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1. Introduction

Many noise and vibration engineers and investigators have shown much interest in the dynamic complex structures

vibrating in the medium-to-high frequency ranges. The traditional finite element method (FEM) and boundary

element method (BEM) have been widely used for the low frequency analysis. At high frequencies, these methods

require a higher order shape function or more fine elements to obtain more accurate results. Thus, the traditional

FEM and BEM have become costly and ineffective for vibration analysis of complex structures in high frequency

ranges. The statistical energy analysis (SEA), which has been developed for high frequency vibration analysis, gives

single averaged value for the energy density of a subsystem, and thus it cannot provide detailed information such as

variation of energy density and energy flow paths in a subsystem, and SEA requires that the size of subsystem in a

structure be large when the frequency of interest is decreased.

To improve the weaknesses of SEA in vibration analysis in the high frequency ranges and to overcome the

frequency-dependent limitations of the traditional FEM and BEM, researchers have investigated alternative methods.

One of the promising alternative method is Energy Flow Analysis (EFA), which was introduced by Belov et al. [1] in

1977. EFA method is based on an energy governing equation analogous to the heat conductivity equation, in which

the main variable is the energy density. Using this method at high frequencies, the spatial variation of the time-

and locally space-averaged vibration energy density and energy transmission paths in a structure can be effectively

predicted. Moreover, unlike the traditional FEM, BEM and SEA, the EFA method has been considered appropriate

for the vibration analysis of complex structures in mid-frequency ranges. Nefske and Sung [2] implemented the

finite element formulation of the energy governing equation of EFA, and used it to predict the vibration responses

of an uncoupled beam and two coupled beams excited by a harmonic force. Wohlever and Bernhard [3,4] derived

the energy governing equations for the propagation of the vibration waves in rods and Euler-Bernoulli beams, and

Bouthier and Bernhard [4-7] derived the energy governing equations for the flexural waves in membranes and thin

plates and for the acoustic waves in enclosures. Cho [8] studied the joint relationships of coupled structures by using

the concept of power transmission and reflection coefficients. Park et al. [9] developed the energy flow models of the

in-plane waves in isotropic thin plates and the flexural waves in orthotropic thin plates, and Seo et al. [10] researched

the energy flow analysis of beam-plate coupled structures. Similar to EFA, the simplified energy method (SEM) was

developed by Lase, Le Bot et al. [11,12]; it is a simplification of the general energy method (GEM).

This work aims to implement boundary element formulations of the energy governing equation of EFA for one-

and two-dimensional waves [13,14]. Direct and indirect methods are investigated and numerically applied to the

prediction of the vibration energy density and intensity distributions in simple beams, rectangular thin plates, and

L-type thin plates.

2. Energy governing equation

In steady state (∂ / ∂ t = 0), the vibrational power injected into a structural element is equal to the sum of the

power flowing out through its boundary and the power dissipated in the element. The steady state energy balance

equation of an elastic structural element has the form of

∇ · q + πdiss = πin, (1)

where q is the intensity vector, which means the power transmitted through the boundary of the element, and π diss

is the dissipated power due to the structural damping and π in is the power injected due to external loads. The time-

averaged dissipated power in an elastic medium with small structural damping is proportional to the time-averaged

total energy density, and this concept can be expressed as

< πdiss >= ηω < e >, (2)

where the brackets < > mean the time-average over a period, η is the structural damping loss factor, ω is the

circular frequency, and e is the total energy density. In Eq. (2), it is assumed that the kinetic energy and the potential

energy of the medium are approximately the same.
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Based on the work of Wohlever and Bernhard, the time-averaged intensity of longitudinal and torsional waves in

rods can be expressed as the derivative of the total energy density as follows:

< q >= −
c2g
ηω

d < e >

dx
, (3)

where cg is the group velocity of the corresponding wave. The intensity and energy density of flexural waves in

Euler-Bernoulli beams have the same energy transmission relation as Eq. (3). In this case, < q > and < e > in Eq. (3)

represent the time- and locally space-averaged intensity and energy density of far-field components, respectively.

The combination of Eqs (1), (2) and (3) yields the energy governing equation of EFA for one-dimensional waves in

the form of

−
c2g
ηω

d2 < e >

dx2
+ ηω < e >=< πin > . (4)

When two-dimensional in-plane waves in thin plates and flexural waves in membranes are considered, the energy

transmission relation is more generally expressed as

< q >= −
c2g
ηω

∇ < e > (5)

and thus, the energy governing equation is written by

−
c2g
ηω

∇2 < e > +ηω < e >=< πin >, (6)

where the brackets< >mean the time- and space-average over a period and a half wavelength. When flexural waves

propagate in thin plates, the time- and locally space-averaged intensity and energy density of far-field components

satisfy Eqs (5) and (6).

3. One dimensional energy flow boundary element formulations

3.1. Formulation of the direct method

In this section, the direct boundary element method is applied to solve the energy governing equations for the

vibrational waves in one-dimensional structures. First, Eq. (4), the energy governing equation for one-dimensional

structures, can be rewritten implicitly as

−
c2g
ηω

d2e(x)

dx2
+ ηωe(x) − πin(x) = 0, (7)

where the brackets < > are neglected for brevity. If Eq. (7) is multiplied by a two-variable function G(x; ξ) and

is integrated over the range 0 � x � L, a weak variational form of Eq. (4) can be obtained by

∫ L

0

(

−
c2g
ηω

d2e(x)

dx2
+ ηωe(x) − πin(x)

)

G(x; ξ)dx = 0, (8)

where L is the length of the structure, and G(x; ξ) is specified to be the solution of the equation

−
c2g
ηω

d2G(x; ξ)

dx2
+ ηωG(x; ξ) = δ(x− ξ), (9)

where δ(x − ξ) is the Dirac delta function, which is mathematically equivalent to the effect of a unit concentrated

source applied at a point ξ. When the function G(x; ξ) is the fundamental solution (free space Green’s function) of

Eq. (9), we can obtain the following expression:

G(x; ξ) =
1

2cg

exp

(

−ηω

cg

|x− ξ|
)

. (10)
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If Eq. (8) is integrated by parts twice, we obtain

−
c2g
ηω

[

de(x)

dx
G− e (x)

d G

d x

]L

0

+

∫ L

0

e(x)

(

−
c2g
ηω

d2G

dx2
+ ηωG

)

dx

=

∫ L

0

πin(x)G dx, (11)

and when Eqs (3) and (9) are substituted into Eq. (11), the energy density at a point ξ in the one dimensional domain

can be obtained by

e(ξ) = [e (x)F (x; ξ) − q(x)G(x; ξ)]
L

0
+

∫ L

0

πin(x)G(x; ξ) dx, (12)

where F (x; ξ) is defined as

F (x; ξ) = −
c2g
ηω

(

d G(x; ξ)

d x

)

(13)

and ξ is the field point coordinate in the domain and x is the source point on the boundary. By using Eq. (3) and
taking the first derivative of e(ξ) with respect to the field variable ξ from Eq. (12), the intensity is written as follows:

q(ξ) = −
c2g
ηω

[

e (x)
dF (x; ξ)

dξ
− q(x)

dG(x; ξ)

dξ

]L

0

−
c2g
ηω

∫ L

0

πin(x)
dG(x; ξ)

dξ
dx. (14)

3.2. Formulation of the indirect method

A key concept of the indirect boundary element method is the embedding of the real system in the infinite field

to produce a fictitious system, assuming that a fictitious source exists on the original boundary of the real system.

When this assumption is applied to solve Eq. (4), the energy governing equation for the vibrational problems of
one-dimensional systems in medium-to-high frequency ranges, and the vibrational energy density in the domain can

be expressed as follows:

e(x) = G(x; 0)φ(0) + G(x, L)φ(L) + G(x, ξ)πin(ξ) (15)

and from Eqs (3) and (15), we can obtain the intensity such as

q(x) = F (x; 0)φ(0) + F (x, L)φ(L) + F (x, ξ)πin(ξ), (16)

where x is the field point coordinate in the domain contrary to the direct method. G(x; ξ) and F (x; ξ) are the

fundamental solution and its first derivative, as in Eqs (10) and (13), respectively. Also, φ and π in are the symbols for

sources, and the symbols are distinct in that πin is used for known, specified source strengths, whereas φ is defined

solely for fictitious sources, φ(0) and φ(L), applied at the boundaries of a fictitious system. If the energy density is

given for the boundary condition, Eq. (15) is used; if the intensity given for the boundary condition, Eq. (16) is used.

And so φ(0) and φ(L) are calculated first on the boundary of the system. Next, we can obtain the distributions of

the energy density and intensity in the domain when these sources are substituted into Eqs (15) and (16) and these

equations are solved.

4. Two dimensional energy flow boundary element formulations

4.1. Formulation of the direct method

In this section, to analyze the vibrational phenomena for two dimensional structures such as a thin plate and a

membrane in medium-to-high frequency ranges, the direct boundary element method is applied to Eq. (6) in a way

similar to one dimension formulation presented at Section 3.1.

Using the weighted residual technique, Eq. (6) can be expressed implicitly as
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−
c2g
ηω

∇2e(�x) + ηωe(�x) − πin(�x) = 0. (17)

If Eq. (17) is multiplied by a weight functionG(�x, �ξ) and is integrated over the interested domain Ω in two dimensional

structures, we can obtain the following equation

∫

Ω

(

−
c2g
ηω

∇2e(�x) + ηωe(�x) − πin(�x)

)

G(�x, �ξ)dΩ = 0, (18)

where G(�x, �ξ) denotes the solution of the energy governing equation with a unit input power as follows:

−
c2g
ηω

∇2G(�x; �ξ) + ηωG(�x;
→

ξ ) = δ(�x − �ξ) (19)

and is expressed by

G(�x; �ξ) =
ηω

2πc2g
K0

(

ηω

cg

r

)

, (20)

where G(�x, �ξ) is the fundamental solution for an isotropic two-dimensional region. Here, K 0 is the zeroth order

modified Bessel function of the second kind and the distance from the field point �ξ to the source point
→

x is denoted

as r = |�x−
→

ξ |.
Substituting Eq. (19) into Eq. (18) yields

−
c2g
ηω

∫

Ω

(

G(�x, �ξ)∇2e(�x) − e(�x)∇2G(�x,
→

ξ )

)

dΩ +

∫

Ω

e(�x)δ(�x− �ξ)dΩ

=

∫

Ω

πin(�x)G(�x, �ξ)dΩ. (21)

With the application of Green’s second identities providing a relationship between the surface integral and the line

integral over the line bounding the original domain, Eq. (21) can be rewritten as

c(�ξ)e(�ξ) =

∫

Γ

(

e(�x)F (�x, �ξ) − qn(�x)G(�x, �ξ)
)

dΓ +

∫

Ω

πin(�x)G(�x, �ξ)dΩ, (22)

where F (�x, �ξ) is defined as

F (x; ξ) = −
c2g
ηω

∇G(�x, �ξ) · n(�x) (23)

and n(�x) denotes the components of a unit vector at the source point �x defining the outward normal direction to the

boundary Γ. qn is the outward normal intensity to the boundary and is expressed by

qn = −
c2g
ηω

∇e · n(�x). (24)

Additionally, the coefficient c(�ξ) is α/2π in a two-dimensional case, where α means the internal angle (in radian)

at a field point �ξ. If
→

ξ is on a smooth boundary of Γ, c(�ξ) is 1/2 and if �ξ is inside the domain Ω, c(�ξ) is one.

When Eq. (22) indicates the vibrational energy density at a point �ξ, the intensity of the ξi-direction in the domain is

obtained by taking the first derivative of Eq. (22) with respect to the field variable ξ i as follows:

qξi
(�ξ) = −

c2g
ηω

∫

Γ

(

e(�x)
dF (�x, �ξ)

dξi

− qn(�x)
dG(�x, �ξ)

dξi

)

dΓ −
c2g
ηω

∫

Ω

πin(�x)
dG(�x, �ξ)

dξi

dΩ, (25)

where ξi (for i = 1, 2) is the components of a rectangular Cartesian coordinate system.
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4 m

inπ

12 m

Fig. 1. Simply-supported beam. (a) Geometry of beam with transverse harmonic load. (b) Energy flow model with dimensions and zero energy

flow boundary conditions.

4.2. Formulation of the indirect method

To keep the basic concept of the indirect method, we assume that the real system is embedded in an infinite

two-dimensional structure, and a fictitious source is distributed on the boundary line. With this assumption, the

energy density and the outward normal intensity to the boundary can be expressed by

e(�x) =

∫

Γ

G(�x, �ξ)φ(�ξ)dΓ +

∫

Ω

G(�x, �z)πin(�z)dΩ (26)

and

qn(�x) =

∫

Γ

F (�x, �ξ)φ(�ξ)dΓ +

∫

Ω

F (�x, �z)πin(�z)dΩ, (27)

respectively. �x is a field point in Ω, and �z is the position vector of the input power π in. Thus, the fictitious source

φ(�ξ) means initially the unknown intensity per unit length of Γ at a source point �ξ on Γ. G(�x, �ξ) and F (�x,
→

ξ ) are

identical to Eqs (20) and (24).

5. Numerical application of EFBEM

5.1. Numerical application for the one dimensional problem

In this section, the energy density and the intensity distributions for the vibrational waves of a simple Euler-

Bernoulli beam structure are predicted by using the one dimensional energy flow boundary element formulations in

the form of the direct method and the indirect method, Eqs (12), (14), (15) and (16). These equations are used with

no discretization because the boundaries of the one-dimensional field are merely two points, and therefore, only two

boundary elements are involved. If a simply-supported beam structure is excited by a transverse harmonic point

force at a single frequency as shown in Fig. 1(a), zero energy outflow (intensity) boundary conditions at the beam

edges can be assumed like Fig. 1(b). The Young’s modulus of the beam is E = 7.1 × 10 10 N/m2 and the mass

density is ρ = 2700 kg/m3. The length of the beam is L = 12 m and the exciting force is located at x = 4 m from

the left end of the beam.

In the first example, the exciting frequency is f = 1 kHz and the damping loss factor of the beam is η = 0.02.

Figure 2(a) is the comparison of the results which are the EFA analytic solution of the energy density calculated from

the energy governing equation and the numerical solutions of the energy density obtained from the direct method
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(a)

(b)

Fig. 2. Comparisons of energy density distributions in beam when η = 0.02. The reference energy density is 1 × 10
−12 J/m2; (a) f = 1 kHz,

(b) f = 10 kHz: —, EFA; - - -, SEA; , direct EFBEM; , indirect EFBEM.

and the indirect method of the energy flow boundary element method. From Fig. 2(a), we know that the results

of EFBEM for one-dimensional problems agree fairly well with the EFA analytic solution. The energy density

distribution evaluated by the statistical energy analysis (SEA) is compared with that from EFBEM. EFA expresses

the spatial variation of the energy density better than SEA. Moreover, EFBEM gives highly accurate values of

intensity as shown in Fig. 3(a). Figures 2(b) and 3(b) are the EFBEM results when the frequency is f = 10 kHz
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 (a) 

(b)

Fig. 3. Comparisons of intensity distributions in beam when η = 0.02. The reference energy density is 1 × 10
−12 J/m2; (a) f = 1 kHz, (b)

f = 10 kHz: —, EFA; , direct EFBEM; , indirect EFBEM.

and the damping loss factor is η = 0.02, and from these results, we can confirm that EFBEM can be successfully
implemented for one-dimensional problems.

5.2. Numerical application for the two dimensional problem

When the energy density and intensity of two-dimensional structures in medium-to-high frequency ranges are
analyzed, Eqs (22) and (25) for the direct EFBEM are used, and Eqs (26) and (27) for the indirect EFBEM are
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Fig. 4. Simply-supported rectangular plate. (a) Geometry of plate with external transverse harmonic load. (b) Energy flow model with dimensions

and zero energy flow boundary conditions.

applied. If we were able to integrate these equations in closed form and solve them for the fictitious source φ or

the initially known, boundary values of e and q, then the solution would be exact. But this operation is virtually

impossible for practical problems, and therefore, the domain and boundary have to be discretized, trading computing

time for solution accuracy.

This discretization scheme utilizes constant boundary elements, characterized by their midpoints, and uniform

distribution of variables (e.g. e, q and φ) over the elements. Discrete approximation of Eq. (22) for e(�x i
0), the energy

density on the ith boundary element, in the direct EFBEM is written as

1

2
e(�ξi

0) =
N

∑

j=1

e(�xj)

∫

∆Γ

F (�xj , �ξi
0)dΓ

j −
N

∑

j=1

qn(�xj)

∫

∆Γ

G(�xj , �ξi
0)dΓ

j

+

M
∑

k=1

πin(�zk)

∫

∆Ω

G(�zk, �ξi
0)dΩ

k, (28)
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(a) (c)

(b) (d)

Fig. 5. The energy density distributions in rectangular plate predicted by (a) classical solution, (b) EFA analytic solution, (c) direct EFBEM

solution, (d) indirect EFBEM solution when f = 1 kHz and η = 0.2. The reference energy density is 1 × 10−12 J/m2.

where �ξi
0 is the position vector of the midpoint of the ith boundary element, ∆Γ is the length of the jth boundary

element, �zk is the position vector of the midpoint of the kth internal cell, and ∆Ω is the area of the kth internal cell.

Thus, Γ and Ω are approximated by N boundary segments and M internal cells, respectively. The intensity obtained
from Eq. (25) can be expressed in the same way as Eq. (28). Equations (26) and (27) of the indirect EFBEM are
rewritten as Eqs (29) and (30) by discretization:

e(�xi
0) =

N
∑

j=1

φ(�ξj)

∫

∆Γ

G(�xi
0,

�ξj)dΓj +

M
∑

k=1

πin(�zk)

∫

∆Ω

G(�xi
0, �z

k)dΩk, (29)

qn(�xi
0) = −1

2
φ(�xi

0) +
N

∑

j=1

φ(�ξj)

∫

∆Γ

F (�xi
0,

�ξj)dΓj +
M
∑

k=1

πin(�zk)

∫

∆Ω

F (�xi
0, �z

k)dΩk, (30)

where �xi
0 is the position vector of the midpoint of the ith boundary element. If linear elements are used in the

discretizaton, discrete approximations similar to Eqs (28), (29) and (30) can be easily derived except that e, q n and
φ cannot be taken out of the integral sign and c(�ξ) is not 1/2. From discrete equations applied to the boundary
conditions, the unknown boundary values are determined, and the energy density and intensity in the domain are
finally obtained.
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Fig. 6. Comparison of the energy density distributions in rectangular plate predicted by classical solution (—); SEA solution (- - -); EFA analytic

solution ( ); direct EFBEM solution ( ) and indirect EFBEM solution ( ) along the representative line when f = 1 kHz and η = 0.2.

The reference energy density is 1 × 10−12 J/m2.
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Fig. 7. Comparison of error between EFA analytic solutions and both EFBEM solutions along representative line when f = 1 kHz and η = 0.2:

—, direct EFBEM; ©, indirect EFBEM.

As the first example, the rectangular thin plate of Fig. 4(a) applied with a transverse harmonic force is considered,

and simply-supported edges can be assumed by zero energy outflow (intensity) boundary conditions as in Fig. 4(b).

Then, the dimensions and thickness of the plate are Lx = Ly = 1 m and h = 1 mm, respectively, and the material
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Fig. 8. Comparison of the errors between EFA analytic solution and direct EFBEM solution along the representative line with changing the

number of boundary elements when f = 10 kHz and η = 0.05: , 8 boundary elements; , 16 boundary elements; , 32 boundary

elements; - - -, 64 boundary elements; —, 128 boundary elements.

properties of the plate are those of aluminum. The force is located at x = 0.5 m and y = 0.5 m in the plate and its
magnitude is 1 N.

When the frequency is f = 1 kHz and the damping loss factor is η = 0.2, the results of Fig. 5 show the energy
density distributions calculated from various methods. Figure 5(a) shows the classical solution [8,9] of the energy
density obtained from the motion equation of the classical plate theory, and Fig. 5(b) is the EFA solution [8,9]
calculated from Eq. (6), the energy governing equation for the transverse vibration of the plate by the double Fourier

series. To assure the convergence of the series, the lowest 22,500 modes are calculated and summed. The energy
densities predicted by the direct EFBEM and indirect EFBEM are shown in Fig. 5(c) and 5(d), respectively. Near the
driving point, generally, EFBEM result has a sharp peak because the EFBEM solution is singular, like 1/

√
r, where

r is the source-field distance. Accordingly, the neighbor of the driving point is excluded from field points. Figure 6

shows the comparison of the energy density distributions in a rectangular plate predicted by classical solution, SEA
solution, EFA analytic solution, direct EFBEM solution and indirect EFBEM solution along the representative line
of Fig. 4(b). The results of both EFBEM are similar to those of other methods. The error rates between EFA analytic

solution and both EFBEM solutions in Fig. 6 are shown in Fig. 7. The error rates of both methods are similar in
the direct field near the actual source, but the error of the indirect method is more than that of direct method in the
diffracted field or scattered field near the secondary source on the boundary.

When the frequency is f = 10 kHz and the damping loss factor is η = 0.05, The error rates of between energy

densities calculated by the EFA and direct EFBEM are compared as the number of boundary elements is changed,
as shown in Fig. 8.

Like the traditional BEM, when there are more elements, the EFBEM solutions become more accurate, but
EFBEM solution calculated with a small number of boundary elements is sufficiently accurate at high frequency.

For a EFBEM model composed of 64 boundary elements, the error rates of energy density at various frequencies
for a constant damping loss factor (η = 0.02) are compared in Fig. 9, and the error rates of energy density at various
damping loss factors for a constant frequency (f = 5 kHz) are compared in Fig. 10. The pattern of error rate
between the EFA solution and direct EFBEM solution varies with the increase of frequency as shown in Fig. 9(a), but

the difference between both solutions decreases as the frequency increases, as shown in Fig. 9(b). In other words,
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Fig. 9. Comparison of (a) error rate, (b) difference between EFA analytic solution and direct EFBEM solution along the representative line at

various frequencies when η = 0.02 and the number of boundary elements is 64: —, f = 0.5 KHz; - - -, f = 1 kHz; , f = 4 kHz; ,

f = 8 kHz; , f = 16 kHz.
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Fig. 10. Comparison of (a) error rate, (b) difference between EFA analytic solution and direct EFBEM solution along the representative line at

various damping loss factors when f = 5 kHz and the number of boundary elements is 64: —, η = 0.001; - - -, η = 0.005; , η = 0.01;
, η = 0.05; , η = 0.1.
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Fig. 11. Simply-supported L-shaped plate. (a) Geometry of plate with external transverse harmonic load. (b) Energy flow model with dimensions

and zero energy flow boundary conditions.

EFBEM offers a reliable result at high frequency. The results of Fig. 10(a) and 10(b) show that very light damping

loss factor causes a large error; especially, when damping loss factor is 0.001, the error is about 2× 10 −6. The error

of EFBEM is mainly generated near the source and the boundary, and the error near the source is more than that near

the boundary as the frequency and damping loss factor increase. The above results verify the accuracy of EFBEM

and confirms that EFBEM can be efficiently applied for vibration problems of two-dimensional structures.

In the second example, energy flow boundary element analysis for an L-shaped thin plate, which cannot be applied

to the classical solution, is performed. The L-shaped plate in Fig. 11 is excited by a transverse harmonic point force

at location x = 0.8 m and y = 0.25 m with zero energy flow boundary conditions. The plate is 1 m × 1 m × 1 mm

in dimensions and has the material properties of aluminum. For the frequency of f = 1 kHz and the damping of

η = 0.02, the energy density and the intensity evaluated by the direct EFBEM are shown as in Fig. 12. The direct

EFBEM analysis results for the case in which damping loss factor is increased to η = 0.2 at the same exciting

frequency are illustrated in Fig. 13. The increase of the damping causes large spatial variation of the energy density,

decreases the whole value of the energy density, and also rapidly diminishes the magnitude of the intensity, as shown

in Fig. 13(a).
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(a)

(b)

Fig. 12. The energy density and intensity distributions in L-shaped plate predicted by direct EFBEM when f = 1 kHz and η = 0.02. The

reference energy density is 1 × 10−12 J/m2; (a) energy density, (b) intensity.

6. Conclusions

In this work, energy flow boundary element method has been newly developed as a tool for the medium-to-high
frequency vibration analysis of one- and two-dimensional structures. To derive the energy integral formulations,
free space Green functions obtained from the EFA energy equation is used and the fundamental approaches for the
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(a)

(b)

Fig. 13. The energy density and intensity distributions in L-shaped plate predicted by direct EFBEM when f = 1 kHz and η = 0.2. The

reference energy density is 1 × 10
−12 J/m2; (a) energy density, (b) intensity.

direct and indirect method are performed. The developed energy integral equations are discretized and applied to

predict the energy density and intensity distributions of a simple beam and a thin plate. From numerical examples of

the beam and plate, it has been confirmed that the approximate energy density and intensity field obtained by energy

flow boundary element analysis well represent the global variation of the response.
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Further studies are recommended on the development of EFBEM for three-dimensional vibration problems and

on the investigation of the acoustic energy density and intensity field using EFBEM.
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