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Energy expenditure and body 
temperature variations in llamas 
living in the High Andes of Peru
Alexander Riek  1,2, Anna Stölzl2, Rodolfo Marquina Bernedo3, Thomas Ruf4, Walter Arnold  4, 
Catherine Hambly5, John R. Speakman  5,6 & Martina Gerken2

Some large herbivores exhibit seasonal adjustments in their energy metabolism. Therefore, our aim 
was to determine if the llama (one of the most extensively kept livestock breeds) exhibits seasonal 

adjustment of their energy expenditure, body temperature and locomotion, under its natural high 
altitude Andean habitat. For this purpose, energy expenditure, body temperature and locomotion were 
measured in seven non-pregnant llama dams for ten months on the Andean High Plateau (4400 m above 
sea level). Daily energy expenditure was measured as field metabolic rate using the doubly labelled 
water method at four different measurement times. Additionally, a telemetry system was used to 
continuously record activity, body temperature (3 min intervals) as well as the position (hourly) of each 
animal. The results show that llamas adjusted their body temperature and daily energy expenditure 
according to environmental conditions. Furthermore, llamas under high altitude Andean climatic 
conditions exhibited a pronounced daily rhythm in body temperature and activity, with low values at 
sunrise and increasing values towards sunset. Llamas also had remarkably low energy expenditure 
compared to other herbivores. Thus, despite the domestication process, llamas have not lost the 
ability to adjust their body temperature and daily energy expenditure under adverse environmental 

conditions, similar to some wild herbivores.

Endothermic mammals have to invest a substantial amount of energy to keep their species speci�c body tempera-
ture (Tb) within a narrow limit of 37–39 °C especially with changing environmental conditions1. �erefore, many 
small mammals in particular those weighing less than ten kilograms, employ energy saving mechanisms such as 
torpor or hibernation and thus reduce their Tb and energy expenditure substantially during harsh environmental 
conditions2–5. Larger animals, with the exception of bears and badgers, were thought not to use such metabolic 
mechanisms to save energy until some studies on cervid species6 and other larger ruminants7,8 indicated that they 
exhibit some form of seasonal adjustment in their metabolism. However, most of these studies were conducted 
on captive animals using respirometry. In more recent studies, results from free-ranging wild herbivores9–12 using 
telemetry and continuous long-term data recording, suggested that these species are also able to reduce their Tb 
and energy expenditure during unfavorable environmental conditions.

�e climate of the Andean Plateau also known as ‘Altiplano’ (altitude >4000 m above sea level, a.s.l.) in South 
America can be considered as unfavourable to livestock. It is characterised by low annual precipitation of less 
than 500 mm per year, low ambient temperatures (Ta) at night falling at times below −20 °C and thus large daily Ta 
amplitudes exceeding 45 °C on some days. Furthermore, vegetation is scarce and low in energy and protein con-
tent. �e llama (Lama glama) and the alpaca (Vicugna pacos) are the largest autochthonous herbivores which have 
been domesticated in South America 6,000–7,000 years ago from their wild ancestors, the guanaco (Lama guan-
icoe) and the vicuña (Vicugna vicugna)13,14, respectively. Although llamas and alpacas have also been reported to 
live in lowlands in pre-Columbian times15, they are typically concentrated in the high Andean regions. �ere are 
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currently about 3.3 million llamas living mainly at the Andean High Plateau of Bolivia and Peru16 and they are of 
predominant economic and cultural importance for the rural population17. Apart from climatic challenges and 
feed shortages, llamas and alpacas are also confronted with the impact of high altitude, i.e. reduced atmospheric 
pressure. Under these conditions, energy e�ciency is a prerequisite for survival. In this context, it is noteworthy 
that South American camelids have been shown to possess an extraordinary high blood oxygen a�nity18.

Although there exists a large body of scienti�c literature on South American camelids on health, nutrition and 
reproduction in temperate regions (for review see Fowler 201019), there is still a large gap in scienti�c knowledge 
on how these animals adapt to the harsh environment of the high Andes. �erefore, the aim of our long-term 
study was to determine if the llama, exhibits seasonal and/or daily adjustment mechanisms with regard to energy 
expenditure and Tb in its natural habitat of the high Andes in South America.

Results
Climatic conditions. �e climatic conditions during the time of our study (13 Nov 2015–15 Sep 2016) were 
typical for the Andean High plateau with very low Ta’s during the night and high Ta’s during the day (Fig. 1a). 
Average daily Ta over the entire study period was 4.6 ± 2.7 °C and ranged from −3.7 °C to 10.3 °C. �e mean daily 
minimum Ta during our study was −8.1 ± 6.1 °C and ranged from −22.1 °C to 4.6 °C. During the entire study 
of 308 days, there were 263 days with frost. Mean daily maximum Ta was 22.2 ± 3.6 °C and ranged from 9.6 °C 
to 32.7 °C. �e amplitude of daily Ta �uctuations, i.e. the di�erence between daily maximum and minimum Ta 
during the time of the study averaged 30.1 ± 7.3 °C and ranged from 9.5 °C to 45.2 °C. �e mean daily relative 
humidity (RH) was 50.9 ± 17.6%, mean daily maximum RH was 81.0 ± 14.1% (range 41.8–100.0%) and mean 
daily minimum RH was 17.7 ± 12.4% (range 0.65–61.4%; Fig. 1b). �e total precipitation during our study was 
424 mm. Precipitation occurred exclusively during the wet season from November to April on 54 of the 308 study 
days (Fig. 1a). �e highest rainfalls occurred on 18 February (31 mm) and 19 January (25 mm). Rainfall on the 
remaining days ranged between 1 and 18 mm. Natural daylight during our study ranged from 10 to 12 h per day.

Rumen temperature. Over the entire study period, we collected over 760,000 rumen temperature (Tr) 
measurements at 3 min intervals, ranging from 36.25 °C to 41.17 °C. �e average daily Tr during our study was 
38.46 ± 0.25 °C (Table 1). �e Tr followed a diurnal rhythm with the lowest Tr usually just a�er sunrise and the 
highest Tr around late a�ernoon (Fig. 2). Comparing the minimum Tr and maximum Tr between months, the low-
est recorded minimum Tr occurred in September (36.25 °C) and the highest maximum Tr in June (40.81 °C). �e 
Tr amplitude, i.e. the di�erence between daily maximum Tr and daily minimum Tr, was very variable and reached 
on some days more than 3 °C, increasing from November to September over the entire study. �is trend was also 
evident during the FMR measurements, i.e. the Tr amplitude was signi�cantly (P < 0.001) lower in November and 
March compared to June and September (Table 1, Fig. 2). �ere was a signi�cant positive relationship between 
Tr and Ta over the entire study period (Tr, °C = 38.38 + 0.02 * Ta, °C; R² = 0.39, F1,6 = 47.5, P < 0.01, n = 51744, 
Fig. 3). An example of the adjustment of Tr to Ta is given in Fig. 4. �e �gure shows that on days with low Ta ampli-
tudes for high Andean conditions as it was the case in March with only 23 °C, Tr amplitudes decreased as well even 
though locomotor activity (LA) was high. Contrarily, on days with large Ta �uctuations of more than 37 °C such as 
in September during the dry season, Tr decreased at night much further compared to March.

Figure 1. Climatic variables during the study in the Andes of Peru. (a) Average daily ambient temperature, (b) 
average daily relative humidity (black lines) with daily maxima and minima (grey shaded area) and precipitation 
(black bars) during the course of the study (308 days) at the study location in the high Andes of Peru (4400 m 
a.s.l.). Rectangles denote �eld metabolic rate measurement periods.
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Field metabolic rate and water turnover. �e �eld metabolic rate (FMR) varied between the four dif-
ferent measurement periods of 15 days each (Table 2). �e lowest and highest individually recorded FMR were 
11.6 MJ d−1 and 28.3 MJ d−1, respectively. In June, during the dry season, when average Ta amplitudes were high 

Variable
Entire study 
(308 days)

Periods of FMR measurements (15 days each)

SEM
F(3, 

17)-value
Months 
p-valueNovember March June September

Average daily Tr 38.46 ± 0.25 38.47a 38.49a 38.49a 38.31b 0.06 4.51 0.018

Range 37.79–40.11 38.27–38.98 38.04–38.77 38.05–39.02 37.85–38.95

Average daily Tr 
minimum

37.75 ± 0.35 37.83a 37.86a 37.83a 37.54b 0.08 3.72 0.030

Range 36.25–39.00 37.06–38.44 36.75–38.19 36.94–38.62 36.88–38.31

Average daily Tr 
maximum

39.19 ± 0.34 39.05 39.12 39.24 39.13 0.09 2.05 0.147

Range 38.49–41.17 38.69–39.88 38.68–39.94 38.81–41.17 38.62–40.12

Average daily Tr 
amplitude

1.44 ± 0.41 1.23c 1.27c 1.40b 1.61a 0.10 7.96 <0.001

Range 0.62–3.44 0.75–2.50 0.63–2.44 0.75–3.22 0.83–3.06

Table 1. Rumen temperatures in llamas in the high Andes of Peru. Rumen temperature (Tr, °C) variables in 
llama dams (n = 7) during the entire study of 308 days and during the �eld metabolic rate measurements of 
15 days each in November, March, June and September under Andean climatic conditions in Peru. Values are 
means ± sd for the entire study and LS-Means for the months adjusted for repeated measurements of seven 
animals with the corresponding SEM, F- and p-value. a,b,cMeans within a row between month not sharing the 
same superscript di�er by P < 0.05.

Figure 2. Average diurnal rhythms of relative humidity, ambient temperature, rumen temperature and 
locomotor activity. Data were collected during the FMR measurements of 15 days each in November, March, 
June and September in llamas (n = 7) under high Andean climatic conditions in Peru (4400 m a.s.l.). Values are 
hourly means ± se. Grey shaded areas indicate night-phase.
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(35.35 ± 2.67 °C) and animals traveled on average longer daily distances (5.83 ± 0.28 km), FMR was signi�cantly 
higher (26.22 ± 1.48 MJ d−1) compared to the measurements during the wet season, i.e. November (13.15 ± 1.77 
MJ d−1) and March (15.43 ± 1.84 MJ d−1). �e FMR values measured during the wet season in November and 
March did not di�er (P = 0.13), however they did di�er (P < 0.001) between the two measurements during the 
dry season (i.e. June and September). In general, FMR values were higher during the dry than during the wet 
season (Table 2). Mixed model analysis revealed that daily distances travelled (P < 0.001, F1,6 = 36.74, Fig. 5), 
average Ta (P < 0.01, F1,6 = 17.44), average minimum Ta (P < 0.05, F1,6 = 7.81) and average maximum Ta (P < 0.01, 
F1,6 = 15.46) had signi�cant e�ects on FMR.

Total body water of individual animals ranged from 56 to 71% of body mass. Average total body water was 
signi�cantly lower in November (61.4 ± 5.35%) compared to March (66.8 ± 4.0%), but did not di�er between all 
other measurement months (Table 2). Similarly, total water intake (TWI) in September was 3.75 ± 0.51 L d−1, 
signi�cantly lower compared to all other measurement months, while TWI did not di�er between November, 
March and June.

Figure 3. Relationship between rumen temperature and ambient temperature. Data are hourly means from 
seven adult non-pregnant llama dams (n = 51744) under high Andean climatic conditions (rumen temperature 
was taken at 3 min intervals during 308 days of sampling). Slope and intercept are adjusted for repeated 
measurements of individual animals (see text for details).

Figure 4. Examples of the diurnal rhythm of the (a) mean rumen temperature (Tr), (b) ambient temperature 
(Ta) and (c) locomotor activity. Data are from adult non-pregnant llama dams (n = 7) during the �eld metabolic 
rate measurements in March (red line) and September (black line). Grey shaded areas indicate night-phase.
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Locomotor activity and distances covered. In our study, animals were herded to (07.00 h) and from 
(17.00 h) the grazing grounds every day approximately at the same time, thus LA followed a strong diurnal pat-
tern over the entire study period, similar to Ta. An example of that pattern for LA as well as for Ta and Tr is 
depicted in Fig. 4. During the FMR measurements average daily LA was signi�cantly higher (P < 0.001) dur-
ing March (29.71 ± 1.80%) and June (28.07 ± 1.38%), compared to November (25.05 ± 1.59%) and September 
(23.05 ± 2.75%). �e same trend was evident when dividing the data into night (i.e. when animals stayed in the 
corral) and day (i.e. when animals were out grazing; Table 2).

Average daily distances traveled by the animals varied over the study period. Over the entire study the mean 
daily distance travelled was 4.67 ± 1.41 km and ranged from 1.03 km to 12.06 km. During the FMR measurements 
the daily distances travelled in June were signi�cantly (P < 0.001) higher compared to all other FMR measure-
ment months, but no di�erences (P > 0.05) were detected between November, March and September (Table 2).

Variable November March June September SEM F(3, 17)-value
Months 
p-value

Body mass (kg) 125.4a 109.9b 117.2ab 125.5a 5.16 5.62 0.007

Body condition score (points) 2.48 2.27 2.46 2.66 0.18 1.74 0.195

Field metabolic rate (MJ d−1) 13.15c 15.43bc 26.22a 16.19b 0.79 61.91 <0.001

Total body water (%) 61.44b 66.75a 65.85ab 64.45ab 1.52 3.40 0.041

Total water intake (L d−1) 4.65a 5.00a 5.20a 3.75b 0.20 19.23 <0.001

Daily activity 24 h (%) 25.05b 29.71a 28.07a 23.05b 0.80 26.33 <0.001

    Day (%) 43.69b 53.10a 50.26a 42.91b 1.92 20.15 <0.001

    Night (%) 4.82b 6.30a 5.53a 3.56b 0.11 30.24 <0.001

Distance travelled1 (km d−1) 4.34b 4.50b 5.83a 4.84b 0.17 23.24 <0.001

Daily rumen 
temperature

(°C) 38.47a 38.49a 38.49a 38.31b 0.06 4.51 0.018

Daily ambient 
temperature

(°C) 6.71 ± 1.21 7.46 ± 2.85 1.99 ± 1.79 5.28 ± 1.30

Daily minimum 
temperature

(°C) −6.74 ± 2.87 −1.20 ± 2.22 −13.52 ± 2.52 −14.46 ± 1.71

Daily maximum 
temperature

(°C) 23.30 ± 2.72 21.96 ± 2.85 21.83 ± 2.32 23.16 ± 3.37

Daily temperature 
amplitude

(°C) 29.93 ± 4.58 23.17 ± 4.12 35.35 ± 2.67 37.62 ± 3.87

Table 2. Average physiological and behavioural variables in llamas in the high Andes of Peru. Data are averages 
from seven llama dams during 15 days in four di�erent months under Andean climatic conditions in Peru. 
Values are LS-Means with the corresponding SEM, F- and p-value. Additionally average ambient temperature 
variables for the respective time periods are given (means ± sd). 1For November and June averages are from six 
animals. a,b,cMeans within a row not sharing the same superscript di�er by P < 0.05.

Figure 5. Relationship between �eld metabolic rate (FMR) and daily distances travelled (DDT). Data are 
means ± se from adult non-pregnant llama dams at four di�erent measurement periods of 15 days each under 
high Andean climatic conditions (4400 m a.s.l.; n = 26; 6 animals in November, 7 in March, 6 in June and 7 in 
September). Slope and intercept are adjusted for repeated measurements of individual animals (see text for 
details).

https://doi.org/10.1038/s41598-019-40576-9


6SCIENTIFIC REPORTS |          (2019) 9:4037  | https://doi.org/10.1038/s41598-019-40576-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
Our study is the �rst measuring FMR using the doubly labelled water method in the llama in its natural habitat 
of the Peruvian high Andes. Furthermore, we combined FMR data with data from a telemetry system measuring 
Tr, activity and distances traveled by GPS. �ese are the �rst continuously recorded long-term Tr and activity 
measurements for a camelid in the high Andes. Our data show that llamas spend substantially more energy when 
traveling long distances. However, compared with other ruminants and herbivores llamas have a lower FMR. 
Furthermore, considering the harsh climate of the Andes, llamas seem to adjust their Tb according to Ta to save 
energy.

Our present data on FMR in llamas kept in their natural habitat of the Andes are similar to results reported 
recently for llamas measured in a temperate lowland environment20, which ranged from 17.48 to 25.87 MJ d−1. 
However, considering the much larger daily Ta �uctuations in the high Andes (Fig. 1), the present FMR values 
suggest that llamas adjusted their FMR according to Ta. Several studies have reported reductions in FMR in 
domestic and wild ungulates during adverse environmental conditions10–12,21. Our results from llamas in the 
Andes support these �ndings. �e range of Ta in which Tb is regulated by sensible heat loss and thus does not 
require additional energy for thermoregulation is called the thermal neutral zone (TNZ). Although the TNZ of 
the llama has not been measured, results from guanacos, which is the wild ancestor of the llama, suggest that the 
TNZ lies somewhere in the range of −15.5 to 20 °C22,23, i.e. −15.5 °C being the lower critical temperature and 
20 °C the upper critical temperature outside which the animal needs additional energy to regulate Tb. Assuming 
a similar TNZ for the llama, animals in our study were outside their TNZ for some portions of the day during all 
FMR measurement periods when average Ta increased above 20 °C (Table 2). �us, the increased FMR measured 
in June and September can be partially explained by the increased average Ta amplitudes as evidenced by corre-
lations between the FMR and Ta variables. However, it needs to be emphasised that these are average Ta variables 
over FMR measurement periods of 15 days each. On some individual days during the FMR measurements Ta 
ranged between −19 °C and 28 °C and thus were even further outside the suggested TNZ. �e FMR measured in 
June (26.22 ± 1.48 MJ d−1) was nearly 100% higher than that in November (13.15 ± 1.77 MJ d−1). �is can partly 
be explained by the longer distances the animals travelled in June compared to all other measurement periods 
(Table 2, Fig. 5). However, FMR was signi�cantly a�ected by Ta and thus animals seemed to have increased their 
energy expenditure not only due to the longer distances traveled but also due to di�erences in Ta.

�e course of daily Ta in our study was typical for the High Andean climate with very low Ta at night and mod-
erate to high Ta during the day (Figs 1 and 2). �us daily Ta amplitudes reached 45 °C on some days. With increas-
ing Ta amplitudes, Tr amplitudes increased as well, similar to results found in a previous study on llamas kept in 
a temperate environment20. However, the daily Ta and Tr �uctuations in the previous study were much smaller 
compared to the present results. Although a comparison between both locations has to be treated with caution 
(due to random e�ects etc.), the data show that Tr and Ta amplitudes were correlated in both studies (Fig. 6). �e 
results from the high Andes, however, suggest a higher �exibility in regulating Tr according to Ta in llamas kept at 
these altitudes (~4400 m a.s.l.).

In our study Tr decreased during the night and increased during the day. �ese daily Tr �uctuations were 
higher during the dry season (May–September) than during the wet season (November–April) and similar to the 
Ta �uctuations (Figs 2 and 4), suggesting that animals followed a shallow daily hypometabolism. Reducing the 
metabolic rate to save energy has been known for a long time to be employed by many small mammals weighing 
less than 10 kg (for review see Heldmaier et al.3; Ruf and Geiser5, Geiser24) but not for larger animals with the 
exception of bears and badgers. But there is increasing evidence, that also larger mammals such as red deer10, 
ibex11 and horses can reduce their metabolic rate to save energy. �e average daily Tr �uctuations we report 

Figure 6. Comparison of temperature amplitudes in llamas between two study locations. Relationship between 
daily rumen temperature (Tr) and daily ambient temperature (Ta) amplitudes at the two di�erent study locations 
in Germany (black dots, black line: Daily Tr amplitude = 1.03 + 0.02 * daily Ta amplitude, R² = 0.25, F1,6 = 12.84, 
P < 0.01) and Peru (grey dots, grey line: Daily Tr amplitude = 1.29 + 0.02 * daily Ta amplitude, R² = 0.22, 
F1,6 = 10.79, P < 0.05). Data are means of seven animals and the respective Ta amplitude of that day (Germany, 
365 days; Peru, 308 days). Slopes and intercepts are adjusted for repeated measurements of individual animals 
(see text for details).
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here were lowest in November (1.44 °C) and highest in September (1.61 °C, Table 2). �ese values are in the 
range of previously reported Tb amplitudes for zebras (1.7 °C)25 alpacas (1.5 °C)26, angora goats (1.4 °C)27, blesbok 
(1.4 °C)26, impalas (1.1 °C)28 and pronghorn (1.0 °C)29. However, these values and our results are means of several 
animals over a number of days. �e highest individual Tr amplitudes in our study over a period of ten months 
ranged from 2.50–3.44 °C (Table 1). Even higher amplitudes of 4–7 °C have been found for the Arabian oryx8, 
springbok30 and camel31. �e daily Tr �uctuations observed in our study were larger than the circadian variations 
of llamas under temperate conditions (37.5–38.6 °C)32 and suggest that the animals used heterothermy, possibly 
to reduce energy expenditure. Furthermore, these daily Tr �uctuations followed the daily photoperiod and daily 
Ta cycle over the entire study period as evidenced by the correlation between Tr and Ta (Fig. 3). Similar results have 
been also found for ibex11, red deer10 and horses9,33–35. Because animals were herded every morning at around 
the same time to the pastures, activity increased sharply at that time and thus possibly resulted in an increase of 
Tr. In earlier studies on herbivores, Tb or Tr �uctuations decreased with decreasing average Ta 

10,11. In the present 
study, however, daily Tr �uctuations increased with decreasing average Ta and higher Ta amplitudes (Tables 1 and 
2, Figs 2 and 4). �e increased Tr amplitudes could be explained by a decrease in pasture quality during the dry 
season. �us, energy needs might have been compromised, which could have led to increased heterothermy by 
lowering the minimum Tr and thus increasing the Tr amplitude26. However, our body mass and body condition 
score data do not support this suggestion (Table 2). �erefore, it is more likely that animals lowered their Tr at 
night to increase the capacity to store heat during the day and thus reducing energetic costs as has been shown in 
a number of herbivores such as the eland36, Arabian oryx37, gira�e38, Arabian sand gazelle39, �ompson’s gazelle, 
Grant’s gazelle40 and the Asian elephant41.

In an earlier study20 llama FMR measured in a temperate European environment was compared with the FMR 
of other herbivores published so far measured using the doubly labelled water method under natural conditions 
(Mule deer, Odocoileus hemionus42; reindeer, Rangifer tarandus43; springbok, Antidorcas marsupialis44; red deer, 
Cervus elaphus45; Arabian oryx, Oryx leucoryx8; sheep, Ovis aries46; alpacas, Lama pacos47). Based on these data, a 
phylogenetic corrected regression equation was derived (FMR, MJ d−1 = 1.23 BM0.63±0.12) from which a predicted 
FMR of 28.9 MJ d−1 for the llama could be computed. �e predicted FMR was about 10% and 30% higher than 
the actual measured FMR in that study in summer and winter, respectively. In the present study, we derived a sep-
arate phylogenetic corrected regression equation (Fig. 7). �e resulting regression line predicted FMR values for 
llamas of 31.34 MJ d−1, 28.05 MJ d−1 and 31.37 MJ d−1 for November, March and September, respectively. �ese 
predicted values were 138%, 81% and 93% higher compared to the actual measured FMR values for November, 
March and September, respectively. �e measured FMR in June (the highest of the four measurements) however 
was with 26.22 MJ d−1 just 11% lower compared to the predicted FMR from the regression line (29.53 MJ d−1). 
�us, the three measurements from November, March and September were exceptionally low, compared to values 
from other herbivores, with the exception of the mule deer. As already suggested in previous studies48, camelids 
in general and the llama in particular seem to have exceptionally low energy expenditures compared to other 
herbivores, which might be an adjustment to the harsh Andean climatic conditions and low food supply at high 
altitudes. An even lower FMR has been reported for the giant panda49. Contrarily, predicted FMR values from 
phylogenetic corrected regression equations for alpacas did not deviate much from actual values (Fig. 7). �e 
relative higher FMR in alpacas compared to llamas might be due to their additional metabolic requirements for 

Figure 7. Relationship between �eld metabolic rate (FMR, measured using the doubly labelled water method) 
and body mass in herbivores. Data are from seven herbivores (black dots) published elsewhere (see text for 
details) and from the llama of the present study (black circles) at four di�erent measurement periods under high 
Andean climatic conditions (4400 m a.s.l.). �e regression line was derived using the phylogenetic least square 
approach, excluding the data from the llama. However, the maximum likelihood (ML) of lambda was 0 and thus 
the regression line represents an ordinary least square regression.
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�ne �bre production. In this context studies on high altitude adaptation of oxygen transport properties of blood 
and circulation could give further insight into the energy metabolism in camelids. Among other features, a high 
blood oxygen a�nity assures a su�cient blood saturation. Interestingly, many of the special blood and circulation 
properties found in South American camelids are also described for camels18,19. However, camels do not live in 
high altitudes, but Old and New world camelids share their capability to survive in arid climates.

�e TWI calculated during the FMR measurement periods did not di�er between November, March and June 
but was signi�cantly lower in September, i.e. at the end of the dry season (Table 2). Interestingly Tr amplitudes 
were highest at the end of the dry season in September and FMR decreased during the dry season from June to 
September (Table 2), suggesting that animals not only conserved energy but also water towards the end of the 
dry season. �is is in agreement with previous studies suggesting that animals, especially camelid species with a 
pronounced low metabolism living in resource poor environments have an adaptive advantage because not only 
less energy resources are required but also less water is lost during respiration48.

In conclusion, our study provides evidence that llamas kept at the Andean High Plateau have an exceptionally 
low energy expenditure compared to other ruminants. Furthermore, llamas seem to adjust their Tb according 
to Ta which must involve some trade-o�s that allow them to save energy instead of keeping their Tb constant. 
Understanding these trade-o�s may provide further insights into the adaptations of animals allowing them to 
survive in extreme environments such as the high Andes.

Methods
Animals and study site. Procedures performed in our study were in accordance with the Peruvian animal 
ethics regulations and approved by the Peruvian National Ministry for Health (SENASA 2016-0009809). �e 
study was conducted for 308 days from November 2015 to September 2016 at the research station Toccra (Centro 
de Desarrollo Alpaquero de Toccra) of the non-governmental organisation DESCOSUR (Centro de Estudios y 
Promoción del Desarollo del Sur, Arequipa, Peru) at an altitude of 4400 m a.s.l., approx. 80 km to the North of the 
city of Arequipa in the Andes of Southern Peru (15°44′21″S, 71°26′33″W). �e study area is characterised by a 
semi-arid climate with an average annual rainfall of 400–500 mm and Ta ranging from as low as −25 °C at night 
to as high as 30 °C during day time. �e average year is divided into a wet season (November–April) when nearly 
all of the annual rainfall occurs and a dry season (May–October).

Study animals originated from a large female llama herd of 210 animals kept under a traditional Andean 
herding system, i.e. animals were led to pasture in the morning shortly a�er sunrise at approx. 07:00 h and were 
herded back into a corral before sunset at approx. 17:00 h where they stayed throughout the night partly to protect 
them from their only predator, the nocturnal puma (Puma concolor). During the day animals roamed freely on 
the pasture of the High Andean plateau consisting mainly of the ecosystems pajonal (dry with tall bunch grasses) 
and bofedal (wet with grasses and herbs). �e bofedales are formed by impenetrable stone and clay layers upon 
which melting water accumulates. No additional feeding was practiced and water was available throughout the 
year by natural surface water. For the present study a total of seven non-pregnant adult llama dams with an aver-
age age of 5.7 ± 1.5 years and a mean body mass of 125.4 ± 15.2 kg were randomly chosen and kept together with 
the rest of the herd.

Measurements. Climate. �e Ta (resolution: 0.0625 °C) and RH (resolution: 0.04%) were recorded contin-
uously throughout the study with miniature data loggers at 30 min intervals at approx. 1.5 m above the ground 
(i-Button, DS1923#F5, Maxim Integrated Products, Sunnyvale, CA, USA). Precipitation data were obtained from 
a nearby weather station at approx. 10 km distance to the farm (15° 58′43″S, 71° 12′48″W).

Telemetry and body condition score. We equipped seven animals with a telemetry system (GPS Plus-3 Store on 
Board collar, Vectronic Aerospace GmbH, Berlin, Germany) described in detail elsewhere50. In brief, the telem-
etry system consists of two units, a ruminal unit (22 × 80 mm, 100 g) and a collar unit (450 g). �e ruminal unit 
was administered perorally a�er animals were immobilized with an anaesthetic drug (Xylacin, Rompun®; Bayer 
HealthCare, Leverkusen, Germany, 4 mg/100 kg body mass). �e ruminal unit measured Tr every 3 min, which 
was transmitted via short-distance UHF link to a data logging system located in the collar unit50. Furthermore, 
LA was also recorded every 3 min with two different activity sensors and expressed in % of the maximum 
value recorded. All data were recorded for 308 days and stored in the collar unit and downloaded via a laptop. 
Additionally the position of each animal was recorded every 60 min using a GPS device located on the back of 
the collar (GPS Plus-3 Store on Board collar, Vectronic Aerospace GmbH, Berlin, Germany). �e body condition 
score, a palpable and visual assessment of the degree of fatness of individual animals was recorded during the 
four FMR measurement times according to a point system (scale: 0 = emaciated to 5 = obese) described in detail 
elsewhere51.

Field metabolic rate. �e FMR, total body water and TWI were determined during 15 days at four di�erent 
time periods during the study i.e. 17 November–1 December 2015, 7–21 March 2016, 7–21 June 2016 and 2–15 
September 2016, for each animal using the doubly labelled water (DLW) method52,53. At the beginning and at the 
end of the FMR measurements, body mass was recorded for each llama using a mobile scale (Weighing System 
MP 800, resolution: 0.1 kg, Patura KG, Laudenbach, Germany) and a blood sample of 5 ml was drawn from the 
Vena jugularis of every animal to estimate the background isotopic enrichment of 2H and 18O in the body �uids 
(method D; Speakman and Racey54). A�er taking the background sample, each llama was injected intravenously 
with approximately 0.16 g of DLW per kg body mass, (65% 18O and 35% 2H). �e individual dose of each llama 
was determined prior to the injection according to its body mass. �e actual dose given was gravimetrically 
measured by weighing the syringe before and a�er administration to the nearest 0.01 g (Digital Scale LS200, 
G&G GmbH, Neuss, Germany). �e llamas were then held in a corral with no access to food or water for an 8-h 
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equilibration period, a�er which a further 5 ml blood sample was taken. A�er dosing, additional blood samples 
were taken at 7 and 15 days to estimate the isotope elimination rates.

All blood samples were drawn into EDTA blood tubes. Whole blood samples were transported to the city of 
Arequipa and were pipetted into 1 ml glass vials and stored at −20 °C until determination of 18O and 2H enrich-
ment. Samples were sent from Peru to Europe by airmail. Blood samples were vacuum distilled55, and water from 
the resulting distillate was analysed using a Liquid Isotope Water Analyser (Los Gatos Research, USA) at the 
University of Aberdeen, Aberdeen, Scotland, UK. Samples were run alongside �ve lab standards for each isotope 
and IAEA International standards (SMOW, GISP and SLAP) to correct for daily machine variations and delta 
values were converted to ppm. Isotope enrichments were converted to values of CO2 production using a two pool 
model as recommended for this size of animal56. We chose the assumption of a �xed evaporation of 25% of the 
water �ux, since this has been shown to minimize error in a range of applications57,58. Speci�cally carbon dioxide 
production rate (rCO2) per day in mols was calculated using equation A6 from Schoeller et al.59. �e daily amount 
of energy expended measured as FMR was calculated from carbon dioxide production by assuming a respiration 
quotient of 0.85. Total body water (mols) was calculated using the intercept method53 from the dilution spaces 
of both oxygen and hydrogen under the assumption that the hydrogen space overestimates total body water by 
4% and the oxygen-18 space overestimates it by 1%59. �e TWI (l/day) that consists of drinking water, preformed 
water ingested in food and metabolic water was estimated as the product of the deuterium space and the deute-
rium turnover rate60.

Statistical Analysis. �e measurements of Tr had declines that could be attributed to the ingestions of water 
and cold food. �ese data points were removed by visually checking the raw data. In this cleaned data set, Tr val-
ues ranged from 36.25 to 41.17 °C. In total 2156 individual days were available for data analysis of LA and Tr. For 
each animal, hourly and daily means were calculated using R 3.5.061.

To compare Tr (Table 1) and various physiological and behavioural variables (Table 2) during the time of FMR 
measurements a mixed model was used with animal as a random factor to adjust for repeated measurements and 
month (i.e. FMR measurement periods) as a �xed factor using the MIXED procedure in SAS version 9.4 (SAS, 
Inst. Inc., Cary, NC). An integrated post-hoc test (Tukey) was used to detect di�erences between means with a 5% 
signi�cance level. Data are expressed as LS-Means or means ± sd where appropriate. To adjust for repeated meas-
urements in all other analysis we included animal ID as a random factor in a mixed model using the MIXED pro-
cedure in SAS. �us, slopes and intercepts in Figs 3, 5 and 6 are adjusted for repeated measurements. Additionally 
we included body mass as a covariate and month as a �xed factor in a mixed model analysis to test whether 
various variables had an e�ect on FMR. Daily distances between continuous GPS locations for each animal were 
calculated with the program package ‘geosphere’62 in R version 3.5.061.

To test for the generality of the relation between body mass and FMR in herbivores, published data and our 
results were assessed using the PGLS approach in order to account for the potential lack of independence between 
species, because of their shared evolutionary history. �e statistical procedure has been described in detail else-
where63–67. In brief, the phylogeny was derived from a published mammalian supertree which includes 4510 spe-
cies with updated branch lengths derived from dated estimates of divergence times68. �e supertree for mammals 
was pruned to include only the species of concern, i.e. herbivores (n = 8), using the ‘Analysis in phylogenetics 
and evolution’ package (APE69) and the ‘Analysis of evolutionary diversi�cation’ package (GEIGER70) in R. �e 
method of PGLS was implemented for the trait data using the ‘Comparative analyses of phylogenetics and evolu-
tion’ package (CAPER71) in R using Pagel’s branch length transformations (lambda, λ)72.

Data Availability
�e data analysed during the current study are available from the corresponding author on reasonable request.
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