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Energy-Exchange Interactions between Colliding Vector Solitons
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We demonstrate experimentally collisions between vector (Manakov-like) solitons that involve energy
exchange at large collision angles, for which scalar solitons pass through one another practically
unaffected.
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Vector solitons consist of two (or more) components
that mutually self-trap in a nonlinear medium. They
were first suggested by Manakov [1] for the Kerr non-
linearity, which is proportional to the intensity. The
Manakov system leads to two coupled cubic nonlinear
Schrödinger equations and is integrable and soluble ana-
lytically. Temporal Manakov-like solitons were proposed
[2] and demonstrated in single mode optical fibers [3],
and spatial ones were demonstrated in planar waveguides
[4]. Vector solitons were also suggested [5] and ob-
served [6] in a dark-bright form: when one of the com-
ponents is a bright soliton and the other dark. Following
the discovery of photorefractive spatial solitons, vector
(Manakov-like) solitons were also suggested in photore-
fractives. In contrast to the Kerr nonlinearity, the pho-
torefractive nonlinearity is saturable, but coincides with
the Kerr nonlinearity in the limit of very low intensi-
ties [7]. One form of vector solitons found in photore-
fractives is of particular interest, because it applies to
any noninstantaneous nonlinearity and allows more than
two components: vector solitons based on mutual incoher-
ence between the vector constituents [8]. Observations of
such two-component vector solitons followed soon there-
after in three realizations: bright-bright, dark-dark, and
dark-bright coupled pairs [9]. Finally, vector solitons can
be realized as multimode [2,10] and multihump solitons
which were recently demonstrated experimentally using
the mutual-incoherence method [11].

Interactions between solitons are fascinating, since in
many aspects solitons interact like particles: they pass
through one another [12], undergo elastic collisions [13],
and, in saturable nonlinearities [14], undergo fusion [15],
fission and annihilation [16], and can even spiral about
each other [17]. Soliton interactions depend on the num-
ber of soliton components. Thus far, interactions between
vector solitons were studied theoretically only [1,18,19],
with the exception of one experiment demonstrating a
bound state between two dark-bright solitons [20].

Here, we demonstrate experimentally interactions
between vector solitons, highlighting features that are
nonexistent for scalar solitons in the same regime: energy
exchange at large collision angles, that is, in the regime
where scalar solitons simply pass through each other [12].

Consider the coupled nonlinear wave equations for the
slowly varying amplitudes of two EM fields, A�x, z� and
B�x, z�, in a �1 1 1�D system in which x and z are the
transverse and longitudinal coordinates, respectively,µ
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Here v is the frequency of the carrier wave, n � n0 1 Dn
the refractive index (n0 the unperturbed index and Dn
the nonlinear change in the index), k � vn0�c the wave
number, and I � jAj2 1 jBj2 the total intensity. In
its most familiar form, Dn � n2�jAj2 1 jBj2�, with n2
being a constant, Eqs. (1) represent Manakov solitons [1].
Other physical forms of Dn do exist, of which we note
Dn � Dn0��1 1 jAj2 1 jBj2�, a saturable nonlinearity
that represents, for example, photorefractive screening
solitons in [7], and the refractive index in a homogeneously
broadened two-level system of atoms coupled to an
EM field.

To understand collisions between two scalar Kerr
solitons it is useful to draw on the induced-waveguide
description of solitons [21]. A scalar Kerr soliton induces
a sech2�x� waveguide structure with waveguide parameter
V �

p
2 at the wavelength of the soliton that has induced

it, l, and is a single mode waveguide at that wavelength.
The sech2�x� index profile is reflectionless for any plane
wave (at l) incident at any nonzero angle upon it. Thus,
two interacting scalar Kerr solitons at a nonzero collision
angle simply pass through one another, each conserving
its energy and propagation angle (linear momentum) [12].

2332 0031-9007�99�83(12)�2332(4)$15.00 © 1999 The American Physical Society



VOLUME 83, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 SEPTEMBER1999

Here we discuss interactions between Manakov soli-
tons [18,19] which do give rise to an exchange of
energy. We consider collisions between two vector soli-
tons, in which one soliton (soliton 1) initially (atz � 0)
has twofield components (A1 andB1), and the other soliton
(soliton 2) starts with onefield component only�A2�, i.e.,
B2 � 0. The solitons are well separated atz � 0, labeled
as input, so thatA1 and B1 form a single vector soliton,
and A2 and B2 form the other soliton, which is initially
a scalar (single component) soliton. The total intensity
in both solitons is identical:jA1�x, z � 0�j2 1 jB1�x, z �
0�j2 � jA2�x, z � 0�j2 � 2, the collision angle is0.5±
and jA1�x, z � 0�j2 � jB1�x, z � 0�j2. The result can
be calculated analytically [18,19] or numerically as
shown in Fig. 1. The total intensity, shown in Fig. 1(a),
stays constant throughout propagation as in the case of
scalar solitons.

However, unlike for scalar Kerr solitons, thefield com-
ponents that make up vector Kerr solitons do exchange
energy upon collision, as shown in Fig. 1(b) which shows
the B field. They do it symmetrically, so the total in-
tensity in each soliton is conserved, and the waveguides
induced by the solitons remain identical. Such an energy-
exchange interaction is unique to vector solitons and can-
not exist for scalar solitons. Right after the collisionB1
gives almost half of its energy toB2 and energy is given
from A2 to A1 to compensate for the energy lost byB1.

There are two additional important features of this
energy exchange. (1) It is not dependent on the initial
phases of the inputfields, as can be shown analytically
[19] (the intuition for this follows below); (2) it occurs
for any collision angle, but its efficiency decreases with
increasing angles and with decreasing ratiojA1j2�jB1j2.

We can draw on a direct analogy between vector
soliton collision and the four-wave mixing in nonlinear

FIG. 1. Collisions of vector solitons at0.55± showing the total
intensity (a) and theB field for three different cases: for the
Kerr regime andA1 coherent withA2 (b), for Kerr but all
fields incoherent with each other—no grating (c), and for the
saturable nonlinearity withA1 andA2 coherent (d).

optics [22]: A1 and A2 (that are mutually coherent)
form an interference grating, which is translated (via the
nonlinearity) into a periodic index modulation with a
grating vectorK � k1 2 k2, k1 andk2 corresponding to
the propagation directions ofA1 andA2. If the third input
beam,B1, travels in thek1 direction (as it does, because
A1 and B1 form soliton 1), then it should Bragg diffract
in the k2 direction and form a nonzeroB2. But k2 is
the direction ofA2, soB2 andA2 together form soliton 2.
This is the intuitive explanation for the energy-exchange
interaction between vector solitons, and it takes place
when the interference betweenA1 and A2 is translated
into a periodic modulation of the index. The energy-
exchange interaction does not occur ifA1 and A2 are
made incoherent with one another, because the phase of
the interference patternfluctuates much faster than the
nonlinear medium can respond to. Thus, no index grating
forms and no energy exchange takes place. This is shown
in Fig. 1(c): the solitons pass through each other, as if
they were scalar solitons.

Since our experiments are in photorefractives, we
set Dn � Dn0��I 1 jAj2 1 jBj2�. To avoid the strong
transverse instability [which occurs for�1 1 1�D Kerr
solitons in a bulk medium, and is suppressed in saturable
nonlinearities if the total intensity is.1 [9] ], we work
at intensities of 2. The collision angle is 0.55±, which is
larger than the critical angle of the induced waveguide at
this intensity, so scalar solitons simply go through each
other [23]. For vector solitons in this medium energy
exchange does take place [Fig. 1(d)], but it is less than
the Manakov case even though we enhance the effect by
increasingjA1j2�jB1j2 to 9. If A1 is made incoherent with
A2 the energy exchange is absent [as in the Manakov case
shown in Fig. 1(c)].

Our experiments are carried out with screening solitons
[7], utilizing the mutual-incoherence method to generate
two-component vector solitons [9]. Our setup is shown
in Fig. 2. We expand and collimate an Ar1 laser beam,
and then split it to ordinary,o, and extraordinary,e,
polarized beams using a polarizing beam splitter. The
o and e beams are polarized perpendicular and parallel,
respectively, to the optical orc axis of the crystal. The

FIG. 2. Experimental setup.
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o beam is used as a background illumination covering
the crystal uniformly, as necessary for screening solitons
[9,11,23]. Thee beam is then split into three,A1, A2,
and B1, which is made incoherent withA1 and A2 by
having the optical length difference (1 m) exceed the
coherence length of the laser (10 cm). Since the phase
of B1 is varying much faster than the response time of
the crystal�td � 1 sec�, no stationary interference pattern
forms betweenB1 and A1 or A2, since these beams are
incoherent on the time frame of the crystal response [9].
A1 and B1 are then combined (using a beam splitter)
and form soliton 1: they are focused with a cylindrical
lensL3 on the input face of a 1 cm long SrBa0.6Nb0.4O3
crystal. A2 (which forms soliton 2) is also focused on
the crystal using an identical lens,L4. The input and
output faces of the crystal are imaged on a CCD camera.
The slow response of the crystal enables us to view
each beam individually by blocking one beam (with a
mechanical shutter) and sampling the other within a time
interval ��1 msec� shorter thantd . In this way [11]
we distinguish between the individualfield components
of beams 1 and 2, even though they have the same
wavelength and polarization. In order to compare the
results of the energy-exchange interaction with the results
of a collision in which all three input beams represent
three independentfields [as those in Fig. 1(c)], we need
a means to destroy the mutual coherence betweenA1 and
A2. To do that, we insert a piezoelectric (PZ) mirror on
the optical path ofA1. When the PZ mirror is driven by
a square wave at a frequency of�2 kHz, the interference
pattern formed byA1 and A2 varies faster thantd and
thus does not contribute to the refractive index change.
In other words, we expect energy exchange when the
PZ mirror is “OFF,” whereas when the PZ mirror is
“ON” there is no index grating and we expect no energy
exchange. Finally, a dc electricfield is applied against the
c axis of the crystal for the formation of photorefractive
screening solitons [9,11,17,23].

In the first experiment shown in Fig. 3 we launch
15 mm FWHM solitons colliding at an angle of0.7± (in-
side the crystal) with a total intensity ratio of 2 (normal-
ized to the background intensity) for each soliton,jA1j2 �
3jB1j2, jA2j2 slightly higher thanjA1j2, and jB2j2 � 0.
The total intensity input is shown in (a), and the inten-
sities of the individualfield constituents are shown in
(b) and (c). The normally diffracting output is shown
in (d). When 700 V are applied between the electrodes
separated by 0.5 cm, the beams form solitons [(e)]. Note
that, at the input (b),A2 is on the left ofA1, whereas
at the output (e),A2 is on the right (the beams cross
each other). (f) shows that�25% of field B has trans-
ferred to soliton 2 (note the different scale for theB
output). At the same time, a small fraction of the en-
ergy of A2 transfers toA1 [(g)]. We emphasize that
the coexistence of all three input beams (A1, A2, and
B1) is required for this energy-exchange interaction: for

FIG. 3. Collisions at an angle of0.7± of 15 mm FWHM
solitons with a total intensity ratio of 2. The pictures were
taken with a CCD camera at the input and output faces of the
crystal. (a) Total input. (b)A field (consisting ofA1 andA2).
(c) B field. (d) Diffracting output after 1 cm of propagation.
(e) Output when the soliton forms. (f )B-field output when
A is blocked with a mechanical shutter showing coupling.
(g) A-field output whenB is blocked. (h) The coupling
disappears afterA remains blocked and the grating is washed
away. (i) with the PZ mirror“ON” no coupling of energy
occurs because all beams are incoherent.

example, if we establish the energy exchange and then
block A for a long time�.td�, this effect disappears, as
shown in (h). In the spirit of Fig. 1(c), if the three input
beams are fully incoherent with one another, there is no
energy exchange because there is no refractive index grat-
ing (and the collision angle is larger than the critical angle
of the waveguide induced by the solitons). The result in
(i) shows the same experiment as in (f) but with the PZ
mirror ON, confirming that, at these angles of collision,
the energy-exchange interaction does not occur for three
independent beams.

We then increase the collision angle to0.9±. As
expected from simulations, at large angles the energy
switching should decrease. And indeed, the energy
switching shown in Fig. 4(a) is now�10%, as compared
to 25% for the 0.7± angle [Fig. 3(f)]. Finally, recalling
the analogy with four-wave mixing, we realize that the
modulation depth of the grating is proportional to the
visibility of the interference, that is, toA1A�

2�I, I being
the total intensity. Therefore, keepingI fixed, the visi-
bility (and thus the energy switching efficiency) depends
on the ratiojA1j2�jB1j2 at the input. We investigate this
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FIG. 4. B field right after collision. (a) Same as in Fig. 3(f )
but with a collision angle of0.9± showing less coupling for
B. (b),(c) Same as (a) with a collision angle of0.55±, and
different ratios5jA1j2 � jB1j2 and5jA1j2 � jB1j2, respectively,
while the total intensity is kept constant. Comparing (b) to (c)
we see more coupling whenA1 is stronger thanB1.

by comparing results with a collision angle of0.55± and
two ratios: jA1j2 � 5jB1j2 and 5jA1j2 � jB1j2, shown in
Figs. 4(b) and 4(c), respectively. Comparing Figs. 4(b)
and 4(c) we notice that indeed the energy switching is
much larger whenA1 is stronger thanB1, because the
visibility is much larger.

In doing these experiments with photorefractive soli-
tons, one must avoid effects from ordinary two-wave
mixing that exists in photorefractives [22], and can lead
to energy exchange in a preferential crystalline direction
(towards the c axis in our SBN crystal; the direction of
the fanning). To avoid these effects, we arranged the en-
ergy exchange fromB1 to B2 to beagainstthec axis, i.e.,
against the direction of photorefractive two-wave mixing.
So, all the effects we observe here truly result from soliton
collisions and not from a specific photorefractive effect.

In conclusion, we have demonstrated experimentally
energy-exchange interactions of vector solitons which are
not possible for scalar solitons. This work suggests the
possibility of generating phase conjugation of solitons, by
having thefield B1 propagating counter toA1. This leads
to many other ideas, but we would like to end with just one:
this interaction of vector solitons lays the experimental
foundations for computation with solitons [19].

The work at Princeton was supported by the U.S. Army
Research Office and by the NSF.
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