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and summing over all particles yields an overall event-level latent representation. We show

how this latent space decomposition unifies existing event representations based on detector

images and radiation moments. To demonstrate the power and simplicity of this set-based

approach, we apply these networks to the collider task of discriminating quark jets from

gluon jets, finding similar or improved performance compared to existing methods. We also

show how the learned event representation can be directly visualized, providing insight
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processing and analyzing events for a wide variety of tasks at the Large Hadron Collider.
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1 Introduction

Collisions at accelerators like the Large Hadron Collider (LHC) produce multitudes of par-

ticles. Particles are the fundamental objects of interest in collider physics and provide

an interface between theoretical calculations and experimental measurements, often recon-

structed experimentally via “particle flow” algorithms [1–3]. Analyses of collider data rely

on observables to distill these complicated multiparticle events and capture essential as-

pects of the underlying physics. Because each collision event consists of a variable-length

list of particles with no intrinsic ordering, collider observables must be sensibly defined as

functions of sets of particles. In this paper, we develop a novel architecture for processing

and learning from collider events in their natural set-based representation.

Recently, modern machine learning techniques have been used to achieve excellent per-

formance on a variety of collider tasks by learning specalized functions of the events, which
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can be viewed as observables in their own right. For instance, hadronic jet classification

has been thoroughly studied using low-level [4–23] and high-level [24–29] input observ-

ables. Additional tasks include the removal of pileup [30], model-independent new physics

searches [31–36], constraining effective field theories [37–39], probabilistic and generative

modeling of physics processes [40–44], and enhancing existing physics analyses [45–53]. See

refs. [54–58] for more detailed reviews of machine learning in high-energy physics.

Two key choices must be made when using machine learning for a collider task: how to

represent the event and how to analyze that representation. These choices are often made

together, with examples from collider physics including calorimeter images paired with

convolutional neural networks (CNNs) [5–14], particle lists paired with recurrent/recursive

neural networks (RNNs) [15–19], collections of ordered inputs paired with dense neural

networks (DNNs) [20–27], and Energy Flow Polynomials (EFPs) paired with linear meth-

ods [29]. One lesson that emerges from this body of work is that any two sufficiently

general models, given access to complete enough information, achieve similar performance.

In light of this, criteria such as understandability of the model and closeness to theoretical

and experimental constructs are of central importance.

Given that events are fundamentally sets of particles, particle-level inputs such as those

used in refs. [15–22] are a desirable way of representing an event for use in a model. That

said, RNNs and DNNs, the two architectures typically used with particle-level inputs, each

fail to be fully satisfactory methods for processing events: DNNs because they require a

fixed-size input and RNNs because they are explicitly dependent on the ordering of the

inputs. Though ad hoc workarounds for these problems exist, such as zero padding for

DNNs or ordering particles by their transverse momentum (pT ) or clustering history for

RNNs, an ideal architecture would manifestly respect the permutation symmetry of the

problem. Such an architecture would be able to handle variable-length inputs while being

inherently symmetric with respect to the ordering of the input particles.

The machine learning community has recently developed (and continues to explore)

technology which is ideally suited for representing sets of objects for a model [59–68]. One

context where this appears is learning from point clouds, sets of data points in space. For

instance, the output of spatial sensors such as lidar, relevant for self-driving car technolo-

gies, is often in the form of a point cloud. As point clouds share the variable-length and

permutation-symmetric properties with collider events, it is worthwhile to understand and

expand upon point cloud techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in ref. [63], demon-

strates how permutation-invariant functions of variable-length inputs can be parametrized

in a fully general way. In ref. [63], the method was applied to a wide variety of problems in-

cluding red-shift estimation of galaxy clusters, finding terms associated with a set of words,

and detecting anomalous faces in a set of images. The key observation is that summation,

which is clearly symmetric with respect to the order of the arguments, is general enough to

encapsulate all symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary

number of particles each with d features, the result from ref. [63] can be stated as:
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Figure 1. A visualization of the decomposition of an observable via eq. (1.1). Each particle in the

event is mapped by Φ to an internal (latent) particle representation, shown here as three abstract

illustrations for a latent space of dimension three. The latent representation is then summed over

all particles to arrive at a latent event representation, which is mapped by F to the value of the

observable. For the IRC-safe case of eq. (1.2), Φ takes in the angular information of the particle

and the sum is weighted by the particle energies or transverse momenta.

Observable Decomposition. An observable O can be approximated arbitrarily well as:

O({p1, . . . , pM}) = F

(

M
∑

i=1

Φ(pi)

)

, (1.1)

where Φ : Rd → R
ℓ is a per-particle mapping and F : Rℓ → R is a continuous function.

A schematic representation of eq. (1.1) is shown in figure 1. Inherent in the decompo-

sition of eq. (1.1) is a latent space of dimension ℓ that serves to embed the particles such

that an overall latent event representation is obtained when the sum is carried out. One

should think of the d features for each particle as possibly being kinematic information,

such as the particle’s pT , rapidity y, and azimuthal angle φ, or other quantum numbers

such as the particle’s charge or flavor. Section 2 contains additional mathematical details

regarding this decomposition.

With a suitable modification of eq. (1.1), we can restrict the decomposition to infrared-

and collinear-safe (IRC-safe) observables:
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IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated

arbitrarily well as:

O({p1, . . . , pM}) = F

(

M
∑

i=1

ziΦ(p̂i)

)

, (1.2)

where zi is the energy (or pT ) and p̂i the angular information of particle i.

The energy-weighting factors zi as well as the energy-independent p̂i in eq. (1.2) ensure

that the event representation in the latent space is IRC-safe.

In this paper, we show that many common observables are naturally encompassed by

simple choices of Φ and F from eqs. (1.1) and (1.2). Furthermore, we can parametrize Φ

and F by neural network layers, capable of learning essentially any function, in order to

explore more complicated observables. In keeping with the naming convention of ref. [29]

for methods involving IRC-safe observables, we term a network architecture implementing

eq. (1.2) an Energy Flow Network (EFN). By contrast, we refer to the more general case

of an architecture that implements eq. (1.1) as a Particle Flow Network (PFN). These two

network architectures can be mathematically summarized as:

EFN: F

(

M
∑

i=1

ziΦ(p̂i)

)

, PFN: F

(

M
∑

i=1

Φ(pi)

)

. (1.3)

Our framework manifestly respects the variable length and permutation invariance of par-

ticle sets, achieves performance competitive with existing techniques on key collider tasks,

and provides a platform for visualizing the information learned by the model. Beyond this,

we demonstrate how our framework unifies the existing event representations of calorimeter

images and radiation moments, and we showcase the extraction of novel analytic observ-

ables from the trained model.

One ever-present collider phenomenon that involves complicated multiparticle final

states is the formation and observation of jets, sprays of color-neutral hadrons resulting

from the fragmentation of high-energy quarks and gluons in quantum chromodynamics

(QCD). Numerous individual observables have been proposed to study jets including the

jet mass, constituent multiplicity, image activity [69], N -subjettiness [70, 71], track-based

observables [72, 73], generalized angularities [74], (generalized) energy correlation func-

tions [75, 76], soft drop multiplicity [77, 78], and many more (see refs. [54, 79–83] for re-

views). Machine learning methods have found tremendous applicability to jet classification

tasks, greatly outperforming individual standard observables. Jet classification provides

an ideal case study for the Deep Sets method in a collider setting since jets, like events,

are fundamentally variably sized and invariant under reorderings of their constituents.

Many existing collider observables ranging from e+e− event shapes to jet substructure

observables naturally fit into the decomposition of eq. (1.1). Observables that are defined

directly in terms of the particles themselves (i.e. not algorithmically) can often be exactly

encompassed. Several examples of such observables are summarized in table 1, with the

associated functions Φ and F listed for each observable. The fact that the decomposition

holds exactly in these familiar cases indicates that the Observable Decomposition indeed

captures an essential aspect of particle-level collider observables.
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Observable O Map Φ Function F

Mass m pµ F (xµ) =
√
xµxµ

Multiplicity M 1 F (x) = x

Track Mass mtrack pµItrack F (xµ) =
√
xµxµ

Track Multiplicity Mtrack Itrack F (x) = x

Jet Charge [72] Qκ (pT , Q pκT ) F (x, y) = y/xκ

Eventropy [74] z ln z (pT , pT ln pT ) F (x, y) = y/x− lnx

Momentum Dispersion [93] pDT (pT , p
2
T ) F (x, y) =

√

y/x2

C parameter [94] C (|~p |, ~p⊗ ~p/|~p |) F (x, Y ) = 3
2x2 [(TrY )2 − TrY 2]

Table 1. A variety of common collider observables decomposed into per-particle maps Φ and

functions F according to eq. (1.1). Here Itrack is an indicator function over charged tracks. In the

last column, the arguments of F are placeholders for the summed output of Φ.

To showcase the efficacy of EFNs and PFNs, we apply them to the task of distinguishing

light-quark jets from gluon jets [84–87], finding that they achieve excellent classification

performance. In general, the PFN model outperforms the EFN model, indicating that

IRC-unsafe information is helpful for discriminating quark and gluon jets. Additionally,

including particle identification information improves the classification performance of the

PFN. It would be interesting to apply all of these methods in a fully-data driven way [88–90]

to test these conclusions beyond the limited scope of parton shower generators.

One fascinating aspect of EFNs is that they enable a natural visualization of the learned

latent space, providing insights as to what exactly the machine is learning. In particular,

since the function Φ of an EFN typically takes the two-dimensional angular information

of a particle as input, this two-dimensional space is easily visualized. In the context of

quark/gluon discrimination, we observe that the EFN learns a latent representation that

“pixelates” the rapidity-azimuth plane, dynamically sizing the pixels to be smaller near the

core of the jet and larger farther out. We also find qualitative and quantitative evidence

that the EFN has in a sense “understood” the collinear singularity structure of QCD.

The rest of this paper is organized as follows. Section 2 provides a detailed mathe-

matical discussion of the observable decompositions and explores eqs. (1.1) and (1.2) in

the context of specific observables and event representations. Section 3 discusses the im-

plementation details of our EFN and PFN architectures, with other models discussed in

appendix A. Section 4 contains the case study discriminating quark- and gluon-initiated

jets and demonstrates our new techniques for visualizing and analyzing the learned infor-

mation. Conclusions are presented in section 5. A supplementary top jet tagging study is

presented in appendix B, and additional visualizations of the models are provided in ap-

pendix C. The EFN and PFN architectures are available online as part of our EnergyFlow

package [91] along with example code.
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2 A general framework for observables

Events consist of variable numbers of particles with no intrinsic ordering, so observables

are described mathematically as functions of sets of particles. Such a mathematical for-

mulation allows for a direct exploration of the space of observables. For instance, ref. [29]

exploited IRC safety to construct a linear approximating basis of all IRC-safe observables.

Here, we treat the entire space of observables (both with and without IRC safety), using

their mathematical structure to arrive at a general decomposition relevant for theoretically

categorizing observables as well as developing machine learning techniques.

2.1 Observables as functions of sets of particles

The key mathematical fact that we exploit, due to ref. [63], is that a generic function of

a set of objects can be decomposed to arbitrarily good approximation in a practical and

intuitive way. We state this result explicitly below:

Deep Sets Theorem [63]. Let X ⊂ R
d be compact, X ⊂ 2X be the space of sets with

bounded cardinality of elements in X, and Y ⊂ R be a bounded interval. Consider a

continuous function f : X → Y that is invariant under permutations of its inputs, i.e.

f(x1, . . . , xM ) = f(xπ(1), . . . , xπ(M)) for all xi ∈ X and π ∈ SM . Then there exists a

sufficiently large integer ℓ and continuous functions Φ : X → R
ℓ, F : Rℓ → Y such that the

following holds to an arbitrarily good approximation:1

f({x1, . . . , xM}) = F

(

M
∑

i=1

Φ(xi)

)

. (2.1)

We only rely on the Deep Sets Theorem to justify the generality of eq. (2.1), which

can otherwise be regarded as an interesting, manifestly permutation-invariant parameteri-

zation.

The Deep Sets Theorem can be immediately applied to the collider physics context

where observables are viewed as functions of sets of particles. We denote an event with M

particles as {pi}Mi=1, where pi ∈ R
d contains the relevant attributes of particle i (momentum,

charge, flavor, etc.). Phrased in the collider physics language, it states that an observable

O can be approximated arbitrarily well as:

O({p1, . . . , pM}) = F

(

M
∑

i=1

Φ(pi)

)

, (2.2)

where Φ : Rd → R
ℓ is a per-particle mapping and F : Rℓ → Y is a continuous function. This

provides a mathematical justification for the Observable Decomposition stated in eq. (1.1).

The content of the Observable Decomposition is that any observable can be viewed

as linearly summing over the particles in some internal space and then mapping the result

1It is formally necessary to restrict the domains and ranges of the functions to be compact because the

proof of the Deep Sets Theorem, given fully in ref. [63], makes use of the Stone-Weierstrass polynomial

approximation theorem [92], which applies for compact spaces. After the expansion in polynomials of the

features, the result follows by careful application of the fundamental theorem of symmetric polynomials.
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to an output space. We refer to R
ℓ as the latent space and each component of the per-

particle mapping Φ(pi) as a filter. The latent space could be, for example, the pixel values

of a detector image or a moment decomposition of the radiation pattern. Summing Φ(pi)

over the particles induces a latent description of the entire event, which is mapped by the

function F to the value of the observable.

2.2 Enforcing infrared and collinear safety

We can formulate the Observable Decomposition specifically for a class of observables of

particular theoretical interest, namely IRC-safe observables [95–98]. IRC safety corre-

sponds to robustness of the observable under collinear splittings of a particle or additions

of soft particles, which makes the observable tractable in perturbative quantum field theory

as well as robust to experimental resolution effects.

Remarkably, building IRC safety into the latent representation simply corresponds to

energy-weighting the contributions of each particle and restricting Φ to only depend on

the particle geometry p̂i. The energy-weighting zi and geometry p̂i for particle i depends

on the collider context. At an e+e− collider, it is natural to take zi = Ei and p̂i = pµi /Ei,

where Ei is the energy and pµi the four-momentum. At a hadron collider, it is natural to

take zi = pT,i and p̂i = (yi, φi), where pT,i is the transverse momentum, yi is the rapidity,

and φi the azimuthal angle.2 In practice, we typically focus on dimensionless observables

and use the appropriate normalized weights: zi = Ei/
∑

j Ej or zi = pT,i/
∑

j pT,j .

Any IRC-safe observable O can be approximated arbitrarily well by the decomposition:

O
(

{pi}Mi=1

)

= F

(

M
∑

i=1

ziΦ(p̂i)

)

, (2.3)

where Φ : Rd → R
ℓ is a per-particle angular mapping and F : Rℓ → R is continuous. All

observables of the form in eq. (2.3) are manifestly IRC safe due to the energy-weighted

linear sum structure, the dependence of Φ on purely geometric inputs p̂i, and the fact that

continuous functions of IRC-safe observables are IRC safe.3

The fact that the energy-weighted decomposition in eq. (2.3) suffices to approximate

all IRC-safe observables is intuitive from the fact that a continuous function of a sufficiently

high-resolution calorimeter image can be used to approximate an IRC-safe observable ar-

bitrarily well [101–103]. As discussed in section 2.3, an image of the calorimeter deposits

is exactly encompassed by the energy-weighted observable decomposition.

Here, we provide a direct argument to arrive at eq. (2.3), building off the Deep Sets

Theorem and following similar logic as ref. [29]. Given the decomposition of an IRC-safe

observable O into F and Φ via eq. (2.2), the IRC safety of the observable O corresponds

2As discussed in ref. [29], another sensible choice for the angular measure is p̂i = pµi /pT,i. Particle mass

information, if present, can be passed to a PFN via flavor information.
3Ratios of IRC-safe observables are not necessarily IRC safe [99, 100] since division is discontinuous at

zero.
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to the following statements:

IR safety : F

(

M
∑

i=1

Φ(zi, p̂i)

)

=F

(

Φ(0, p̂0)+

M
∑

i=1

Φ(zi, p̂i)

)

, (2.4)

C safety : F

(

M
∑

i=1

Φ(zi, p̂i)

)

=F

(

Φ(λz1, p̂1)+Φ((1−λ)z1, p̂1)+

M
∑

i=2

Φ(zi, p̂i)

)

, (2.5)

where eq. (2.4) holds for all directions p̂0 that a soft particle could be emitted and eq. (2.5)

holds for all energy fractions λ ∈ [0, 1] of the collinear splitting. In eq. (2.5), we have

selected particle 1 to undergo the collinear splitting but the statement holds for any of the

particles by permutation symmetry. The equations here only hold to a specified accuracy

of approximation in the Observable Decomposition, which we leave implicit since it does

not alter the structure of our argument.

We now make the following suggestive redefinition of Φ to ensure that the latent

representation of a particle vanishes if the particle has zero energy:

Φ(z, p̂) → Φ(z, p̂)− Φ(0, p̂). (2.6)

Infrared safety via eq. (2.4) ensures that the value of the observable is unchanged under

this redefinition, so without loss of generality we may take Φ to vanish on arbitrarily soft

particles.

Making another convenient redefinition of Φ, we choose a λ ∈ [0, 1] and let:

Φ(z, p̂) → Φ(λz, p̂) + Φ((1− λ)z, p̂). (2.7)

Collinear safety via eq. (2.5) ensures that the value of the observable is unchanged under

such a redefinition, which holds for any λ ∈ [0, 1].

We now show that the freedom to redefine the mapping Φ using eqs. (2.6) and (2.7)

for an IRC-safe observable leads to the IRC-safe Observable Decomposition in eq. (2.3).

To see this, consider approximating Φ in the energy argument z via the Stone-Weierstrass

theorem. Calling the angular coefficients of each term Cn(p̂) yields:

Φ(z, p̂) =
N
∑

n=0

znCn(p̂) = C0(p̂) + z C1(p̂) +
N
∑

n=2

znCn(p̂), (2.8)

for some large but finite N . How large N must be depends on the specified precision that

we have been leaving implicit.

Invoking the soft redefinition in eq. (2.6), Φ may be taken to vanish on arbitrarily soft

particles, which allows C0(p̂) to be set to zero without changing the value of the observable.

Implementing the collinear redefinition in eq. (2.7) after the expansion in energy, we obtain:

Φ(z, p̂) = z C1(p̂) +
N
∑

n=2

(λn + (1− λ)n)znCn(p̂). (2.9)

From this equation, we seek to argue that Cn(p̂) for n ≥ 2 may be taken to vanish. For

λ ∈ (0, 1), this redefinition decreases the higher-order coefficients Cn(p̂) by a factor of

– 8 –
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λn + (1− λ)n < 1 without changing the corresponding observable. Iterated application of

this fact allows the higher-order coefficients to be removed while keeping the term linear

in the energy. Thus, to an arbitrarily good approximation, we can take Φ(z, p̂) = z C1(p̂)

for some angular function C1(p̂), which we subsequently rename to Φ(p̂).

To summarize, the Deep Sets Theorem, combined with IRC safety, shows that the map

Φ can be taken to be linear in energy without loss of generality. Collinear safety was critical

in arguing that Φ could be taken to be affine linear in the energy and infrared safety was

critical in arguing that the constant piece could be set to zero without loss of generality.

This is exactly the result needed to justify the IRC-safe Observable Decomposition in

eq. (2.3), thereby completing the argument. Beyond potential applications for building IRC

safety directly into models, such an observable decomposition for IRC-safe observables may

be useful for shedding light on the structure of these important observables more broadly.

2.3 Encompassing image and moment representations

Beyond the single observables tabulated in table 1, entire event representations can be

encompassed in the Observable Decomposition framework as well.

One common event representation is to view events as images by treating the energy

deposits in a calorimeter as pixel intensities [4–9]. Since typical pixelizations for jet classi-

fication are 33× 33 ≃ 1000, the images are quite sparse, with an order of magnitude more

pixels than particles. Treating the detector as a camera and events as images allows for

modern image recognition technology to be applied to collider physics problems. These

images are typically fed into a convolutional neural network, which is trained to learn a

function of the images optimized for a specific task.

The image-based event representation of a jet as a collection of pixels fits naturally

into the Observable Decomposition. The energy (or transverse momentum) deposited in

each pixel is simply a sum over the energies zi of the particles hitting that pixel. Letting

Ij,k(y, φ) be an indicator function of pixel (j, k) in the rapidity-azimuth plane, we have that

the intensity Pj,k of pixel (j, k) is:

Pj,k =
∑

i

zi Ij,k(yi, φi). (2.10)

Thus, having Φ be an indicator function for the location of the pixel directly allows the

latent representation of the IRC-safe Observable Decomposition to be a detector image.

We illustrate this in figure 2 for the rapidity-azimuth plane relevant for a hadron collider.

Here, the filters are a collection of localized square bumps evenly spaced throughout the

rapidity-azimuth plane.

Another way to represent an event or jet is as a collection of moments of its radiation

pattern. Moments (or tensors) have been considered for analyzing hadronic energy flow

patterns both for e+e− and hadron colliders [104–106]. A moment-based representation

has yet to be directly exploited for machine learning applications in collider physics, though

is closely related to the EFPs [29].4 Here we restrict to the collimated case of jets, but a

4There is a rich connection between the moments of the event radiation pattern and multiparticle energy

correlators, a detailed discussion of which we leave to future work. See footnote 8 of ref. [29].
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Figure 2. The calorimeter image representation decomposed into a collection of Φ(y, φ) filters

according to the IRC-safe Observable Decomposition, shown here for the illustrative case of a 4× 4

image. The energy deposits in each pixel can be decomposed via eq. (1.2) into an indicator function

Φ(y, φ) determining whether a particle in position (y, φ) hits the pixel.

similar discussion holds at the event level. The moments Im,n of the radiation pattern in

the rapidity-azimuth plane are:

Im,n =
∑

i

zi y
m
i φn

i . (2.11)

This can be manifestly decomposed according to the IRC-safe Observable Decomposition

by simply making each filter Φ(y, φ) = ymφn, as illustrated in figure 3. Here, the filters are

a collection of non-localized functions which weight different parts of the event differently.

More generally, we can visualize Φ(y, φ) for learned IRC-safe latent spaces, where

the model itself learns its own event representation. In interpreting these visualizations,

it is worth keeping in mind that localized filters like figure 2 correspond to an image-like

representation, while global filters like figure 3 correspond to a moment-like representation.

The flexibility of the IRC-safe Observable Decomposition allows for more complicated filters

as well. As we will see in section 4.4, visualizing the latent space is extremely useful

in understanding the behavior of EFNs. Moreover, similar (albeit higher-dimensional)

visualizations can be performed in the general PFN case of Φ(p) and have been explored

in the point cloud context [60].

– 10 –
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Figure 3. The radiation moment representation decomposed into a collection of Φ(y, φ) filters

according to the IRC-safe Observable Decomposition. The (m,n) moment of the energy distribution

in the rapidity-azimuth plane can be decomposed via eq. (1.2) into Φ(y, φ) = ymφn, shown here

with increasing m downward and increasing n to the right.

3 Network implementation

In this section, we describe our implementation and adaptation of the Deep Sets decompo-

sition for use in a particle physics context. In light of the quark versus gluon jet case study

presented in section 4, we focus here on inputting individual jets to the model, though we

emphasize that the method is broadly applicable at the event level.

3.1 Preprocessing

The goal of preprocessing inputs is to assist the model in its effort to solve an optimization

problem. Typically, preprocessing steps are optional, but are applied in order to improve

the numerical convergence of the model, given the practical limitations of finite dataset and

model size, as well as the particular choice of parameter initialization. The preprocessing

described in this section was found to be helpful, and sometimes necessary, for achieving

a well-trained EFN or PFN model for the applications considered in section 4. It is likely

that for further applications of EFNs or PFNs, such as event-level studies, the appropriate

preprocessing steps may change.

For the models we construct, kinematic information — transverse momentum pT ,

rapidity y, and azimuthal angle φ — are always given for each particle. We preprocess

these features as follows: the transverse momenta are divided by the total scalar sum pT
and the rapidities and azimuthal angles are centered based on the rapidity and azimuthal

angle of the jet, using the E-scheme jet axis. In terms of the four-momentum of each
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particle, this preprocessing step can be cast into the following suggestive form:

pT,i →
pT,i

∑

j pT,j
, yi → yi −





∑

j

pT,j p̂j





y

, φi → φi −





∑

j

pT,j p̂j





φ

, (3.1)

with p̂i = pµi /pT,i, where the subscripts indicate the rapidity and azimuth of the jet four-

vector. This notation makes clear that the per-particle preprocessing of eq. (3.1) solely relies

on the scalar sum pT , rapidity, and azimuth of the jet, which itself can be written in terms

of an IRC-safe Observable Decomposition with Φ(p̂) = (1, p̂). Alternative jet centerings,

such as those based on the pT -weighted centroid, also fit nicely into this framework.5

Optionally, the inputs may also include particle identification (ID) information.

Though typically encoded using the Particle Data Group (PDG) particle numbering

scheme [107], the large and irregular integer values employed therein are not ideal in-

puts to a model expecting inputs roughly in the numerical range [−1, 1]. Therefore, a

mapping from PDG IDs to small floats is performed for each particle (the details of which

are provided below). While this approach, which only uses a single feature to encode the

particle ID information, should be sufficient to input this information to the model, al-

ternative approaches using multiple categorical features may be easier for the model to

interpret, since particle ID is inherently discrete rather than continuous. For instance,

using two additional features per particle, one feature could indicate the charge of the

particle {−1, 0,+1} and the other one could indicate {h, γ, e, µ} (where h corresponds

to a hadron, one of π, K, n, p), covering an experimentally realistic particle ID scheme.

One-hot encoding of the particle ID is another option.

In order to explore how particle identification is helpful to a model,6 we use it in four

different ways, each with a PFN architecture. We describe each of the different models and

levels of information used throughout section 4 below:

• PFN-ID: PFN, adding in the full particle ID information. For the case study in

section 4, particles are indicated as being one of γ, π+, π−, K+, K−, KL, n, n̄, p, p̄,

e−, e+, µ−, µ+, which are represented to the model as a single float value starting at

0 and increasing by 0.1 for each distinct type, respectively.7

• PFN-Ex: PFN, adding in experimentally realistic particle ID information. For the

case study in section 4, particles are indicated as being one of γ, h+, h−, h0, e−, e+,

µ−, µ+, which are represented to the model analogously to the PFN-ID case.8

5These observations motivate an iterative local-global architecture which learns an event representa-

tion, applies it per-particle, and repeats. Such an architecture could explicitly or learnably fold in this

preprocessing as a first step. We leave further developments in this direction to future work.
6We perform this comparison at particle level without detector simulation. Detector effects may change

or degrade the information available in the different particle types. Doing such an exploration with detector

simulation (or in data) is an interesting avenue for additional exploration.
7Note that π0 is absent since we include its decay, usually into two photons.
8These categories are based on particle flow reconstruction algorithms at ATLAS and CMS [1–3], where

h± = π±/K±/p/p̄ and h0 = KL/n/n̄. Additional experimental information, such as π/K/p separation,

feasible at ALICE and LHCb (or at ATLAS and CMS at low pT ), can carry added information, as could
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• PFN-Ch: PFN, adding in the electric charge of the particles as an additional feature.

• PFN: the particle flow network using only three-momentum information via eq. (1.1).

• EFN: the energy flow network using only IRC-safe latent space information via

eq. (1.2).

3.2 Network architecture

So far, there has not yet been any machine learning in our effort to apply the decompositions

in eqs. (1.1) and (1.2) to collider data. The machine learning enters by choosing to approxi-

mate the functions Φ and F with neural networks.9 Neural networks are a natural choice to

use because sufficiently large neural networks can approximate any well-behaved function.

To parametrize the functions Φ and F in a sufficiently general way, we use several dense

neural network layers as universal approximators, as shown in figure 4. For Φ, we employ

three dense layers with 100, 100, and ℓ nodes, respectively, where ℓ is the latent dimension

that will be varied in powers of 2 up to 256. For F , we use three dense layers, each with 100

nodes. We confirmed that several network architectures with more or fewer layers and nodes

achieved similar performance. Each dense layer uses the ReLU activation function [108] and

He-uniform parameter initialization [109]. A two-unit layer with a softmax activation func-

tion is used as the output layer of the classifier. See appendix A for additional details regard-

ing the implementations of the EFN, PFN, and other networks. The EnergyFlow Python

package [91] contains implementations and examples of EFN and PFN architectures.

4 Discriminating quark and gluon jets

To demonstrate the EFN architecture in a realistic setting, we implement and train an

EFN and several PFN variants to discriminate light-quark from gluon initiated jets [84–

87], a problem relevant for new physics searches as well as precision measurements. See

appendix B for a similar study on classifying top jets from QCD jets using samples based

on ref. [22].

4.1 Event generation

The samples used for this study were Z(→ νν̄)+g and Z(→ νν̄)+(u, d, s) events generated

with Pythia 8.226 [110, 111] at
√
s = 14TeV using the WeakBosonAndParton:qqbar2gmZg

and WeakBosonAndParton:qg2gmZq processes, ignoring the photon contribution and requir-

ing the Z to decay invisibly to neutrinos. Hadronization and multiple parton interactions

(i.e. underlying event) were turned on and the default tunings and shower parameters were

exclusive hadron reconstruction. Particle ID information is typically captured in likelihood ratios for dif-

ferent particle hypotheses, which fits naturally into a categorical encoding scheme where there is a feature

for each particle-type likelihood ratio.
9Ref. [63] describes two types of architectures in the Deep Sets framework, termed invariant and equiv-

ariant. Equivariance corresponds to producing per-particle outputs that respect permutation symmetry.

For this paper, our interest is in the invariant case, but we leave for future work an exploration of the

potential particle physics applications of an equivariant architecture.

– 13 –
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(a) (b)

Figure 4. The particular dense networks used here to parametrize (a) the per-particle mapping

Φ and (b) the function F , shown for the case of a latent space of dimension ℓ = 8. For the

EFN, the latent observable is Oa =
∑

i zi Φa(yi, φi). For the PFN family, the latent observable is

Oa =
∑

i Φa(yi, φi, zi, pidi), with different levels of particle-ID (PID) information. The output of

F is a softmaxed signal (S) versus background (B) discriminant.

used. Final state non-neutrino particles were clustered into R = 0.4 anti-kT jets [112] using

FastJet 3.3.0 [113]. Jets with pT ∈ [500, 550]GeV and |y| < 2.0 were kept. No detector

simulation was performed.10 While labeling these jets using quark/gluon parton labels is

manifestly unphysical, applications of these techniques at colliders could rely on an oper-

ational jet flavor definition [90] and weak supervision techniques for training directly on

data [88, 89] (see also refs. [114–117]).

4.2 Classification performance

A standard tool to analyze a classifier is the receiver operating characteristic (ROC) curve,

obtained from the true positive εs and false positive εb rates as the decision threshold is

varied. This may also be plotted as a Significance Improvement (SI) curve [85], namely

εs/
√
εb as a function of εs. To condense the performance of a classifier into a single quantity,

the area under the ROC curve (AUC) is commonly used, which is also the probability that

the classifier correctly sorts randomly drawn signal (quark jet) and background (gluon jet)

samples. An AUC of 0.5 corresponds to a random classifier and an AUC of 1.0 corresponds

to a perfect classifier. We also report the background rejection at 50% signal efficiency

(1/εb at εs = 50%) as an alternative performance metric.

For each of the models, we sweep the latent dimension ℓ of the internal representation

from 2 to 256 in powers of 2. As discussed in section 3.1, four PFN models were trained

10In the context of experimental applications, it is worth noting that the different resolutions of different

particle types can be naturally accomodated in our framework.
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Figure 5. The AUC performance of the EFN and PFN models as a function of the latent dimension

of the model, which is varied from 2 to 256 in powers of 2. The spread in values is due to training

the model ten times with different initializations. The performance generally increases with larger

latent dimensions, with saturation observed by latent dimension 256. The best model is PFN-ID,

which uses full particle-type information, followed closely by PFN-Ex, which uses experimentally

realistic particle-type information. The PFN without any extra information performs roughly the

same as the PFN-Ch, which uses charge information. The fact that the EFN is lowest on this plot

indicates that there is discrimination power to be found in IRC-unsafe information.

each with different particle-type information. Models are trained ten times each to give a

sense of the variation and stability of the training. The resulting model performances as

quantified by the AUC are shown in figure 5. As anticipated, the performance of each model

increases as the latent dimension increases, with good performance achieved by ℓ = 16.

The higher variance at low latent dimensions arises because some of the filters fail to train

to non-zero values in those cases. The performance of the models appears to saturate by

the larger latent dimensions, which justifies our use of ℓ = 256 as our benchmark latent

dimension size for additional explorations.

In figure 6, we show the full ROC and SI curves of these models with latent dimension

256. The best model performance of all tested techniques and models was the PFN-ID with

full particle ID, followed closely by the PFN-Ex with experimentally realistic particle ID.

Figures 5 and 6 show a well-defined hierarchy of model performances at all latent dimension

sizes based on the information available to the model. The fact that the PFNs outperform

the EFN indicates that IRC-unsafe information is helpful for discrimination, which is not

surprising in light of the fact that the constituent multiplicity is IRC unsafe and is known

to be a good quark/gluon discriminant [85]. Though IRC-unsafe information is helpful, it

is instructive to test both EFNs and PFNs to probe how different kinds of information are
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(a) (b)

Figure 6. The (a) ROC and (b) SI curves of the median (selected by AUC) EFN and PFN

models with latent dimensions of 256. The linear EFP model is shown for comparison. The PFN-

ID with full particle ID yields the best performance of all models, followed by the PFN-Ex using

experimentally realistic particle ID. The EFN and EFP models perform comparably in terms of

maximum SI, indicating that the available IRC-safe information is being captured consistently by

these very different architectures.

used by the classifier. Furthermore, sometimes an IRC-safe model is desired as it may be

more robust to detector effects or mismodeling of infrared physics such as hadronization

in simulated training data.

4.3 Comparison to other architectures

Besides comparing the EFN and PFN architectures to each other, we also compare the

ℓ = 256 models to a variety of other classifiers, summarized in table 2 and described in

more detail in appendix A.

Of particular interest are the RNN-ID and RNN models, which also take particles as

input (with and without full particle ID, respectively), but process them in a way which is

dependent on the order the particles were fed into the network (decreasing pT ordering was

used). In figure 7, ROC and SI curves are shown for the RNN-ID and RNN architectures,

as well as their natural counterparts, PFN-ID and PFN. We see that PFN-ID slightly

outperforms RNN-ID whereas the PFN and RNN are comparable, though we emphasize

that making broad conclusions based on this one result is difficult given the variety of

different RNN architectures we could have chosen. Since PFNs are less expressive than

RNNs, which can learn order-dependent functions, it is satisfying that both the PFN and

RNN architectures achieve comparable classification performance with similar information.

The other machine learning architectures we compare to are a DNN trained on the

N -subjettiness basis [24, 70, 71], a CNN trained on jet images [4, 5, 8], and a linear
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Symbol Name Short Description

PFN-ID Particle Flow Network w. ID PFN with full particle ID

PFN-Ex Particle Flow Network w. PF ID PFN with realistic particle ID

PFN-Ch Particle Flow Network w. charge PFN with charge information

PFN Particle Flow Network Using three-momentum information

EFN Energy Flow Network Using IRC-safe information

RNN-ID Recurrent Neural Network w. ID RNN with full particle ID

RNN Recurrent Neural Network Using three-momentum information

EFP Energy Flow Polynomials A linear basis for IRC-safe information

DNN Dense Neural Network Trained on an N -subjettiness basis

CNN Convolutional Neural Network Trained on 33× 33 grayscale jet images

M Constituent Multiplicity Number of particles in the jet

nSD Soft Drop Multiplicity Probes number of perturbative emissions

m Jet Mass Mass of the jet

Table 2. The (top) PFN/EFN architectures, (middle) other machine learning models, and (bot-

tom) jet substructure observables used in comparisons of quark/gluon discrimination performance,

along with their corresponding symbols and short descriptions. A detailed discussion of model

implementation and observable computation is given in appendix A.

(a) (b)

Figure 7. The (a) ROC and (b) SI curve classification performances of PFN and RNN models

both with and without full particle ID information. From the SI curve, it appears that the PFN-ID

model is doing better than the RNN-ID model, whereas the PFN and RNN models perform roughly

equally.
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Model AUC 1/εg at εq = 50%

PFN-ID 0.9052± 0.0007 37.4± 0.7

PFN-Ex 0.9005± 0.0003 34.7± 0.4

PFN-Ch 0.8924± 0.0001 31.2± 0.3

PFN 0.8911± 0.0008 30.8± 0.4

EFN 0.8824± 0.0005 28.6± 0.3

RNN-ID 0.9010 34.4

RNN 0.8899 30.5

EFP 0.8919 29.7

DNN 0.8849 26.4

CNN 0.8781 25.5

M 0.8401 19.0

nSD 0.8297 14.2

m 0.7401 7.2

Table 3. The classification performances, quantified by the AUC and background rejection at 50%

signal efficiency, for each of the models and observables in table 2. Reported uncertainties on the

EFN and PFN family of models are half of the interquartile range over ten trainings. Performance

uniformly improves with the inclusion of more particle-type information.

(a) (b)

Figure 8. The (a) ROC and (b) SI curve classification performances of several different models

and observables. The PFN-ID and RNN-ID curves are shown in order to facilitate comparison

with figures 6 and 7. The PFN-ID architecture compares well to existing techniques, often notably

outperforming them.
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classifier trained on the energy flow basis [29]. Their performance, as given by their AUC

and background rejection at 50% signal efficiency, is summarized in table 3. Classification

improves with the addition of IRC-unsafe information, as seen in the gain that the various

PFN and RNN models have over the EFN and EFP models. There is also a boost in

performance from providing the model with ever-more specific particle-type information.

Figure 8 shows ROC and SI curves for all of these models, as well as some common jet

substructure observables. The best model is PFN-ID, followed by RNN-ID, and then (as

shown in this figure) linear EFPs, which, somewhat remarkably, is the best architecture

by AUC and SI curve height that does not take particles as direct inputs. We note that

for the CNN, one can in principle include particle ID information via additional channels,

though training a 14-channel CNN is computationally challenging as each channel comes

with O(1000) additional numbers, most of which are zero. Similar to RNNs and CNNs,

the EFN and PFN architectures endeavor to be efficient by reducing the number of train-

able parameters using weight sharing by applying the same Φ network to each particle.

Adding particle-type information to the EFPs or the N -subjettiness DNNs might be pos-

sible through a suitable generalization of jet charge [72], though we know of no concrete

implementation of this in the literature. The fact that PFNs naturally incorporate particle

ID information is a important aspect of this architecture.

4.4 Visualizing the singularity structure of QCD

Beyond their excellent classification performance, the EFN and PFN architectures have

the additional benefit that the learned function Φ can be directly explored. As discussed in

section 2.3, this is particularly true of the EFNs, where Φ(p̂) is a two-dimensional function

of the angular information and thus can be directly visualized in the rapidity-azimuth plane.

We take the learned Φ : R2 → R
ℓ network from the best EFN model, as determined by

the AUC, and evaluate it at many rapidity-azimuth points (y, φ) in the range y, φ ∈ [−R,R]

to form a set of ℓ filters representing the learned latent space. We show several of these

filters from the ℓ = 256 EFN models in figure 9. These can be directly compared with the

corresponding filters for the detector image representation in figure 2 and for the radiation

moment representation in figure 3. Like the image representation, we see that the learned

filters are localized bumps in the rapidity-azimuth plane, and thus we say that the model

appears to have learned a “pixelization” of the rapidity-azimuth plane.11 Unlike the image

representation, the “pixels” learned by the model are smaller near the core of the jet and

larger near the edge of the jet.

Beyond showing individual filters, it is informative to attempt to visualize an entire

EFN latent space at once. We achieve this by finding the boundary of each of the learned

pixels (corresponding to one component of Φ) and showing these boundaries together.

Plotting the boundary contours simultaneously allows for a direct visualization of the latent

space representation learned by the model on a single figure. In this way, we arrive at a

proxy for the “image” that the model projects each jet into, which empirically emerges as

a dynamically-sized calorimeter image. Larger latent space dimensions correspond roughly

11Note that the ReLU activation function that we used in the model forces the filter values to be positive

and allows the model to easily turn off regions of the inputs. Different activation functions may result in

different learned latent representations.
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Figure 9. Visualizations of 16 of the 256 filters learned by the ℓ = 256 EFN, with the filters sorted

by their activated area. The domain is the rapidity-azimuth plane from −R to R in both y and

φ, since the jets have been preprocessed by centering them at (0,0). The localized nature of the

filters leads to our interpretation that the model has learned an image-like “pixelization” of the

rapidity-azimuth plane, albeit one that is not square as in figure 2.
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contour

overlay

Learned Filters

Figure 10. An illustration of our simultaneous visualization procedure for example EFN filters.

Contours of each filter are shown from 45% to 55% of its maximum value. These contours are then

overlaid on the same figure with different colors. The resulting contour plot shows the dynamical

pixelization of the plane determined by the model.

to higher resolution images. This strategy is illustrated in figure 10, where each filter is

contoured around its 50% value and the contours are overlaid.

In figure 11, we show this visualization for EFN models with latent dimension varying

from 8 to 256 in powers of 2. Some of the filters are zero in the region of interest, perhaps as

a result of dying ReLUs, so these are not shown. It is evident from the simultaneous overlay

of the filters that their sizes are correlated with their distance from the origin, which is es-
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Figure 11. The learned EFN pixelization of the rapidity-azimuth plane around the jet center with

latent dimensions between 8 and 256 in powers of 2. The learned filters are dynamically sized, with

smaller filters probing the core of the jet and larger filters in the periphery. A large version of the

last panel is shown in figure 21.
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Figure 12. The size of the EFN filters as a function of their distance from the origin. The tendency

of small filters to be located near the core of the jet and larger ones to be farther out is clearly

visible. The best fit slope is around 2, which is the scale-invariant expectation from eq. (4.2).
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pecially clear for the larger latent dimensions. As quark and gluon jets are (approximately)

fractal objects with radiation singularly enhanced near the core of the jet as a result of

the collinear singularity of QCD, the dynamically-sized pixelization learned by the EFN

suggests that the model, in a sense, has understood this fact and adjusted itself accordingly.

To quantify the tendency of the filters to change size as they approach the center of

the jet, we plot the area of each filter as a function of its distance from the origin. To

define the area of a filter, A, we integrate the region of the rapidity-azimuth for which the

filter is greater than or equal to half of its maximum. To capture a notion of distance from

the origin, θ, we take the distance from the origin to the maximum value of the filter. We

exclude filters that have centers outside of the jet radius. The resulting plots of the filters

in this space are shown in figure 12 for the models with latent space dimension from 8 to

256 in powers of 2. There is a clear linear relationship between the (log) pixel size and the

(log) distance to the jet core. In particular, the slope between lnA and ln θ is around 1.6

in the cases studied.

We can attempt to understand why the slopes in figure 12 are around 2 by considering

a uniform pixelization in (ln R
θ , ϕ), where θ is the distance from the jet axis and ϕ is the

azimuthal angle around the jet axis (not to be confused with φ). As discussed in ref. [14],

this is the natural emission space of the jet. Translating an area element from this natural

emission space to the rapidity-azimuth (y, φ) plane yields:
∣

∣

∣

∣

d ln
R

θ
dϕ

∣

∣

∣

∣

=
dθ

θ
dϕ =

θ dθ dϕ

θ2
= θ−2 dy dφ. (4.1)

Thus, a uniform pixelization in (ln R
θ , ϕ) yields the following relationship between the area

element (or pixel) size in the rapidity-azimuth plane and its distance from the origin:

ln
A

πR2
= 2 ln

θ

R
+ const, (4.2)

explaining the slopes around 2 observed empirically in figure 12. This emergent behavior

suggests an interesting connection with recent work on machine learning directly in the

emission space of the jet [14]. Deviations from the scale-invariant expectation of 2 are

largest near the core of the jet, where non-perturbative physics or axis-recoil effects [118]

become important. The emission plane is visualized directly in appendix C, where the

pixelization is indeed seen to be highly uniform and regular in that space.

4.5 Extracting new observables from the model

Given that we are able to examine Φ for a trained EFN by visualizing its components, we

can attempt to go further and obtain a quantitative description of both Φ and F as closed-

form observables. Obtaining novel jet substructure observables from machine learning

methods has been approached previously by parameterizing an observable and learning

the optimal parameters for a particular task [28]. Here, we go in a different direction and

look directly at the latent observables learned by an EFN. This represents a first, concrete

step towards gaining a full analytic understanding what is being learned by the model.

To make this tractable, we focus on the simple case of a two-dimensional latent space.

A trained ℓ = 2 EFN has two learned filters, Φ1(y, φ) and Φ2(y, φ), and a learned function
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(a) (b)

(c)

Figure 13. (a, b) The two filters learned by an ℓ = 2 EFN, normalized to have a maximum value

of 1. The rotational symmetry of the filters about the jet axis is evident, with one filter probing

radiation near the core of the jet and the other probing wide-angle radiation. (c) Radial behavior of

the two filters, from the center of the jet along the vertical and horizontal directions. The analytic

forms of eq. (4.4) are shown as black lines, with Br1,β scaled by 0.15.

F (O1,O2). The filters can be visualized in the rapidity-azimuth plane and the function F

can be viewed in the (O1,O2) phase space. By studying these visualizations and noting

their emergent properties, we can construct observables that reproduce the behavior and

predictive power of the trained EFN.
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(a) (b)

Figure 14. (a) The EFN model output F (O1,O2) in the plane spanned by the learned latent space

observables O1 and O2. (b) The closed-form function C(A,B) in the plane of the analytic observ-

ables Ar0 and Br1,β . One hundred quark jets (light blue circles) and gluon jets (dark red squares)

are indicated to highlight the separation power. The distribution of the closed-form observables

and output value faithfully reproduce those of the trained EFN.

(a) (b)

Figure 15. The (a) ROC and (b) SI curves for the two closed-form observables Ar0 and Br1,β as

well as their combination C(A,B), compared to the trained ℓ = 2 EFN model. Three angularities

are also shown for comparison, along with their corresponding performance when combined with

a BDT. While the two learned observables perform similarly to the angularities on an individual

basis, they are evidently more informative than the angularities when combined. The output of the

trained EFN model and the closed-form estimate achieve similar performance.
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In figures 13a and 13b, we show the learned filters Φ1 and Φ2 of a trained ℓ = 2 EFN.

It is evident that the filters exhibit approximate radial symmetry, with one of the filters

concentrated at the center of the jet and the other activated at larger angular distances.

Thus, we can restrict our attention to functional forms which depend only on the rapidity-

azimuth distance θ from the origin. In particular, due to its built-in IRC-safety, the EFN

model has learned filters that correspond to observables of the following approximate form:

O1 =
M
∑

i=1

ziΦ1(θi), O2 =
M
∑

i=1

ziΦ2(θi). (4.3)

These are of the general form of IRC-safe angularities [74] with a generic radially-symmetric

angular weighting function [85].12 To quantify the filters further, in figure 13c we plot the

value of the learned filters as a function of the radial distance, taking an envelope over

several radial slices. The complementary central and wide-angle nature of the two filters

are clearly evident.

By observing the properties of the curves in figure 13c, we fit two IRC-safe observables

to the learned profiles of the following forms:

Ar0 =
∑

i

zi e
−θ2i /r

2

0 , Br1,β =
∑

i

zi ln(1 + β(θi − r1))Θ(θi − r1), (4.4)

with values of r0 = 0.018, β = 200, and r1 = 0.015 found to be suitable. The observables

in eq. (4.4) are then multiplied by overall factors of 0.60 and 0.18, respectively, to match

the arbitrary normalization of the learned filters. While the precise values and shapes of

the observable profiles changed from training to training, these general forms emerged for

several of the best-performing models.

The observables Ar0 and Br1,β in eq. (4.4) are IRC-safe angularities with a linear energy

dependence and interesting angular weighting functions. Ar0 probes the collinear radiation

near the core of the jet at angles θ . r0, and Br1,β probes wide-angle radiation away from

the core of the jet at angles θ > r1. The separate treatment of collinear and wide-angle par-

ticles is unlike the behavior of the traditional angularities, which have explicit contributions

from both collinear and wide-angle regions of phase space. Though, as will be shown, each

is individually a comparable quark/gluon jet classifier to the traditional angularities, the

model is able to combine them in such a way as to achieve a significantly better performance.

It would be interesting to perform a first-principles QCD study to understand in what sense

the separation of collinear and wide-angle behavior is beneficial for discrimination.

We now proceed to obtain a closed-form estimate of the learned function F (O1,O2).

In figure 14a, we populate the (O1,O2) phase space by quark and gluon jets and color

most of the populated space (with a mild threshold against outliers) according to the value

of F at that phase space point. We also indicate the truth labels of one hundred quark

and gluon jets to guide the eye. Based on the transition from red to blue, we can see

that the model selects a curved slice through the populated phase space region to obtain

12Following ref. [76], this section could alternatively be titled “New angles on IRC-safe angularities.”
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its predictions.13 Correspondingly, we choose a closed-form estimate based on the simple

(squared) Euclidean distance in phase space from a reference point (a0, b0), namely:

C(A,B) = (A− a0)
2 + (B − b0)

2, (4.5)

with a0 = 0.445 and b0 = 0.545, where, for ease of visualization, a sigmoid is also applied

to 50 (C(A,B) − 0.4602) to monotonically rescale the predictions between 0 and 1 and

approximate the value of the learned function. We visualize C(A,B) in figure 14b, finding

a satisfying correspondence between the closed-form observables and the learned case.

Finally, we study the classification performance of these closed-form observables, com-

pared to the trained ℓ = 2 EFN model and several IRC-safe angularities. We consider three

IRC-safe angularities λ(β) =
∑

i ziθ
β
i with β = 2, β = 1, and β = 1/2, which are the jet

mass, jet width, and Les Houches angularity, respectively [87]. ROC curves for the various

observables are shown in figure 15. As single observables, the closed-form observables Ar0

and Br1,β of eq. (4.4) perform similarly to the individual angularities. When combined via

C(A,B) of eq. (4.5), they outperform all of the single angularities and approach the trained

ℓ = 2 EFN performance. By contrast, when the three angularities are combined with a

Boosted Decision Tree (BDT), there is not a significant improvement in the classification

performance.14 The fact that Ar0 and Br1,β can be combined to significantly increase the

discrimination power indicates that, unlike the considered angularities, the new closed-form

observables probe complementary information.

5 Conclusions

In this paper, we presented a new technique to learn from collider events in their natural

representation as sets of particles. Our approach relies on the Deep Sets theorem [63],

which guarantees that a generic symmetric function can be represented by an additive

latent space. In the context of particle-level collider observables, each particle is mapped

to a latent representation and then summed over, and observables are then functions on

that latent space. This decomposition encompassed a wide variety of existing event- and

jet-level collider observables and representations, including image-based and moment-based

methods.

While these observable decompositions are interesting in their own right, parameteriz-

ing them with neural networks yields a machine learning framework ideally suited for learn-

ing from variable-length unordered lists of particles. We proposed two fundamental network

variants. The IRC-safe EFNs treat each latent space observable as an energy-weighted func-

tion of geometry, ensuring IRC safety in the latent space by construction. The fully-general

PFNs are able to incorporate additional particle-level information such as charge and fla-

vor, maximizing the information available to achieve collider tasks. We showcased the

13A similar strategy of fitting analytic functions to learned decision boundaries was carried out in ref. [119].
14The BDT classifier was implemented using scikit-learn [120] using 100 estimators, trained and tested

on 100,000 quark and gluon jets with a 50-50 train/test split. We also tested combining Ar0 and Br1,β

with a BDT, which resulted in similar performance to the closed-form and learned cases, verifying that the

information is being adequately captured by C(A,B).
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efficacy of these method in a quark/gluon discrimination case study, achieving favorable

performance compared with many existing machine learning techniques for particle physics.

A fascinating aspect of the EFNs is that one can directly visualize the per-particle

mapping into the latent space. This allowed us to peer inside the network and discover

that, in the context of quark/gluon discrimination, it had learned a dynamically-sized

pixelization of the rapidity-azimuth plane. This pixelization was reminiscent of a jet image

but did not adhere to the strict rectilinear grid imposed by traditional jet images. We also

found some compelling evidence that the model had “understood” a key property of QCD,

specifically its famous collinear singularity structure, since filters closer to the center of the

jet were more finely resolved. The relationship between the size and position of the filters

could be roughly understood as a uniform pixelization in the natural angular emission plane.

We also presented a simple example of directly learning the physics used by the trained

model and obtaining new closed-form observables. The IRC-safe Observable Decomposi-

tion, combined with the visualizability of the EFN filters, provides a general way to access

what the model has learned. In the case of an ℓ = 2 EFN, the model learned to separately

probe collinear and wide-angle radiation and then use a phase space distance to classify

quarks and gluons. While the quark/gluon classification performance of Ar0 and Br1,β

is not yet competitive with other simple observables such as the constituent multiplicity,

together they notably outperform other IRC-safe angularities. Even though our numerical

choices of parameters are specific to these quark/gluon jet samples, it may be interesting to

explore the Ar0 and Br1,β classes of observables further in the context of theoretical efforts

to jointly explore and understand the correlations between two angularities [74, 121, 122].

We conclude by discussing possible extensions and additional applications of these

methods. Pileup or underlying event mitigation could be an interesting avenue to explore

with this architecture, similar to ref. [30] but also to PUPPI [123] in that a per-particle

correction factor could be applied. Such an effort would need to make use of the equivariant

designs of ref. [63], which have a separate output for each input. One may also consider

adding high-level information — such as the jet four-momentum, individual substructure

observables, or clustering histories — directly to Φ or F in order to improve the network

performance. Further, while we used jet-level examples for our case study, the problem of

learning functions of sets applies at the event level more broadly. At the event level, new

challenges arise that the simple preprocessing performed here for the jet case studies may

not completely solve. An iterative deep sets technique, where multiple latent spaces are

constructed, may help to capture the local/global intuition that collider physicists regularly

employ to study the hierarchical relationships between events, jets, and particles.
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A Details of models and observables

In this appendix, we describe the details of the machine learning models and observables.

All of the models employed for comparison with the EFN/PFN models were applied to

our quark/gluon samples in section 4, but only the linear EFP model will be applied

to the top samples in appendix B. For the substructure observables, the jet mass m and

constituent multiplicity nconst are easily obtained from the jet in FastJet. Using FastJet

contrib 1.033 [124], the RecursiveTools 2.0.0-beta1 module was used to calculate the

soft drop multiplicity nSD [78] with parameters β = −1, zcut = 0.005, and θcut = 0. The

Nsubjettiness 2.2.4 module was used to calculate all N -subjettiness values τ
(β)
N [70, 71].

All neural networks were implemented in Keras [125] with the TensorFlow [126] backend

and trained on NVIDIA Tesla K80 GPUs on Microsoft Azure.

Here, we provide details for the machine learning models listed in table 2:

• EFN, PFN: both the EFN and PFN architectures are contained as part of our

EnergyFlow Python package [91], which contains examples demonstrating their train-

ing, evaluation, and use. Keras requires contiguous NumPy [127] arrays as input, so

the events are padded with all-zero particles to ensure they have equal length. This

zero-padding is a technical trick, not a conceptual limitation. It is distinct from the

zero-padding necessary to use variable-length inputs in a DNN. This operation can

be done on a per-batch level, but to avoid repeating this procedure at each epoch,

we zero-pad all the events once at the beginning. The Keras Masking layer is used

to ignore all-zero particles during the training and evaluation of the network. The

Keras TimeDistributed layer is used to apply the function Φ to each particle, which

in the relevant language is a “time step”. To carry out the summation in the latent

space, we use the Keras Dot layer for the EFN architecture, to product and sum the

transverse momentum fractions with the latent observables, and the Lambda layer for

the PFN architecture, to sum over the particles. It may be interesting to consider al-

ternative “pooling” functions to summation, such as max-pooling or average-pooling

as in refs. [60, 64].

• RNN-ID, RNN: recurrent Neural Networks provide an alternative way to process

variable-length inputs, albeit one that is explicitly not agnostic to the order of the

inputs. We choose to order the particles by their transverse momenta and train two

variants: one with only kinematic information (RNN) and one with kinematic as

well as full particle ID information (RNN-ID). The former should be compared with
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the PFN model and the latter to the PFN-ID model. We did not consider alter-

native particle orderings for the RNN, though other investigations have found that

performance is robust to choices in particle ordering [16, 44]. Our RNN architecture

consists of an LSTM layer with 64 nodes (the performance was insensitive to changing

this value to 128 or 256) followed by three fully-connected layers each with 100 nodes

and a fully-connected output layer with 2 nodes. Due to the Masking layer employed,

the significantly faster CuDNNLSTM layer was not used and the batch size was taken

to be 2000 to help speed up training. An architecture using two or three SimpleRNN

layers was also tried but the performance was not as good as with an LSTM layer.

The long training time of the RNN models was prohibitive in exploring additional

hyperparameters.

• EFPs: the energy flow basis [29] is a linear basis for the space of IRC-safe jet

substructure observables, allowing linear methods to be applied to a set of Energy

Flow Polynomials with good performance. The EnergyFlow 0.8.2 Python package [91]

was used to compute all EFPs with degree d ≤ 7 and complexity χ ≤ 3, using the

normalized default hadronic measure with β = 0.5. The same EFPs with β = 1

were also tested and found to perform slightly worse. These 996 EFPs, including the

trivial constant EFP, were used to train a Fisher’s Linear Discriminant model from

the scikit-learn package [120].

• DNN: the N -subjettiness basis [24] is a K-body phase space basis consisting of the

following 3K − 4 observables:

{

τ
(1/2)
1 , τ

(1)
1 , τ

(2)
1 , τ

(1/2)
2 , τ

(1)
2 , τ

(2)
2 , . . . , τ

(1/2)
K−2 , τ

(1)
K−2, τ

(2)
K−2, τ

(1/2)
K−1 , τ

(1)
K−1

}

. (A.1)

We use K = 25 and, following ref. [24], compute the N -subjettiness values with

respect to kT axes. A Dense Neural Network consisting of three fully-connected

layers each with 100 nodes and one fully-connected output layer with 2 nodes was

trained on this set of N -subjettiness values.

• CNN: following ref. [8], we compute 33 × 33 one-channel (grayscale) jet images

in a 2R × 2R patch of the rapidity-azimuth plane. Images were preprocessed as

in refs. [8, 90] by subtracting the mean image of the training set and dividing by

the per-pixel standard deviation. A Convolutional Neural Network architecture was

trained on the jet images consisting of three convolutional layers with 48, 32, and 32

filters of size 8× 8, 4× 4, and 4× 4, respectively. These layers were followed by two

fully-connected layers each with 50 nodes and one fully-connected output layer with

2 nodes. Maxpooling of size 2 × 2 and dropout with a rate of 0.1 was implemented

after each convolutional layer.

For all quark/gluon models, one million jets were used for training, 200k for valida-

tion (except for the EFPs, which did not use validation), and 200k for testing. Common

properties to all neural networks include the use of ReLU [108] activation functions for all

non-output layers, a softmax activation function on the 2 node output layer, He-uniform
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Model Time per Epoch (sec) Number of Epochs

PFN-ID 73 47

PFN-Ex 67 37

PFN-Ch 64 51

PFN 71 34

EFN 74 54

RNN-ID 192 61

RNN 188 96

DNN 9 39

CNN 63 22

Table 4. Median times per epoch and numbers of epochs during training of the considered machine

learning models. The linear EFP model is not shown because it is trained by a different technique.

Note the substantially longer training times for our RNN implementations compared to the EFN

and PFN models.

weight initialization [109], the categorical crossentropy loss function, the Adam optimiza-

tion algorithm [128], and a learning rate of 0.001. All non-RNN networks had a batch

size of 500; all non-CNN networks had a patience parameter of 8 with the CNN having

a patience parameter of 5. Each non-EFN/PFN model was trained twice and the model

with the higher AUC on the test set is reported (except when εg at εq = 50% values are

reported, in which case the model with the value of this statistic is reported). In table 4,

we report the typical training times for each of the models.

B Tagging top jets

In this appendix, we train EFN and PFN models to discriminate top jets from the QCD jet

background to provide an additional demonstration of the excellent performance of these

models. Since top jets do not have any singularities associated with radiation about their

center, training EFN models on tops provides an important cross check about our conclu-

sions in section 4.4 for how the model is learning to pixelize the rapidity-azimuth plane.

The top and QCD jets used in this study are based on the dataset used in ref. [22],

which were provided to us by those authors. The jets are Pythia-generated, anti-kT ,

R = 0.8 jets at
√
s = 14TeV with no underlying event or pileup using a Delphes [129]

detector fast-simulation of the ATLAS detector. Jets are kept if they have transverse

momentum pT ∈ [550, 650]GeV and pseudorapidity |η| < 2 and if they can be matched to

a top parton to within a rapidity-azimuth distance of ∆R = 0.8. The jets are required to be

fully merged, with the three quarks from the top decay contained within the jet radius. See

ref. [22] for additional information about the samples and their generation details, as well as

information about other top-tagging algorithms. There are 1.2 million training events, with

400k validation events and 400k test events. The jet samples do not contain particle-level
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Figure 16. The AUC performance of the EFN/PFN top tagging models as a function of the

latent dimension, which is varied from 8 to 256 in powers of 2. Including rotation and reflection in

the rapidity-azimuth plane as preprocessing steps (solid curves) improves the model performance

significantly compared to only centering the jets (dashed curves). The spread in values is due to

retraining the models ten times.

flavor or charge information, and thus we can only train EFN and PFN models that make

use of kinematic information alone. A linear EFP model is also trained for comparison.

Given the different topology typical of top jets compared to quark or gluon jets, we

implement some additional preprocessing steps designed to help the model train more ef-

ficiently. As with the quark and gluon jets of section 4, we center all of the jets in the

rapidity-azimuth plane based on the four-momentum of the jet, and we normalize the trans-

verse momenta of the particles to sum to one. Models were trained with just this minimal

preprocessing, as well as with additional rotation and reflection (r.r.) operations. For the

EFN-r.r. and PFN-r.r. models, rotations were performed to align the leading eigenvector of

the two-dimensional moment of the radiation pattern along the vertical axis, and reflections

were performed about the horizontal and vertical axes to place the highest-pT quadrant in

a consistent quadrant.

The results of training EFN and PFN models for top tagging are shown in figure 16

with the latent dimension of the models varying from 8 to 256 in powers of 2. ROC and SI

curves of the trained models are shown in figure 17 and also compared to the linear EFP

model. Performance competitive with the results in ref. [22] is achieved, particularly for

the PFN models. The preprocessing step of rotating and reflecting can be seen to notably

improve both the EFN and PFN classification performance. In order to facilitate future

comparisons with other models trained on these samples, in table 5 we report the AUC

and gluon background rejection factor at both 0.3 and 0.5 quark efficiency.
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(a) (b)

Figure 17. The (a) inverse ROC and (b) SI curves for each of the EFN/PFN top tagging models

with latent dimension 256, compared to the EFP linear model. The curve with the median AUC

out of ten independent trainings is shown. As expected, the PFN yields better performance than

the EFN, with the additional rotation/reflection preprocessing steps providing a further boost in

performance.

Model AUC 1/εb at εs = 50% 1/εb at εs = 30%

PFN-r.r. 0.9819± 0.0001 247± 3 888± 17

PFN 0.9801± 0.0001 203± 1 732± 21

EFN-r.r. 0.9789± 0.0001 181± 2 619± 23

EFN 0.9760± 0.0001 143± 2 481± 12

EFPs 0.9803 184 384

Table 5. Quantified classification performance (AUC, 1/εb at εs = 0.5, 1/εb at εs = 0.3) for

each of the models trained in figure 17. Reported uncertainties are half of the interquartile range

over ten trainings. The PFNs achieve the best performance, with improvements seen by including

the rotation and reflection preprocessing. The EFPs slightly outperform the EFNs in AUC and

background rejection at 0.5 signal efficiency but perform more poorly in background rejection at

0.3 signal efficiency.
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(a) (b)

Figure 18. Visualization of the learned filters of a top tagging ℓ = 256 EFN (a) without any

additional preprocessing and (b) with additional rotation/reflection. In (b), the rotational symmetry

around the center is broken compared to (a).

(a) (b)

Figure 19. The filter sizes plotted as a function of their distance from the jet center for a

top tagging ℓ = 256 EFN (a) without any additional preprocessing and (b) with additional rota-

tion/reflection. Though a general trend is seen that pixels closer to the center are smaller, the

points are generally not as well fit by a line as in the quark/gluon case in figure 12.
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For the EFNs, we can also visualize the learned filters using the technique of sec-

tion 4.4. The resulting filter visualizations for latent dimension 256 are shown in figure 18.

The learned filters have some tendency to be smaller near the center and larger near the

periphery, but not nearly as much as in the quark/gluon discrimination case in figure 10.

This is expected because given the typical three-prong topology of a boosted top jet, the

jet axis does not have any distinguished radiation associated with it, unlike for a QCD jet

where the jet axis tends to lie along a core of radiation. To quantify this effect, we look at

the size of the filters as a function of their distance from the origin, shown in figure 19. The

relationship in the top tagging case is much weaker than the linear relationship present in

the quark/gluon discrimination study, with significantly worse linear fits.

C Additional visualizations

For the quark/gluon EFN model in section 4, the observed relationship between the size and

location of the filters qualitatively (in figure 11) and quantitatively (in figure 12) suggested

that the model learned a uniform pixelization in the
(

ln R
θ , ϕ

)

emission plane. (The top

tagging EFNmodel in appendix B did not exhibit as clear of a relationship in either figure 18

or figure 19.) To directly visualize the EFN filters in the appropriate space, we implement

a change of variables from Cartesian (y, φ) coordinates to polar (θ, ϕ) coordinates. The

visualizations in figure 20 use the same contouring and overlaying technique of figure 10 to

demonstrate the roughly uniform pixelation in the emission plane for the quark/gluon EFN

models with latent dimensions of 16, 64, and 256. In this emission plane, the learned filters

can be seen to be much more uniform in size and location compared to the rapidity-azimuth

plane. The uniformity as a function of ϕ indicates that the set of filters approximately has

rotational symmetry. We also checked that the model output typically changed by less

than 0.1 after applying a random rotation about the jet axis in the rapidity-azimuth plane.

Finally, we show a larger version of the quark/gluon ℓ = 256 EFN model from figure 11

in figure 21, suitable for framing.
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Figure 20. Visualization of the learned filters of a quark/gluon EFN in the (ln R
θ
, ϕ) plane with

latent dimensions of (top) 16, (middle) 64, and (bottom) 256. The pixelization learned by the

network is much more regular and uniform in this space compared to the rapidity-azimuth plane in

figure 11.
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Figure 21. A larger scale visualization of the filters for the quark/gluon ℓ = 256 EFN model,

shown originally in figure 11.
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