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ABSTRACT Green communication for different kinds of wireless networks has begun to receive significant
research attention recently. Green communication focusesmainly on the issue of improving energy efficiency
substantially. A wireless sensor network (WSN) consists of a large number of randomly and widely deployed
sensor nodes, and these nodes themselves have the ability to wireless communicate, detect and process
data. Sensor nodes can thus detect their surrounding environment, and transmit related data to a sink via
wireless communication. This study proposes two two-tier data dissemination schemes based on Q-learning
for wireless sensor networks. In the proposed schemes, a source node uses Q-learning to find the most
energy efficient data dissemination path from the source node to the sink. The first scheme is called
TTDD-QL, and the second scheme is called TTDD-QL-A which is an advanced version of TTDD-QL.
In TTDD-QL, the reward is determined by the distance between the current dissemination node and the
sink. In each iteration, the proposed scheme will update the Q values. After multiple learning iterations,
the Q values are converged, and the data dissemination path is found according to the Q values. In
TTDD-QL-A, the reward is determined not only by the distance between the current dissemination node
and the sink but also by the remaining energy of the current dissemination node. Simulation results show
that TTDD-QL and TTDD-QL-A can reduce sensor node energy consumption and extend the lifetime of the
WSN.

INDEX TERMS Data dissemination, grid, Q-learning, sink, wireless sensor network.

I. INTRODUCTION

The Internet of Things (IoT) can connect almost all smart
devices with the Internet in order to realize intelligent iden-
tification and applications through sensing devices [1]. The
IoT has many applications in any fields, such as transporta-
tion, medicine, logistics management or even smart homes.
In addition, fifth generation mobile communication technol-
ogy (5G) [2] is a new generation of cellular mobile communi-
cation technology. The performance goals of 5G include high
transmission rates, low transmission latency, power savings,
costs reduction, and system scalability. 5G thus offers high
speed, low latency, and multi-device connection. Each of
these features is a technical bottleneck that the IoT urgently
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needs to address. In any scenario involving a large number
of connected devices, large-scale terminal-to-terminal com-
munication affects network speed, stability, and transmission
delay. Thus, routing and security solutions in 5G and IoT are
very important challenges [3]–[5]. Due to the rapid progress
of wireless network and mobile communication technolo-
gies, a rapidly growing number of applications related to
the IoT are becoming available, and related infrastructure
technologies, such as wireless sensor networks (WSNs),
mobile ad hoc networks (MANETs), and software defined
opportunistic networks (SDONs), have become increasingly
important [6]–[8].

The WSN is one of the key technologies for the devel-
opment of the IoT. In WSNs, each sensor has the ability to
wirelessly communicate, detect and process data. In addi-
tion to the sensing function, other features of the sensor
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design include its small capacity, low power use, and low
price [9]–[11]. Due to sensors’ small size, the application
of wireless network technologies is increasing in areas like
environmental observation, health monitoring, and building
monitoring [12]–[14]. In terms of environmental observation,
WSNs can be used to detect changes in the environment, as in
air pollution monitoring, ecological environment monitoring
or forest fire detection. Health monitoring can be achieved
by implanting sensors in the human body to measure indi-
vidual physical conditions and changes. Building monitoring
uses WSNs to identify potential problem with, for example,
a building’s structural integrity.
A WSN is a network formed by many sensors deployed

within a sensing area, which have the ability to sense, wire-
lessly communicate, and process information. Sensors are
not only able to sense and detect environmental targets and
changes, but can also process collected data and send that
processed data to a sink by wireless transmission [15]–[17].
In the sensing area, when a sensor node detects an event,
it is referred to as a source node. A receiving node that
collects sensing data in a WSN is referred to as a sink (base
station). Sensors usually have limited battery power, and their
batteries are quite difficult to replace. Therefore, designing
an energy efficient data transmission scheme to reduce the
overall energy consumption of a WSN is a very important
issue.
Machine learning (ML), a branch of artificial intelligence

(AI), is a method of classifying collected data, and then
learning and training data by collecting large amounts of raw
data for subsequent decision-making. The schemes proposed
in this paper applies the concept of machine learning to the
two-layer dissemination protocol of WSNs, so that learning
agents can choose energy efficient data dissemination paths
in the current environment.
The contributions of the proposed schemes are as follows:

1. Two two-tier data dissemination schemes based
on Q-learning for WSNs are proposed, called
TTDD-QL and TTDD-QL-A.

2. The source node uses Q-learning to find the most
energy efficient data dissemination path from the
source node to the sink. Two reward update strategies
are used in the Q-learning process to improve the data
dissemination performance.

3. The proposed TTDD-QL and TTDD-QL-A schemes
can effectively reduce the energy consumption of sen-
sor nodes compared with TTDD.

The remainder of this paper is organized as follows.
Section 2 introduces previous studies relevant to this
research. Section 3 presents the proposed data dissemina-
tion schemes in detail. Simulation results are discussed in
Section 4. Finally, Section 5 offers conclusions.

II. RELATED WORK

In WSNs, the grid-based data transmission method mainly
uses position information to establish a grid structure, and

transmits the collected sensing data to the sink through the
sensor nodes in the grid.

In TTDD [18], when a node in the sensing area detects
an event, that node becomes the source node, and will
divide the sensing area into a grid structure containing many
cells (grid of cells). When the grid structure is completed,
the intersections on the grid are called grid points, and
the sensing nodes closest to the grid points are called dis-
semination nodes, which are responsible for transmitting
information to the sink. In PADD [19], only a few dis-
semination nodes need to know the transmitted informa-
tion during data dissemination. An appropriate cell size is
selected to ensure that the dissemination node can transmitted
directly to its eight neighboring dissemination nodes. In addi-
tion, when establishing a dissemination path, the method
selects a dissemination node with the largest remaining
energy to transmit query packets and sensing data in order
to evenly distribute the energy consumption of the sensors on
the WSN.

CODE [20] divides the sensing area into grids, and each
grid has one coordinator that plays the role of an intermediate
node to store and transfer data. In the scheme, a data trans-
mission path is established in advance. The source node then
sends data to the sink along this path. LEUGB [21] proposes
two different types of base station positions, and discusses
the effects of different base station placements in a uniformly
divided grid forWSNs. The base station is placed at the center
and corner positions of the sensing area, and then the network
is divided into different numbers of grids to solve the problem
of base station placement and grid division. EEUGCR [22]
divides the network into grids of different sizes. In each grid,
the cluster head is selected based on the remaining power of
the sensor node, and the distance between the node and the
center point of the grid. The cluster head collects data from
the sensor nodes in the grid, aggregates the data, and transmits
it to the base station via a multi-hop transmission method.

Reinforcement learning is a machine learning
approach [23], [24], which includes enhanced learning as a
kind of reinforcement learning algorithm. In the enhanced
learning algorithm, the learning agent must try all possible
actions [25]. After continuous learning, agents can find an
optimal strategy in various states. Enhanced learning mainly
defines five terms: agent, environment, reward, state and
action. The agent interacts with the environment, and the
agent sends an action to the environment, causing the envi-
ronment to change the current state and return the reward
value. Q-learning (QL) is an algorithm for reinforcement
learning [26], [27]. In Q-learning, the agent records the values
of all possible actions in each state, and records the current
state and actions in the Q table. In each state, the agent
chooses the action with the highest Q value to perform, and
then the Q value is updated. After a number of learning
iterations, the Q values reach convergence, and a choice of
the best strategy can be found.

The following will introduce the working principle
of Q-learning. In Q-learning, the agent records the values of

74130 VOLUME 8, 2020



N.-C. Wang, W.-J. Hsu: Energy Efficient Two-Tier Data Dissemination Based on QL for WSNs

all possible actions in each state, and stores them in the Q
table. The Q value is updated by Equation (1):

Q(st , at )←Q(st , at )+α[rt+γ max
a
Q (st+1, a)−Q(st , at )]

(1)

where Q(st , at ) is the expected value obtained by performing
action at under state st , and α is the learning rate. If the
previous action is believed, then, usually, α is set to a lower
value, otherwise it is increased. If α is 0, it means that learning
no longer occurs, and α is usually a value between 0 and 1.
γ is the discount rate. After repeated iterations, the learning
experience will gradually decrease. If more attention is paid
to the future, γ is usually increased, and γ is a value between
0 and 1. rt is the reward obtained by the learning agent after
performing action at , and max

a
Q (st+1, a) is the maximum Q

value obtained in all actions a in the state st+1.

III. DATA DISSEMINATION BASED ON Q-LEARNING

In this study, each sensor node is energy-limited and knows
its remaining energy. Each sensing node has position aware-
ness capability, and its position information can be obtained
through the global positioning system (GPS) [28], [29]. The
proposed schemes each consist four phases: grid construc-
tion, selection of dissemination nodes, establishment of data
dissemination path, and data transmission.

A. GRID CONSTRUCTION

In a WSN, when a sensor node detects an event, the node
becomes the source node, and it divides the sensing area into
a grid of cells. The cell size is defined as δ. The source node
defines its position as a grid point on the grid structure, and
then transmits the data outward to the boundary of the sensing
area. Suppose the position of the source node is LS = (x0, y0),
and the positions of other grid points are LP = (xi, yj), such
that xi = x + iδ, yj = y+ jδ; i, j = ±1, ±2, . . .

In the sensing area, the geographic location of the sensing
node is represented by (x, y). In that each node may know
its own location information, they are equipped with a global
positioning system (GPS) device. A logical grid structure is
shown in Figure 1.

B. SELECTION OF DISSEMINATION NODES

Once the grid structure is completed, each grid point in the
grid infrastructure selects a sensor node to serve as a dissem-
ination node, which is responsible for storing and transferring
data. The sensor nodes closest to the grid points are selected
for data dissemination, as shown in Figure 2.

C. ESTABLISHMENT OF DATA DISSEMINATION PATH

When an event is detected, the source node sends an
announcement message to its four neighboring dissemination
nodes. The announcement message contains two parameters:
the location of source node and the cell size. When the
dissemination nodes receive the announcement message, they
store their own ID and the two parameters. They then for-

FIGURE 1. A logical grid structure.

FIGURE 2. Selection of dissemination nodes.

wards the announcement message to their four neighboring
dissemination nodes, with the exception of the upstream node
from which they received the message. The announcement
message is thus recursively transmitted to all dissemina-
tion nodes in the sensor field. When the sink receives an
announcement message from a source, the sink sends a query
message to its neighboring immediate dissemination node,
and the neighboring immediate dissemination node forwards
the query message upstream from the sink until the query
message is transmitted to the source node.
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FIGURE 3. An example of a two-tier data dissemination path.

When the source node receives the query message, it then
starts to establish a two-tier data dissemination path for data
dissemination. The first-tier data dissemination path is from
‘‘the source node’’ to ‘‘the dissemination node closest to
the sink’’. The second-tier data dissemination path is from
‘‘the dissemination node closest to the sink’’ to ‘‘the sink’’.
An example of a two-layer data dissemination path is shown
in Figure 3.
In the proposed schemes, this study includes a Q-learning

mechanism in the grid-based data dissemination scheme in
order to find an energy efficient data transmission path. The
agent thus records the Q values of all possible actions in each
state. First, some relevant terminologies must be defined:

(1) Agent: Learning agent.
(2) State: Each dissemination node represents a state.
(3) Action: The sensor node transmits the data to the next

sensor node, which is called an action.
(4) Q table: The learning agent computes the Q values

and records them in the Q table, from which the data
dissemination path can be obtained. In the Q table,
the initial Q values are all zero.

(5) Reward: The reward value that the learning agent
receives when performing an action.

In the proposed schemes, the agent records each of the
dissemination nodes and all possible transmission paths,
and computes the state transition reward values in order to
update the Q values. Once the update process is completed,
the updated Q values are stored in the Q table. The Q table
can then be used to obtain the data dissemination path. The Q
value is updated according to Equation (2):

Q(St ,At )← Q(St ,At )+ α

[Rt + γ max
A

Q (St+1,A)− Q(St ,At )] (2)

where Q(St , At ) is the expected Q value obtained by the
learning agent performing the action At in the current state
St . α is the learning rate, usually a value between 0 and 1.
Rt is the reward obtained by the learning agent performing
the action At . γ is the discount rate, usually a value between
0 and 1. max

A
Q (St+1,A) is the maximum Q value in the state

St+1 for all actions A. Thus, through Q-learning, an energy
efficient data transmission path can be obtained from the Q
table. The TTDD-QL algorithm is shown as Algorithm 1:

Algorithm 1 Data Dissemination Based on TTDD-QL

1: Construct the grid infrastructure of the sensing area
with m× n cells

2: Decide the grid points GP[i, j], where 1 ≤ i ≤ m
and 1 ≤ j ≤ n, the grid points are the intersections
on the grid

3: Decide the dissemination nodes DN[i, j], where
1 ≤ i ≤ m and 1 ≤ j ≤ n, the dissemination node
DN[i, j] is the sensor node closest to the grid point
GP[i, j]

4: Initialize Q(s, a) // start Q-learning
5: s← DN[i, j];
6: while Q is not converged {
7: Initialize Qrouting, Rear
8: s← Source;
9: while s is Sink {
10: Select a from s using the policy derived

from exploration strategy of Q
(e.g. ǫ-greedy)

11: reward← R(s, a); // reward update
12: s′← T (s, a); // state transition
13: Q(s, a)← Q(s, a)× α×

(reward +γ × max
a
Q

(

s′, a′
)

− Q(s, a));

14: s← s′;
15: Qrouting[Rear]← s′;
16: Rear← Rear + 1;
17: }
18: }
19: return Qrouting;

The following proposes two data dissemination schemes
using two different reward strategies. The first scheme is
a two-tier data dissemination scheme based on Q-learning,
called TTDD-QL. In TTDD-QL, the reward is determined
by the distance between the current dissemination node and
the sink. The second scheme is an advanced version of the
two-tier data dissemination scheme based on Q-learning,
called TTDD-QL-A. In TTDD-QL-A, the reward is deter-
mined not only by the distance between the current dissemi-
nation node and the sink, but also by the remaining energy of
the current dissemination node.

First, two reward factors r1 and r2 are defined, and then
the definitions of the rewards in TTDD-QL and TTDD-
QL-A are given. r1 is the distance reward factor, deter-
mined according to diB, where diB represents the distance
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between the current (ith) dissemination node and the sink.
dSB represents the distance between the source node and
the sink. r2 is the energy reward factor, determined accord-
ing to Ei, where Ei represents the remaining energy of the
current (ith) dissemination node, and Emax represents the
initial power of the current dissemination node. The def-
inition of r1 is shown in Equation (3), and the definition
of r2 is shown in Equation (4). Reward(TTDD-QL) is shown
in Equation (5), and Reward(TTDD-QL-A) is shown in
Equation (6):

r1 =
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Reward(TTDD-QL) = r1 (5)

Reward(TTDD-QL-A) = r1 + r2 (6)

D. DATA TRANSMISSION

Once the construction of the data transmission path is com-
plete, data transmission begins. In the data transmission pro-
cess, the source node transmits data along the decided data
dissemination path until the data reaches the sink, and the
data dissemination of this round is complete. The selection
of the dissemination nodes and the data dissemination path
based on Q-learning is re-established at the beginning of each
data dissemination round. The proposed data dissemination
schemes can evenly distribute energy consumption of sensor
nodes, thereby extending the lifetime of the WSN.

The key advantages of the proposed schemes are given
below:

1. At the beginning of each data dissemination round,
the dissemination nodes are re-selected and the data
dissemination path with Q-learning is re-established,
so that the energy consumption of the sensor nodes can
be distributed efficiently.

2. The proposed schemes use Q-learning to find an energy
efficient data dissemination path for data transmission,
which can effectively shorten the data dissemination
path and extend the network lifetime.

IV. SIMULATION RESULTS

In the simulations conducted in this research, the first order
radio model [30], [31] was adopted to evaluate the power con-
sumption of sensor nodes. Eelec was the power consumption
of the circuit itself, where Eelec = 50 nJ/bit. Eamp was the
power consumed by the amplifier when transmitting packets,
where Eamp = 100 pJ/bit/m2. A transmission amplifier at
the sender node further consumed Eampd

2, where d was
the distance between nodes. Thus, the power consumed to
transmit a k-bit message a distance d was:

ETx(k, d) = Eelec × k + Eamp × k × d
2 (7)

and the power consumed to receive this message was:

ERx(k) = Eelec × k (8)

This study developed a simulator with MATLAB for
performance evaluation. Simulation experiments were con-
ducted for three data dissemination schemes: TTDD, TTDD-
QL, and TTDD-QL-A. The simulation network area was
400 m× 400m, the number of nodes ranged from 100 to 500,
and the node transmission range was set to 150 m. The initial
power of the sensors was set to 0.25 J and 0.5 J, respectively.
The cell size was set to 100 m, and the packet size was
2000 bits. The simulation parameters are listed in Table 1.

TABLE 1. Parameters used in the simulations.

In our simulations, the cell size is determined based on the
following two criteria:

1. The cell size was smaller than the transmission range,
so that the data could be transmitted directly by one-
hop.

2. The cell size was as large as possible in order to achieve
better transmission performance.

A. IMPACT OF INITIAL ENERGY

Firstly, the number of rounds executed for the different per-
centages of node death were examined. 200 nodes were used
with cell size 100 m, and the initial power was 0.25 J and
0.5 J. Three schemes were simulated: TTDD-QL, TTDD-
QL-A and TTDD, respectively. When the percentage of node
deaths for each scheme reached 1%, 20%, 40%, 60%, and
80%, the number of rounds that each simulated scheme could
perform was noted. In Figure 4, TTDD-QL-A was able to
perform a great number of rounds than TTDD-QL and TTDD.
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FIGURE 4. Impact of initial energy: (a) 0.25 J and (b) 0.5 J.

FIGURE 5. Impact of number of nodes: (a) when half of the nodes died and (b) when last node died.

TTDD-QL-A was able to perform about 1.1 times more
rounds than TTDD-QL, and 1.4 times more than TTDD.
In TTDD-QL-A, Q-learning was used to find an energy effi-
cient data dissemination path. The Q-learning considered the
remaining energy of the dissemination nodes and the distance
between the dissemination nodes and the sink. In each trans-
mission round, the maximum Q value was selected for trans-
mission, which effectively shared the energy consumption
of the dissemination nodes. Simulation results show that the
more initial power a node has, themore rounds it can perform.

B. IMPACT OF NUMBER OF NODES

Next, the impact of different numbers of sensor nodes was
examined by observing the number of rounds that each
scheme was able to execute when half of the nodes died
and when the last node died. The initial power was set to
0.25 J, and the cell size was set to 100 m. Each simulation
was conducted first with 100 nodes, and repeated with an

additional 100 more nodes, up to 500 nodes. Figure 5 shows
the number of execution rounds that each network was able
to perform under different conditions. In Figure 5(a), when
half of the nodes died, the lifetime of TTDD-QL-Awas better
than that of TTDD-QL and TTDD. In Figure 5(b), when the
last node died, the lifetime of TTDD-QL-A was much higher
than the other two schemes. Simulation results show that the
higher the number of nodes, the higher the number of rounds
that can be executed. As the number of nodes increased, more
nodes were able to share the energy consumed during data
transmission from the source node to the sink, extending the
lifetime of the WSN.

C. IMPACT OF CELL SIZE

This study also explored the effect of different cell sizes
on the lifetime of the WSN by observing the number of
rounds different schemes were able to perform with an initial
power of 0.25 J. 200 nodes were used, with an initial cell
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FIGURE 6. Number of rounds vs. cell size.

size of 60 m, which was increased by 10 m each simulation,
up to 100 m. Figure 6 shows the number of execution rounds
each network was able to perform with various cell sizes.
In Figure 6, TTDD-QL-A achieved the best performance.
Simulation results show that as the cell size increased,
the number of execution rounds each scheme was able to
perform decreased. As cell size decreased, so too did the
transmission distance between the dissemination nodes dur-
ing the data transmission process from the source node to the
sink.When the transmission distance was reduced, so too was
the energy consumed, thus the smaller the cell, the higher the
number of execution rounds.

D. NETWORK LIFETIME

The lifetime of a WSN is defined as the number of transmis-
sion rounds performed from the time that a node begins trans-
mitting data until the time at which the node can no longer
transmit data. In order to compare the lifetime achieved
using various schemes, the initial node power was set to
0.25 J, the cell size was set to 100 m, and 200 nodes were
used. As shown in Figure 7, the network using TTDD-QL-A
completed 4768 transmission rounds, the network using

FIGURE 7. Number of dead nodes vs. number of rounds.

TTDD-QL completed 4511, and the network using TTDD
completed 3289. Therefore, TTDD-QL-A can effectively
extend the lifetime of the WSN.

E. TOTAL ENERGY CONSUMPTION

Finally, this study examined the performances of the three
schemes in terms of total energy consumption. The total
energy consumption includes the data transmission cost of
the transmitter and the receiver. In the simulations conducted,
200 nodes with an initial power of 0.25 J were used, so it can
be calculated that their initial total energy was set to 50 J and
the cell size was set to 100 m. The total energy consumption
corresponding to the number of execution rounds is shown
in Figure 8. In the three schemes, as the number of rounds
performed increased, so too did the total energy consump-
tion. In the same number of rounds, TTDD-QL-A exhib-
ited the lowest total energy consumption. This is because
TTDD-QL-A usesQ learning to find themost energy efficient
transmission path from the source node to the sink, which
effectively reduce energy consumption.

FIGURE 8. Total energy consumed vs. number of rounds.

V. CONCLUSION

This paper proposed two two-tier data dissemination schemes
based onQ-learning forWSNs, called TTDD-QL and TTDD-
QL-A. When a node in the sensing area detects an event, that
node becomes the source node. The source node will then
divide the sensing area into a grid structure consisting of cells.
The intersections on the grid are called grid points, and the
sensor node closest to a grid point is called a dissemination
node, and is responsible for transferring data to the sink. In the
proposed schemes, the source node uses Q-learning to find
the most energy efficient data dissemination path from the
source node to the sink. In TTDD-QL-A, since the remaining
energy of the dissemination nodes and the distance between
the sink and the dissemination nodes are considered in order
to update the reward values, a better dissemination path
can be found by the Q-learning process. Simulation results
show that the proposed TTDD-QL and TTDD-QL-A schemes
can effectively reduce the energy consumption of the sensor
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nodes compared with TTDD. Of the two proposed schemes,
TTDD-QL-A achieves better performance in extending the
lifetime of the WSN.
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