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Abstract: Deriving a person's energy expenditure accurately forms the foundation for tracking physical activity levels across
many health and lifestyle monitoring tasks. In this study, the authors present a method for estimating calorific expenditure from
combined visual and accelerometer sensors by way of an RGB-Depth camera and a wearable inertial sensor. The proposed
individual-independent framework fuses information from both modalities which leads to improved estimates beyond the
accuracy of single modality and manual metabolic equivalents of task (MET) lookup table based methods. For evaluation, the
authors introduce a new dataset called SPHERE_RGBD + Inertial_calorie, for which visual and inertial data are simultaneously
obtained with indirect calorimetry ground truth measurements based on gas exchange. Experiments show that the fusion of
visual and inertial data reduces the estimation error by 8 and 18% compared with the use of visual only and inertial sensor only,
respectively, and by 33% compared with a MET-based approach. The authors conclude from their results that the proposed
approach is suitable for home monitoring in a controlled environment.

1 Introduction
The term ‘energy expenditure’ refers to a human's calorific uptake
over time, which is one commonly used single metric to quantify
physical activity levels. It is an important determinant in
understanding the development of chronic diseases, such as obesity
and diabetes. Current evidence-based guidelines [1] indicate that
people who are regularly physically active have a 20–40% lower
risk of developing conditions such as cardiovascular disease and
type 2 diabetes than those who are inactive, and suggest that adults
should accumulate at least 150 min of moderate intensity physical
activity each week or 75 min of vigorous activity, or a combination
of the two. Most research into estimating and understanding
calorific expenditure focuses on coarse energy totals over longer
time segments or relates to specific activities only, such as walking
and running, which generally occur outside the home.

Yet, very little attention has been paid on how activities of
normal daily living in an indoor environment can be quantified and
understood in terms of energy expenditure. Traditionally, physical
activity levels have been measured in Metabolic Equivalents of
Task (MET) [2], where a fixed value is assigned to each activity,
e.g. 1 MET corresponds to energy expended at rest. However, the
method is highly unreliable due to the fact that the activities are
monitored using self-report approaches, such as questionnaires and
occasional clinical check-ups.

There are various approaches that reliably estimate human
energy expenditure via respiratory gas analysis, including both
direct and indirect methods. Direct calorimetry measures, such as a
sealed respiratory chamber [3], produce accurate outputs, but
require a laboratory-based environment. Indirect calorimetry, on
the other hand, measures energy expenditure based on inspired and
expired respiratory gas flows, volumes and concentrations of
oxygen consumption and carbon dioxide production. Some of these
measurement devices are portable, less invasive and can produce
accurate readings. They form the measurement standard for non-
stationary scenarios where the person can move freely.
Nevertheless, participants in experiments are required to carry gas
sensors and wear a breathing mask [4].

Recently, with an increasing number of wearable devices
becoming available, approximating the energy expenditure using

inertial sensors has become a popular monitoring choice due to its
low cost, low energy consumption, and data simplicity.
Acceleration reflects a relation between motion and energy
expenditure, thus tri-axial accelerometers are the most broadly used
inertial sensors [5]. Recent studies show that more sensors could be
involved in the task: breath rate, chest and arm skin temperature
also show the correlation with energy expenditure via estimating
the oxygen consumption [6]. The data could be obtained by a heart
rate monitor and thermometers.

Vision-based systems, as alternative approximative sensors, do
not require the wearing of extra devices. In fact, they are already a
key part of home entertainment systems today [7], where RGB-
Depth sensors allow for a rich and fine-grained analysis of human
activity for purposes such as gaming within the field of view.
Recent advances in computer vision have now opened up the
possibility of integrating these devices seamlessly into home
monitoring and assisted living systems [8–10].

Simultaneous utilisations of visual and inertial sensors are not
common today, but are receiving growing attention in various
areas, including action recognition [5], gesture recognition [11],
robotics [12], augmented/virtual reality [13], and assistive
technologies applications, such as fall detection [14], food
preparation [15] and in a general ambient assisted living system
[16]. Although employing multi-modal sensors has the advantage
of complementing shortcomings of individual modalities, wearing
a multitude of sensors can cause user acceptance issues.

With this in mind, in this paper we propose a framework for
estimating energy expenditure in living environments based on a
non-intrusive RGB-Depth visual sensor and two inertial sensors –
worn on the wrist and waist – backed up in experiments by
simultaneously taken indirect calorimetry measurements based on
the measurement of oxygen consumption and carbon dioxide
production for an accurate ground truth provision. This is a new
application and to the best of our knowledge no dataset of a similar
setup with reliable and accurate ground truth exists. Thus, in order
to quantify the performance of the proposed system, we present a
new dataset, SPHERE_RGBD + Inertial_calorie, for calorific
expenditure estimation collected within a home environment. The
dataset contains 11 common household activities performed over
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up to 20 sessions, lasting up to 30 min for each session, in each of
which the activities are performed continuously. The experimental
setup consists of an RGB-Depth Asus Xtion camera mounted at the
corner of a living room, two accelerometer sensors, and a
COSMED K4b2 [4] indirect calorimeter for ground truth
measurement (see Fig. 1). The SPHERE_RGBD + Inertial_calorie
dataset is publicly released (The dataset is available online at http://
doi.org/cc5k.). 

This paper is built on our recent work in [17–19], with
significant extensions and improvements. Tao et al. [17] introduced
a fusion framework for recognising human daily activity using
visual and inertial sensors. The work did not address the issue of
energy expenditure estimation. Tao et al. [19] proposed a
framework for calorific expenditure estimation using only a visual
sensor, thus, there was no sensor fusion involved. In [18], we
presented a system which allows real-time prediction for activity
intensity levels, relying on light-weight bounding box features.
This makes the method unable to produce precise calorific
expenditure values. In this work, we have improved the feature
representation for both inertial and visual sensor data by
considering spatial and temporal information at the same time, and
investigated both early and late fusion approaches of the data from
these sensors. The key contributions of this work are as follows. (i)
We propose a first-ever framework for the estimation of calorific
expenditure from a RGB-Depth sensor and inertial wearable
sensors. There is no work published on visual-inertial energy
expenditure estimation, there being only very few works that offer
purely vision-based estimation [18, 20, 21]. (ii) We improve the
feature representation for both inertial and visual features in the
previous fusion framework in [17] by extracting rich, multi-level
information to give improved estimation accuracy. (iii) We
introduce a new dataset, linking more than 10 h of RGB-Depth
video data and inertial sensor data to ground truth calorie readings
from indirect calorimetry based on gas exchange. (iv) We present a
comparative study on the utility of both visual and inertial data

when estimating energy expenditure in a living environment. The
visual sensor and inertial sensors are evaluated individually first,
followed by an evaluation of two fusion approaches. The rest of the
paper is organised as follows. Section 2 presents the background
and work related to our study. Section 3 describes the proposed
framework for estimating energy expenditure from RGB-Depth
and inertial sensors alone, as well as in fusion. The experimental
setup and the results are presented in Section 4, followed by a
discussion and our conclusions in Section 5.

2 Related work
2.1 Inertial sensors

Acceleration, angular velocity, and rotation signals from wearable
devices have been used for human action recognition [22], and are
popular in healthcare-oriented applications, such as in fall detection
systems [23] and medication adherence monitoring systems [24].
Inertial sensors can offer particularly low-cost and ubiquitous
monitoring solutions for physical activities. Techniques that can
control computational complexity, power consumption, and
improve the unobtrusiveness of the wearable computers [25] are
applicable to many systems including the one at hand. Here, we
first discuss inertial sensor feature extraction methods described in
the literature, followed by an outline of existing models of energy
expenditure estimation based on them.

Feature representation: Different features extracted from
inertial sensor devices have been considered ranging from raw
signal samples to high-level descriptors. Raw time series data from
accelerometers is most often provided as triples of scalars, where
each scalar corresponds to acceleration in one of three orthogonal
spatial dimensions. The same fundamental structure applies to
angular velocity signals and orientation signals of three directions.
There is no computational burden associated with feature
extraction when the raw data is used.

Fig. 1  Ground truth example sequence. Top: raw per breath data (red) and smoothed COSMED-K4b2 calorimeter readings (blue) and sample colour images
corresponding to the activities performed by the subject. Bottom: three-axis acceleration signals from the waist-wear sensor
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However, raw data may not expose enough discriminative
structure to achieve high performance on specific classification
tasks. Instead, statistical features may be extracted from each of the
three axes, where sensor signal sequences are often partitioned into
temporal windows over which features are generated. All features
extracted from a temporal window are then concatenated to form a
single combined descriptor vector.

Commonly used features include the first- and second-order
statistics, namely the mean and variance [26]. In [17], apart from
these commonly used features, correlation measures between each
axes pair are also extracted. Basic statistical measures are
computationally efficient and are able to capture structural patterns
in inertial data. The feature descriptor can be further quantised into
a number of codewords, such as in [27]. Approaches based on deep
learning are currently being explored to create more generalised
learning methods that generate features directly from the input data
and promise to optimise performance further [28].

Energy expenditure estimation: The first automatic methods for
inertial energy expenditure estimation [29] were count-based
estimation systems applied by fitting a single regression model to
all the data regardless of what activity was being performed.
However, systems that map from a single wearable to calorie
values struggle to accurately estimate the intensity of physical
activity across a range of actions. For example, some actions
involving only upper or lower body movements are difficult to be
recognised via a single wearable device, and therefore a high
estimation error [30] occurs. Different activities may require
different models to represent them. Activity-specific (AS) methods
split the estimation process into two steps, where activity groups
are detected and classified first, and only then an AS model is
applied to estimate energy expenditure. MET lookup tables are the
most common approach to perform the latter, where a static MET
value is assigned from a compendium on physical activities [2] to
each one of the clusters of activities [31]. However, METs-based
approaches neglect any transitional effects of activities (continued
calorie expenditure after rigorous activity has finished), and they
overlook the fact that even the activities in same cluster can be
performed at varying intensities, for example, walking at different
speeds, or body exercise with different intensity.

An attempt to model the transition between activities was
proposed in [32], where an accelerometer and a heart rate sensor
were used and the transition between sedentary, household
activities, and walking were modelled. The work in [33] shows that
by using data from multiple inertial sensors one can more
accurately predict energy expenditure, although the limitations of
wearable devices are considerable particularly with respect to
accuracy as emphasised in [17].

Accelerometer feature descriptors are often formed within a
temporal window. This brings out another concern that the window
sizes are set usually at <10 s in existing works [6, 32]. The length
of window would significantly affect the results. It should be short
enough to recognise activities as local temporal information are
more descriptive, but long enough to predict calorie values since
current energy expenditure strongly depends on previous activity
intensity level.

2.2 Visual sensors

Visual sensor based techniques have emerged over recent years for
which there exists a significant body of literature describing the
inference of activities from two-dimensional (2D) colour intensity
imagery [34]. Meanwhile, the increasing availability of depth-
measuring sensors, especially the introduction of the Microsoft
Kinect, has generated an opportunity for utilising depth in
conjunction with traditional RGB camera data allowing for richer
and more fine-grained analysis of human activity [7]. Applying
computer vision techniques to help with the diagnosis and
management of health and wellbeing conditions has gained
significant momentum over the last years [35]. However, studies
on energy expenditure using visual sensors have been relatively
limited. Our work explores this field further and builds on several
relevant subject areas in computer vision.

Visual feature representation: The visual trace of human
activity in video forms a spatio-temporal pattern. To extract
relevant properties from this for the task at hand, one aims at
compactly capturing this pattern and highlighting important aspects
related to the properties of interest. Assuming that both body
configuration and body motion [36] are relevant to infer calorific
uptake, the pool of potential features is large – ranging from local
interest point configurations [37], over holistic approaches like
histograms of oriented gradients and histograms of motion
information [17], to convolutional neural network features [38].

Motion information in the first place could also be recovered in
various ways, e.g. from RGB data using optical flow or from depth
data using 4D surface normals [39]. Whilst a composition of these
features via concatenation of per-frame descriptors is straight
forward, this approach suffers from the curse of dimensionality and
unaffordable computational cost. Sliding window methods [40], on
the other hand, can limit this by predicting current values only
from nearby data within a temporal window. Further compaction
may be achieved by converting large feature arrays into a single,
smaller vector with a more tractable dimension count via, for
instance, bags of visual words [41], Fisher vectors [42], time series
pooling [43], or the features extracted from convolutional neural
networks [44]. In summary, the challenge of feature representation
will require capturing visual aspects relevant to calorific
expenditure, whilst limiting the dimensionality of the descriptor.

Activity recognition: There exists a significant body of literature
describing the inference of activities from 2D colour intensity
imagery [34], RGB-Depth data [7], and skeleton-based data [45].
Knowledge about the type of activity undertaken has been shown
to correlate with the calorific expenditure incurred [2]. In
alignment with Fig. 2a, we will argue in this work that an explicit
activity recognition step in the vision pipeline can, as an
intermediate component, aid the visual estimate of energy uptake. 

Energy expenditure estimation: 2D video has recently been used
by Edgcomb and Vahid [20] coarsely to estimate daily energy
expenditure. In their work, subjects are first segmented from the
scene background. Changes in height and width of the subject's
motion bounding box, together with vertical and horizontal
velocities and accelerations, are then used to estimate calorific
uptake. Tsou and Wu [21] take this idea further and estimate
calorie consumption using full 3D joint movements tracked as
skeleton models by a Microsoft Kinect. We note, however, that
both of the above methods use wearable accelerometry as the target
ground truth, which in fact does not provide an accurate
benchmark; skeleton data is commonly noisy and currently only
operates reliably when the subject is facing the camera. This limits
applicability in more complex, in-the-wild, visual settings as, for
instance, contained in the SPHERE_RGBD + Inertial_calorie
dataset. Our recent work in [19] introduced a visual based
framework for estimating calorific expenditure in a home
environment, and we then extended it to be able to estimate
physical activity intensity levels in real time [18]. Although the
method is practically applicable to more complex settings, the
light-weight features extracted from bounding boxes (velocity
vector and the ratio of height and width of the bounding box) can
only help make a gross estimate of calorific expenditure. In this
paper, instead of using only simple bounding box features, we
simultaneously collect RGB and depth imagery and then encode
appearance and motion features via spatial pyramids. The temporal
information is encoded using a pyramidal temporal pooling with
multiple pooling operators. This has the aim of extracting rich,
multi-level information to give improved estimation accuracy,
whilst maintaining applicability to detect complex human
activities.

2.3 Sensor fusion

It is reasonable to expect that the use of multiple sensor types
would improve the overall performance compared with single
sensor settings, since sensors may complement the limitations of
each other. Given an accurate temporal synchronisation between
the different modality sensors, learning from multi-modal data is
applicable. In general, feature-level fusion (early fusion) and
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decision-level fusion (late fusion) are the two approaches most
often employed to fuse multiple modalities. Both early and late
fusion strategies are explained in further detail in [46].

Feature-level fusion: This methodology involves carrying out
fusion of features right after features are extracted from raw data.
This scheme only requires one learning stage and allows to take
advantage of mutual information from data. For instance, in [47],
the depth and inertial sensor data were concatenated, then an
Hidden Markov Model (HMM) classifier was employed for
recognising basic gestures on the fused data. The results reveal
significant improvements when the fusion scheme is applied
compared to using each sensor individually. The work in [17]
investigates the practical home-use of body-worn mobile phone
inertial sensors together with an RGB-Depth camera to achieve
monitoring of daily living scenarios. The results indicate that the
vision-based approach significantly outperforms the wearable-
based method, while fusion of both sensors slightly improves the
performance further. Clearly, feature-level fusion can be applied
effectively in practical settings; however, it may suffer from the
‘curse of dimensionality’.

Decision-level fusion: This approach fuses the decisions made
by individual classifiers, each of which corresponding to one
sensor. Since decision information is of low complexity, the curse
of dimensionality can effectively be targeted. In [48], for instance,
a Bayesian co-boosting training framework combines multiple
hidden Markov model classifiers of two modalities – a Kinect
sensor and an inertial measurement unit. The result is the
construction of a strong classifier for gesture recognition, which
achieved the best performance in the multi-modal gesture
recognition challenge. A real-time action recognition system in
[49] uses Dempster–Shafer theory to combine the classification
outcomes from a depth camera and several inertial sensors. A
Bayesian model for sensor fusion is introduced in [16], which aims
at addressing the challenges of fusion of heterogeneous sensor
modalities in ambient assisted living.

Comparisons: In this work, we consider both fusion approaches
and provide a direct comparison. In the feature-level fusion
approach, features generated from the two modality sensors are
merged before classification, and the decision-level fusion is
performed by forming a linear combination of different classifiers
using stacking regression [50] to improve overall accuracy. As
outlined in the following section, our work attempts to use
skeleton-independent, RGB-Depth-based vision, together with two
wearable accelerometer devices to estimate calorific expenditure

against a standardised calorimetry sensor COSMED-K4b2 based
on gas exchange.

3 Method
To describe our framework for estimating calorific expenditure, we
initially introduce the methods for visual and wearable sensors
separately, and then describe two approaches for their fusion.

Fig. 2a shows a flowchart of the visual method – mapping
visual flow and depth features to calorie estimates using AS
models. The method implements a cascaded and recurrent
approach, which explicitly detects activities as an intermediate to
select type-specific mapping functions for the final calorific
estimation. Importantly, our setup as a video-based system is
designed to reason about activities first, before estimating calorie
expenditure via a set of models which are each separately trained
for particular activities. In contrast to this, our direct mapping
(DM) method designed for wearable sensor data directly maps
inertial features to calorie estimates via a monolithic classifier. A
flowchart of the wearable approach is shown in Fig. 2b. In our
fusion system, we consider both feature-level and decision-level
fusion of these two approaches. Finally, we compare these methods
against a ground truth of gas-exchange measurements and off-the-
shelf alternatives, that is manual mapping from activity classes to
calorie estimates via METs lookup tables [2] as it is often applied
in clinical practice today.

3.1 Visual features

We obtain RGB and depth imagery using an Asus Xtion. For each
frame t, appearance and motion features are extracted, with the
latter being computed with respect to the previous frame (level 0).
A set of temporal filters is then applied to form higher level motion
features (level 1). We extract features from within the bounding
box returned by the OpenNI SDK [51] person detector and tracker,
which allows to follow up to six persons in the camera view at the
same time. To normalise the utilised image region due to varying
heights of the subjects and their distance to the camera, the
bounding box is scaled by fixing its longer side to M = 60 pixels, a
size recognised as optimal for human action recognition [52], while
maintaining aspect ratio. The scaled bounding box is then centred
in a M × M square box and horizontally padded.

Motion feature encoding: Inspired by Tran and Sorokin [52],
optical flow measurements are taken over the bounding box area
and split into horizontal and vertical components. These are re-

Fig. 2  Overview of our visual-based and wearable-based frameworks
(a) Visual-based framework. RGB-Depth videos are represented by a combination of flow and depth features. The proposed recurrent method then selects AS models which map to
energy expenditure estimates, (b) Wearable-based framework. Inertial features are formed from two accelerometer sensor data, then features are mapped directly to calorie estimates
via a monolithic classifier
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sampled to fit the normalised box and a median filter with kernel
size 5 × 5 is applied to smooth the data. A spatial pyramid structure
is used to form hierarchical features from this. Such partitioning of
the image into an iteratively growing number of sub-regions
increases discriminative power. The normalised bounding box is
divided into a ng × ng non-overlapping grid, where ng depends on
the pyramid level, and the orientations of each grid cell are
quantised into nb bins. The parameters for our experiments are
empirically determined as nb = 9 and ng = 1 and 2 for levels 0 and
1, respectively. Fig. 3a exemplifies optical flow patterns and their
encoding in two different example activities. 

Appearance feature encoding: We extract depth features by
applying the histogram of oriented gradients feature on raw depth
images [53] within the normalised bounding box. We then apply
principal component analysis and keep the first 150 dimensions of
this high-dimensional descriptor, which retains 95% of the total
variance.

Pyramidal temporal pooling: Given the motion and appearance
features extracted from each frame in a sequence of images, it is
important to capture both short- and long-term temporal changes,
and summarise them to represent the motion in the video. Pooled
motion features were first presented in [43], even though designed
for egocentric video analysis. We modify their pooling operator to
make it more suitable for our data as follows – an illustration of the
temporal pyramid structure and the process for pooling operations
are shown in Fig. 3b. The time series data S can be represented as a
set of time segments at level i as S = [Si

1, …, Si
2i

]. The final feature
representation is a concatenation of multiple pooling operators
applied to each time segment at each level. The time series data can
also be explained as T per-frame feature vectors, such that
S = S1, …, SN , S ∈ ℝN × T for a video in matrix form, where N is

the length of the per-frame feature vector, and T is the number of
frames. A time series Sn = [sn(1), …, sn(T)] is the nth feature across
1, …, T  frames, where sn(t) denotes nth feature at frame t. A set of
temporal filters with multiple pooling operators is applied to each
time segment [tmin, tmax] and produces a single feature vector for
each segment via concatenation. We use two conventional pooling
operators, max pooling and sum pooling, as well as frequency
domain pooling. They are defined as

Omax(Sn) = max
t = tmin⋯tmax

sn(t) and Osum(Sn) = ∑
t = tmin

tmax

sn(t) (1)

Frequency domain pooling is used to represent the time series Sn in
the frequency domain by the discrete cosine transform (dct), where
the pooling operator takes the absolute value of the j lowest
frequency components of the frequency coefficients D

Odct(Sn) = M1: jSn (2)

where M is the discrete cosine transformation matrix.

3.2 Inertial features

Raw time series data from accelerometers is measured as [X, Y, Z]
vectors, where each column corresponds to acceleration in
orthogonal spatial dimensions. Fig. 1 illustrates the raw
accelerometer data collected from one wearable device for various
actions. From the raw data the pooled motion features are formed
from each of the three axes for each device. Abstracting short-term
and long-term changes in the inertial feature descriptor is essential;
it is particularly useful for modelling the level of activity intensity

Fig. 3  Flow feature encoding via spatial pyramids and temporal pyramid pooling and its feature representation
(a) Flow feature encoding via spatial pyramids. First row: limited motion while standing still. Second row: significant motion features when moving during vacuuming. First column:
colour images with detected person. Second column: optical flow patterns. Third column: motion features at level 0. Last column: motion features from the top-right quadrants of the
image at level 1 (at which the image is subdivided into four quadrants), (b) Temporal pyramid pooling and its feature representation. This schematic shows the temporal subdivision
of data into various pyramidal levels (left) and the concatenation of resulting feature (e.g. max, sum, and dct) into a descriptor vector (right)
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changes. Thus, we apply three pooling operators (max pooling,
sum pooling, and frequency domain pooling) to the inertial data.

3.3 Learning and recurrency

Energy expenditure estimation can be formulated as a sequential
and supervised regression problem. We train a support vector
regressor to predict calorie values from given features over a
training set. The sliding window method is used to map each input
window of width w to an individual output value yt. The window
contains the current and the previous w − 1 observations. The
window feature is represented by temporal pooling from the time
series S = S

t − w + 1, …, S
t .

We note that energy values for a particular time are highly
dependent on the energy expenditure history. In our system, these
are most directly expressed by previous calorific predictions during
operation. Thus, employing recurrent sliding windows offers an
option to not only use the features within a window, but also take
the most recent d predictions y^

t − d
, …, y^

t − 1  into consideration to
help predict yt. During learning, as suggested in [54], the ground
truth labels in the training set are used in place of recurrent values.

3.4 Fusion approach

Both feature-level and decision-level fusion are considered in our
work.

Feature-level fusion: This is an early fusion approach, for which
all features from all modalities are concatenated together, and
employed as a single unified feature stream to the learning
components. Given visual features in d1-dimensional feature space
Sv ∈ ℝd1 and accelerometer features in d2-dimensional feature
space Sa ∈ ℝd2, the fused feature set can be represented as

S ∈ ℝd1 + d2, where the feature set is constructed as S = (Sv, Sa). The
fused feature vector is then used as input to the classifiers of the
system. Fig. 4a shows a flowchart of this feature-level fusion
approach. 

Decision-level fusion: In this approach, a collection of models
are learned, and the predictions are combined together only at the
last stage to form the final decision. We apply the decision-level
fusion via a stacking regression method, which forms linear
combinations of different classifiers to improve overall estimation
accuracy.

Consider that there are K predicted values y^1, …, y^K estimated
from each regressor individually. Then, the final predictor value
Y

^
(S) can be represented as a linear combination of a set of

predicted values with different weighting coefficients, constructed
as

Y
^
(S) = ∑

k = 1

K

αky^k(S) (3)

Given a set of training data {(S1, y
1), …, (ST, yT)} with T training

samples, where each St is an input vector, the goal is to minimise
the distance of the ground truth yt and the predicted values Y^ t

(S)
from the combined regressor. This optimised distance can be
obtained by

arg min
αk

∑
t = 1

T

yt − ∑
k = 1

K

αky^k
t
(St)

2

, (4)

with the constraints 0 ≤ αk ≤ 1, k = 1, …, K. The resulting
combined predicted value ∑k = 1

K
αky^k(S) is then used as prediction.

Fig. 4b shows a flowchart of this decision-level fusion approach.

Fig. 4  Fusion approaches overview
(a) Feature-level fusion framework. The features from visual and inertial sensors are concatenated to form a monolithic input into activity recognition and AS models, (b) Decision-
level fusion framework. Calorie values are predicted individually by the different sensor modalities, and then combined using a regression method to form final calorie estimates
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4 Experimental results
4.1 Dataset and ground truth

We introduce the SPHERE_RGBD + Inertial_calorie dataset for
human calorific expenditure estimation, comprising RGB-Depth
and inertial sensor data captured in a real living environment. The
ground truth was captured by the COSMED K4b2 portable
metabolic measurement system. The dataset was generated over 20
sessions by 10 subjects with varying anthropometric
measurements. Participants were seven males and three females,
with mean age of 27.2 ± 3.8 years, mean weight of 72.3 ± 15.0 kg,
mean height of 173.6 ± 9.8, mean body mass index of 23.7 ± 2.8.
Ethics approval was obtained and each participant signed a consent
form agreeing to share their data for research purposes. The dataset
contains up to 11 activity categories per session, and totalling
around 10 h recording time. The activities were captured in daily-
living scenarios containing a variety of body positions, view-
points, and distances naturally associated with the various actions
performed. Fig. 5 shows frames from the vaccuming activity
depicting this variety. It is also shown that the sequences are
captured in different time of the day which contains various
lighting conditions. All the activities, the associated intensity
categories, and MET values are shown in Table 1. In addition,
Table 2 lists the number of frames for each action and sequence
[Some actions in certain sequences are missing due to various
reasons (hence they have 0 frames), for example exercise is
missing in sequences 7 and 17 as the participants had difficulty in
performing the action.]. 

Colour and depth images were acquired at a rate of 30 Hz. The
accelerometer data was captured at about 100 Hz and sampled
down to 30 Hz, a frequency recognised as optimal for human
action recognition [55]. The calorimeter gives readings per breath,
which occurs approximately every 3 s. To model transitions better

between activity levels, we consider the nine different
combinations of the three activity intensities (light, light+,
moderate) in the design of each session.

Fig. 1 shows a detailed example of calorimeter readings and
associated sample RGB images from the dataset (top) and the
accelerometer data reading (bottom). The raw breath data is noisy
(in red). We apply an average filter with a span of ∼20 breaths (in
blue). The participants were asked to perform the activities based
on their own living habits without any extra instructions.

4.2 Parameter settings

In our experiments, we use non-linear Support Vector Machines
(SVMs) with radial basis function kernels for activity classification
and a linear support vector regressor for energy expenditure
prediction. The libsvm [56] implementation was used. We perform
a grid search algorithm to estimate the hyper-parameters of the
SVM. To test our individual-independent approach, we implement
leave-one-subject-out cross-validation on the dataset in which each
subject's data are tested in turn using models trained with all other
subject data combined. This process iterates through all subjects,
and the average testing error and standard deviation of all iterations
are reported. We use the normalised root-mean-squared error
(normalised RMSE) as a standard evaluation metric to facilitate the
comparison between data with different scales for the deviation of
estimated calorie values from the ground truth.

4.3 Evaluation of individual modalities

We start with tests on each sensor type (visual and inertial), and
compare their performance in situations when used independently.

Temporal window size: The accuracy of predicted calorie values
is linked to the window of previous information utilised for making
the prediction. In a first experiment, we look at the relation

Fig. 5  Example poses from the activity ‘vacuuming’. It can be seen that the sequences contain a large variety of body positions, view-points, and distances
naturally associated with the action. Two example sequences are captured in daytime and nighttime, respectively, indicating different lighting conditions

 
Table 1 Activities, their associated MET values, and the levels of activity intensity
Intensity Activity MET value
light sit still 1.3

stand still 1.3
lying down 1.3

reading 1.5
light+ walking 2.0

wiping table 2.3
cleaning floor stain 3.0

moderate vacuuming 3.3
sweeping floor 3.3

upper body exercise 4.0
stretch 5.0
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between window length on the one hand, and activity recognition
and calorie prediction errors on the other. All sequences are tested
with temporal windows of w = {7.5, 15, 30, 60} s. Tables 3 and 4
illustrate the activity recognition rates and the average normalised
RMSEs for calorie prediction at different window length w using
visual and accelerometer data, respectively. It can be seen that, in

both modalities, the best performance across the set for recognising
activities is achieved when a relatively small size of window is
applied. The confusion matrices corresponding to the use of visual
and inertial sensors are depicted in Fig. 6. 

In a second experiment, we test how the estimated calorie value
is influenced by the performance of action recognition. The results

Table 2 Number of frames per sequence and action in SPHERE_RGBD + Inertial_calorie dataset
seq ID stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
1 3739 5230 5509 5117 5447 5113 5142 2789 2421 5072 6092 51,671
2 3546 5388 5304 5244 5177 5091 5020 2545 2566 5112 5311 50,304
3 3876 5682 6093 4745 5151 4946 5360 2297 2318 5317 5095 50,880
4 3948 5211 5470 5182 5025 4813 3784 0 0 0 0 33,433
5 3239 5133 5670 4878 5436 4327 0 0 0 0 0 28,683
6 3812 5294 5889 5023 5015 4841 4878 3205 1778 4738 5070 49,543
7 3796 5239 11,602 6684 4432 4561 3590 0 5474 5837 5337 56,552
8 3951 5257 5412 5244 4886 1005 0 0 0 0 0 25,755
9 4128 5568 5091 5195 4651 3619 4891 2458 2483 5700 5298 49,082
10 3649 5202 5317 5354 4651 4990 5030 2330 1669 3933 5337 47,462
11 4367 4901 5503 5133 5006 4761 0 0 0 0 0 29,671
12 3697 5270 5618 5010 5107 4988 4991 2891 2335 5299 5412 50,618
13 4250 5936 4644 5162 5259 4517 4944 899 2839 5495 6206 50,151
14 4263 4732 5370 5150 4769 4847 4861 3008 3224 4366 5765 50,355
15 3457 5784 4789 4745 5159 4911 0 0 0 0 0 28,845
16 3919 5466 5062 5308 2716 0 0 0 0 0 0 22,471
17 3613 5343 5432 4914 5032 4461 4979 0 5063 5902 4873 49,612
18 3715 5340 5422 5013 5893 4743 4517 1977 2793 5948 5012 50,373
19 4521 5434 5787 4740 5015 4459 5480 3174 2707 4803 6342 52,462
20 4040 5255 5597 5472 5309 4551 4926 1797 1691 6356 6443 51,437
 

Fig. 6  Recognition confusion matrices from the best activity recognition results corresponding to the use of
(a) Visual sensor, (b) Inertial sensors

 
Table 3 Vision-based prediction results. Activity recognition rate (%) and calorific expenditure prediction error (normalised
RMSE) with different window lengths w, stated in seconds. The best results for each activity are in bold
w  stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
7.5 activity 83.5 75.2 90.5 70.2 79.7 73.4 58.6 36.6 54.1 93.8 39.9 72.3

calorie 0.84 0.70 0.29 0.52 0.31 0.41 0.74 0.63 0.52 0.41 0.67 0.58
15 activity 86.5 77.6 88.3 69.4 79.0 76.5 62.3 39.2 61.1 91.4 38.9 73.7

calorie 0.83 0.66 0.30 0.46 0.34 0.45 0.74 0.66 0.54 0.40 0.64 0.53
30 activity 85.0 79.1 89.4 71.9 81.1 75.2 54.3 40.3 57.8 90.4 36.8 71.1

calorie 0.73 0.52 0.30 0.41 0.36 0.41 0.66 0.55 0.54 0.37 0.54 0.49
60 activity 81.1 79.7 85.1 66.0 77.2 72.9 33.0 29.3 52.7 90.0 35.9 68.2

calorie 0.54 0.45 0.32 0.44 0.34 0.39 0.58 0.42 0.52 0.38 0.50 0.45
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for each activity using visual and inertial sensors are listed in
Tables 5 and 6, respectively. We first test a system in which the
ground truth labels are used to select the AS model for calorie
prediction (top rows in Tables 5 and 6). We then compare actual
action recognition at varying window lengths w = {7.5, 15, 30, 60} 
s. In all cases, we use a fixed window length w = 60 s for calorific
expenditure estimation to focus on the effect of varying action
recognition quality. As expected, it can be observed that for most
activities, the calorie estimation error is smallest when there is no
activity recognition error (top rows in Tables 5 and 6). For a more
detailed visualisation, we also show the results in Fig. 7; the 11

actions are grouped into three clusters based on their intensity level
(see Table 1). The figure summarises the calorie prediction error
for different intensities and action recognition rates using the visual
system and the inertial system, respectively. 

Model comparison: As just observed, activity recognition
accuracy affects the calorie prediction results. To determine if the
AS model provides a predictive advantage, we compare the
estimation performance of the AS approach against the DM
approach for each sensor modality. For both sensor systems, we
select a fixed window length of w = 60 s to analyse performance
for calorie value prediction in both DM and AS, and w = 15 s for

Table 4 Inertial-based prediction results. Activity recognition rate (%) and calorific expenditure prediction error (normalised
RMSE) with different window lengths w, stated in seconds. The best results for each activity are in bold
w  stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
7.5 activity 91.1 58.7 78.1 43.6 50.1 48.2 66.0 51.8 65.2 59.8 48.0 60.1

calorie 0.54 0.50 0.49 0.52 0.51 0.41 0.64 0.83 0.72 0.51 0.77 0.63
15 activity 89.7 58.9 86.7 43.9 50.5 37.9 63.4 66.7 68.1 66.6 61.8 60.3

calorie 0.50 0.51 0.41 0.45 0.46 0.38 0.53 0.80 0.68 0.44 0.73 0.59
30 activity 88.7 56.9 83.9 46.6 48.7 36.4 69.4 51.8 64.1 61.0 52.1 58.0

calorie 0.46 0.49 0.48 0.46 0.52 0.35 0.54 0.77 0.60 0.43 0.71 0.56
60 activity 90.8 55.3 74.8 52.3 49.6 45.7 73.1 44.9 59.0 64.2 56.0 58.3

calorie 0.41 0.41 0.51 0.50 0.47 0.40 0.57 0.64 0.55 0.41 0.71 0.54
 

Fig. 7  Prediction accuracy of calorific expenditure. Average calorie prediction errors (normalised RMSE) when ground truth labels are used to select the AS
model (in yellow), and when action recognition is employed at different window length using
(a) Visual sensor, (b) Two accelerometer sensors

 
Table 5 Calorific expenditure prediction error (normalised RMSE) using the visual sensor when ground truth labels are used to
select the AS model (top row) and when action recognition is employed at different window lengths. The best results for each
activity are in bold
calorie w activity w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
60 n/a 0.40 0.45 0.28 0.35 0.32 0.38 0.55 0.36 0.55 0.36 0.50 0.43

7.5 0.51 0.43 0.28 0.38 0.33 0.38 0.58 0.43 0.55 0.35 0.43 0.45
15 0.41 0.43 0.30 0.41 0.32 0.39 0.57 0.45 0.54 0.36 0.44 0.44
30 0.47 0.44 0.30 0.42 0.31 0.37 0.56 0.44 0.53 0.37 0.46 0.44
60 0.54 0.45 0.32 0.44 0.34 0.39 0.58 0.42 0.52 0.38 0.50 0.45

 

Table 6 Calorific expenditure prediction error (normalised RMSE) using the inertial sensors when ground truth labels are used
to select the AS model (top row), and when action recognition is employed at different window lengths. The best results for each
activity are in bold
calorie w activity w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
60 n/a 0.47 0.41 0.33 0.26 0.37 0.45 0.46 0.57 0.47 0.40 0.50 0.45

7.5 0.51 0.47 0.41 0.45 0.39 0.40 0.62 0.72 0.52 0.42 0.63 0.52
15 0.53 0.57 0.40 0.48 0.44 0.43 0.57 0.72 0.46 0.39 0.57 0.52
30 0.48 0.45 0.46 0.50 0.43 0.43 0.57 0.68 0.55 0.41 0.58 0.53
60 0.41 0.41 0.51 0.50 0.47 0.40 0.57 0.64 0.55 0.41 0.71 0.54

 

44 IET Comput. Vis., 2018, Vol. 12 Iss. 1, pp. 36-47
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



activity recognition in AS. The results are shown in Fig. 8a for
each activity. It can be seen that for the visual-based system, the
AS provides best prediction results overall and significantly
outperforms DM in most activities. For the inertial-based system,
the error associated with AS is significantly higher compared with
DM. This is in part due to poor activity recognition results in an
inertial measurement setup, which effectively leads to using wrong
models to estimate calorie values. 

Evaluation of a recurrent system layout: To evaluate the use of
recurrency, we set the AS method using the sliding window
technique as our baseline method for the vision-based comparison,
and the DM method for inertial-based comparison. We now
introduce two methods, which are based on recurrent sliding
window approaches. The first method (Recurrent1) uses the most

recent predictions of the baseline method as input together with
visual/inertial features to predict current calorie value. Thus, it
implements indirect recurrency utilising the predicted values from
the baseline as recent predictions. The second method (Recurrent2)
implements full recurrency, i.e. it uses its own output as recurrent
input together with visual/inertial features.

Table 7 shows the effect of using recurrent information, with
the best results for each activity highlighted. In general, the full
recurrency model, Recurrent2, suffers from drift and produces the
worst results for half of the activities and also overall. When the
visual sensor is used, indirect recurrency, Recurrent1, outperforms
the other approaches at an average normalised RMSE of 0.42,
while in inertial-based systems indirect recurrency increases the
estimation error by 7% comparing to its baseline. 

Fig. 8  Average calorie prediction errors
(a) Average calorie prediction errors (normalised RMSE) of DM and AS approaches using visual and inertial sensors, respectively, (b) Average calorie prediction errors (normalised
RMSE) of using visual sensor only (visual), inertial sensors only (inertial), and two sensor fusion approaches

 
Table 7 Average calorific expenditure prediction errors (normalised RMSE) for each activity with different learning approaches.
The best results for each activity are in bold

w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
visual baseline 0.41 0.43 0.30 0.41 0.32 0.39 0.57 0.45 0.54 0.36 0.44 0.44

recurrent1 0.36 0.39 0.28 0.38 0.30 0.38 0.54 0.41 0.50 0.35 0.41 0.42
recurrent2 0.35 0.49 0.31 0.52 0.59 0.53 0.56 0.38 0.46 0.42 0.45 0.52

inertial baseline 0.41 0.45 0.32 0.30 0.33 0.40 0.35 0.75 0.49 0.35 0.36 0.46
recurrent1 0.41 0.54 0.37 0.32 0.34 0.41 0.45 0.78 0.49 0.36 0.44 0.49
recurrent2 0.50 1.06 0.63 0.49 0.45 0.49 0.92 0.95 0.52 0.44 0.85 0.68
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4.4 Comparing sensor fusion approaches

Having tested the two modalities individually, we now study
modality fusion approaches against the use of individual sensor
systems, and also compare against the MET lookup table method
for completeness.

In feature level fusion, we apply our AS approach with w = 15 s
for activity recognition and w = 60 s for calorific expenditure
estimation. In decision level fusion, we again use the most suitable
model for each sensor data to fuse, which is the AS approach for
visual sensor data, and DM approach for inertial sensor data. The
estimation performance of the two fusion approaches is compared
with the performance of each sensor modality individually, as
shown in Fig. 8b. It can be seen that both fusion approaches on
average outperform unimodal prediction. In particular, by
combining the features from the visual and the inertial data, the
overall prediction error decreases from 0.46 (inertial sensors alone)
and 0.42 (visual sensor alone) to 0.39. The calorie prediction
accuracy for most activities is improved when using fusion
approaches. We also observed that the two fusion frameworks
achieve similar performance.

Finally, we present the results produced by MET, which is
commonly used by clinicians and physiotherapists, and compare
our proposed methods against it. It assumes N clusters of activity
A = A1, A2, …, AN  are known. A MET value is assigned to each
cluster, together with anthropometric characteristics of individuals.
The amount of AS energy expended can then be estimated as
energy = 0.0175(kcal/kg/min) × weight (kg) × MET values [2].
Here, we use the ground truth labels to select activities to keep this
procedure identical to the commonly used manual estimate. Table 8
presents the detailed results for each sequence. The accuracy is
calculated over the total calorie expended in each recording
session. We also measure the correlation between the ground truth
and the observed values [Note that the total calorie values for
sequence 4, 5, 8, 11, 15, and 16 are relatively low due to shorter
sequences.]. We can see that the fusion of visual and inertial
sensors achieves higher accuracy and correlation in more
sequences than the MET model or unimodal approaches, and
obtains better rates on average, which points towards an advantage
of using visual-inertial setups for the task of calorific expenditure
prediction. 

5 Conclusion and future directions
We have presented a system for calorific expenditure estimation
using data from two different modality sensors, a RGB-Depth
camera sensor, and wearable inertial sensors (accelerometers). We
have demonstrated the effectiveness of the fusion approach through
a comprehensive comparative study with single modality setups
and widely used METs prediction. The proposed fusion system
used pooled spatial and temporal pyramids of visual and
accelerometer features, which subsequently are fed in both early
and late fusion approaches. To test the methodology, we introduced
the challenging SPHERE_RGBD + Inertial_calorie dataset, which
covers a wide variety of home-based human activities. The
proposed fusion method demonstrates its ability to outperform the
METs estimation approach and the use of single modality sensors.
The focus of the paper has been on presenting a system for
estimating calorific expenditure from combined visual and
accelerometer sensors, where the purpose of the study has been to
show that the fusion of both modalities improves the estimates
beyond the accuracy of single modality, and the proposed system
outperforms manual metabolic lookup table based methods – the
main measure used in clinical practice today. We acknowledge that
applying more advanced fusion approaches and different feature
representations may improve the performance further. Possible
future directions include introducing deep learning models and
investigating advanced data fusion methodologies for different
modality sensors. We hope this work, and the new dataset, will
establish a baseline for future research in the area.
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