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A train operation optimization by minimizing its traction energy subject to various constraints is carried out using nature-
inspired evolutionary algorithms. �e optimization process results in switching points that initiate cruising and coasting phases
of the driving. Due to nonlinear optimization formulation of the problem, nature-inspired evolutionary search methods, Genetic
Simulated Annealing, Fire	y, and Big Bang-Big Crunch algorithms were employed in this study. As a case study a real-like train and
test track from a part of Eskisehir light rail network weremodeled. Speed limitations, various track alignments, maximum allowable
trip time, and changes in train mass were considered, and punctuality was put into objective function as a penalty factor. Results
have shown that all three evolutionary methods generated e
ective and consistent solutions. However, it has also been shown that
each one has di
erent accuracy and convergence characteristics.

1. Introduction

Researchers have been focusing on new energy saving areas,
as energy becomes more expensive besides scarce availability
and negative environmental e
ects in the process of its
generation and consumption. One such area is the train
operations process where there is a signi�cant potential
to reduce energy consumption by optimizing operation
strategies. Energy savings through improvements in driving
strategies do not require any hardware modi�cation or
additional manufacturing costs; therefore, it is the �rst choice
inmany cases. In this manuscript we develop energy-e�cient
driving strategies by choosing switching times among the
motion modes of a railway vehicle. In the present context,
the motion modes of a railway vehicle are traction, cruising,
coasting, and braking modes. Finding the optimal switching
times involves solving a nonlinear optimization problemwith
objective function containing an integral and constraints
involving a di
erential equations set.

In 1968, Ichikawa investigated train operation between
successive stations in terms of minimizing energy consump-
tion. A method was proposed to decrease the complexity
of the state variable problem and solve it a�erwards [1].

In 1975, Hoang et al. tried to reduce energy consumption
of train operation from a di
erent viewpoint. �ey note
that positioning of stations and the paths between them
are already determined; therefore, remaining task would
be determining the “tunnel trace in the equivalent vertical
plane.” �ey constructed an optimal control model and
provided a heuristic approach using a direct search algorithm.
�e proposed method was applied to a part of Montreal
Subway [2]. �ere is a line of research where Pontryagin’s
maximum principle was used to �nd optimal operation
strategy [3–5]. In this line, Howlett showed that an optimal
strategy for energy minimization should consist of accelera-
tion, cruising, coasting, and braking phases, respectively [3].
In this respect, illustrative numerical examples of driving
strategies for various speeds and gradients took place in
[6, 7]. In 1997, Chang and Sim proposed a coasting control
strategy based on genetic algorithm. Punctuality and comfort
were taken into account in addition to energy consumption.
�e proposed method has a strong mathematical basis
and it converges in a signi�cantly short time. Also this
optimized coast control strategy showed better performance
in comparison with fuzzy ATO controller [8]. In another
study, Howlett considered the problem using continuous and
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discrete control tools and used the Kuhn-Tucker equations
to analyze optimal switching points [9]. Liu and Golovitcher
proposed an analytical method based on maximum prin-
ciple to �nd optimal input sequence and switching points.
Developed system was capable of �nding optimal trajec-
tory and suitable for real-time optimization due to its
analytical nature [10]. In 2004, Wong and Ho researched
to determine number of coasting and switching points by
means of three various genetic algorithms [11]. Açikbaş and
Söylemez developed simulation so�ware which is suitable for
multitrain and multiline tests. �ey applied arti�cial neural
network and genetic algorithm to model a part of metro
line in Istanbul and compared these approaches in terms of
energy consumption [12]. In 2009, Howlett et al. presented
a new analytical solution for tracks with steep uphill and
downhill sections to �nd optimal switching points [13]. Kim
and Chien investigated train operation with constraints of
time, speed, and energy consumption. A simulation model
was developed [14] and simulated annealing algorithm was
utilized to calculate optimal switching points and cruising
speed. It was clari�ed that it was possible to reduce energy
consumption by increasing the travel time [15]. In another
study, optimization problem was handled by three di
erent
methods: dynamic programming, gradient methods, and
sequential quadratic programming [16]. In [17], Sheu and
Lin focused on automatic train regulation (ATR) problem
in the energy e�ciency framework. �ey developed a dual
heuristic programming method which brought the ATR
ability of real-like adaptation. In addition to controlling
coasting points and dwell time at stations, scheduling opti-
mization could increase energy e�ciency performance. An
energy-e�cient driving strategy and optimization method
for manually driven high speed trains were developed [18].
Energy-e�cient strategies and timetable optimization were
combined together in [18–22]. For subway systems, recovered
energy coming from regenerative braking can be used for
train traction. In this regard, Yang et al. developed scheduling
rules that synchronized successive trains for braking and
accelerating. Overlapping time was maximized by means of
integer programming model and for timetable optimization
genetic algorithm was utilized [23]. Lu et al. investigated
energy-e�cient train trajectory by means of dynamic speed
control. Ant colony optimization, genetic algorithm, and
dynamic programming algorithmswere used in searching the
optimal trajectory [24]. Su et al. proposed a new approach
by combining optimal driving strategy with cooperative train
control. �e energy which came from regenerative braking
is used for traction of other trains [25]. Similarly, while
one research controlled headway time and dwell time to
increase energy savings from regenerative braking [26] the
other one developed stop-skipping method [27] to decrease
passenger waiting time. In another research, a concept of
dynamic infrastructure occupation was presented to assess
infrastructure capacity under disturbed conditions as a com-
plement to the established capacity indicator of scheduled
infrastructure occupation. �is new indicator is applied in a
capacity assessment study of a Dutch railway corridor with
di
erent signaling con�gurations under both scheduled and
disturbed tra�c conditions [28]. During the recent years,

several other methods were applied to optimal train control
problem such as fuzzy predictive control [29], Bellman-
Ford algorithm [30], reinforcement learning [31], swarm
optimization [32], and NSGA-II algorithm [33].

In this study an energy-e�cient train operation problem
was considered on a track with no steep sections. �ree
heuristic approaches, Fire	y Algorithm, Genetic Simulated
Annealing, and Big Bang-Big Crunch, were used to �nd
switching points for phases. �ere is no known study on
train operation optimization problem which employs one
of these algorithms. In this study, it was demonstrated that
these three algorithms are appropriate to apply to the energy-
e�cient train operation optimization problem and a compar-
ison between algorithms running times and optimality was
discussed. Besides the fact that the train model and the track
were real-like modeled, the e
ect of number of passengers on
train energy consumption and algorithm’s performance were
evaluated. However, the problem in case study was solved
successfully; for a complicated track with steep sections or
speed limitations more complex strategies are required (see
[5, 7, 9, 10, 13]).

In the next section we present the nonlinear optimization
formulation of the problem. In Section 3, the evolutionary
solution methods used in this manuscript are introduced. In
the 4th section, the solution methods are applied to a model
of locally existing real problem. In the remaining part of the
manuscript performances of the methods are discussed.

2. Modeling the Motion

�emotion equations of train, usingNewton’s second law, can
be written in the following form:

���� = V,
�V�� = �� − ��� − � − ��,

(1)

where� and V are position and speed of the train, respectively.�� is the tractive force, �� is the braking force, � is the rolling
resistance, �� is the resistance caused by level change, and� denotes mass of train. In the sequel, a train motion on
a sequence of successive stations is considered. We denote
the distance between stations � and � + 1 by 	�, allowed
travel time by 
�, and allowed maximum speed by �. Hence,
between stations � and � + 1, these parameters are restricted
with following limits:

0 ≤ � ≤ 	�,0 ≤ � ≤ 
�,0 ≤ V ≤ �.
(2)

Resistance of the train, �, can be calculated by utilizing Davis
equation [34]:

� =  + �V + �V2, (3)

where the coe�cients , � and � correspond to mass,
mechanical, and air resistance, respectively.�ese coe�cients
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Figure 1: Tractive e
ort, speed graph for a tram with power 571 hp.

vary depending on external forces and physical character-
istics of train. Level changes in track can be favorable even
though they can function as a resistance against to the train
motion. For downhill part of track the contribution to the
acceleration is positive and for uphill part of track, it is
negative. �e resistance caused by gradient can be calculated
as follows:

�� = � sin�, (4)

where � is gravitational acceleration and � is the angle of
slope. Tractive e
ort provides force to move train along the
rail line.

Tractive e
ort is speci�cally de�ned according to train’s
characteristics. It is restricted to certain limits due to adhesion
between wheel and rail surfaces. Tractive e
ort calculation
mostly depends on engine power and current speed of train
(see Figure 1). Maximum tractive e
ort is available at low
speed. For the beginning of motion maximum tractive e
ort
(here it is 36 kN) is applied until train reaches 30 km/h speed.
Over this speed level, power takes its maximum constant
value and tractive e
ort changes inverse proportional to
speed. It can be calculated by [35]

�� = 2650��
V

, (5)

where� is the e�ciency in convertingmotor power to tractive
force, � is motor power, V is the current speed of train,
and 2650 is for unit conversion. Using this equation average
power can be calculated:

� = ��V2650� . (6)

�e total energy consumption is obtained by integrating the
power over time:

� = ∫�
0
���. (7)

2.1. Train Operation. Energy consumption of a train con-
siderably depends on train operation. An optimal train
operation for a level track should consist of the following
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Figure 2:Motion phases:MA:maximumacceleration, CR: cruising,
CO: coasting, and BR: braking.

motion phases, respectively: maximum acceleration (MA),
cruising (CR), coasting (CO), and braking (BR) [3]. An
example driving scenario between two successive stations
is shown in Figure 2. Next we provide more details on the
motion phases below.

2.1.1. Maximum Acceleration (MA). From beginning of the
travel till the start of the cruising phase, maximum acceler-
ation is applied to the train. As mentioned earlier, tractive
e
ort is restrictedwith adhesion limit.�emaximum tractive
e
ort is calculated by

�max = ���, (8)

where � is the mass of train, � is gravitational acceleration,
and � is the friction constant. Under an applied constant
power, tractive e
ort stays constant until train comes to the
cruising speed value.

2.1.2. Cruising (CR). In this phase train continues its travel
at a constant speed. In order to hold the speed at constant
value, the applied tractive e
ort must equal the opposing
forces to the train motion. Uphill and downhill sections of
track either contribute to or take away from the amount of
tractive e
ort. For some downhill sections, there may be no
need for traction.

2.1.3. Coasting (CO). In the coasting phase, trainmoves along
a line under already obtained momentum and no traction
energy is consumed. �is phase continues until train reaches
the safe stopping distance. Safe stopping distance is a function
of remaining distance and current speed of train. �e safe
stopping distance is

�ss = V
2
br2� , (9)

where Vbr is current speed subject to braking, � is decel-
eration, and �ss is safe stopping distance. On tracks with
nonsteep constant gradient, optimal braking speed which
depends only on the uniquely de�ned cruising speed can be
calculated by (9). �is formula is e�cient for level tracks.
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2.1.4. Braking (BR). In this phase, constant force opposing the
direction of motion is applied to train. Magnitude of braking
force depends on train characteristics. Since we just consider
traction power for calculation of energy consumption, in
braking phase, it is assumed that there is no contribution to
total energy consumption.

2.2. Total Energy Consumption and Optimization. Total
energy consumption for an optimal strategy can be decom-
posed into its motion phases. In the maximum acceleration
phase the traction e
ort is �xed at its attainable maximum
value; therefore, speed monotonically increases. �e end-
point of this phase is denoted by �1. In the cruising phase,
speed is �xed to a value, Vcr, which requires �� values to equal
the opposing resistance values. �is phase extends between
the points �1 and �2. �e points �1 and �2 are called the
switching points. In the subsequent phases (i.e., coasting and
braking phases), no energy is consumed due to zero traction
force.�us, total energy consumption for an optimal strategy
throughout successive stations is calculated by the following
equation:

�TOTAL = �MA + �CR, (10)

where �MA and �CR denote energies consumed at the max-
imum acceleration and cruising phases. Equation (10) is valid
for track with nonsteep sections. It is desired to provide
energy-e�cient travel while considering punctuality and
comfort. A correct decision-making on the switching points
between the phases has primary signi�cance for the problem
under consideration since it determines the energy consump-
tion. Finding optimal switching points for a travel between
stations � and � + 1 can be formulated as an optimization
problem:

min
�1 ,�2

(∫�1
0
�� (�) V (�) �� + ∫�2

�1
�� (�) V�	��)

Subject to:
�V (�)�� = �� (�) − �� (�)� − � (�) − �� (�) ,

0 ≤ � ≤ 
�,
�� (�)�� = V (�) , 0 ≤ � ≤ 
�,
�� (�) = ��max, 0 ≤ � ≤ �1,
�� (�)
= 5 + 0.0285Vcr + 0.0047V2cr + ���,

�1 < � ≤ �2,
�� (�) = 0, �2 < � ≤ 
�,
�� (�) = 0, 0 < � ≤ �3,

�� (�) = ��max, �3 < � ≤ 
�,
0 ≤ �� ≤ ��max,
0 ≤ �� ≤ ��max,
V (0) = V (
�) = 0,
0 ≤ V (�) ≤ V (
�)
� (0) = 0,
� (
�) = 	�.

(11)

Having formulated the energy optimization problem
above, in the next section, for its solution, we present a review
of three di
erent evolutionary algorithms.

3. Optimization Methods

In this section, Genetic Simulated Annealing, Fire	y, and Big
Bang-Big Crunch algorithms are reviewed brie	y, where the
former one is a hybrid algorithm and the latter two are stand-
alone algorithms.

3.1. Genetic Simulated Annealing Algorithm. Genetic Algo-
rithm (GA) and Simulated Annealing (SA) are two well-
known tools for solving global optimization problems. GA is
an evolutionary searchmethod based on evolutionary theory.
Search proceduremimics the natural genetics using operators
such as selection, mutation, and crossover. Chromosomes
refer to candidate solutions and each of them is assigned
a score with regard to �tness function. New o
spring are
generated by applying genetic operators to chromosomes.
A�er several generations, chromosomes which have better
scores are selected as optimal or suboptimal solution. SA is
another nature-inspired optimization method which shows
an analogy to physical annealing process in metallurgy. In
the physical process temperature is reduced gradually in the
cooling phase of the heated material in order to prevent
defects. In the mathematical counterpart, SA starts to search
from an initial point and next new candidate solutions are
generated randomly by reducing temperature. From new
generations, not only better solutions but also some worse
solutions are accepted with a certain probability. �us, local
minima can be avoided and the chance of �nding optimum
solution is increased [36]. �e algorithms GA and SA have
stand-alone features which can be used together to eliminate
each one’s typical weaknesses. GA employs the e�ciency
of evolution theory such that new o
spring have several
characteristics in common with its parent. In this way, the
quality of solutions is maintained. With the help of its
extensive search capability, GA is practical for solving tough
problems. However, besides the uncertainty of computational
time, it can be incapable of avoiding local extrema in limited
time as well [37]. With the help of random search nature,
SA accepts worse solutions in addition to better ones with a
certain rate. It prevents being caught to a local extremum [38].
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Figure 3: Flowchart of Genetic Simulated Annealing algorithm.

Even though the SA can avoid local extrema, its e�ciency
depends on initial point. Choosing inappropriate initial point
may result in worse solutions and a long computational time.

Genetic Simulated Annealing (GSA) is a combination
of GA and SA. At the beginning of algorithm, initialization
parameters such as population size, number of variables,
lower and upper bounds for each variable, mutation and
crossover rates, selection method, annealing, and temper-
ature functions are de�ned. �en GA part of algorithm
is activated and stopping criteria are de�ned as a certain
number of generations. At the end of this part of algorithm
a suboptimal solution is generated. �e second part of
algorithm employs SA with the initial solution from the �rst
part. Algorithm 	owchart is given in Figure 3.

GSA has been applied to many areas including job
scheduling [39], multiple project scheduling [40], discrete
time-cost tradeo
 [41], traveling salesman and error correct-
ing code design [42], mixed-model assembly line sequencing
[43], and train energy optimization [36] problems.

3.2. Big Bang-Big CrunchMethod. Big Bang-Big Crunch (BB-
BC) is a global optimization method which is inspired by
the formation of the universe. BB-BC method comprises
two main phases: big bang and big crunch. At the big
bang phase, individuals from initial population scatter along
the search space randomly. On that sense, this phase of
algorithmhas resemblance toGA.A�er random initialization
of population, individuals take various places in search space.

Random number generators are adjusted to certain values to
hold newo
spring in the search space.�en big crunch phase
follows the big bang phase. An output point, namely, center
of mass, is generated based on population data. �is crunch
process can be formulated for aminimization problem as [44]

�� = ∑
�=1 (1/ �) ��∑
�=1 (1/ �) , (12)

where �� is the center of mass, �� is the position vector for
the �th individual,  � represents the �tness value of the �th
individual, and" is the population size. A�er the big crunch
phase it is required to create new members which will be
used in next iteration of big bang phase. New population
is generated around the center of mass using following
formulation:

�new� = �� + #, (13)

where �new� stands for new population’s �th individual and # is
standard deviation coe�cient. �rough (13), new individuals
cannot go out of search space. Standard deviation coe�cient
is calculated by

# = 0.5$ (�max − �min)1 + %/ℎ , (14)

where $ is a random number which is de�ned with normal
distribution; % is iteration number; �max and �min are the upper
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and lower limits for search space, respectively; ℎ is coe�cient
for the contract of search space. For subsequent iterations the
center of mass is calculated again and big bang, big crunch
steps are repeated until a stopping criterion is met. Algorithm
steps can be given as follows:

(1) Create a random initial population with"members.

(2) Calculate the �tness function of every individual.

(3) Calculate center of mass using (12).

(4) Create new candidates by using (13).

(5) Return to step (2) until stopping criteria have been
met.

Although BB-BC algorithm has been announced in recent
years, it has been applied many areas including design of
space trusses [45], nonlinear controller design [46], fuzzy
model inversion [47], damage detection [48], and energy-
e�cient motion control of train [49] problems.

3.3. Fire	y Algorithm. Fire	y Algorithm (FA) is a swarm
intelligencemethod inspired by lightning behavior of �re	ies.
It was proposed by Yang in 2008 [50]. FA mainly depends on
three signi�cant ideas:

(i) Fire	ies have no gender. Any of them can be attracted
to other �re	ies.

(ii) Attractiveness is comparative to brightness. For
instance, considering two 	ashing �re	ies, one which
has less glitter will move towards to more glitter
one. When distance increases, attractiveness and
brightness decrease expectedly. If both �re	ies are
not glittery enough to attract other one, then random
movement occurs.

(iii) �e view of objective function de�nes the brightness
of a �re	y. It is possible to express brightness in
di
erent ways; however, a basic one may make use of
the objective function of the relevant maximization
problem.

Two issues are worth attention for �re	y algorithm: light
intensity and attractiveness. Essentially, the light intensity'(�) can be de�ned using the inverse square law [50]:

' (�) = '��2 , (15)

where '� refers to the intensity at source and � is the distance
between �re	ies. Attractiveness is directly related to the light
intensity seen by neighbor �re	ies. Let * be attractiveness of
a �re	y; it can be de�ned as

* = *0-�2 , (16)

where *0 denotes the attractiveness at � = 0 and 3 is light
absorption coe�cient. �e distance between two �re	ies �
and % at points 9� and 9� can be de�ned as follows [50]:

��� = :::::9� − 9�::::: = √ �∑
�=1

(9�,� − 9�,�)2, (17)

Objective function  (9), 9 = (91, . . . , 9�)�
Generate initial population 9� (� = 1, 2, . . . , ?)
Determine light intensity '� at 9� by  (9�)
De�ne light absorption coe�cient 3
While (� < @��A-?-$���B?) do
for � = 1 : ? do

for % = 1 : ? do

if '� < '� then
move �re	y � towards %

end if

update attractiveness with

distance � via -−�
evaluate new solutions and update '�

end for

end for

rank the �re	ies and �nd the

current global best �∗
end while

postprocess results

Algorithm 1: Fire	y algorithm [50].

where 9�,� is the �th component of the spatial coordinate 9�
of �th �re	y. ‖ ⋅ ‖ denotes the Euclidean norm, and F denotes
the number of components. Also the movement of �re	y � to
�re	y % is determined by

9� = 9� + *0-−�2�� (9� − 9�) + �G�, (18)

where second term refers to attraction and the third term
represents randomization, and� is randomization parameter.
Regarding to the information given above, algorithm’s pseudo
code is shown in Algorithm 1.

FA has been applied to many areas including learning
robot motion trajectories [51], heart disease prediction [52],
and arterial cannula shape optimization [53] problems.

4. A Case Study

�is research focuses on energy optimization for an urban
rail transit system. In this regard, di
erent searchingmethods
for global optimization problem have been described in the
previous sections. In order to verify the e�ciency of proposed
optimization algorithms, a case study and its results for each
method are given in this section.

4.1. Case Study Background. A particular segment of Eskise-
hir Urban Rail Network was taken into account for the
case study and a real-like tram model was created with
characteristics which are given in Table 1.

�e total length of test track is 3314m. �ere are seven
stations where the train must stop (see Figure 4). Travel
starts at Osmangazi University station and ends at Stadyum
station. Considering successive stations, train motion can
be examined in partial tracks. To interpret the �gure as
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Figure 4: A part of Eskisehir light rail network subjected to test.

Table 1: Train characteristics.

Total mass 34000 kg

Maximum motor power 571 hp

Number of cars 5 pcs

Max speed limit 70 km/h

Capacity 150 passengers

intended, let us read the �gure for the �rst three stations.
At the beginning, train starts its motion from Osmangazi
University station and stops at Porsuk station. �e length
of this part is 364m and there is 1% positive grade. �e
second part of total track is between Porsuk station and the
following �rst sharp curvature. �is part is 204m long with
no gradient. Train speed goes down to 15 km/h at the end of
this part and keeps it at this level along the curvature. A�er
passing the curvature, new part begins between the curvature
and Buyukdere station. Since the train comes from previous
part with 15 km/h constant speed, it starts to accelerate from
15 km/h in this part. �is part’s length is 207m and has 2%
positive slope.

4.2. Operation Strategy. Only the MA and CR phases con-
tribute to the energy consumption of the train. As no energy
is consumed in CO phase, increasing duration of CO phase
in a strategy leads to drop in energy consumption. However,
this a
ects the total travel time adversely. Energy e�ciency

Table 2: Estimated motion phases for the parts of track.

Part of Track Length
Estimated Phase

Sequence

Osmangazi University –
Porsuk

364m MA + CR + CO + BR

Porsuk – Curvature A 204m MA + CR + BR

Curvature A – Buyukdere 207m MA + CR + BR

Buyukdere – Goztepe 437m MA + CR + CO + BR

Goztepe – Ataturk Bulvari 667m MA + CR + CO + BR

Ataturk Bulvarı –
Curvature B

293m MA + CR + BR

Curvature B - Visnelik 350m MA + CR + CO + BR

Visnelik – Stadyum 540m MA + CR + CO + BR

should be provided by adhering to punctuality. �erefore,
punctuality takes place in the optimization scheme as a hard
constraint, and no tradeo
 is allowed between punctuality
and energy consumption.

An optimum trajectory for short distances does not
consist of CO phase [3]. In this study, the parts with under
350m length is considered as a short distance. Regarding this,
a predicted motion phase sequence for each part of track is
given in Table 2. �us, the search algorithms to be employed
use this grantedmotion phase sequences, and this contributes
e�ciency of the search processes.
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Table 3: GSA parameter selection test.

Test label Crossover rate Mutation rate
Selection
function

Crossover
function

Annealing
function

Temperature
function

Energy cons.

GSA 1 0.8 0.01 Roulette Single-point Boltzmann Boltzmann 5.10 kwh

GSA 2 0.9 0.02 Tournament Two-point Boltzmann Boltzmann 5.19 kwh

GSA 3 0.7 0.04 Roulette Intermediate Boltzmann Boltzmann 5.18 kwh

GSA 4 0.8 0.01 Roulette Single-point Fast Exponential 5.12 kwh

GSA 5 0.9 0.02 Tournament Two-point Fast Exponential 5.14 kwh

GSA 6 0.7 0.04 Roulette Intermediate Fast Exponential 5.15 kwh

4.3. Optimization Parameters. In train operation research
area, optimization of speed pro�le of a train has a challenging
mathematical structure. It is desired to �nd switching points
for certain motion phases to minimize energy consumption
by taking constraints on physical limitations, time, and
comfort into consideration. It is important to note that
switching motion phases from one to another is an NP-hard
problem [54]. Since analytical approaches have limitations
in �nding a solution to this problem, evolutionary methods
become prominent instead [15].

For the train model under consideration, to test the evo-
lutionary optimization methods, a simulator was developed
in MATLAB environment. It takes variable track alignments,
speed, and comfort limitations into consideration. In this set-
up, output consists of speed, position, and time values and
energy consumption of train.

In this research, Genetic Simulated Annealing, Fire-
	y, and Big Bang-Big Crunch algorithms were separately
employed to minimize energy consumption of a train.
Performances of the methods rely signi�cantly on their
parameter settings. �e chosen parameters for each method
are presented below.

4.3.1. Genetic Simulated Annealing Parameters. �is method
is a combination of two well-known algorithms.�e �rst one,
Genetic algorithm (GA), is capable of �nding suboptimal
solutions in short computational times. Herewith, at the
beginning of optimization, GA was employed until it reaches
a �tting generation. Obtained solution was given to the
second algorithm, simulated annealing algorithm (SA), as an
initial solution. For the GA part, it is signi�cant to determine
not only crossover and mutation rates but also selection
and crossover functions, whereas temperature and annealing
function are important parameters for second part of the
method.

For satisfactory results GSA needs to have well-chosen
parameter settings. �ese settings are generally selected by
repeated trial and error. To reduce the computational burden
in this process, a simpli�ed test track, in our case 2000m
single track with various gradients and no curvature, is
used. In the parameter setting process, the costs obtained for
various conditions are given in Table 3. Noting that the test
labeled GSA 1 has the best cost, we use its settings for the
actual problem with the test track shown in Figure 4. A brief
summary of the settings is as follows:

(i) population size: 75,

(ii) crossover rate: 0.8,

(iii) mutation rate: 0.01,

(iv) selection function: roulette,

(v) crossover function: single point,

(vi) annealing function: Boltzmann.

4.3.2. Big Bang-Big Crunch Algorithm Parameters. For Big
Bang-Big Crunch algorithm, �nding new solution candidates
is achieved by adding a random number to the center of
mass.�is randomnumber value is chosen to be decreased as
iteration number increases. Parameters which belong to Big
Bang-Big Crunch algorithm are given as follows:

(i) population size: 75,

(ii) initial point: for each variable to be optimized, average
of its attainable minimum and maximum values,

(iii) random number: $�+1 = $� ⋅ 10−4/� where � andH are
the iteration and generation numbers.

4.3.3. Fire	y Algorithm Parameters. Attractiveness and light
absorption coe�cient are two signi�cant parameters to deter-
mine the speed of convergence and e�ciency of �re	y algo-
rithm. For the simulations to be carried out, the algorithm
parameters were heuristically chosen as follows:

(i) population size: 75,

(ii) attractiveness, *: 0.2,
(iii) light absorption coe�cient, 3: 1,
(iv) randomization number, �: 0.5.

4.4. Simulation Results. In the case study we apply GSA, FA,
andBB-BCalgorithms to solve the train speed trajectory opti-
mization problem. To display the performance robustness of
the algorithms, for the test track in Figure 4, the simulations
were performed for three di
erent total travel times: 345 secs;
350 secs, and 360 secs. Furthermore, for the same purpose,
two cases (with no passenger andwith passengers) were taken
into account.
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Table 4: Energy consumption (kwh) for di
erent time limits (no
passenger).

Total travel time FA GSA BB-BC

345 s 10.45 10.18 9.85

350 s 10.26 10.00 9.78

360 s 10.16 9.84 9.39

4.4.1. Case I. In this case, where the train has no passenger,
train starts its motion from Osmangazi University station
and travel ends at Stadyum station (see Figure 4). �ere are
�ve more stations between departure and arrival stations.
Train should stop at each of these stations. For the sake
of simplicity in presentation, dwell times are disregarded.
�e alteration of gradient through the test track is given
numerically in Figure 4 and graphically in Figure 5(a). �ere
are two sharp curvatures on track where train speed needs
to be limited. At these points train speed is constrained to
15 km/h. Speed limits for the test track is shown on the speed-
position graphics in Figure 5(b).

Simulations using GSA, FA, and BB-BC algorithms were
conducted with the parameters given in the previous subsec-
tion. Optimization results for total travel time of 350 secs are
given in the form of speed trajectories in Figure 6.

Interpreting the optimal speed trajectories in Figure 6,
it is noticed that, between the �rst two stations, all the
algorithms result in all the motion phases. However, between
the 2nd and 3rd stations, BB-BC and FA algorithms result in
no coasting phase and give only the MA, CR, and BR phases.
For this part, the GSA proposes only the phases MA and
BR. A similar distinctive outcome by the GSA algorithm also
occurs between Ataturk Bulvari and Visnelik stations where
it eliminates CR phase and apply only the MA, CO, and BR
phases. For the other parts, the sequence of motion phases
complies with those shown in Table 2. Operation strategy
is controlled by determining speed levels for each phase.
Maximum speeds of BB-BC, GSA, and FA solutions are
56 km/h, 63 km/h, and 55 km/h, respectively.�e simulations
for Case I are conducted for three di
erent total travel time
limits, and for each algorithm corresponding energy costs are
shown in Table 4.

Regarding the costs illustrated in Table 4, for every
total travel time limit, BB-BC demonstrates superior per-
formance compared to GSA and FA solutions. When BB-
BC is employed, energy consumption is reduced by 6% and
3.34% compared to FA and GSA, respectively. �us, it can be
concluded that BB-BC has better cost performance compared
to the other two methods.

4.4.2. Case II. Train mass is a major factor a
ecting the
energy consumption adversely. In this case, optimal driving
strategies are searched for the train loadedwith varying num-
ber of passengers. In this case, certain number of passengers
is assumed to get in the train at every station in order to
evaluate the impact of passenger load. An exemplary number
of passengers just before train departs the indicated station
are given in Table 5. Assuming the average mass of an adult

Table 5: Number of passengers at each station.

Station Number of passengers

Osmangazi University 0

Porsuk 17

Buyukdere 41

Goztepe 54

Ataturk Bulvari 97

Visnelik 114

Table 6: Energy consumption (kwh) for di
erent time limits (with
passenger).

Total travel time FA GSA BB-BC

345 s 11.52 11.28 10.95

350 s 11.34 10.95 10.62

360 s 10.69 10.35 10.02

Table 7: Average convergence results.

FA GSA BB-BC

Convergence (generation) 24 56 44

passenger is 86 kg [55], train’s mass at the stations is shown
graphically in Figure 7.

Apart from the train’s mass, keeping Case I conditions
intact, the speed trajectory corresponding to 350 secs total
travel time is given in Figure 8.

Regarding Figure 6 a likewise interpretation of Figure 8
is possible. Energy consumption corresponding to three
di
erent total travel times is shown in Table 6.

�e BB-BC, as in the previous case, exhibits a better
performance compared to the other two. When BB-BC is
employed, energy consumption is reduced by 5.84% and 3%
on average compared to FA and GSA, respectively. Although
there is an increment in train mass approximately by 28%,
energy consumption increases by 11%. �e results show that
the GSA and FA algorithms perform reasonably well under
the conditions where the train mass changes throughout the
simulation. However, the results also show that these two
algorithms are outperformed by the BB-BC algorithm.

4.5. Discussion. Even though the heuristic optimization
methods have common features, they di
er in each other
not only in terminology but also in algorithmic structure.
All three methods are evolving population based methods
where each member of a population is a solution candidate.
Randomness is signi�cant for global optimization tools in
terms of exploring new solutions along the search space.With
the advantage of being a hybrid algorithm,GSA employs both
GA and SA to satisfy randomness. FA attributes randomness
to �re	y’s motion whereas BB-BC provides it as energy
dissipation.

�e results in Tables 4 and 6 were in terms of optimal
costs. Table 7 illustrates convergence rate features of the
algorithms.
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From what we can observe from Table 7, FA converged
to a solution faster than the others. However, its provided
solution is mediocre compared to the others. For the opti-
mizations which have restrictions or have time problems
caused by slow simulation model and infrastructure, FA
algorithm might provide practical solutions. In spite of
slow convergence rate, BB-BC generates the lowest energy
consumption. �erefore, for the optimizations which need
more e�cient solution and have appropriate simulation envi-
ronment, BB-BC might be employed. GSA provides better
solutions compared to FA but it su
ers from convergence.

5. Conclusion

In this manuscript, optimal train operation strategies are
developed using three nature-inspired metaheuristic algo-
rithms Genetic Simulated Annealing, Fire	y, and Big Bang-
Big Crunch. �eir performances are tested via MATLAB
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simulations for a local rail line under various test conditions.
�e simulations take track alignments, speed limitations,
and train mass into consideration. GSA, FA, and BB-BC
searching methods were compared for �nding the optimal
speed trajectory. Besides various track alignments and speed
limitations, changes in train mass are also considered to
provide real-like model.

Obtained results may be summarized as follows: when
chosen appropriate parameters, GSA method is in	uential
at providing solutions close to the optimal ones. Although
FA converges to the solution in short times, it still performs
mediocre solutions. All algorithms give consistent results for
both no passenger and with passenger conditions. While
BB-BC reaches the lowest cost solution, it takes a signif-
icant computational time. �e main contribution of this
manuscript is the illustration of successful applicability of
three metaheuristic optimization methods to the optimal
train operation problem.
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