ful to cloud service providers in realization of en-

ergy saving.
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