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Energy Exchange between Inert Gas Atoms and a Solid Surface.

By J. M. JacksoN, Department of Mathematics, University of Manchester,
and N. F. Morr, M.A., Gonville and Caius College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received July 19, 1932).

§ 1. Introduction.—If gas atoms, having energy corresponding to a tempera-
ture Ty, are incident on a solid surface at a temperature T, then the reflected
atoms will have a mean energy corresponding to some new temperature T,
which is a funetion of T, and T,. For simplicity it is convenient to define
Knudsen’s thermal accommodation coefficient as

S R o
8= 2 —}l'rn,l—»T T, =T,

The accommodation coefficient depends on the nature of the gas atom, the
nature of the solid surface, and the temperature T.

Accommodation coefficients have been measured by various workers, and
the present paper is an attempt to give a theoretical explanation of the results
of Roberts,* who has measured the accommodation coefficient for helium on
tungsten at various temperatures, taking particular precautions to obtain a
clean surface.

The first step in the calculation of the accommodation coefficient is the
calculation of the probability that when a gas atom with energy W hits an atom
of the solid in the quantum state 7, a transition will take place to the state n.
We denote this probability by p,* (W). One must then assume some energy
distribution for the vibrating solid atoms. We assume that they are all
independent, so that the number in the state with energy W, is proportional
to exp. (— W,/KT), as in the Einstein specific heat theory. The accommo-
dation coefficient is then found by averaging p,* for all W and all 7, n.

A theory of the accommodation coefficient has already been given by one of
us,T the interaction energy between the solid and the gas being taken to be
of the form V = C for » >0, V =0 for <0, where r denotes the distance
between the two atoms. With a suitable choice of €' it was possible to obtain
a fairly good fit with the experimental curve. This type of field has, however,
little resemblance to the actual field between the gas atom and the solid surface.

* ¢ Proc. Roy. Soc.,’ A, vol. 129, p. 146 (1930) ; vol. 135, p. 192 (1932).
+J. M. Jackson, ‘ Proc. Camb. Phil. Soe.,” vol. 28, p. 136 (1932).
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The method of caleulating the accommodation coefficient given in this
paper will be followed, except that we shall take the interaction energy between
the gas atom and the solid atom to be of the form

Jexp. (— ar).

Zener* has calculated the accommodation coefficient using a field of this
type, but in calculating the transition probabilities he approximates to the
exponential by means of an inverse square term A (r — b) 2 adjusted to fit on
smoothly to the exponential at the classical distance of closest approach.
This approximation appears to affect the answer by a factor of about 6. Good
agreement. with experiment was only obtained by giving @ the somewhat large
value 65 % 10% em. 1,

In the present paper we have been able to evaluate the integrals involved
in the transition probabilities exactly without making any approximations,
Quite a simple formula is obtained, and good agreement with experiment,
with a more reasonable value of a (8 x 10¥cm. ?). We also discuss the validity
of the perturbation method used, and come to the conclusion that this is almost
the only collision problem in which the terms neglected in a first order per-
turbation theory are certainly small.

§ 2. The Probabilities of Energy Transfer—In this section we shall treat the
solid surface as consisting of an assembly of independent atoms each free to
vibrate about a position of equilibrium with the same frequency v. The
problem is to calculate the probability that, when a gas atom of given energy
collides with an atom of the solid vibrating in the nth stationary state, the
solid atom will make a transition to the »'th state. The model used is one
dimensional, both atoms being supposed to move only at right angles to the
surface of the solid.

Let X denote the displacement at any time of the solid atom from its mean
position. The Schridinger equation for the unperturbed solid atom is then

(H—W,) ¢, (X) =0, (1)
where H denotes
o LW B G R
87*M dX* ’
M being the mass of the solid atom. Equation (1) has the usual series of
oscillator eigenfunctions ¢, (X) and eigenvalues W, = (n + §)hv. We
assume that the oscillator wave functions ¢, (X) are normalised to unity.

*  Phys. Rev.,” vol. 37, p. 557 (1931) ; vol. 40, pp. 178, 335 (1932).
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Let us denote by {, the wave function of the initial state and Y, the wa§e
function of the final state of the solid atom. Let m denote the mass of the gas
atom and z its distance from the mean position of the solid atom.

We take for the interaction energy V (z, X) between the two atoms

V(z, X) = Cexp [— a(z — X)]. (2)

Let ¥ (z, X) be the wave function which describes the collision and satisfies
the wave equation

2 A2 8x%m R

[_H+8n2;n(i472+ h? {aie=e o M)J\F—:O' )
We require a solution with the following property ; if it is expanded in a
series

then for large « we must have

Ji (@) ~ exp (— ikaz) + A, exp (ikz)

Jo (@) ~ A, exp (ik,2) n# 1. (5)
Here

k; = 2remo, [k, k, = 2momw, [h,

v, being the velocity of the gas atom before collision, and v, its velocity after
it has excited the solid atom to the state .

The solution (5) represents a wave of unit amplitude falling on the solid
atom together with a number of reflected waves, The probability per collision
that the transition ¢ —»n will take place is

k a
pl“ = ]Tn IAn |2. (b)
i

The method appropriate to the solution of equation (3) depends on the
value of the constant @ in the expression (2) for the interaction energy. If a1
is small compared with the amplitude of oscillations of the solid atom, the atoms
may be treated as rigid elastic spheres. In §3 a method of solution suited
to this case is given. If ¢! is large compared with this amplitude, the method
employed by Zener is appropriate. This is discussed in § 4.

From the two formuls one can obtain transition probabilities for all values
of @ by interpolation. We may remark here that if « ! is large compared to
the wave-length of the incident atoms, the collision is adiabatic and no energy
transfer takes place.

VOL. OXXXVIL~—A, 3 A
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§ 3. Rigid Elastic Spheres as a Model for the Atoms.—In this section the
atoms are treated as rigid elastic spheres ; that is to say, we write the inter-
action energy in the form

V (z, X) =0 e-ole= %0 )

and let @ > . & may be interpreted as the sum of the radii of the spheres.

Then
V(x, X)=0 z—X>E

=wo z—X<E§
We have therefore to find a solution of
A
[—H+%d_m§+w]qf(z, X) =0,

which vanishes along the line # — X =& Such a solution, having the
asymptotic form required in (4) and (5), is

¥ (2, X) = §; (X) 20 sin &, (2 — &) + = A, (X) exp [ik,],
the A, being chosen in such a way that
Yy (X) 28 mn kX - 2 8,9, (X) exp i (X £ 5)] = 0 (8)

for all values of X.

Now the wave-length of the incident helium atoms is large compared with
the amplitude through which the solid atoms vibrate ; hence ¢, (X) is only
finite in a region in which kX, k,X, etc., are small. We may therefore replace
exp tk,X in (8) by unity. We obtain
for all X. §

Hence multiplying by ¢, (X) and integrating over all X, we obtain

A" = — 2’1;]6,-X¢,| exp (= zkna)z

where

X = | Xy ax. ©)

Hence from (6) the probability that the transition will take place is
Pt = 4k ik, I Xin IS‘ (10)
§ 4. In this section we suppose that a1 is large compared with the amplitude

of vibrations of the solid atom. (This is in fact the case, since for tungsten
at ordinary temperatures this amplitude is of order 2107 ¢m.) The method
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is that used by Zener. It is similar to the Born method in collision problems,
differing from it in that distorted zero order wave functions must be used.
We substitute the solution (4) in equation (3) and obtain

& 80 -, (-x
%[Ez +k”3 == 7 e olz N] fu () 4),. (X) = 0. (11)
We now write
V,, (@) = Bﬁzz,c j e 4@ | (X) g, (X) dX,
which is equal to
U@ Y,,
where
U (z) = 8n2mCe =[R2, (1L.1)
Yo = [ e~ ¢, (X) ¢, (X) dX. (11.2)

Expanding e**, and remembering that X is small in the region* (denoted by
7) where ¢, is finite, we have to a very good approximation
Yo, =1

We thus have approximately
Von (@) = U (@). (12)
Further, we see that
Y, ns1 is of order at,

Y, ns2 i8 of order (at)%

From equation (11), multiplying by {,(X) and integrating with respect
to X from —o to 4=,

(&4 k2) £, + 2 V@ fo @) =0 (13)

This equation is exact.
We have just seen that the non diagonal terms V,, are emall compared
with the diagonal terms V,,,. We may therefore solve (13) by the method of

successive approximations. We set for the waves representing the incident

and elastically reflected particles

fo@) =F0 +OH (14.1)
and for the particles reflected after causing a transition
PR T Sl (14.2)

* 1 is equal to about 1071° cm.
342
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Substituting in (13) we obtain

2
[:;2‘" kt2 e Vu:l f«‘m =0, (15)
[‘zi:'*' kgt — va]fnm =Y, U (2) £ (), n # . (16)

We note that V,;, = V,, = U ().
Let now F,, (z) denote that solution of the equation

(& 4k — U@ |F @ =0, (17)

which tends to zero as & - — 0o, and is normalised so as to have the asymptotic

form
F,~cos(k,z+7) z—->+4o, (18)

where 7 is a constant. Then we must take
fi® = 2F, (), (18.1)

representing an incident and reflected wave each of unit amplitude, as demanded

by (5).
We may solve (16) by the substitution

Ja? (2) = yF,, (2).

d |/ \

dﬁ
2 Sl
(\F,, ) =2V, U@F,F,

This gives

Integrating, and remembering that f, must vanish as ¢ - —o we have
F2% oy, j U (2)F,F, da.
dw -
Integrating this equation, we have, for large values of ,

1 ow
Y ~ [I;; tan (k,x + ) + const] 2Y . j

U (z) F,F, dz.
Choosing the constant so that f,, shall have the asymptotic form (5), we find

(8 8] T 2Yin R
Fa® ~ exp [— i (ke + 7)) 2 j U («) F,F, de.

" o0
Hence we have (¢f. equation (5) )

2Y
IA"|= k‘"

J'” U (2) F,F, dz,

n
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and from (6) the probability per collision that the solid atom of energy W will
make a transition from the state 7 to the state n is
3 4(Y,,,)=[8n2m0

n
Ps Tk, L

j s dz]a. (19)

Zener obtains the result (19) without the factor 4. This is due to the omission
of a factor 2 in the equation corresponding to (18.1).

§5. We now require the exact solutions of (17) which tend to zero as
2z -+ —o0, and which have the asymptotic form (18) as 2 - o . Writing

Uiz} = Bl
we can transform (17) by means of the substitution

y = 2B/a.exp (— }ax);
we obtain
Flionty ' Fot @y —1DF, =0,
where the dashes denote differentiation with respect to y, and

Gn = 2k,/a.

This is Bessel’s equation of imaginary order ¢g, and imaginary argument 7.
In the usual notation of Bessel functions* the solution of this equation which
tends to zero as z tends to — is

K 7 (y)’ q = qn'

This function can be represented by the integral®
I{“ (y) = [ e_ynush % 008 VR du. (20)

It is clear from (20) that as z > — andy —~ 4%, Ky(y) ~0. In order
to show that it behaves like cos (kz + 1) as @ =+, y =0, we proceed as
follows. Making the substitution ¢ cosh u = , and assuming that y is small,
the integral (20) becomes

[ T[22\ | (22\"%]dz

[ e B (Z) +(5) =

0 Y i
which reduces to

( :h )‘cos(kz-{—n).

\g sinh g/
Thus for F,, (z) we must take
F, (o) = (L) K, (o) (21)

* (1. N. Watson, * Bessel Functions,” pp. 73, 181.
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§ 6. Caleulation of the Transition Probabilities—In §§3 and 4, equations
(10) and (19), we have obtained expressions for the transition probabilities
per collisions for gas atoms incident on the solid with definite energy. It is

readily found that™*
}
Yons1 =@ (M) (22)

8=*Mhv/h?
_ el 4+141)(n4 1)
Yunsr = e )
‘We have further
X“Vl = 0 i # n :t 1

=Y. Jo  s=mlaly
From (10) we have, therefore, for elastic spheres,

ptt =45 (H 3L DEETF P (24)

where
E = W/hy.

The evaluation of (19) depends on the integral

row

L ¢~ B .F, da.

Changing the variable of integration to y as before we find for this integral

2 RS pce 3 ro
ah® (qq’' sinh =g’ sinh =q) j’ Ko v

1672m(C 1+

0

here ¢ is written for ¢,, ¢’ for ¢,.
Using (20) we can write the integral on the right as a repeated integral,
namely

jw jm r ye v (cosht+ coshi) oog gy cos ¢t du dt dy.
0 Jo Jo

Putting the lower limit of the y integration equal to y,, and interchanging
the order of integration so that the y integration is performed first, afterwards
allowing y, to tend to zero, we find that this integral reduces to

g J"" j' e cos ¢t cos gt
—wJ —w (cosh t + cosh u)? :

* Sommerfeld, * Wellenmekanik,” p. 61.
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Making the substitution* ¢ + « = 2T, ¢t — u = 2U, we find that this integral
becomes

“eos(g+¢)T cos (¢ — q)
%L cosh® T dTJo cosh® U o

By integrating e'”*/cosh®z round the closed rectangular contour — w0, 4 o,
+ ® +m, — © 4 7, enclosing the point z = dix, we find that

[ * cos px
Jo cosh?z

dx = }=p/sinh dmp.
Therefore we have

| vy KK, = 1m2 @ — ) (cosh g — cosh ).

The transition probability p," is therefore

n_a Y,! - P =i g ’
& = 3K K 9 [cosh 7’ — cosh n:q] o Lt ke
particular
ni1 _ 32m o_n.@ sinh ¢ sinh ¢ -
y P h? (mt+ixd) (cosh 7g — cosh ng’)? 0:1)
an
Pt =4 (7 ) (v 1 L 1)k 1) 20y sinh g, (25.2)

(cosh 7tq — cosh =g")*
etc.

Here ¢, ¢’ are d4momuv/ah, dmmv'[ah where v, v' are the velocities of the gas
atom before and after the collision.

It is interesting to note that if we allow @ to become very large in equation
(26.1), the formula (25.1) tends to the form (24) obtained for hard spheres.
Thus, although there is no theoretical justification for using this perturbation
method for large @ (as the non-diagonal elements are not small), the result
obtained seems to be valid for all a.

§ 7. Caleulation of the Thermal Accommodation Coefficient—The thermal
accommodation coefficient « is defined at the beginning of §1. Using this
definition it has been shown by one of ust that « can be expressed as a double
series of partial accommodation coefficients a(n|n’), one for each particular
quantum transition n —#»’; it was found that

a= 5 3 alnw), (26)

ne=0 n =0

* (3. N. Watson, loc. cit., p. 440.
1 Jackson, loe. cit.
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where

a(n|n) =% p3(l —e™*) (n —n')2e ™ P," (). (27)
In this expression p = @/T where © is the characteristic temperature of the
solid, and

P, (1) = [ pa" (B) e ¥ a. (28)

Expressions for p,™ have been given in the previous section (equations (25) ).
To calculate the accommodation coefficient we must therefore evaluate the
integral (28).

We write
oo =ua (1) + e (2) + ... (29)

where a(s) is a partial accommodation coefficient corresponding to change of
quantum number by s.
We obtain, summing over all n, »° which differ by unity and by two

o) =7 pdle™—1)2P(1, p) (30)

@ (2) =4 p?(e* —1)-2 P (2, p), (31)

where P (1, p), P (2, 1) are to be obtained from (28), for the cases n' = n + 1,
n' =n + 2, by omitting the factor (n + § 4 1) from (25.1) and (24), and
the factor (n 4+ 1) (n + 4 1) from (25.2).

Further terms of the series (26) have not been investigated, as in the case of
helium on tungsten «(2) is never more than 5 per cent. of «(1). The con-
vergence seems sufficiently good to justify the neglect of further terms of the
series,

Only in the case of rigid elastic spheres [§3 and § 6, equation (24)] is it
possible to evaluate the integral (28) analytically. In this case, we have from
(24)

-

P (1, p) = 4%’“0[143 (E + 1) ] e #® dE.

Changing the variable of integration to u, where u = 2E - 1, this integral
reduces to

b5 (Ko () — Ko Gl e,

where K, and K are Bessel functions of the third kind. We find from (29)
and (30)
@ = o (1) = hu® T2 cosech b Ky (he) — Ko (bur) (32)
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This is the result for a molecular model of rigid elastic spheres. With such a
model the nature of the gas only enters into the result in the mass-ratio factor
m/M and thus the accommodation coefficients of various monatomic gases at
the same temperature on a clean tungsten surface would be proportional to
their atomic weights.

With the exponential interaction energy Ce~“, the transition probabilities
per collision are given by (25).

We obtain, from (25) and (30)

i Y b sinh L Bt | o sE
32t M mhy .xslnha(E—{—l) bmhaE .e~*E JR

a)=fu (e —12 2T Y ; o
e |cosh§(E+1)*—coshIEi]
- 1 a :

2 m a®

and
sinh E (B + 2)tsinh L Bt ¢ #® gR
a

m\2 [
o (2) =4 (.Ls(e"—l)“g.h:?(;%) j- : -

’ . [cosh ZYf (E + 2)t — cosh 5 E‘]
where y2 = 327t mhv/h2.

The integrals were evaluated numerically for various values of y, . The
results are given in § 8.

§ 8. Modification of the Theory when an Attractive Potential is included in
the Field of the Solid.—In order to take some account of the possibility of
adsorption it is interesting to include in some way the long range attractive
field of the solid (van der Waals forces). The simplest method of doing this
is to include a small attractive potential step of magnitude @ situated at a
constant distance d from the mean position of the oscillating surface atom.
For d we have taken about 5 A.U.

With this very approximate representation of the attractive field of the solid,
the only modifications* which must be made in the analysis of the preceding
section are that instead of P (1) one must write

Py = p)edE, = ®/hv.

"y

(1) and (2) must also be multiplied by the factor exp O /ET.
The expressions for « (1) and « (2) now become
§ut(e—1)1exP(L )
19 3 (et — 1) 2ex P (2, x)-

* Jackson, loe. cil., p. 156.
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The factor e*X increases as the temperature decreases, but the integral
P (1, 7) decreases with the temperature more rapidly than P (1). The effect
of the factor e*X is predominant, but the alterations in the integrals P are not
negligible and are more marked for low temperatures.

§ 9. Numerical Results.—The experiments of Roberts (loc. ¢it.) provide the
only available data with which the theory may be compared. The experi-
mental results for tungsten and helium are

295° K, o = 0-057; 195° K, « = 0-046 ; 79° K, &« = 0-025.

Calculations have been made for values of ¢ equal to 4-02, 8-05, 9-00 x
10% em. ™%, and also for the hard sphere model. The value of the characteristic
temperature © of tungsten is 205° K, if we take the atomic frequency to be
4-3.10%.sec.”%. This frequency is determined from Lindemann’s melting
point formula, which gives good agreement with the values of ® determined
from specific heat data, particularly in the case of metals. The accommodation
coefficient was computed for the above values of a, and for the following values

of p
p=0-7,1-0, 1-4, 2-0, 3-0
or
T = 293° 205° 147°, 102-5°, 68-4°

For the attractive potential step we have taken z = 0-20, 0-25, and also zero.
The two former values correspond to @ = 3-54 and 4-43 . 1072 electron volts,
or heats of adsorption® of helium on tungsten of the order of 80-100 cals. /gm.
atom. These are probably of the correct order of magnitude.

The variation of the accommodation coefficient with temperature for various
values of @ and @ is shown in fig. 1. In fig. 2 the results are shown multiplied
by an arbitrary factor to fit them to the experimental curve at T = 205° K.
We do this for two reasons : firstly it is possible that the use of a one dimen-
sional model may have introduced a constant factor in our results; and
secondly the experimental values are probably too large, owing to the roughness
of the solid surface. The best agreement is obtained with a = 9 x 10% ecm.™?,
which is rather large.

The value a =4 » 10 em. ! is probably approximately correct. The
theoretical curve for this value is shown in fig. 1. With this value of « one

* Lennard-Jones, ‘ Trans. Faraday Soc.,” vol. 28, p. 340 (1932).
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has to multiply the theoretical curve by 2 in order to fit it to the experimental
curve. This factor 2 may well be accounted for by the roughness of the
surface. The agreement, fig. 2, between the fitted curve and the experimental
is not quite so good as for @ = 9 X 10% em. %, but is nevertheless satisfactory

2
0:05— £
-
S
§ 2
8
3
3
S
S
< 1
0025+
>
4
| 1
0 100" 300°

ZOQ'
Jemperaiure /.

Fia. 1.—Calculated values of the thermal accommodation coefficient for tungsten /helium,
with interaction energy e—%".

Curye 1, @ = 4-02 % 108 em.™? '

Curve 2, a = 9-0 x 10% em.”? . One quantum transitions only.

Curve 3, rigid elastic sphere model J

Curve 4, a = 9-0 x 10% cm.™?, two quantum transitions only.

Curve 5, @ = 9-0 % 108 em.™, two quantum transitions only, but including an
attractive potential step x = 0-2. [@ = 3-54 . 10-2 electron volts.]

Curve 6, @ =90 X 10® em.”?, x = 0-2 including both one- and two-quantum
transitions.

Curve 7, @ = 9-0 % 10 em.~?, x = 0:25 including both one- and two-quantum
transitions.

The experimental values are marked with a cross.



716 J. M. Jackson and N. F. Mott.

s Accommoaation Coefﬁc/efztg
|

o

~n

(2]
I

| | l
0 100° 200” 300
Temperature A.

F16. 2.—Thermal accommodation coefficients : helium /tungsten fitted to the experimental
value at 205° K.

Curve 1, @ = 4:02 X 108 em.™), one quantum transitions only.
Curve 2, @ = 9-00 X 108 em.~), one quantum transitions only.
Curve 3, @ = 9-00 % 108 cm.—, including two quantum transitions.
Curve 4, rigid elastic sphere model.
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The experimental values are marked with a cross.

in view of the difficult nature of the experiments, and the simple model used
in the theory.

In fig. 3 some transition probabilities are drawn plotted against E = W/hy,
where W is the translational energy of a gas atom normal to the surface. They
are also plotted against T, where W = }KT.
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: W
051 e T for 1= 203

sy

b
/

Transition ,oméaélggy,oer Collision b (E)
g

! ! E”e’ﬂ’ o !
I 2 3 4 S(E="%
404° 808° 1212° 1616° 2020°K | =2E@
F16. 3.—Transition probabilities p,’ (E) per collision. The energy scale is in terms of
oscillator quanta, E — W /hy ; alternatively it is expressed in terms of the temperature
T = }W/K.

Curve 1, @ = 4:02 < 10% cm. ™%,

Curve 2, a = 9:00 x 108 .,

Curve 3, rigid elastic sphere model.
The curve ¢— W/ET is drawn on the same scale for T = 293° K.

Summary.

A theory of the accommodation coefficient for helium on tungsten is given,
using an exponential field between the gas atom and a surface atom of the
solid. Good agreement is obtained with the experimental results of Roberts.

In conclusion, we would like to thank Mr, J. K. Roberts for his interest in
this work.




