
Energy-efficient Trajectory Tracking for Mobile Devices

Mikkel Baun Kjærgaard1, Sourav Bhattacharya2, Henrik Blunck1, Petteri Nurmi2
1Department of Computer Science

Aarhus University, Denmark
2Helsinki Institute for Information Technology HIIT, Department of Computer Science

University of Helsinki, Finland
mikkelbk@cs.au.dk, sourav.bhattacharya@cs.helsinki.fi, blunck@cs.au.dk,

petteri.nurmi@cs.helsinki.fi

ABSTRACT

Emergent location-aware applications often require tracking
trajectories of mobile devices over a long period of time. To
be useful, the tracking has to be energy-efficient to avoid
having a major impact on the battery life of the mobile de-
vice. Furthermore, when trajectory information needs to be
sent to a remote server, on-device simplification of the tra-
jectories is needed to reduce the amount of data transmis-
sion. While there has recently been a lot of work on energy-
efficient position tracking, the energy-efficient tracking of
trajectories has not been addressed in previous work. In
this paper we propose a novel on-device sensor management
strategy and a set of trajectory updating protocols which
intelligently determine when to sample different sensors (ac-
celerometer, compass and GPS) and when data should be
simplified and sent to a remote server. The system is config-
urable with regards to accuracy requirements and provides a
unified framework for both position and trajectory tracking.
We demonstrate the effectiveness of our approach by em-
ulation experiments on real world data sets collected from
different modes of transportation (walking, running, biking
and commuting by car) as well as by validating with a real-
world deployment. The results demonstrate that our ap-
proach is able to provide considerable savings in the battery
consumption compared to a state-of-the-art position track-
ing system while at the same time maintaining the accuracy
of the resulting trajectory, i.e., support of specific accuracy
requirements and different types of applications can be en-
sured.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’11, June 28–July 1, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0643-0/11/06 ...$10.00.

General Terms

Experimentation, Measurement

Keywords

Energy-efficiency, Positioning, Mobile computing, GPS, Tra-
jectory simplification

1. INTRODUCTION
An important feature of a modern mobile device is its

ability to determine its position. However, often not only
knowledge about its current position is required, but also
the tracking of its trajectory over longer time intervals. Ex-
amples of applications that depend on trajectories rather
than just on the current position are sports trackers that
log, e.g., running paths [12], shared ride recommenders [1],
health care applications that visualize daily patterns and
habits of patients [22], and collaborative sensing applications
that, e.g., generate maps [18], monitor the environmental
impact [19], or map cycling experiences [6].

Continuous sensing of the user’s position rapidly consumes
the battery of a mobile device. To overcome this issue, pre-
vious research has addressed the energy-efficient sensing of
the current position of a target using different sensor man-
agement strategies (e.g., a-Loc [16], RAPS [20], Zhuang et
al. [26] and EnTracked [13]). The main intuition behind
these strategies is illustrated on the left side of Figure 1.
The center of the circle depicts the last sensed position.
Energy-efficient sensor management strategies aim to esti-
mate a new position only once the target cannot be ensured
anymore to be within a certain error threshold or distance
EPosition, i.e., within the depicted circle.

Many applications require mobile devices to measure and
communicate not only the current position but also to record
and maintain information about the user’s trajectory, i.e.,
his motion history. When considering this task, termed tra-

ETrajectory

EPosition

Figure 1: Illustrating error thresholds for position
and trajectory tracking, respectively.

307

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

T
ra

je
c
to

ry
 S

iz
e
 [

N
u
m

b
e
r

o
f

P
o
s
it
io

n
s
]

Trajectory Error Threshold [Meters]

Position Tracking - EnTracked Simplified Trajectory

Figure 2: Number of positions sensed by EnTracked
compared to the number of points in the simplified
trajectory; given for a range of error thresholds and
for three hours of car data.

jectory tracking1, position tracking systems are limited by
their sole aim to schedule only the sensing of the current
position of a target, be it within some error threshold or
by best effort. For trajectory tracking our goal is instead to
know the trajectory within some accuracy, i.e., within an er-
ror ’corridor’ defined by a trajectory threshold ETrajectory.
Intuitively, this implies that as long as the points where the
motion curve bends are accurately sensed, the trajectory will
be within the error corridor.

To emphasize the magnitude of energy savings that might
be possible to achieve in trajectory tracking, Figure 2 uses
three hours of driving data and different error thresholds
ETrajectory to demonstrate the difference between positions
sensed by the EnTracked [13] position tracking system and
a trajectory simplification algorithm applied on the same
data. The simplification algorithm reduces the number of
position updates while at the same time guaranteeing that
the prescribed error threshold ETrajectory is obeyed. To use
EnTracked to sense positions so that the resulting trajec-
tory obeys the given error threshold ETrajectory, we must
set the position error threshold EPosition equal to the tra-
jectory error threshold. As indicated by the figure, the sim-
plified trajectory requires only a fifth or less of the positions
that EnTracked senses to represent the car’s trajectory while
at the same time obeying the given error threshold. For a
coarse threshold of 200 meters, the size of trajectory data is
reduced by 410 positions, whereas for a finer threshold of 10
meters the savings are an impressive 6751. As the example
indicates, even with energy-efficient position tracking sys-
tems, such as EnTracked, there is a potential for achieving
significant power savings in both sensing and communicating
motion information.

In this paper we present an energy-efficient system for
joint trajectory and position tracking. The presented sys-
tem combines trajectory simplification algorithms with tra-
jectory update protocols that minimize the power spent on
position sensing and data transmission. The proposed pro-
tocols save power by avoiding using power on data transmis-
sion by spending a smaller amount of power on simplifying

1Trajectory tracking and related terms and concepts will be
formally defined in Section 2.2.

the data on the phone before sending it. We also propose
a set of novel sensor management strategies that facilitate
achieving further energy savings from position sensing. The
proposed sensor management strategies build on EnTrac-
ked [13] and they enable intelligent switching between com-
pass, accelerometer and GPS sensing to both minimize en-
ergy consumption and optimize robustness. For example, by
using compass measurements, one of the proposed strategies
realizes energy savings by tracking relative heading changes
to estimate corner positions directly. By only depending on
relative heading changes, the system avoids two drawbacks
of phone-based pedestrian dead reckoning: the need for cali-
brating the sensor to show the correct absolute heading, and
requiring knowledge of the orientation of the phone with re-
spect to the target movement direction. Furthermore, each
sensor is by default duty cycled to the lowest possible update
rate to save energy.

The work presented in this paper makes the following con-
tributions: (1) we propose sensor management strategies
for compass-based change-of-direction sensing and adaptive
duty cycling strategies for accelerometer and compass sen-
sors; (2) we profile the power consumption of different trajec-
tory simplification algorithms to design energy-efficient tra-
jectory update protocols; (3) we extend the EnTracked [13]
system with the proposed strategies and protocols so that
the resulting system, denoted EnTrackedT , provides a uni-
fied framework for position and trajectory tracking; and
(4) we provide extensive experimental results for the pro-
posed techniques using a combination of emulations that
are based on real-world datasets as well as a validation con-
ducted using a real-world deployment. The results of the
emulation indicate that the system can switch between the
different sensor modalities, apply duty-cycling, handle dif-
ferent transportation modes, e.g., walking, running, biking
or commuting by a car and efficiently simplify trajectories.
Furthermore, they provide evidence for that the system can
considerably save energy compared to a state-of-the-art po-
sition tracking system and remain robust. The validation
in an initial real-world deployment indicates that the real
system works as efficiently as predicted by the emulation
results.

The rest of the paper is structured as follows: In Section 2
we describe the proposed sensor management strategies and
trajectory protocols and explain how we extend the earlier
EnTracked system with these. The results from evaluating
our system by means of emulation are presented in Section 3.
In Section 4 we discuss our implementation and the results
of our real-world deployment. In Section 5, we present rel-
evant related works. Finally, Section 6 concludes with a
summarizing discussion and directions for future work.

2. ENERGY-EFFICIENT TRAJECTORY

SENSING AND TRACKING
This section presents the proposed sensor management

strategies in Section 2.1 and the proposed trajectory up-
date protocols in Section 2.2. The proposed system EnTrac-
kedT constitutes a framework for both position and tra-
jectory tracking. Our work builds on the EnTracked sys-
tem [13], which focused solely on position tracking using
accelerometer based movement detection together with an
energy model to determine when to sample the device’s in-
tegrated GPS receiver. The EnTracked system has been

308

later extended with position update protocols which intelli-
gently determine when to send position updates to a remote
server [11].

EnTrackedT aims to support a broad variety of trajectory-
based applications as mentioned in the introduction. Some
of these applications will reside on the device where others
will be in the cloud. Both application types are supported
by EnTrackedT as it provides both an on-device API and a
remote service API. When utilizing EnTrackedT , trajectory-
based applications prescribe a trajectory error threshold for
tracking targets. While trajectory-based applications could
choose the highest possible accuracy, application providers
will be motivated to minimize their application’s power con-
sumption by providing higher thresholds. Otherwise users
could stop using their applications as they experience that
the application quickly drains the battery of the mobile de-
vice. For some applications this kind of thresholds can be
computed directly from the application domain as has been
demonstrated for position tracking in continuous location-
based search by Lin et al. [16].

In the following we give a few examples to illustrate both
the variety of trajectory-based applications and the span
of the error thresholds individual applications may require
or choose. First, examples of applications that profit from a
low error threshold, e.g., 10-25 meters, are sport trackers [12]
that aim to ensure, e.g., that the total length of the trajec-
tory and all its turns are accurately recorded, or health care
applications [22] that need to support detailed supervision
of a person’s schedule and actions. Medium error thresh-
olds, e.g., 50-100 meters, are suitable, e.g., for shared ride
recommenders [1] which require trajectories which are fine-
grained enough to recognize if people are commuting along
the same routes through the city, or health care applications
that record and visualize the persons’ overall daily activity
level. Even higher thresholds will be sufficient, e.g., for ap-
plications which only aim to record a user’s day schedule in
terms of the time-stamped sequence of the places of interests
he visited. EnTrackedT also provides the possibility of uti-
lizing position and trajectory tracking simultaneously, which
is desirable in a number of application scenarios. First, some
applications care for both trajectory and position monitor-
ing, e.g., a sports tracker that shares the current position
of an athlete to a community web page. Secondly, position
tracking can be used to specify when trajectory data should
be pushed from the mobile device to a remote server, e.g.,
the trajectory data should be uploaded once per traveled
kilometer.

When an application requests to use EnTrackedT for both
position and trajectory tracking, the steps illustrated in Fig-
ure 3 are carried out. First, the application issues a request
for the tracking of a device with a position and trajectory
distance threshold (1). Next the server propagates the re-
quest to the EnTrackedT client (2) which finds a start posi-
tion and returns it through the server (3) to the application
(4). The EnTrackedT client then schedules sensor tasks to
measure positions, obeying the prescribed distance thresh-
olds (5). As positions are measured, EnTrackedT consults
the used position update protocol to determine if a new po-
sition has to be delivered and if so obtains simplified trajec-
tory information from the trajectory update protocol and
returns these to the application through the server (6)+(7).

Trajectory-based
Application

EnTracked
T

(Server)

EnTracked
T

(Client="D8377")

Track "D8377"
Position: 1000m
Trajectory: 50m

Position: 1000m
Trajectory: 50m

1

2

3
4

EnTracked
T

Client Logic

6

7

5

Continue until stopped 8

Figure 3: EnTrackedT Communication.

Whenever a request has been received by the EnTrackedT

client as described above, the client handles the request fol-
lowing the steps illustrated in Figure 4. To get an initial
position, a GPS position is requested (1) and provided to
a position update protocol to consider if a position update
should be sent (2). If a position update is scheduled, the
trajectory update protocol decides whether a trajectory up-
date should be piggybacked with the position update (3),
and the update is sent to the server (4). Then, considering
the available sensor management strategies and the current
requirements, the least power consuming sensor task is se-
lected (5). The scheduled sensor tasks to pick from could
involve, e.g., monitoring the compass or accelerometer or to
sleep for a certain period (6). The process is restarted, once
a task determines that a new GPS position is needed (7).

2.1 Sensor Management Strategies
The EnTrackedT system implements a number of strate-

gies for trajectory and position tracking and the client has
on a continuous basis to select the optimal strategy given the
current tracking requirements. It therefore asks the strate-
gies, given the current requirements, how much power they
are estimated to use on average and selects the strategy
with the lowest estimated power consumption. The current
EnTrackedT system can select from the following strate-
gies: (1) a heading-aware strategy that uses the compass
as a turning point sensor; (2) a distance-aware sensor man-
agement that dynamically predicts how long the GPS can
sleep between successive position measurements; (3) and a
movement-aware sensor management scheme that uses the
accelerometer to detect stationary periods. For the heading-
aware and the movement-aware strategies the power esti-
mates depend on the level of duty-cycling and the power
consumption of the compass and the accelerometer, respec-
tively. For the distance-aware strategy, the power estimates
depends on the sleep period and on the power consumption
of the GPS. When estimating the power consumption the
strategies take into account platform-specific variations in

309

False

True

False

True

Start

Get GPS
Position

1

2

3

4

5

6

7

Monitor
Compass

Monitor
Accelerometer

Sleep X
Seconds

Trajectory
Update

Send Update

Make Position
Update?

Manage
Sensors by?

Exceed
Threshold?

Figure 4: Flow of control

the power consumption of different sensors via power pro-
files introduced as part of our earlier work [13]. For example,
using the internal GPS for obtaining a single position esti-
mate requires on average 11660 millijoules on Nokia N95
devices, whereas the same task can be accomplished using
on average only 1530 millijoules on a Nokia N97 device [11]
—mostly due to a large difference in the respective GPS
power-off delays.

2.1.1 Heading-Aware Strategy

The heading-aware strategy reduces power consumption
of trajectory tracking by employing the compass as a turn
point sensor. The idea is that no explicit update of a tar-
get’s position and trajectory is needed as long as the target is
moving in a straight line with constant speed. To sense when
to request a position update, we compare the prescribed tra-
jectory error threshold with the accumulated distance trav-
eled orthogonal to the initial heading given by the compass.
This concept is illustrated in Figure 5. The initial heading
is depicted as a dotted line (1). When the next heading
is measured, the orthogonal distance is recalculated using
the previous GPS speed reading and the difference between
the two most recent heading measurements (2). When the
new and previous heading measurements match, the orthog-
onal distance remains constant (3). Whenever the heading
changes cause the trajectory error threshold to be violated,
a new GPS position is requested (4).

Previous work has considered using the compass as a sen-
sor for mobile-phone based inertial dead reckoning [5]. How-
ever, this approach has two major drawbacks as the compass
has to be precisely calibrated to show the correct absolute
heading and as the phone has to be held with a specific
orientation towards the body so that the system can de-
termine, e.g., if the target is moving backward or forward.
Our approach avoids these drawbacks by monitoring relative

1

2 3

4

E
T
ra
je
c
to
ry

Figure 5: Heading deviations will increase the or-
thogonal distance beyond the threshold and force
the GPS position to be updated.

heading changes instead of relying on the absolute heading
or on knowledge about the phone’s orientation. Instead, we
only assume the latter to be constant during tracking. When
this assumption does not hold, the only effect is an increased
heading change which will trigger a premature position up-
date but not cause any additional tracking errors.

Formally, given a trajectory threshold Etrajectory, we cal-
culate the accumulated orthogonal distance Dorth. The or-
thogonal distance at time tk depends on the estimated speed
sgps and the initial heading θstart, on the subsequent head-
ing measurements [θ1, θ2, ..., θk] taken at times [t1, t2, ..., tk],
and on the average error σ of the compass. We assume the
average error of the compass for a Nokia N97 mobile device
to be 5% which was determined experimentally. The accu-
mulated orthogonal distance Dorth is calculated as follows:

Dorth(tk) =

k
∑

i=1

(ti − ti−1)sgps sin(‖θstart − θi‖)(1+ σ). (1)

Note that the summation allows to update the error in con-
stant time whenever a new heading measurement θk+1 be-
comes available. Whenever the orthogonal error Dorth ex-
ceeds the error threshold Etrajectory, the heading-aware strat-
egy requests a new GPS position update.

As the standard sample frequency of in-phone compasses
is often high, e.g., 10Hz for the N97 phone, we decrease the
sampling frequency to reduce power consumption. Specifi-
cally, we use the current trajectory error threshold Etrajectory

and the GPS estimated speed sgps to calculate the period ∆t
for duty-cycling the compass. As speed changes in general
and precise headings between measurements are unknown,
the target might in the worst case deviate largely from the
assumed speed and heading which causes additional uncer-
tainty about the position of the target. To take this un-
certainty into account, we calculate the period ∆t when to
sense the next heading using

∆t =
(1− u) · Etrajectory

sgps
(2)

where u models the expected amount of uncertainty. We
use a small value u = 0.01 which was set experimentally.
This value was suitable for tracking with most transporta-
tion modes in our experiments. Additional knowledge about
the motion abilities and patterns of the tracked target and
the expected irregularity of its movement can be exploited to
more specifically adapt the update time ∆t based on the cur-
rent estimated orthogonal distance Dorth(tk) and measured

310

heading θk, see also [3]. Note also, that summing in Equa-
tion 1 over signed instead of absolute heading changes, would
allow converse heading changes to cancel each other out,
thereby leading to later update times ∆t and thus higher
energy savings —at the expense, though, of a higher prob-
ability to overlook the violation of the error threshold as a
result of heading measurement errors.

2.1.2 Distance-Aware Strategy

Given knowledge of the target’s current speed pattern and
the prescribed error threshold, the distance-aware strategy
predicts the duration ∆t the GPS receiver can sleep between
successive updates. To determine the value of ∆t, we use an
error model that takes into account both the trajectory and
the position threshold, the uncertainty of the last GPS fix,
and the estimated speed from the last GPS measurement.
To minimize the power consumption and to calculate ∆t ro-
bustly, one has to take into account the delays resulting from
powering off features and request delays resulting from pow-
ering features on again. In earlier work, we have formalized
the problem as a minimization problem for a set of recursive
functions [13]. This strategy will be typically selected when
the trajectory threshold is high, e.g., above 100 meters, and
the target is traveling with a low speed. In this case it will
be more efficient to let the GPS sleep and not use any other
sensors compared to duty cycling of the compass.

2.1.3 Movement-Aware Strategy

Accelerometers can be used to detect movement and to
reduce when GPS measurement are sampled. We have ex-
ploited this strategy in our previous work for reducing GPS
sensing during position tracking of pedestrian targets. While
this strategy works well for pedestrians, it can fail when the
user is biking or driving. During these activities the ab-
sence of acceleration does not provide sufficient indication
of the tracked device being stationary. For example, the
accelerometer variance can be near zero when the user is
traveling along a smooth road with a constant speed. To
address this issue, we propose to use a speed threshold that
prevents using the accelerometer-based strategy whenever
the user is unlikely to be moving by foot.

Figure 6 compares acceleration variance to the traveling
speed for different transportation modes. The above men-
tioned problem is illustrated in the plot, since the accel-
eration variance for biking and driving may be below the
variance threshold of twenty identified for pedestrian in our
earlier work [11]. However, the plot also indicates that the
proposed speed guard allows separating the biking and espe-
cially driving data from the pedestrian data, and therefore
enables to prevent the usage of the movement-aware strategy
with these transportation modes.

To further save power consumption on the accelerometer,
earlier work by Paek et al. [20] has proposed to apply duty
cycling of accelerometers. Here we propose to consider the
error limit and the maximum speed of the target to calculate
the cycle period between samples as ∆t = Etrajectory/smax.

2.2 Trajectory Update Protocols
The task of a trajectory update protocol is to communi-

cate motion information obtained on a mobile device in an
incremental fashion, adding novel motion information when
considered suitable by the protocol. Since most positioning-

 1

 10

 100

 1000

 0 5 10 15 20 25

V
a
ri
a
n
c
e
 f

o
r

A
c
c
e
le

ra
ti
o
n
 D

a
ta

Speed [Meters/Second]

Walking Running Bike Driving

Still

Moving

Figure 6: Variance for acceleration data versus
speed for different transportation modes.

enabled devices are able to measure and output positions
at a high rate, it is natural to consider communicating only
a smaller subset of the obtained positions. This subset se-
lected should be minimal in size while still reflecting the
overall motion information obtained through the newly ob-
tained positioning measurements. Such selections are ob-
tained by simplifying a motion trajectory.

Definitions.
A trajectory

...
a is a continuous, piecewise linear function

that can be defined as follows. Let {a1, a2, . . . , an} denote a
sequence of measurements where each ai holds, among other
data, a position ai.

−→p and the time of the measurement ai.t.
For two successive measurements ai and ai+1, a spatiotempo-
ral line segment aiai+1 on the domain [ai.t, ai+1.t] is defined
as follows:

aiai+1 : t �→
(ai+1.t− t)ai.

−→p + (t− ai.t)ai+1.
−→p

ai+1.t− ai.t
. (3)

The measurement sequence {a1, a2, . . . , an} determines a tra-
jectory

...
a which is defined on the domain [a1.t, an.t]. For-

mally,
...
a is defined as follows:

...
a : t �→ aiai+1(t) , where ai.t ≤ t ≤ ai+1.t. (4)

Trajectory Simplification.
Trajectory simplification has been proposed as a means

to reduce data size [4] and communication costs from send-
ing motion information from mobile devices [15, 25]. From
an algorithmic point of view, trajectory simplification can
be viewed as a special case of line simplification, which has
been thoroughly discussed in the computational geometry
community. In the line simplification task, the goal is to se-
lect a subset of the points of the original polyline, so that the
resulting simplified polyline does not deviate more from the
original one than prescribed by a numeric error threshold.
This threshold, termed trajectory error threshold in the con-
text of this paper, is defined with regards to a chosen error
metric, which we in this section fix to be the time uniform
distance Eu. The time uniform distance Eu is defined as
the distance of a timestamped point am with respect to a
spatio-temporal line segment aiaj as follows:

Eu(am, aiaj) =
√

(xm − xc)2 + (ym − yc)2

311

Here ac = (xc, yc, tc) is the unique point on aiaj with the
same timestamp as am; see [4]. The trajectory distance
w.r.t. Eu between a trajectory

...
a and its simplification

...
u is

then obtained as the maximum of the Euclidean distances
between ai.

−→p and
...
u (ai.t) over all measured timestamped

positions ai of trajectory
...
a .

A (min-number) line simplification algorithm is called op-
timal if it outputs a simplification with the minimal number
of points among all simplifications obeying the prescribed er-
ror threshold. The most widely known and used simplifica-
tion algorithm, though not optimal, is the Douglas-Peucker
algorithm, which was designed for cartographic simplifica-
tion. The Douglas-Peucker algorithm follows the divide-
and-conquer paradigm. It starts out with the single line
segment a0an−1 between the first and the last point of the
original trajectory

...
a . It then identifies the point ai of the

original trajectory which is farthest away (w.r.t. the cho-
sen metric) from this line segment. In case, the measured
distance violates the error threshold, the point ai is added
to the simplification, and the algorithm then is called recur-
sively for a0 . . . , ai and for ai+1, . . . , an−1. The algorithm
terminates, once for all line segments generated in the re-
cursive calls no point aj of the original trajectory violates
the error threshold anymore. Lange et al. [15] proposed as
an alternative an iterative algorithm named Simple Section
Heuristic. The algorithm starts out by adding the oldest
point s0 of the trajectory

...
s to the simplification

...
u . Then,

it iteratively probes the subsequent points s1, . . . of
...
s , until

it finds a point sk so that if s0sk were part of
...
u , it would

violate the error threshold, i.e.,
...
u would leave the error cor-

ridor around
...
s . It then adds the last non-violating point

sk−1 to the simplification. The algorithm then sets sk (in
place of s0) as the next starting point and iterates until all
points of

...
s have been processed. Lange et al. furthermore

presented an optimized version of the algorithm named Sec-
tion Heuristic by reducing the number of points that need
to be probed for violations of the error threshold during an
iteration. They observed that individual probes for points
si will be unnecessary to carry out explicitly, if a violation
of the error threshold by si implies a violation by the respec-
tively latest point sj added to the list of points to probe. In
this case, these points si are removed from the list of points
to probe, thus reducing the time for probing in subsequent
iterations.

Cao et al. [4] and Lange et al. [15] empirically evaluate the
Douglas-Peucker algorithm and determined that for the in-
vestigated data sets its trajectory reduction efficiency, mea-
sured as the size of the simplified trajectory divided by
the original one, is over 90% (respectively 80%) of the ef-
ficiency obtained by an optimal simplification algorithm.
Lange et al. also evaluate that their Section Heuristics al-
gorithm has an even higher reduction efficiency. We decided
not to consider optimal line simplification algorithms, since
their computational cost is much higher, while yielding only
a marginally improved reduction efficiency. Cao et al. deter-
mine running times, several hundred times higher for opti-
mal line simplification algorithms compared to the Douglas-
Peucker algorithm, run on trajectories of a few hundred po-
sitions.

Simplification and energy consumption.
Our motivation for employing trajectory simplification is

primarily to reduce the energy costs for communicating tra-

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450 500

E
n
e
rg

y
 s

p
e
n
t

[J
o
u
le

]

Trajectory size [Number of Input Positions]

Douglas-Peucker (DP), E = 50
Douglas-Peucker (DP), E = 200

Section Heuristics (SH), E = 50
Section Heuristics (SH), E = 200

Figure 7: Power consumption of simplification algo-
rithms run on commuting data of various sizes and
with error thresholds of 50m and 200m, resp.

jectory data. These costs are proportional in the size of the
simplified trajectory

...
u , additional to some overhead for ini-

tiating the trajectory update. Computing the simplification,
on the other hand, consumes energy as well. To evaluate
these costs, and how they compare to the resulting savings
in communication costs, we plot in Figure 7 the energy con-
sumption for computing simplifications on a Nokia N97 for
commuting trajectories of varying size. The simplification
algorithms, the performance of which is shown in the figure
for trajectory thresholds of 50m and 200m, respectively, are
the Douglas-Peucker algorithm, and Lange et al.’s optimized
Section Heuristics algorithm.

The plotted data indicates that the energy costs for run-
ning the two algorithms on mobile phones exhibit the same
asymptotic behaviour as expected for their running time2:
While both algorithms have a worst-case running time of
O(n2), i.e., quadratic in the number of timestamped posi-
tions given as input to the simplification, they can be ex-
pected to perform better for real-world data. This has been
noted specifically for the Douglas-Peucker algorithm and
also shows in the plots. The same seems to hold —to a some-
what lesser extent— for the Section Heuristics algorithm by
Lange et al., which in our evaluations though showed to be
less efficient than the Douglas-Peucker algorithm, especially
for larger inputs. Since the energy-consumptions shown for
simplifications in Figure 7 are near-line, especially for the
Douglas-Peucker algorithm, this provides evidence for that
the CPU costs invested for simplifying trajectories pay off
in the overall energy budget due to reduced costs for com-
municating trajectory data. Specifically this claim holds
for the N97 phone model and for the real-world trajectory
data considered, when taking into account the radio costs
for sending trajectory data on the N97, which have been
determined experimentally to be roughly 2 millijoule per
timestamped position, and assuming that timestamped po-
sitions are sent in a format of 16 bytes. Note, that most
services will enforce a more verbose data format for sending
trajectory data (e.g. for reasons of cross-platform utilization
and web-service compliance) and thus enforce a considerably

2Note that due to upcoming multi-core and energy-aware in-
phone CPU chips, the relation between runtime and energy
costs may be less strict for future mobile phone generations.

312

Python

Entracked
T
 Client Engine

GPS
Accelero-

meter

Sensor

Management

Position Update

Protocol

Trajectory

Update Protocol

Simple Periodic

Distance-awareEuniform

Heading-aware

Movement-

aware

Dead-reckoning

Simple

RadioCompass

Figure 8: Software architecture of the EnTrackedT

client engine

higher amount of data to be sent per timestamped position
—which results in higher energy savings achievable by sim-
plification, since these grow linearly with the size of the data
format for timestamped positions.

2.3 System Architecture
We have implemented the client part of EnTrackedT in

Python for S60 based on a layered architecture as depicted
in Figure 8. From a high-level view there are two layers: a
strategy and protocol layer and a client engine layer. In the
strategy and protocol layer different protocols and strate-
gies can be plugged-into the system. The client engine layer
deals with the system logic and platform integration. The
platform integration represents a device that is capable of
sending radio packets, providing GPS positions, compass
measurements and acceleration measurements and therefore
allows the integration either to make use of the specific hard-
ware on a phone or to read in measurement logs to perform
emulation. The client engine also provides an on-device API
that applications can use to request position or trajectory
tracking. The EnTrackedT server is implemented in Java on
top of an OSGI engine as part of the PerPos Platform [8]. It
provides a Service API that applications can use to request
tracking.

3. EMULATION EXPERIMENTS
To assess the impact of the different sensor management

strategies and trajectory updating protocols on the power
consumption and position error, we have conducted a set of
emulation experiments using datasets that have been col-
lected from real life situations. In the experiments we vary
the trajectory and positioning error thresholds that are used
for tracking, and we use power models for sensors in a Nokia
N97 device to estimate the power consumption of the sys-
tem under different configurations. In the evaluation we
consider power models for (i) different phone sensors (GPS,
accelerometer and compass), (ii) data transmission over 3G
connectivity and (iii) CPU load. The power models have

been derived with the help of the Nokia Energy Profiler.3

The process for generating the power models is described
in [13] and the parameter values of the power models for the
Nokia N97 are described in [11].

As part of the experiments, we compare our system against
two published systems, EnTracked [11, 13] and the sys-
tem of Lange et al. [15]. We also consider a dead reckoning
(DR) based location update protocol while evaluating the
performance of our system for simultaneous position and
trajectory tracking. In terms of sensor management strate-
gies, we consider three different versions of our system. The
first version, periodic scheduling (PR), samples GPS mea-
surements at fixed intervals without utilizing any intelligent
sensor management strategies. We compare the above to
two versions of the system presented here: to EnTrackedT

−h

which considers the distance and movement-aware sensor
management strategies to reduce the sampling of GPS mea-
surements, and to EnTrackedT , which considers all three
sensor management strategies, i.e., also the heading-aware
strategy. In terms of trajectory simplification, we consider
the Section Heuristic (SH) algorithm introduced by Lange
et al. [15] and the Douglas-Peucker (DP) algorithm. These
algorithms are applied separately for each version of our sys-
tem.

3.1 Data Collection
We consider 11 datasets in the emulation experiments.

The datasets were collected from walking, running, biking
and car driving activities undertaken by different users. The
datasets that were considered in the evaluation are summa-
rized in Table 1 together with statistics about the number
of GPS, accelerometer and compass measurements in the
individual datasets. The overall duration summed over all
datasets is around 11.5 hours and the data contains over
23, 500 GPS measurements.

Table 1: Summary statistics of the datasets used in
the emulation experiments.

GPS #Acc. #Comp.
Duration
(hr.)

Biking
630 131178 31204 0.95
975 113732 27050 0.83

Driving
2240 208816 49667 1.52
5129 233002 55163 1.69
3068 132704 31444 0.97

Running
388 116016 27599 0.84
148 54846 13046 0.40

Walking

2049 165260 39268 1.20
3423 164184 38824 1.23
3266 152012 35962 1.10
2329 107338 25412 0.78

Total 23645 1579088 374639 11.50

Each dataset was collected by a single user who was given
a Nokia N97 mobile phone that was configured to log GPS

3Our current implementation of the system uses Python
APIs to measure instantaneous power consumption on Nokia
S60 devices, including the N97.

313

(1 Hz), accelerometer (38 Hz) and compass (10 Hz) mea-
surements onto the phone’s memory card.4 In addition, the
user carried a high precision u-blox LEA-5H GPS receiver
that sampled SBAS corrected GPS measurements at a rate
of 4 Hz. The measurements of the u-blox GPS receiver were
used as ground-truth of the user’s location in the experi-
ments and we manually inspected the measurements to en-
sure they followed the actual path of the user. Timestamps
in GPS measurements were used to match the ground-truth
values with the sensor data collected from the phone. As the
GPS values are sampled at discrete intervals, the matching
contains some inaccuracies that can cause errors in the po-
sition values. The magnitude of these errors depends on the
velocity of the user and in our case the maximal error is
around 4 meters when the user is traveling with a velocity
of 120 km/h. However, since most of our data was collected
with significantly slower velocities, the error caused by the
matching process can thus be safely ignored in the evalua-
tion.

3.2 Power Consumption
We first consider the average power consumption of the

different systems for trajectory tracking with varying trajec-
tory thresholds ETrajectory. The results of this comparison
are shown in Fig. 9(a) where the averaging is done over all
datasets. From the results we can observe that the baseline
systems, i.e., EnTracked and the system of Lange et al., con-
sistently consume more power than our system variants. The
power consumption of the former systems varies from over
450mW for a 25 meter threshold to 305mW for a 200 me-
ter threshold. The main reason for their worse performance
is that they utilize a dead reckoning protocol for sending
location updates. Consequently, they implicitly couple tra-
jectory tracking with position tracking and therefore cannot
support differing thresholds for the two tasks. The periodic
sampling strategy (PR) mainly consumes power for sampling
the GPS receiver and it has a relatively constant power con-
sumption profile at around 288mW. The power consumption
of our system variants is consistently lower. EnTrackedT

−h

and EnTrackedT perform almost identically for larger error
thresholds (135mW and 124mW). However, with smaller
trajectory error thresholds, the inclusion of the heading-
aware strategy provides substantial power savings compared
to the EnTrackedT

−h
system (255mW and 155mW). With

regards to trajectory simplification algorithms, the power
consumption of the Section Heuristic (SH) and the Douglas-
Peucker (DP) algorithms is practically identical.

The tracking of the user’s trajectory often needs to be
combined with the tracking of the user’s position with some
error threshold, EPosition. Figure 9(b) shows how the power
consumption of the different systems varies for the case where
trajectory tracking is combined with position tracking us-
ing a 1000 meter error threshold. As both EnTracked and
the system of Lange et al. perform position tracking by de-
fault, their power consumption is identical to the trajectory
tracking case. The performance of the periodic sampling
strategy (PR) is practically identical, though the position
tracking slightly increases power consumption (≈ 10 mW).
The main difference in the results is that the performance of
the EnTrackedT

−h
system decreases significantly when posi-

tion tracking is requested and becomes essentially identical

4Note, that the writing to the memory card causes negligible
energy costs, see [13].

to the original EnTracked system. This is overcome by En-
TrackedT due to the heading-aware strategy, making it the
least power consuming of all evaluated systems. Finally,
similarly to the trajectory tracking case, the results indicate
no differences in power consumption for the two trajectory
simplification algorithms.

The results of the power consumption analysis thus in-
dicate that our system EnTrackedT is able to provide sub-
stantial power savings for tracking the trajectory of the user.
Moreover, the results indicate that the highest savings can
be obtained when all of the sensor management strategies
are combined with one of the trajectory simplification algo-
rithms.

3.3 Robustness of Tracking
The use of intelligent sensor management strategies and

trajectory simplification algorithms potentially reduces the
accuracy of the tracked trajectories and positions. Each
simplification obeys a prescribed error threshold, but only
w.r.t. the original tracked trajectory. Thus, simplification
may increase the deviations of the tracked trajectory from
the ground truth. To assess the significance of these errors,
we next consider how often the different systems exceed the
given trajectory and position error thresholds w.r.t. ground
truth. To estimate these errors, we compare the ground-
truth trajectories with the simplified trajectories by esti-
mating the distance5 between ai.

−→p and
...
u (ai.t); see Sec-

tion 2.2. We first consider the robustness of the differ-
ent systems for trajectory tracking with varying trajectory
thresholds. The results of this comparison are illustrated in
Fig. 10(a). From the results we can observe that the pe-
riodic sampling strategy (PR) and the system of Lange et
al. are able to provide the most robust tracking of the user’s
trajectories. These systems sample GPS measurements fre-
quently which helps them to provide better robustness with
the expense of higher power consumption. When the error
threshold is 25 meters, all systems perform relatively poorly
with error percentages between 18 and 33. The performance
of the EnTracked system is relatively stable and its error
percentage varies between 10 and 15 percent when the error
threshold is 50 meters or above. The performance of the
EnTrackedT

−h
system is closely related to the performance

of the best systems and consistently better than the perfor-
mance of the original EnTracked system. However, the error
percentage of the EnTrackedT system is relatively high when
the requested error threshold is small. As the error threshold
increases, the performance of EnTrackedT improves and be-
comes closely related to the most robust systems. In terms
of line simplification algorithms, the Douglas-Peucker (DP)
algorithm is able to provide slightly better performance than
the Section Heuristic algorithm.

Figure 10(b) compares the robustness of the different sys-
tems when trajectory tracking is combined with position
tracking with the position threshold of 1000 meters. As
the periodic sampling strategy (PR), the system of Lange
et al. and EnTracked have been designed for position track-
ing, their performance remains identical to the trajectory
tracking case. The performance of EnTrackedT

−h
remains

closely related to the best systems when the error threshold
is within 50 meters whereas the EnTrackedT system pro-
vides better performance when the error threshold is higher.

5We use a variant of Vincenty’s algorithm [24] to estimate
the geodesic distance between two locations.

314

0 25 50 100 200
0

0.1

0.2

0.3

0.4

0.5

Trajectory Threshold [Meters]

A
v
g

.
P

o
w

e
r

[W
]

EnTracked

Lange et al.

PR,DP
EnTracked

T-h
,DP

EnTracked
T
,SH

EnTracked
T
,DP

(a) Variation of average power consumption with trajectory
threshold ETrajectory.

0 25 50 100 200
0

0.1

0.2

0.3

0.4

0.5

Trajectory Threshold [Meters]

A
v
g

.
P

o
w

e
r

[W
]

EnTracked

Lange et al.

PR,DR,DP
EnTracked

T-h
,DR,DP

EnTracked
T
,DR,SH

EnTracked
T
,DR,DP

(b) Variation of average power consumption with trajectory
threshold ETrajectory when position error EPosition is re-
quested to be within 1000 meters.

Figure 9: Comparison of power consumption for trajectory tracking (left) and for simultaneous trajectory
and position tracking.

More interestingly, in terms of line simplification algorithms,
the Section Heuristic algorithm provides significant improve-
ments in robustness over the Douglas-Peucker (DP) algo-
rithm. The reason for this is that the finite buffer length
that is required to enable position tracking causes problems
for the Douglas-Peucker algorithm.

The results indicate a clear trade-off between tracking ro-
bustness and power consumption. The best trade-off be-
tween robustness and power consumption is obtained with
the EnTrackedT

−h
and EnTrackedT systems even if they are

not as robust as some of the other systems. The results also
indicate that the optimal sensor management strategy can
depend on the accuracy requirements of the target appli-
cation. In particular, our results suggest that the EnTrac-
kedT system should be used in situations where the error
thresholds are relatively small (e.g., ≤ 50 meters) and the
EnTrackedT

−h
system should only be used when the error

thresholds are sufficiently large.

3.4 Sensor Specific Power Consumption
In addition to the overall power requirement statistics,

knowledge of energy consumption of individual sensors con-
tributing to the overall power gives us interesting insights to
the strategies. In Figure 11, we show a break-down of av-
erage power consumption into background, radio, GPS, ac-
celerometer and compass power consumptions for emulation
experiments with ETrajectory = 50 meters and without the
requirement of position tracking. It can be seen that getting
position estimations using GPS contributes a large percent-
age of the overall power and judicious use of GPS is essential
in case of energy saving. EnTracked as well as, system by
Lange et al. do not decouple position tracking from trajec-
tory tracking and suffer from radio usage while transmitting
data to a remote server. The periodic strategy combined
with trajectory simplification (DP) saves power by minimal
usage of radio. Positions are transmitted only when internal

trajectory buffer overflow occurs. EnTrackedT
−h

combined
with trajectory simplification decreases power requirement
by using the distance-aware and the movement-aware strate-
gies. The EnTrackedT strategy further decreases the use of
GPS by using the heading-aware strategy.

3.5 Movement Specific Power Consumption
To illustrate the effect of transportation mode on power

consumption, we plot average power consumption of En-
TrackedT combined with the Douglas-Peucker (DP) algo-
rithm for biking, driving, running and walking in Figure 12
with ETrajectory = 50 meters and with no motion tracking.
Here, the average is taken over all users having the same

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

EnTracked

Lange et al.

PR,DP

EnTracked
T-h ,DP

EnTracked
T ,SH

EnTracked
T ,DP

A
v
g

.
T

o
ta

l
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

Background

Radio

GPS

Accelerometer

Compass

Figure 11: Breakdown of average power consump-
tion with respect to the individual sensors.

315

0 25 50 100 200
0

5

10

15

20

25

30

35

40

45

50

Trajectory Threshold [Meters]

A
v
g
.

P
e
rc

e
n
ta

g
e
 o

f
E

s
ti
m

a
te

s
 A

b
o
v
e
 T

h
re

s
h
o
ld

EnTracked

Lange et al.

PR,DP
EnTracked

T-h
,DP

EnTracked
T
,SH

EnTracked
T
,DP

(a) Average percentage of times the distance between the
user’s estimated location and the ground-truth is above the
trajectory threshold.

0 25 50 100 200
0

5

10

15

20

25

30

35

40

45

50

Trajectory Threshold [Meters]

A
v
g
.

P
e
rc

e
n
ta

g
e
 o

f
E

s
ti
m

a
te

s
 A

b
o
v
e
 T

h
re

s
h
o
ld

EnTracked

Lange et al.

PR,DR,DP
EnTracked

T-h
,DR,DP

EnTracked
T
,DR,SH

EnTracked
T
,DR,DP

(b) Average percentage of times the distance between the
user’s estimated location and the ground-truth is above the
trajectory threshold with position tracking enabled.

Figure 10: Comparison of average position error in case of trajectory tracking (left) and for simultaneous
trajectory and positioning tracking.

transportation mode during data gathering. The figure in-
dicates maximum power saving when traveling by car which
is due to the motion of a car being generally tied to the
road network and having a relatively stable heading com-
pared to other transportation modes. Moreover, a car is
often required to stop at traffic lights or to slowly drive in
a queue. The frequent stoppage and steady heading cause
accelerometer and compass to be more active than the GPS
which results in the highest power savings. The energy con-
sumption is worst in case of running datasets. As the phone
shakes continuously during running, the accelerometer and
compass can not effectively switch off the GPS. The biking
is similar to the case of traveling by a car with less stop-
ping time. However, the Figure 12 shows a considerable
amount of accelerometer usage as the biking data gathering
included a 10 minute stopping time. In case of walking the
use of compass is least as the heading changes frequently.

4. REAL WORLD DEPLOYMENT
The results of the emulation demonstrate that our system

can enable robust and accurate tracking of the user’s trajec-
tories while at the same time reducing the battery consump-
tion caused by collecting position information. However, real
world settings contain numerous external factors that can in-
fluence the power consumption of a mobile device and that
cannot be reliably taking into account in emulations. For
example, the surrounding environment of the user, the load
of the mobile network and the distance to the currently con-
nected cell tower can influence the power consumption. To
demonstrate that our system can support trajectory track-
ing also in real world conditions, this section presents initial
results from a small deployment of the system that focused
on monitoring the trajectories of a mobile user during walk-
ing and driving activities.

We deployed two versions of our system for Nokia N97

mobile phones, both configured with a trajectory thresh-
old of 50 meters. Similarly to the emulation discussed in
the previous section, we consider two versions of our sys-
tem, EnTrackedT

−h
, which uses only the movement-aware

and distance-aware sensor management strategies, and En-
TrackedT , which uses all three sensor management strategies
proposed in Sec. 2. We deployed each version on one Nokia
N97 device together with Python S60 and the Nokia En-
ergy Profiler. Both phones had the same firmware versions
and they were not in private use. The deployment used the
same implementation of the client as the emulations, only
this time location information was obtained from the inter-
nal GPS, compass and accelerometer of the mobile phone
and the devices’ 3G radio was used for data transmissions.

Biking Driving Running Walking
0

0.05

0.1

0.15

0.2

0.25

A
v
g

.
T

o
ta

l
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 [

W
]

Background

Radio

GPS

Accelerometer

Compass

Figure 12: Average power consumption and break
down of power in case of EnTrackedT , DP with re-
spect to movement styles.

316

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
o
w

e
r

[w
a
tt
]

Time [seconds]

EnTracked
T
-h

EnTracked
T

(a) Comparison of power consumption between EnTrackedT

and EnTrackedT
−h

during driving using a trajectory thresh-
old of 50 meters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

P
o
w

e
r

[w
a
tt
]

Time [seconds]

EnTracked
T
-h

EnTracked
T

(b) Comparison of power consumption between EnTrac-
kedT

−h
and EnTrackedT during walking using a trajectory

threshold of 50 meters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000
0

50

100

P
o
w

e
r

[w
a
tt
]

E
rr

o
r

[M
e
te

rs
]

Time [seconds]

EnTracked
T
 - Power EnTracked

T
 - Error

(c) Power consumption and real error for EnTrackedT for a
trajectory threshold equal to 50 meters for driving data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600
0

50

100

P
o
w

e
r

[w
a
tt
]

E
rr

o
r

[M
e
te

rs
]

Time [seconds]

EnTracked
T
 - Power EnTracked

T
 - Error

(d) Power consumption and real error for EnTrackedT for a
trajectory threshold equal to 50 meters for walking data.

Figure 13: Power consumption and positioning error for the deployed tracking systems.

The clients also logged their internal state during the ex-
periments. Other client settings were kept the same as de-
scribed in the previous sections of the paper. We used the
deployment to conduct two field experiments within the city
of Aarhus in Denmark. Both experiments were carried out
by a single person who went around the city with two N97
phones, one running EnTrackedT

−h
and the other running

EnTrackedT . The person also carried a high-precision u-blox
LEA-5H GPS receiver which was used to collect ground-
truth data using the method described in the previous sec-
tion. In the first experiment the test participant walked a
one kilometer route and in the second experiment the par-
ticipant drove a 12 kilometer (8 miles) route in a car. Before
starting the experiment, we started the Nokia Energy Pro-
filer on both devices and configured the profiler to monitor
the corresponding EnTracked client. When the route was
finished, the Energy Profiler was stopped and the trace files
were exported from the phone.

To demonstrate that the heading-aware strategy, described
in Section 2.1.1, saves power also when deployed on a real
phone, Figures 13(a) and 13(b) compare the power con-
sumption of EnTrackedT

−h
and EnTrackedT during a part of

the experiment where EnTrackedT was using the heading-
aware strategy. From the plots we can observe that the
distance-aware strategy used by EnTrackedT

−h
has to sched-

ule GPS positions all the time to comply to the 50 meter
error threshold because of movement speed and GPS uncer-
tainty. Therefore the power consumption is always above
0.2 watt. On the other hand, EnTrackedT repeatedly uses
the heading-aware strategy which means that the GPS can
be switched off and the less consuming compass is used in-

stead. On average EnTrackedT uses 0.09 watt compared to
0.27 watt for EnTrackedT

−h
during walking. During driv-

ing EnTrackedT uses 0.17 watt compared to 0.29 watt for
EnTrackedT

−h
. The higher power consumption of EnTrac-

kedT in the driving case is due to the higher speed which
faster invalidates the orthogonal distance threshold used by
the heading-aware strategy.

Figures 13(c) and 13(d) show the power consumption and
the real positioning error of the two systems. The real po-
sitioning error is calculated with regards to the collected
ground truth. Similarly to Figures 13(a) and 13(b), we can
observe the lowered power consumption resulting from the
use of the heading-aware strategy throughout the experi-
ment. We can also observe how a decrease in error often
correlates with higher energy usage as the GPS is used. If
we consider the error plot for the driving data, the 90 per-
centile is 50.3 meters which matches the given error thresh-
old, however, there are a few violations of the threshold due
to both erroneous GPS fixes and places where the car made
sharp turns. The error plot for the walking data is a bit
better with an 90 percentile error of 44.3 meters and only
one major violation which is due to a single erroneous GPS
fix.

From these results we can conclude that also in a real de-
ployment the proposed sensor management strategies and
trajectory update protocols can save power and provide ro-
bust tracking of trajectories. Compared to the emulation
the initial deployment results also provides indications for
power savings comparing EnTrackedT

−h
and EnTrackedT .

In the deployment the consumption of EnTrackedT was a
bit lower for the walking experiment and a bit higher for

317

the driving experiment. These difference are due to differ-
ences in the amount of turns and for the driving experiment
there were no queues or stops as in the emulation data.

5. RELATED WORK

5.1 Energy-Efficient Location Tracking
Existing systems for the energy-efficient tracking of a mo-

bile device, such as EnTracked [13], typically focus on sen-
sor management strategies, e.g., for optimizing sensor duty
cycles by selecting sensors with a low power consumption
whenever possible. The RAPS systems focuses on position
tracking in urban areas [20]. The underlying motivation in
RAPS is that GPS positioning tends to be inaccurate and
often unavailable in urban areas. To reduce power consump-
tion, the system uses GSM information to predict whether
GPS information is likely to be inaccurate and other posi-
tioning methods that are less accurate in general but more
energy-efficient are used during these periods. The sys-
tem also reduces power consumption by using a movement-
aware sensor management strategy and by using Bluetooth
to share positions among neighboring peers. Another re-
lated system is a-Loc [16], which targets energy-efficient lo-
cation tracking with dynamic accuracy requirements in mo-
bile search applications where the required accuracy depends
on the spatial density of search results. Zhuang et al. [26]
study the problem of energy usage when several location-
based applications are running at the same time and how
to adapt behavior in low battery situations. They propose
to use four techniques to address the problems which they
name substitution, suppression, piggybacking and adapta-
tion.

In comparison to earlier work, the sensor management
strategies and location updating protocols presented in this
paper significantly reduce battery consumption by taking
advantage of regularities in the user’s movement patterns to
reduce the need for sampling power hungry sensors and to
trigger location updates.

5.2 Trajectory Monitoring
Previous work on system support for handling trajectories

includes work on collection and simplification of trajectories
and middleware and database abstractions for representing,
querying and processing trajectory data. A large number of
related results have been obtained within the field of mov-
ing object databases [7]. For the representation of trajec-
tories usually piecewise-linear curves in space and time are
assumed. Alternative representations, though, such as by by
probability functions and by non-linear functions have been
discussed to reflect the uncertainty inherent in monitoring
motion as well as the non-linearity of motion[21, 23, 2, 3].
Furthermore, various models and algorithms for the simpli-
fication of trajectories and their impacts on the accuracy of
query results and data derived from trajectories, have been
proposed [4, 17, 2]. Wolfson et al. [25] were the first to
show how motion status data can be used in position up-
date protocols to save costs for communicating motion data
incrementally. Lange et al. [15] present a system for trajec-
tory tracking which allows to simplify the trajectory directly
on the mobile device. In contrast to the work listed above,
Lange et al. consider and evaluate the benefits of trajectory
simplification for the cost reduction for communicating mo-
tion data. However, their system ties position and trajectory

tracking together which limits the applicability of the sys-
tem. Furthermore, their system does not address lowering
the power consumption of sensing.

To support the collection of trajectory data Kim et al. [9]
propose to use place sensing to start and stop trajectory col-
lection by observing when a target leaves and enters places,
e.g., to remove the start and stop buttons of sport track-
ers. However, their system SensLoc does not propose any
strategies that can lower the power consumption of trajec-
tory tracking; the ideas presented in this paper could enable
SensLoc to do so. A middleware named StarTrack [1] for
trajectory manipulation and comparison has been proposed
which provides an API to ease the development of trajectory
based applications. StarTreck, though, does not address how
to energy efficiently collect trajectories. Therefore, EnTrac-
kedT could be used to energy efficiently collect trajectories,
which then can be manipulated and compared using either
StarTrack or a moving object database system.

6. CONCLUSIONS
The primary contribution of this paper are the novel sen-

sor management strategies and trajectory update protocols
that can track the trajectories of mobile devices robustly
and energy-efficiently. For instance, for trajectory tracking
we propose a sensor management strategy that uses compass
measurements to sense the trajectory and continuously and
energy-efficiently evaluates the necessity to use the GPS. We
power profile trajectory simplification algorithms and trajec-
tory uploading to design energy efficient trajectory update
protocols. We extended the system EnTracked with the pro-
posed strategies and protocols to form a unified framework
EnTrackedT for position and trajectory tracking.
The results of our emulation show that the proposed meth-

ods are able to lower the energy consumption on the mobile
device considerably and remain robust even when faced with
different types of transportation modes. These results were
rechecked in an initial real-world deployment where mobile
phones were energy-efficiently tracked in an urban environ-
ment during walking and driving. The general conclusions
from this work is that savings in power can be achieved when
designing systems with direct control over trajectory sensing
on mobile devices.

In our ongoing work we pursue the following goals: First,
for better positioning support in metropolitan areas apply
the proposed methods and findings to other positioning tech-
nologies such as location fingerprinting [10] and consider
duty cycling the GPS when in low accuracy areas. Second,
consider the ideas of Lin et al. [16] for how to use acceler-
ation patterns to estimate speed. Third, propose methods
which automatically determine the parameters of our device
model for new devices.

Another potential extension of the system EnTrackedT

are sensor management strategies which adaptively switch
in low-accuracy GPS environments, e.g. urban areas, to
positioning means other than GPS. However, one drawback
of these is that they require learning of, e.g., the relationship
between acceleration patterns and velocity or positioning
accuracy for a location. For the later case this might not be
so big a problem as systems may benefit from fingerprinting
accuracy also for further reasons [14].

318

Acknowledgments

We thank Lasse Rasmussen for helping collecting measure-
ments and Morten Videbæk Pedersen for providing access to
a Python API for the Nokia Energy Profiler. The authors
acknowledge the financial support granted by the Danish
National Advanced Technology Foundation for the project
Galileo: A Platform for Pervasive Positioning under J.nr.
009-2007-2.

This work was supported in part by the Finnish Fund-
ing Agency for Technology and Innovation TEKES, under
the project Adaptive Interfaces for Consumer Applications
(AICA). The authors are grateful to their present and past
colleagues in the project. The work was also supported
in part by the ICT program of the European Community,
under the PASCAL2 network of excellence, ICT-216886-
PASCAL2. The publication only reflects the authors’ views.

7. REFERENCES

[1] G. Ananthanarayanan, M. Haridasan, I. Mohomed,
D. Terry, and C. A. Thekkath. Startrack: a framework
for enabling track-based applications. In Proc. 7th
Intl. Conf. Mobile Systems, Applications, and Services
(MobiSys 2009), pages 207–220, 2009.

[2] L. Becker, H. Blunck, K. H. Hinrichs, and
J. Vahrenhold. A framework for moving objects. In
Proc. 15th Intl. Conf. Database and Expert Systems
Applications (DEXA ’04), volume 3180 of Lecture
Notes in Computer Science, pages 854–863. Springer,
2004.

[3] H. Blunck, K. H. Hinrichs, J. Sondern, and
J. Vahrenhold. Modeling and engineering algorithms
for mobile data. In Progress in Spatial Data Handling:
Proc. 12th Intl. Symp. Spatial Data Handling (SDH
’06), pages 61–77, 2006.

[4] H. Cao, O. Wolfson, and G. Trajcevski.
Spatio-temporal data reduction with deterministic
error bounds. The VLDB Journal, 15(3):211–228,
2006.

[5] I. Constandache, R. R. Choudhury, and I. Rhee.
Towards mobile phone localization without
war-driving. In Proc. 29th IEEE Intl. Conf. Computer
Communications (INFOCOM), pages 2321–2329,
2010.

[6] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A.
Peterson, G.-S. Ahn, and A. T. Campbell. The
bikenet mobile sensing system for cyclist experience
mapping. In Proc. 5th Intl. Conf. Embedded networked
sensor systems, pages 87–101. ACM, 2007.

[7] R. H. Güting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann Publishers, 2005.

[8] J. Jensen, K. Schougaard, M. Kjærgaard, and
T. Toftkjær. PerPos: a Translucent Positioning
Middleware Supporting Adaptation of Internal
Positioning Processes. In Proc. 11th
ACM/IFIP/USENIX Intl. Middleware Conf.
(Middleware 2010), 2010.

[9] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava.
Sensloc: sensing everyday places and paths using less
energy. In Proc. 8th ACM Conf. Embedded Networked
Sensor Systems, pages 43–56, 2010.

[10] M. B. Kjærgaard. A Taxonomy for Radio Location

Fingerprinting. In Proc. 3rd Intl. Symp. Location and
Context Awareness, 2007.

[11] M. B. Kjærgaard. On Improving the Energy Efficiency
and Robustness of Position Tracking for Mobile
Devices. In Proc. 7th Intl. Conf. Mobile and
Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous 2010), 2010.

[12] M. B. Kjærgaard. Minimizing the Power Consumption
of Location-Based Services on Mobile Phones. IEEE
Pervasive Computing, To appear.

[13] M. B. Kjærgaard, J. Langdal, T. Godsk, and
T. Toftkjær. EnTracked: energy-efficient robust
position tracking for mobile devices. In Proc. 7th Intl.
Conf. Mobile systems, applications, and services
(MobiSys’09), pages 221–234, 2009.

[14] M. B. Kjærgaard and K. Weckemann. PosQ:
Unsupervised Fingerprinting and Visualization of GPS
Positioning Quality. In Proc. 2nd Intl. Conf. Mobile
Computing, Applications, and Services (MobiCASE
2010), 2010.

[15] R. Lange, T. Farrell, F. Dürr, and K. Rothermel.
Remote real-time trajectory simplification. In
PERCOM ’09: Proc. IEEE Intl. Conf. Pervasive
Computing and Communications, pages 1–10, 2009.

[16] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao.
Energy-accuracy trade-off for continuous mobile
device location. In Proc. 8th Intl. Conf. Mobile
Systems, Applications, and Services (MobiSys 2010),
pages 285–298, 2010.

[17] N. Meratnia and R. de By. Spatiotemporal
Compression Techniques for Moving Point Objects. In
Advances in Database Technology - EDBT 2004,
volume 2992 of Lecture Notes in Computer Science,
pages 561–562. Springer, Berlin, Heidelberg, 2004.

[18] S. Minamimoto, S. Fujii, H. Yamaguchi, and
T. Higashino. Local Map Generation using Position
and Communication History of Mobile Nodes. In Proc.
2010 IEEE Intl. Conf. Pervasive Computing and
Communications, pages 2 –10, 2010.

[19] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke,
D. Estrin, M. Hansen, E. Howard, R. West, and
P. Boda. Peir, the personal environmental impact
report, as a platform for participatory sensing systems
research. In Proc. 7th Intl. Conf. Mobile systems,
applications, and services, pages 55–68. ACM, 2009.

[20] J. Paek, J. Kim, and R. Govindan. Energy-efficient
rate-adaptive gps-based positioning for smartphones.
In Proc. 8th Intl. Conf. Mobile Systems, Applications,
and Services (MobiSys 2010), pages 299–314, 2010.

[21] D. Pfoser and C. S. Jensen. Capturing the uncertainty
of moving-object representations. In Proc. 6th Intl.
Symp. Advances in Spatial Databases (SSD), volume
1651 of Lecture Notes in Computer Science, pages
111–132. Springer, Berlin, 1999.

[22] J. Ryder, B. Longstaff, S. Reddy, and D. Estrin.
Ambulation: A tool for monitoring mobility patterns
over time using mobile phones. In Intl. Conf.
Computational Science and Engineering, pages 927
–931, 2009.

[23] G. Trajcevski, O. Wolfson, K. Hinrichs, and
S. Chamberlain. Managing uncertainty in moving

319

objects databases. ACM Transactions on Database
Systems, 29(3):463–507, 2004.

[24] T. Vincenty. Direct and Inverse Solutions of Geodesics
on the Ellipsoid with Application of Nested Equations.
Survey Review, 23(176):88–93, 1975.

[25] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and imprecision in modeling the

position of moving objects. In Proc. 14th Intl. Conf.
Data Engineering (ICDE ’98), pages 588–596. IEEE
Computer Society, 1998.

[26] Z. Zhuang, K.-H. Kim, and J. P. Singh. Improving
energy efficiency of location sensing on smartphones.
In Proc. 8th Intl. Conf. Mobile Systems, Applications,
and Services (MobiSys 2010), pages 315–330, 2010.

320

