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Abstract

Work stealing is a promising approach to constructing multi-

threaded program runtimes of parallel programming lan-

guages. This paper presents HERMES, an energy-efficient

work-stealing language runtime. The key insight is that

threads in a work-stealing environment – thieves and victims

– have varying impacts on the overall program running time,

and a coordination of their execution “tempo” can lead to en-

ergy efficiency with minimal performance loss. The center-

piece of HERMES is two complementary algorithms to coor-

dinate thread tempo: the workpath-sensitive algorithm deter-

mines tempo for each thread based on thief-victim relation-

ships on the execution path, whereas the workload-sensitive

algorithm selects appropriate tempo based on the size of

work-stealing deques. We construct HERMES on top of In-

tel Cilk Plus’s runtime, and implement tempo adjustment

through standard Dynamic Voltage and Frequency Scaling

(DVFS). Benchmarks running on HERMES demonstrate an

average of 11-12% energy savings with an average of 3-4%

performance loss through meter-based measurements over

commercial CPUs.

1. Introduction

Work stealing is a thread management strategy effective

for maintaining multi-threaded language runtimes, with a

specific target at parallel architectures and with a primary

goal of load balancing. In the multi-core era, work stealing

received considerable interest in language runtime design.

With its root in Cilk [6, 16], work stealing is widely avail-

able in industry-strength C/C++/C#-based language frame-

works such as Intel TBB [20], Intel Cilk Plus [21], and

Microsoft .NET framework [25]. The core idea of work

stealing has also made its way into mainstream languages

such as Java [24], X10 [10, 23, 30], Haskell [28], and

Scala [32]. There is an active interest in research improv-

ing its performance-critical properties, such as adaptive-

ness [2, 18], scalability [13], and fairness [14].

In comparison, energy efficiency in work-stealing sys-

tems has received little attention. At a time where power-

hungry data centers and cloud computing servers are the

norm of computing infrastructure, energy efficiency is a first-

class design goal with direct consequences on operational

cost, reliability,usability, maintainability, and environmental

impact. The lack of energy-efficient solutions for work steal-

ing system is particularly unfortunate, because the platforms

which work stealing is most promising to make impact on –

systems with a large number of parallel units – happen to be

high on power consumption and require more sophisticated

techniques to achieve energy efficiency [8, 12, 17, 22, 27,

33, 38].

HERMES is a first step toward energy efficiency for work

stealing runtimes. Program execution under HERMES is

tempo-enabled1: different threads may execute at different

speeds (tempo), achieved by adjusting the frequencies of

host CPU cores through standard DVFS. The effect of DVFS

on energy management is widely known. The real challenge

lies upon how to balance the trade-off between energy and

performance, as lower frequencies may also slow down pro-

gram execution. The primary design goal of HERMES is to

apply the characteristics inherent and unique in the work

stealing runtime to make judicious DVFS decisions, maxi-

mizing energy savings while minimizing performance loss.

Specifically, HERMES is endowed with two algorithms:

• workpath-sensitive tempo control: thread tempo is set

based on control flow, with threads tackling “immediate

work” [7] executing at a faster tempo. As it turns out,

this design corresponds to a key design principle in work

stealing algorithm: the work-first principle.

• workload-sensitive tempo control: thread tempo is set

based on the number of work items a thread needs to

tackle – indicated by the size of the deque in work steal-

ing runtimes – and threads with a longer deque execute

at a faster tempo.

HERMES unifies the two tempo control strategies in one.

Our experiments show the two strategies are highly comple-

mentary. For instance, on a 32-core machine, each strategy

can contribute to 6% and 7% energy savings respectively,

whereas the unified algorithm can yield 11% energy sav-

ings. In the same setting, each strategy incurs 6% and 5%

1 The term is inspired by music composition, where each movement of a

musical piece is often marked with a different tempo – e.g. allegro (“fast”)

and lento (“slow”) – to indicate the speed of execution.



performance loss respectively, whereas the unified algorithm

incurs 3% loss.

This paper makes the following contributions:

1. The first framework that we know of addressing en-

ergy efficiency of work stealing systems. The framework

achieves energy efficiency through thread tempo control.

2. Two novel, complementary tempo control strategies: one

workpath-sensitive and one workload-sensitive.

3. A prototyped implementation and experimental evalua-

tion demonstrating an average of 11-12% energy savings

with 3-4% performance loss over work stealing bench-

marks. The results are stable throughout comprehensive

design space exploration.

2. Background: Work Stealing

Work stealing was originally developed in Cilk [6, 16], a C-

like language designed for parallel programming. The main

appeal of work stealing is that it offers a synergic solu-

tion spanning the compute stack, bridging the gap between

abstraction layers such as architectures, operating systems,

compilers and program runtimes, and programming models.

From one perspective, work stealing is a load balancing

scheduler for multi-threaded programs over parallel archi-

tectures. The program runtime consists of multiple threads

called workers, each executing on a host CPU core (or

hardware parallel unit in general). Each worker maintains

a queue-like data structure – called a deque – each item

of which is a task to be processed by the worker. When a

worker completes the processing of a task, it picks up one

more from the deque and continues the execution for that

item. When the deque is empty (we say the worker or its

host core is idle), the worker steals a task from the deque

of another worker. In this case we call the stealing worker

a thief whereas the worker whose item was stolen a victim.

The selection of victims follows the principles observed by

load balancing and may vary in different implementations of

work stealing.

What sets work stealing apart from standard load balanc-

ing techniques is how the runtime structure described above

corresponds to program structures and compilation units.

First, each task on the deque turns out to be a block of exe-

cutable code – or more strictly, a program counter pointing

to the executable code – demarcated by the programmer and

optimized by the compiler. In that sense, to have a worker

“pick up a task” is indeed to have the worker continue its

execution over the executable code embodied in the task. To

describe the process in more detail, let us use the following

Cilk example:

L1 cilk int f ( )

L2 { int n1 = spawn f1 ( ) ;

L3 . . . / / o t h e r s t a t e m e n t s

L4 }
L5 cilk int f1 ( ) {
L6 int n2 = spawn f2 ( ) ;

L7 . . . / / o t h e r s t a t e m e n t s

L8 }
L9 cilk int f2 ( ) {

L10 . . . / / o t h e r s t a t e m e n t s

L11 }

Logically, each spawn can be viewed as a thread cre-

ation. On the implementation level however, a work steal-

ing runtime adopts Lazy Task Creation [31], where for each

spawn, the executing worker simply puts a task onto its own

deque, either later to be picked up by itself or stolen by some

other worker. This strategy aligns thread management with

the underlying parallel architecture: a program that invokes

f above 20 times but runs on a dual-core CPU can operate

only with 2 threads (workers) instead of 40.

Work-First Principle The non-trivial question here is what

the item placed on the deque should embody. For instance,

when L2 is executed, one tempting design would be to con-

sider f1 as the task placed on the deque. The Cilk-like work

stealing algorithm takes the opposite approach: it places the

continuation of the current spawn statement onto the deque.

In the example, it is the program counter pointing to L3.

The current worker continues to invoke f1 as if spawn were

elided.

This design reflects a fundamental principle well articu-

lated in Cilk: the work-first principle. The principle concerns

the relationship between the parallel execution of a program

and its corresponding serial execution. (A logically equiva-

lent view for the latter would be to have the parallel program

execute on a single-core machine.) Let us revisit the exam-

ple above. If it is executed on a single-core machine, f1 is

the “immediate” task when L2 is reached, and hence carries

more urgency. For that reason, f1 should be immediately ex-

ecuted by the current worker, whereas the continuation is not

as urgent and is hence placed on the deque.

Work-first principle plays a pivotal role in the design of

work stealing systems. In Cilk, it further leads to a compi-

lation strategy known as fast/slow clones, and distinct solu-

tions for locking [16].

Deque Management One natural consequence of placing

continuations onto the deque is that the order of tasks on

the deque reflects the immediacy of processing these items

as defined by the work-first principle: the earlier the item is

placed, the less immediate it is. For example, if the control

flow of a worker reaches L10, two tasks are placed on the

deque, the program counter for L3 (when the spawn in L2 is

executed) and the program counter for L7 (when the spawn

in L6 is executed). In a serial execution, L3 will only be

encountered after L7.



9 

9 

4 

5 

5 

 6 

3 1 

(a) 

9 

8 

4 

5 

5 

4

 

6 

2 

9 

7 

4 

5 

5 

6 1 

(b) 

(c) 

9 

6 

4 

5 

5 

 5 

(d) 

9 5 

4 

5 

5 

 4 

6 

9 

8 4 

4 

5 

5 

3 

(e) (f) 

H  

T
 

H  

T
 

H  

T
 

H  

T
 

H  

T
 

H  

T
 

 

 

 

 

1 2 3 4 1 2 3 4 

1 2 3 4 1 2 3 4 

1 2 3 4 1 2 3 4 

71

7

2

7

3

7

7

 12

Figure 1: Work Stealing: An Illustration

With this observation, deque is designed as a data struc-

ture that can be manipulated on both ends. Let us call the

head of the deque as the earliest item placed on the deque by

the worker, whereas the tail of the deque as the latest. When

a worker becomes idle, it always retrieves from the tail of its

own deque, i.e. the most immediate task. On the other hand,

when a thief attempts to steal from a worker, it always re-

trieves from the head of that worker’s deque, i.e. the least

immediate task. From now on, we call the worker placing a

task to its own deque a push, while removing a task from its

own deque a pop. We continue to use term steal to refer to a

worker removing a task from another worker’s deque.

Figure 1 illustrates the time sequence of a typical pro-

gram execution on a 4-core CPU (numbered as 1-4 at the

bottom of each sub-figure). For each pair of adjacent fig-

ures, the elapsed time is one time unit. The rectangle below

the dotted line is the currently executed task, and the rectan-

Algorithm 2.1 Worker

w : WORKER

procedure SCHEDULE(w)

loop

t← POP(w)

if t==null then

v = SELECT()

t← STEAL(v)

if t==null then

YIELD(w)

else

WORK(w, t)

end if

else

WORK(w, t)

end if

end loop

end procedure

Structures

structure WORKER

DQ // deque (array)

H // head index

T // tail index

end structure

structure TASK

... // program counter, etc

end structure

Other Definitions

procedure WORK(w, t)

// worker w runs task t

procedure SELECT()

// select and return a victim

procedure YIELD(w)

// yield worker w

procedure LOCK(w)

procedure UNLOCK(w)

// lock/unlock w

Algorithm 2.2 Push

w : WORKER

t : TASK

procedure PUSH(w,t)

w.T++

w.DQ[w.T]← t

end procedure

Algorithm 2.3 Pop

w : WORKER

procedure POP(w)

w.T– –

if w.H > w.T then

w.T++

LOCK(w)

w.T−−
if w.H > w.T then

w.T++

UNLOCK(w)

return null

end if

end if

UNLOCK(w)

return w.DQ[w.T]

end procedure

Algorithm 2.4 Steal

v : WORKER // victim

procedure STEAL(v)

LOCK(v)

v.H++

if v.H > v.T then

v.H– –

UNLOCK(v)

return null

end if

UNLOCK(v)

return v.DQ[v.H]

end procedure

Figure 2: Work Stealing Algorithm

gles above form the deque for the worker on that core, with

the top rectangle representing the “head” task (H) and the

bottom representing the “tail” task (T). The number inside

the rectangle represents the number of time units needed to

complete that task if the task were to run serially. In the first

elapsed time unit – from Figure 1(a) to Figure 1(b) – core

2 spawn’s another task with 2 time units. Its continuation,



with 12-1-4 = 7 time units left, is pushed onto the tail of its

deque. In the same elapsed time, core 4 completes its exe-

cuting task. Since its deque is empty, core 4 steals from the

head of the deque of core 2, as shown in Figure 1(c). Another

stealing happens in Figure 1(e), after core 3 becomes idle in

Figure 1(d). In Figure 1(f), core 2 completes its current task,

but since its deque is not empty, it pops a task from the tail

of its deque.

Work Stealing Scheduler Fig. 2 provides a simplified

specification of the classic work stealing algorithm. The

state of each worker thread is maintained by data structure

WORKER, which consists of a deque DQ and two indices for

its head (H) and (T) respectively. As shown in Algorithm 2.1,

a worker either attempts to POP a task from its deque – or

if it is not available – SELECT a victim and STEAL a task

from it. Once a task is obtained, the worker WORK’s on it,

during which (we elide the WORK specification here) may

further spawn new tasks and PUSH them to its deque. If no

task is available either through POP or STEAL, the worker

thread YIELD’s its host core. We leave out the definition

of SELECT: a typical implementation (such as in Cilk) is a

randomized algorithm.

The definitions of PUSH, POP, and STEAL are pre-

dictable, with PUSH incrementing the tail index, POP decre-

menting the tail index, and STEAL incrementing the head

index. One invariant the scheduler maintains is the head in-

dex is less than or equal to the tail index. When head index

and tail index are equal, there is a possibility a thief and

a victim attempt to work on the same task. To resolve po-

tential contention, LOCK and UNLOCK are introduced. The

locking strategy adopted by most work stealing runtimes are

reminiscent of optimistic locking. This somewhat stylistic

protocol is known as THE [16], orthogonal to the rest of the

paper.

3. Energy Efficient Work Stealing

In this section, we describe how HERMES improves energy

efficiency of work stealing runtimes. The overall technique

of HERMES is DVFS-guided tempo control: different work-

ers can execute at different speeds – workers tackling more

urgent tasks run at the faster tempos to retain high perfor-

mance, whereas others run at the slower tempos to save en-

ergy. The main challenge in this design is to determine the

appropriate tempo for each worker thread, and the timing for

tempo adjustment. To achieve this goal, we developed two

novel algorithms.

3.1 Workpath-Sensitive Tempo Control

Our workpath-sensitive tempo control strategy is fundamen-

tally aligned with the work-first principle of classic work

stealing algorithms: tasks encountered earlier – if the pro-

gram were to be executed serially – carry more immediacy

and will be executed at the faster tempos. Recall that in work

stealing systems, the order of tasks on the deque reflects the

immediacy, with the head being the least immediate. Further,

recall that a thief always steals from the head of a victim’s

deque. Hence, every worker executing a stolen task carries

less immediacy than its victim worker.

The workpath-sensitve tempo control strategy says that

the victim worker takes precedence over the thief worker

in a thief-victim relationship, or in other words, the thief

worker should be executing at a slower tempo than the vic-

tim worker. It is important to realize that the thief-victim

relationship between workers has a dynamic lifespan: it is

formed at steal time, and terminates when either the thief or

the victim completes its current set of tasks and becomes idle

again.

Specifically, workpath-sensitive tempo control entails

two important design ideas:

• Thief Procrastination: At the beginning of the thief-

victim relationship, the tempo of the thief worker should

be set to be slower than the victim worker.

• Immediacy Relay: If the thief-victim relationship termi-

nates because the victim runs out of work, the tempo of

the thief should be raised. In this case, the previous victim

worker simply becomes an idle thread, and the immedi-

acy should be “relayed” to the thief.

Intuitively, the design of Immediacy Relay can be anal-

ogously viewed as a relay race. When a worker finishes the

tasks that carry immediacy, it needs to pass on the immedi-

acy “baton” to the next worker.

Figure 3 demonstrates the key ideas of workpath sen-

sitivity, with the 6 subfigures representing (not necessarily

consecutive) “snapshots” of a program execution sequence.

We use different gray-scales to represent different tempos.

The darker the shade of the circle is, the slower tempo the

hosted worker is executed at. Worker 1 starts in Figure 3(a)

with a task of 100 time units. In Figure 3(b), a task with 94

time units is pushed to the deque and subsequently stolen

by worker 2. According to Thief Procrastination, worker

2 executes at a tempo one level slower than worker 1. In

Figure 3(c), worker 3 steals from worker 2 (i.e., “a thief’s

thief”) executing at a tempo further slower than worker 2.

At Figure 3(d), worker 1 finishes all its tasks. According to

Immediacy Relay, its thief (worker 2 in this case) needs to

raise its tempo. Intuitively, what worker 2 currently works on

is the “unfinished business” when the 100 time units started

on worker 1. When worker 2 raises its tempo by one level,

HERMES transitively raises the tempo of worker 2’s thief.

This is demonstrated in Figure 3(e). In Figure 3(f), worker

1 steals again, starting a new thief-victim relationship with

worker 2, except that worker 1 this time is the thief.

3.2 Workload-Sensitive Tempo Control

HERMES is further equipped with a workload-sensitive strat-

egy for tempo control. The intuition is simple: a worker

needs to work faster when there are more tasks to handle.
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Figure 3: Example: Workpath-Sensitive Tempo Control

In the case of work stealing, a natural indicator of the work-

load is the deque size: the number of tasks waiting to be

processed by a worker.

We demonstrate the ideas of workload-sensitivity through

Figure 4. Let us assume we have three tempo levels, set

based on the deque size with two thresholds: 1 and 3. As

a convention, HERMES always bootstraps the program exe-

cution with the fastest tempo, as in Figure 4(a). At snapshot

Figure 4(b), core 2 steals one task. Since its deque is of size

0, lower than the first threshold, the tempo for worker 2 is

set at the lowest one. As worker 2 progresses such as PUSH

more tasks to its deque, its tempo rises to the medium level in

Figure 4(c), and then fastest level in Figure 4(d). The tempo

is slow downed again when worker 2 is stolen, dropping its

deque size below the second threshold in Figure 4(e), and

even slower when it pops more items from its own deque in

Figure 4(f).

HERMES determines the thresholds through a lightweight

form of online profiling. Our runtime periodically samples

deque sizes, and computes the average of the last fixed num-
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Figure 4: Example: Workload-Sensitive Tempo Control

ber of samples. Let that average be L. In an execution with

K thresholds, the thresholds for the next period are set at

thldi = ( 2×L

K+1
)× i

where 1 ≤ i ≤ K. For example, if the average deque size

is 15 and there are 2 thresholds, we apply the fastest tempo

if the deque size is no less than 20, the medium tempo for

a deque size between 10 and 20, and the slowest tempo

otherwise.

3.3 Unified Algorithm Specification

Figure 5 presents the pseudocode of the core HERMES algo-

rithm. The modifications on top of the classic work steal-

ing algorithm are highlighted, with two colors indicating

workpath-sensitive and workload-sensitive support respec-

tively.

The key data structure to support workpath sensitivity is

a double-linked list across workers, connected by the next

and prev pointers. The list maintains the order of immedi-

acy: when worker w1’s next worker is w2, it means w2 is

processing a task immediately following the tasks processed



Algorithm 3.1 Worker

1: w : WORKER

2: procedure SCHEDULE(w)

3: loop

4: t← POP(w)

5: if t==null then

6: w0 = w.next

7: for w0 != null do

8: UP(w0)

9: w0← w0.next

10: end for

11: w.prev.next← w.next

12: w.next.prev← w.prev

13: w.next← null

14: w.prev← null

15: v = SELECT()

16: t← STEAL(v)

17: if t==null then

18: YIELD(w)

19: else

20: DOWN(w, v)

21: if v.next != null then

22: w.next← v.next

23: v.prev← w.prev

24: end if

25: v.next← w

26: w.prev← v

27: WORK(w, t)

28: end if

29: else

30: WORK(w, t)

31: end if

32: end loop

33: end procedure

Algorithm 3.2 Tempo Adjustment

procedure DOWN(w, v)

// set w to one tempo lower than v

procedure DOWN(w)

// set w to one tempo lower

procedure UP(w)

// set w to one tempo higher

Algorithm 3.3 Push

w : WORKER

K: number of thresholds

t: TASK

procedure PUSH(w, t)

w.T++

w.DQ[w.T]← t

if w.T - w.H > w.thld[w.S] then

if w.S < K-1 then

w.S++

UP(w)

end if

end if

end procedure

Algorithm 3.4 Pop

w : WORKER

procedure POP(w)

w.T−−
if w.H > w.T then

w.T++

LOCK(w)

w.T−−
if w.H > w.T then

w.T++

UNLOCK(w)

return null

end if

end if

UNLOCK(w)

if w.T - w.H < w.thld[w.S] then

if w.S > 0 then

if w.prev ! = null then

w.S−−
DOWN(w)

end if

end if

end if

return w.DQ[w.T]

end procedure

Algorithm 3.5 Steal

v : WORKER // victim

procedure STEAL(v)

LOCK(v)

v.H++

if v.H > v.T then

v.H– –

UNLOCK(v)

return null

end if

UNLOCK(v)

if v.T - v.H < v.thld[v.S] then

if v.S > 0 then

if v.prev ! = null then

v.S −−
DOWN(v)

end if

end if

end if

return v.DQ[v.H]

end procedure

Structures

structure WORKER

DQ // deque (array)

H // head index

T // tail index

next // next immediate work

prev // prev immediate work

thld // size thresholds (array)

S // size threshold index

end structure

Figure 5: Core HERMES Algorithm ( X for Workpath Sensitivity and X for Workload Sensitivity)

by worker w1, where immediacy is defined according to the

work-first principle.

When stealing succeeds (lines 20-27), the thief worker

becomes the immediate next worker of the victim. The

tempo of the thief is set to be one level slower than the victim

(line 20), and the prev and next references are properly set

(lines 25-26). We will detail the implementation of tempo

adjustment in the next subsection. One issue to address is



that the victim might already be stolen by another thief

before. In that case, the algorithm inserts the current thief

ahead of the previous thief on the linked list (lines 21-24).

In other words, the current thief is more immediate than the

previous thief. This corresponds to how the order of tasks

on the victim’s deque reflects immediacy: the tasks stolen

earlier are not as immediate as the tasks stolen later (recall

Sec. 2).

When a worker becomes idle again and out of work

(line 6), it effectively terminates the thief-victim relation-

ship previously developed since it became out of work last

time. If the current worker is a victim, then according to

the design of Immediacy Relay, the tempos of its thieves

are raised, passing on the immediacy (lines 7-10). Note that

UP(w) is defined to raise the tempo of w one level up from its

current level, so in a scenario where a thief worker w1 is fur-

ther stolen by another thief w2, both workers will have their

tempo raised by one level, and w2 can still maintain a slower

tempo than w1. Finally, the current worker is removed from

the linked list (lines 11-14).

Workload sensitivity is relatively simple to support. Each

worker maintains an array thld to record its thresholds,

with the number of thresholds defined by constant K. The

computation of the thld was described in Sec. 3.2. The

algorithm increases the tempo when PUSH makes the deque

size reach the next threshold up, or decreases the tempo

when either POP or STEAL reduces the deque size to the

next threshold down.

One interesting aspect of our algorithm is that work-

path sensitivity and workload sensitivity work largely in-

dependently – workpath-sensitive tempo control is applied

when the deque is empty whereas workload-sensitive tempo

control is appplied when the deque is not – so the unifi-

cation of the two is a simple matter. The only intersction

of the two lies in one fact: when a worker is at the be-

ginning of the immediacy list, we choose not to reduce its

tempo even if workload sensivity advises so. This can be

seen in the w.prev!= null condition in POP and the simi-

lar v.prev!= null condition in STEAL. In other words, if

the task a worker processes is immediate, we still execute it

with a fast tempo regardless of deque size.

3.4 Lower-Level Design Considerations

Tempo-Frequency Mapping HERMES achieves tempo ad-

justment through DVFS, and modern CPUs usually support

a limited, discrete number of frequencies. We now define

tempo adjustment in the presence of a fixed number of fre-

quencies. Let {f1, f2, . . . , fn} be frequencies supported by

a CPU core, where fi > fi+1 for any 1 <= i <= n−1. For

simplicity, let us assume all cores of a CPU support the same

frequencies. The algorithm in the previous section stays the

same, except UP and DOWN procedures should be refined.

For instance,

procedure DOWN(w, v)

f ← frequency of core hosting v

if f == fi and i < N then

. . . // scale core hosting w to fi+1

end if

end procedure

where N <= n is a constant to further restrict the range of

frequencies used for the runtime. In other words, a CPU may

support n frequencies, but a runtime may only choose to use

the highest N -number. In practice, a subset of frequencies

often strikes a better trade-off between energy and perfor-

mance: they are sufficient to yield energy savings, yet with-

out incurring significant performance penalties due to low

operating CPU frequencies. We call this design N -frequency

tempo control.

Worker-Core Mapping HERMES relies on the knowledge

of the relationship between workers (threads) and their

hosting CPU cores, information readily available in work

stealing runtimes. For maintaining this mapping, we allow

for two scheduling strategies in our experiments: (a) static

scheduling: each worker thread is pre-assigned to a CPU

core; (b) dynamic scheduling: each worker thread may mi-

grate from one core to another during program execution.

The only requirement for dynamic scheduling is that during

the processing of a task (i.e. an invocation of the WORK pro-

cedure), a worker stays on its host core. With this, OS cannot

re-assign a worker to a different core if preempted, invali-

dating frequency settings at context switch time. We think

this is a reasonable design because (1) work stealing by de-

sign is a load balancing strategy, overlapping with the goal

of OS-level load balancing; (2) work stealing tasks usually

take a short amount of time to complete.

We achieve the goal of binding workers to cores through

affinity setting. For dynamic scheduling, affinity is set right

before each WORK invocation (line 27 and line 30) and reset

at the completion of each invocation.

One scenario common in standard multi-threaded pro-

gram runtimes is the support of multiple threads executing

concurrently on the same core. This is a non-issue for work

stealing runtimes. Lazy task creation fundamental in work

stealing entails that the number of workers can be statically

bound by CPU resources, not program logic.

Tempo Setting of Idle Workers/Cores HERMES does not

adjust CPU frequencies when a worker becomes idle but

fails to steal. This corresponds to lines 17-18 in the algorithm

where YIELD happens. In work stealing systems, there are

usually more tasks to keep all workers busy, either through

POP or STEAL, with YIELD relatively uncommon. When a

YIELD does happen, the core is often reallocated to another

worker, which sets its CPU frequency based on its own

workpath-sensitive and workload-sensitive rules.

Overhead The overhead of our approach comes in 3 as-

pects: (1) DVFS switching cost. DVFS switching time is

usually in the tens of microseconds, magnitudes smaller than



Figure 6: Normalized Energy Savings (Blue) and Time Loss (Red) of HERMES w.r.t. Intel Cilk Plus on System A

Figure 7: Normalized Energy Savings (Blue) and Time Loss (Red) of HERMES w.r.t. Intel Cilk Plus on System B

Figure 8: Normalized EDP for System A

the execution time of tasks. Our use of DVFS is relatively

coarse-grained: tempo control is not applied during the exe-

cution of a task. (2) online profiling of workload threshold;

(3) affinity setting in dynamic scheduling.

4. Implementation and Evaluation

HERMES is implemented on top of Intel Cilk Plus (build

2546). In this section, we present the experimental results.

Figure 9: Normalized EDP for System B

4.1 Experiment Setup

We selected benchmarks from the Problem-Based Bench-

mark Suite (PBBS) [5]. The benchmarks support parallel

programming, and our selection of the benchmarks support

Cilk-like syntax such as spawn. K-Nearest Neighbors (KNN)

uses pattern recognition methods to classify objects based

on closest training examples in the feature space. Sparse-



Figure 10: Energy: Workpath vs. Workload on System A

Triangle Intersection (Ray) benchmark returns the first tri-

angle each penetrating ray R intersects in a set of triangles

T in a three-dimensional bounding box. Integer Sort (Sort)

is an implementation of parallel radix sort. Comparison Sort

(Compare) is similar to Sort but uses sample sort. Convex

Hull (Hull) is a computational geometry benchmark.

To measure the effectiveness of our approach across plat-

forms, we constructed our experiments on two systems:

• System A: a machine with 2×16-core AMD Opteron

6378 processors (Piledriver microarchitecture) running

Debian 3.2.46-1 x86-64 Linux (kernel 3.2.0-4-amd64)

and 64GB of DDR3 1600 memory. Each processor sup-

ports 5 frequencies: 1.4GHz, 1.6GHz, 1.9GHz, 2.2GHz

and 2.4GHz.

• System B: a machine with an 8-core AMD FX-8150

processor (Bulldozer microarchitecture) running De-

bian 3.2.46-1 Linux (kernel 3.2.0-0.bpo.2-amd64) and

16GB of DDR3 1600 memory. The processor supports

5 frequencies: 1.4GHz, 2.1GHz, 2.7GHz, 3.3GHz and

3.6GHz.

Piledriver/Bulldozer microarchitectures are among the

latest commercial CPUs that support multiple clock-domains,

i.e. CPUs whose individual cores can have their frequencies

adjusted independently. Specifically, in both architectures,

every two cores share one clock domain. In other words,

System A has 16 independent clock domains, whereas Sys-

tem B has 4. To avoid the undesirable DVFS interference,

all our experiments are performed over cores with distinct

clock domains. For example, our experiments on System A

consider as many as 16 workers, and no two workers may

share the same clock domain.

Energy consumption is measured through current meters

over power supply lines to the CPU module. Data is con-

verted through an NI DAQ and collected by NI LabVIEW

SignalExpress with 100 samples per second. Since the sup-

ply voltage is stable at 12V, energy consumption is computed

as the sum of current samples multiplied by 12× 0.01.

We executed each benchmark using both our HERMES

scheduler as well as the unmodified Intel Cilk Plus scheduler

as a control. For each benchmark, we run 20 trials and

Figure 11: Time: Workpath vs. Workload on System A

Figure 12: Energy: Workpath vs. Workload on System B

Figure 13: Time: Workpath vs. Workload on System B

calculate the average of the trials, disregarding the first 2

trials.

4.2 Experimental Results

Overall Results Figure 6 and Figure 7 summarize the en-

ergy/performance results of HERMES on System A and Sys-

tem B respectively. All data are normalized against the base-

line execution over unmodified Intel Cilk Plus. The blue

columns are the percentage of energy savings of HERMES,

while the red columns are the percentages of performance

(time) loss. The results are grouped by benchmarks, and

within each group, the columns show different numbers of

workers. On System A, we conducted experiments using 2,

4, 8, and 16 workers (hence each group in Figure 6 has 4

columns, in that order). On System B, we conducted exper-

iments using with 2, 3, and 4 workers (hence each group in



Figure 14: The Effect of Frequency Selections on System A

(For each benchmark, the 4 groups are for 2, 4, 8, 16 workers

respectively. Within each group, columns 1 and 4 are energy

saving and time loss for frequency pair 2.4/1.6GHz; columns

2 and 5 are energy saving and time loss for frequency pair

2.4/1.4Ghz; columns 3 and 6 are energy saving and time loss

for frequency pair 2.4/1.9Ghz)

Figure 15: The Effect of Frequency Selection on System B

(For each benchmark, the 3 groups are for 2, 3, 4 workers

respectively. Within each group, columns 1 and 4 are energy

saving and time loss for frequency pair 3.6/2.7GHz; columns

2 and 5 are energy saving and time loss for frequency pair

3.6/2.1Ghz; columns 3 and 6 are energy saving and time loss

for frequency pair 3.6/3.3Ghz)

Figure 7 has 3 columns, in that order). The last columns in

both Figures show the average.

In both systems, HERMES average 11-12% energy sav-

ings over 3-4% performance loss. We have further computed

the Energy-Delay Product (EDP) of the benchmarking re-

sults, and the normalized results are shown in Figure 8 and

Figure 9 respectively. Often used as an indicator for demon-

strating the energy/performance trade-off, EDP is the prod-

uct of energy consumption and execution time. A smaller

value in EDP is aligned with our intuition of improved en-

ergy efficiency. In both System A and System B, the average

normalized EDP is about 0.92.

HERMES shows remarkable stability across benchmarks,

worker counts, and underlying systems. EDP is improved

without exception. Throughout our experiments, stability

is a recurring theme. This is an unexpected feature while

experimenting in a highly dynamic setting.

Relative Effectiveness of Workpath vs. Workload Sensitiv-

ity To determine how much workpath sensitivity and work-

load sensitivity contribute to HERMES, we also run bench-

marks with only one of the two strategies enabled. Figure 10

and Figure 11 shows the energy/time effects on System A,

while Figure 12 and Figure 13 shows the energy/time ef-

fects on System B. To highlight the individual contributions

of the two tempo control strategies to the unified HERMES

algorithm, we normalize the percentage of savings/loss. For

instance, if a tempo control strategy alone can lead to 6% en-

ergy savings whereas the HERMES algorithm (unified with

both strategies) can lead to 12% energy savings, we record

6/12 = 0.5 in Figure 10 and Figure 12. For another in-

stance, if a tempo control strategy alone can lead to 6% per-

formance loss whereas the HERMES algorithm (unified with

both strategies) can lead to 3% performance loss, we record

6/3 = 2 in Figure 11 and Figure 13. In all figures, the blue

columns are the workpath-only results and the red columns

are the workload-only results.

This set of figures show the complementary nature of

workpath sensitivity and workload sensitivity. Take the 8-

core execution of Compare on System A for example. In

Figure 10, workpath sensitivity alone leads to around 60%

energy savings relative to the unified HERMES algorithm,

and workload sensitivity alone leads to around 55% energy

savings relative to the unified HERMES algorithm. The over-

all energy saving is nearly the sum of saving from the two

strategies alone. In Figure 11, again for the 8-core execu-

tion of Compare, the time loss of workpath-alone strategy is

about 1.6 time of the time loss of the unified algorithm, and

the time loss of workload-alone strategy is about 1.7 time

of the time loss of the unified algorithm. In other words, the

unified algorithm obtains the best of the two worlds: the uni-

fied strategy leads to more energy savings (almost the sum

of the strategies alone), but incurs less performance loss (al-

most half of the strategies alone).

The Effect of Frequency Selection We conceptually ex-

plored the design space of tempo-frequency mapping in Sec-

tion 3.4, and now experimentally evaluate the effects of

different frequency mapping strategies. Figure 14 and Fig-

ure 15 are results for mapping tempos to different CPU

frequencies. For simplicity, we only consider 2-frequency

tempo control, where the fastest tempo is mapped to the first

frequency, and all other tempos are mapped to the second

frequency. In all experiments, we fix the frequency for the

fast tempo – 2.4Ghz for System A and 3.6GHz for System B

– and experiment with different settings for the slow tempo.

As predicted, selecting a higher frequency for the slow

tempo is likely to yield less performance loss, but also fewer

energy savings. This is demonstrated by columns 3 and 6 in

each benchmark for both Figures, and the effect is particu-

larly evident in System B. Selecting a very low frequency for

the slow tempo (columns 2 and 5 in each benchmark for both

Figures) will lead to significant performance loss. In fact,



Figure 16: N-Frequency Tempo Control on System A (For

each benchmark, the 4 groups are for 2, 4, 8, 16 work-

ers respectively. Within each group, columns 1 and 4 are

energy saving and time loss for 2-frequency combination

2.4/1.6GHz; columns 2 and 5 are energy saving and time

loss for 3-frequency combination 2.4/1.6/1.4Ghz; columns 3

and 6 are energy saving and time loss for 3-frequency com-

bination 2.4/1.9/1.6Ghz)

Figure 17: N-Frequency Tempo Control on System B (For

each benchmark, the 3 groups are for 2, 3, 4 workers respec-

tively. Within each group, columns 1 and 3 are energy sav-

ing and time loss for 2-frequency combination 3.6/2.7GHz;

columns 2 and 4 are energy saving and time loss for 3-

frequency combination 3.6/3.3/2.7Ghz)

such a selection is not wise for energy savings either: sig-

nificant increase in the execution time may increase energy

consumption, because the latter also holds a linear relation-

ship with time. Heuristically, our experiments seem to sug-

gest the optimal combination often comes with the golden

ratio: the frequency for the slow tempo is about 60% percent

of the one for the fast tempo.

N-Frequency Tempo Control In the next set of experi-

ments, we study how the number of frequencies impact the

results, demonstrated in Figure 16 and Figure 17. Over-

all, the results between 2-frequency tempo control and 3-

frequency tempo control are similar. A 3-frequency tempo

control can sometimes incur less loss on performance, as

demonstrated by column 6 for each group in Figure 16 and

column 4 for each group in Figure 17, but the 2-frequency

tempo control has a slight edge on energy savings. We sur-

Figure 18: Static vs. Dynamic Scheduling

Figure 19: Static vs. Dynamic Scheduling (time series,

KNN, 16 workers, System A)

Figure 20: Static vs. Dynamic Scheduling (time series,

KNN, 8 workers, System A)

mise the small advantage of 2-frequency tempo control on

energy savings might be due to its lesser overhead on DVFS.

In this context, tempo adjustment occurs less frequently.

Static Scheduling vs. Dynamic Scheduling In Section 3.4,

we discussed the design choices between static scheduling

and dynamic scheduling of workers. Figure 18 demonstrates

the effectiveness of HERMES under static scheduling and dy-

namic scheduling respectively. Figures 19-22 are a more de-

tailed analysis, demonstrating the time series of energy sam-

ples as the result of static scheduling and dynamic schedul-

ing respectively. The “shape” of the time series are clearly

dependent on the nature of the benchmarks and their set-

tings (such as the number of workers). For each benchmark



Figure 21: Static vs. Dynamic Scheduling (time series, Ray,

16 workers, System A)

Figure 22: Static vs. Dynamic Scheduling (time series, Ray,

8 workers, System A)

with the same number of workers, the execution of static

scheduling and that of dynamic scheduling do display simi-

lar patterns. Note that in each figure, the two time series are

from different executions. For parallel programs with signif-

icant non-determinism, it should not be surprising that two

executions of the same program do not “spike” at the same

time.

As demonstrated in the figures, dynamic scheduling in-

curs a slightly higher level of energy consumption. We be-

lieve this is due to the overhead needed for setting/resetting

affinity to workers for each WORK invocation. We discussed

this topic in Sec. 3.4. We investigated into a large number of

time series, but found no evidence static scheduling led to

significant imbalance (e.g. times series with drastically dif-

ferent patterns from their dynamic scheduling counterparts).

5. Related Work

Energy efficiency in work-stealing run-times is an emerging

problem that has so far received little attention. The only

prior work we know of is a short essay [26] that called for

the coordination between the thief and the victim to improve

energy efficiency. We now summarize related work in two

more established areas: optimization of work stealing run-

times and energy efficiency of multi-threaded programs.

Improving various aspects of work-stealing system effi-

ciency has been a central issue throughout the development

of work-stealing systems. Indeed, the original work steal-

ing algorithm [16] was designed for load balancing, with di-

rect impact on the performance of multi-threaded systems.

A-Steal [2] is an adaptive thread scheduler to take paral-

lelism feedback into account at scheduling time. Dinan et.

al [13] improved the scalability of work stealing run-times

through optimizations ranging from lock reduction to work

splitting. SLAW [18] is a work-stealing scheduler with adap-

tive scheduling policies based on locality information. Adap-

tiveTC [36] improves system performance through adaptive

thread management at thread creation time. BWS [14] im-

proves system throughput and fairness in time-sharing multi-

core systems. Kumar et. al. [23] applies run-time techniques

such as dynamic compilation and speculative optimization to

further reduce the overhead in the context of managed X10.

Acar et. al. [1] designed a non-shared-memory model to re-

place the locking model based on shared memory. Perfor-

mance characterization of Intel TBB with work stealing was

systematically conducted by Wu et. al. [11]. Bender and Ra-

bin [4] formally analyzed the performance of work stealing

systems on top of a heterogeneous platform, where parallel

units may operate on different, yet fixed, frequencies.

There is a large body of work studying the energy effi-

ciency of multi-threaded programs on parallel architectures.

On the architecture level, Iyer and Marcelescu [22] studied

the impact of DVFS on multi-clock-domain architectures.

Wu et. al. [38] designed a DVFS-based strategy where the

interval of DVFS use is adaptive to recent instance issue

queue occupancy. Magklis et. al. [27] designed a profiling-

based DVFS algorithm on CPUs with multiple clock do-

mains. On the OS level, numerous efforts exist to apply

DVFS for energy management, starting with the seminal

work by Weiser et. al. [37]. Recent examples include CPU

Miser [17] (DVFS based on job workload in clusters) and

Dhiman et. al. [12] (DVFS based on online learning). Be-

yond DVFS, effective approaches for energy management

of multi-threaded programs include thread migration [33], a

combination of thread migration and DVFS [8], and soft-

ware/hardware approximation [15, 34]. The boundary be-

tween architecture and OS for energy efficiency is often

blurred. For example, Merkel et. al. [29] designed an energy-

aware scheduling policy for thermal management, with in-

puts from hardware performance counters. Further afield,

energy efficiency can also be achieved through compiler op-

timization (e.g.[19, 39]) and language designs (e.g. [3, 9, 34,

35]).

6. Conclusion

This paper introduced HERMES, a novel and practical solu-

tion for improving energy efficiency of work-stealing appli-

cations. HERMES addresses the problem through judicious

tempo control over workers, guided by a unified workpath-

sensitive and workload-sensitive algorithm. HERMES only

requires mild changes to the work stealing runtime. With



no changes necessary for the underlying architectures, OS,

or higher-level programming models, the minimalistic ap-

proach can still yield significant energy savings with little

performance overhead.

References

[1] ACAR, U. A., CHARGUERAUD, A., AND RAINEY, M.

Scheduling parallel programs by work stealing with private

deques. In PPoPP ’13 (2013), pp. 219–228.

[2] AGRAWAL, K., HE, Y., AND LEISERSON, C. E. Adap-

tive work stealing with parallelism feedback. In PPoPP ’07

(2007), pp. 112–120.

[3] BAEK, W., AND CHILIMBI, T. M. Green: a framework for

supporting energy-conscious programming using controlled

approximation. In PLDI’10 (2010), pp. 198–209.

[4] BENDER, M. A., AND RABIN, M. O. Scheduling cilk multi-

threaded parallel programs on processors of different speeds.

In SPAA ’00 (2000), pp. 13–21.

[5] BLELLOCH, G., FINEMAN, J., GIBBONS, P., KYROLA, A.,

SHUN, J., TANGWONSAN, K., AND SIMHADRI, H. V. Prob-

lem based benchmark suite, 2012.

[6] BLUMOFE, R. D. Executing Multithreaded Programs Effi-

ciently. PhD thesis, Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science,

Cambridge, MA 02139, 1995.

[7] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling mul-

tithreaded computations by work stealing. J. ACM 46, 5 (Sept.

1999), 720–748.
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