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1 Introduction

Jet substructure is the analysis of radiation patterns and particle distributions within

the collimated sprays of particles (jets) emerging from high-energy collisions [1–5]. Jet

substructure is central to many analyses at the Large Hadron Collider (LHC), finding

applications in both Standard Model measurements [6–19] and in searches for physics

beyond the Standard Model [20–43]. An enormous catalog of jet substructure observables

has been developed to tackle specific collider physics tasks [44–48], such as the identification

of boosted heavy particles or the discrimination of quark- from gluon-initiated jets.

The space of possible jet substructure observables is formidable, with few known com-

plete and systematic organizations. Previous efforts to define classes of observables around

organizing principles include: the jet energy moments and related Zernike polynomials to

classify energy flow observables [49]; a pixelated jet image [50] to represent energy deposits

in a calorimeter; the energy correlation functions (ECFs) [51] to highlight the N -prong sub-

structure of jets; the generalized energy correlation functions (ECFGs) [52] based around

soft-collinear power counting [53]; and a set of N -subjettiness observables [54–56] to cap-

ture N -body phase space information [57]. With any of these representations, there is

no simple method to combine individual observables, so one typically uses sophisticated

multivariate techniques such as neural networks to fully access the information contained

in several observables [57–73]. Furthermore, the sense in which these sets “span” the space

of jet substructure is often unclear, sometimes relying on the existence of complicated

nonlinear functions to map observables to kinematic phase space.

In this paper, we introduce a powerful set of jet substructure observables organized

directly around the principle of infrared and collinear (IRC) safety. These observables are

multiparticle energy correlators with specific angular structures which directly result from

IRC safety. Since they trace their lineage to the hadronic energy flow analysis of ref. [74], we

call these observables the energy flow polynomials (EFPs) and we refer to the set of EFPs

as the energy flow basis. In the language of ref. [74], the EFPs can be viewed as a discrete

set of C-correlators, though our analysis is independent from the original C-correlator logic.

Crucially, the EFPs form a linear basis of all IRC-safe observables, making them suitable

for a wide variety of jet substructure contexts where linear methods are applicable.

There is a one-to-one correspondence between EFPs and loopless multigraphs, which

helps to visualize and calculate the EFPs. A multigraph is a graph where any two vertices

can be connected by multiple edges; in this context, a loop is an edge from a vertex to

itself, while a closed chain of edges is instead referred to as a cycle. For a multigraph G

with N vertices and edges (k, ℓ) ∈ G, the corresponding EFP takes the form:

EFPG =

M∑

i1=1

· · ·
M∑

iN=1

zi1 · · · ziN
∏

(k,ℓ)∈G

θikiℓ , (1.1)

where the jet consists of M particles, zi ≡ Ei/
∑M

j=1Ej is the energy fraction carried by

particle i, and θij is the angular distance between particles i and j. The precise definitions of

Ei and θij will depend on the collider context, with energy and spherical (θ, φ) coordinates

– 2 –
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typically used for e+e− collisions, and transverse momentum pT and rapidity-azimuth (y, φ)

coordinates for hadronic collisions. For brevity, we often use the multigraph G to represent

the formula for EFPG in eq. (1.1), e.g.:

=
M∑

i1=1

M∑

i2=1

M∑

i3=1

M∑

i4=1

M∑

i5=1

zi1zi2zi3zi4zi5θi1i2θi2i3θi1i3θi1i4θi1i5θ
2
i4i5 . (1.2)

This paper is a self-contained introduction to the energy flow basis, with the follow-

ing organization. Section 2 contains a general overview of the EFPs, with more detailed

descriptions of eq. (1.1) and the correspondence to multigraphs. We also discuss a few dif-

ferent choices of measure for zi and θij . As already mentioned, EFPs are a special case of

C-correlators [74], so not surprisingly, we find a close relationship between EFPs and other

classes of observables that are themselves C-correlators, including jet mass, ECFs [51], cer-

tain generalized angularities [75], and energy distribution moments [49]. We also highlight

features of the EFPs which are less well-known in the C-correlator-based literature.

In section 3, we give a detailed derivation of the EFPs as an (over)complete linear

basis of all IRC-safe observables in the case of massless particles. Because this section

is rather technical, it can be omitted on a first reading, though the logic just amounts to

systematically imposing the constraints of IRC safety. In section 3.1, we use an independent

(and arguably more transparent) logic from ref. [74] to show that any IRC-safe observable

can be written as a linear combination of C-correlators:

CfN
N =

M∑

i1=1

· · ·
M∑

iN=1

Ei1 · · ·EiN fN (p̂µi1 , . . . , p̂
µ
iN
), (1.3)

where fN is an angular weighting function that is only a function of the particle directions

p̂µi = pµi /Ei (and not their energies Ei). To derive eq. (1.3), we use the Stone-Weierstrass

theorem [76] to expand an arbitrary IRC-safe observable in polynomials of particle energies,

and then directly impose IRC safety and particle relabeling invariance. In section 3.2, we

determine the angular structures of the EFPs by expanding fN in terms of a discrete set

of polynomials in pairwise angular distances. Remarkably, the discrete set of polynomials

appearing in this expansion is in one-to-one correspondence with the set of non-isomorphic

multigraphs, which facilitates indexing the EFPs by multigraphs to encode the geometric

structure in eq. (1.1).

In section 4, we investigate the complexity of computing EFPs. Naively, eq. (1.1) has

complexity O(MN ) due to the N nested sums over M particles. However, the rich analytic

structure of eq. (1.1) and the graph representations of EFPs allow for numerous algorithmic

speedups. Any EFP with a disconnected graph can be computed as the product of the

EFPs corresponding to its connected components. Furthermore, we find that the Variable

Elimination (VE) algorithm [77] can be used to vastly speed up the computation of many

EFPs compared to the naive O(MN ) algorithm. VE uses the factorability of the summand

to systematically determine a more efficient order for performing nested sums. For instance,

all tree graphs can be computed in O(M2) using VE. As an explicit example, consider an

– 3 –
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EFP with naive O(M6) scaling:

=
M∑

i1=1

M∑

i2=1

zi1zi2θi1i2

(
M∑

i3=1

zi3θi1i3

)2( M∑

i4=1

zi4θi2i4

)2

. (1.4)

The quantities in parentheses are computable in O(M2), since they are length M lists with

each element a sum over M objects, making the overall expression in eq. (1.4) computable

in O(M2). The efficient computation of the EFPs overcomes one of the main previous

challenges in using higher-N multiparticle correlators in collider physics applications.1

In section 5, we perform numerical linear regression with EFPs for various jet ob-

servables. The linear spanning nature of the energy flow basis means that any IRC-safe

observable S can be linearly approximated by EFPs, which we write as:

S ≃
∑

G∈G

sG EFPG, (1.5)

for some finite set of multigraphs G and some real coefficients sG. One might worry that

the number of EFPs needed to achieve convergence could be intractably large. In practice,

though, we find that the required set of G needed for convergence is rather reasonable in

a variety of jet contexts. While we find excellent convergence for IRC-safe observables, re-

gressing with IRC-unsafe observables does not work as well, demonstrating the importance

of IRC safety for the energy flow basis.

In section 6, we perform another test of eq. (1.5) by using linear classification with EFPs

to distinguish signal from background jets. We consider three representative jet tagging

problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. In

this study, the observable appearing on the left-hand side of eq. (1.5) is the optimal IRC-

safe discriminant for the two classes of jets. Remarkably, linear classification with EFPs

performs comparably to multivariate machine learning techniques, such as jet images with

convolutional neural networks (CNNs) [50, 63–66] or dense neural networks (DNNs) with a

complete set of N -subjettiness observables [57]. Both the linear regression and classification

models have few or no hyperparameters, illustrating the power and simplicity of linear

learning methods combined with our fully general linear basis for IRC-safe jet substructure.

Our conclusions are presented in section 7, where we highlight the relevance of the

energy flow basis to machine learning and discuss potential future applications and devel-

opments. A review of C-correlators and additional tagging plots are left to the appendices.

2 Energy flow polynomials

IRC-safe observables have long been of theoretical and experimental interest because ob-

servables which lack IRC safety are not well defined [78–81], or require additional care

to calculate [82–86], in perturbative quantum chromodynamics (pQCD). More broadly,

1Sadly, fully-connected graphs, which correspond to the original ECFs [51], cannot be simplified using

VE.

– 4 –



J
H
E
P
0
4
(
2
0
1
8
)
0
1
3

though, IRC safety is a simple and natural organizing principle for high-energy physics

observables, since IRC-safe observables probe the high-energy structure of an event while

being insensitive to low-energy and collinear modifications. IRC safety is also an impor-

tant property experimentally as IRC-safe observables are more robust to noise and finite

detector granularity.

As argued in refs. [74, 87–89], the C-correlators in eq. (1.3) are a generic way to

capture the IRC-safe structure of a jet, as long as one chooses an appropriate angular

weighting function fN . Later in section 3, we give an alternative proof that C-correlators

span the space of IRC-safe observables and go on to give a systematic expansion for fN .

This expansion results in the EFPs, which yield an (over)complete linear basis for IRC-

safe observables. In this section, we highlight the basic features of the EFPs and their

relationship to previous jet substructure observables.

2.1 The energy flow basis

One can think of the EFPs as C-correlators that make specific, discrete choices for the

angular weighting function fN in eq. (1.3). True to their name, EFPs have angular weight-

ing functions that are polynomial in pairwise angular distances θij . The energy flow basis

is therefore all C-correlators with angular structures that are unique monomials in θij ,

meaning monomials that give algebraically different expressions once the sums in eq. (1.3)

are performed. Since we intend to apply the energy flow basis for jet substructure, we

remove the dependence on the overall jet kinematics by normalizing the particle energies

by the total jet energy, EJ ≡
∑M

i=1Ei, leading to the EFPs written in terms of the energy

fractions zi ≡ Ei/EJ as in eq. (1.1).

The uniqueness requirement on angular monomials can be better understood by de-

veloping a correspondence between monomials in θij and multigraphs:

Multigraph/EFP Correspondence. The set of loopless multigraphs on N vertices cor-

responds exactly to the set of angular monomials in {θikiℓ}k<ℓ∈{1,··· ,N}. Each edge (k, ℓ) in a

multigraph is in one-to-one correspondence with a term θikiℓ in an angular monomial; each

vertex j in the multigraph corresponds to a factor of zij and summation over ij in the EFP:

j
⇐⇒

M∑

ij=1

zij , k ℓ ⇐⇒ θikiℓ . (2.1)

Using eq. (2.1), the EFPs can be directly encoded by their corresponding multigraphs.

For instance:

=
M∑

i1=1

M∑

i2=1

M∑

i3=1

M∑

i4=1

zi1zi2zi3zi4θi1i2θi2i3θ
2
i2i4θi3i4 . (2.2)

Since any labeling of the vertices gives an equivalent algebraic expression, we represent

the graphs as unlabeled. The specification that the EFPs are unique monomials translates

into the requirement that the corresponding multigraphs are non-isomorphic. Versions

– 5 –
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Multigraph Energy Flow Polynomial

N : Number of vertices ⇐⇒ N -particle correlator

d : Number of edges ⇐⇒ Degree of angular monomial

χ : Treewidth +1 ⇐⇒ Optimal VE complexity O(Mχ)

Chromatic number ⇐⇒ Minimum number of prongs to not vanish

Connected ⇐⇒ Prime

Disconnected ⇐⇒ Composite

Table 1. Corresponding properties of multigraphs and EFPs.

of these multigraphs have previously appeared in the physics literature in the context of

many-body configurations [90, 91], encoding all local scalar operators of a free theory [92],

and in graphically depicting ECFs for jets [52, 93].

Table 1 contains a summary of the correspondence between the properties of EFPs

and multigraphs. The number of graph vertices N corresponds to the number of particle

sums in the EFP, and the number of graph edges d corresponds to the degree of the EFP

(i.e. the degree of the underlying angular monomial). The number of separated prongs for

which an individual EFP is first non-vanishing is the chromatic number of the graph: the

smallest number of colors needed to color the vertices of the graph with no two adjacent

vertices sharing a color. For computational reasons discussed further in section 4, we also

care about the treewidth of the graph, which is related to the computational complexity

χ of an EFP. Also for computational reasons, we make a distinction between connected or

prime multigraphs and disconnected or composite multigraphs; the value of a composite

EFP is simply the product of the prime EFPs corresponding to its connected components.

Because the EFP basis is infinite, a suitable organization and truncation scheme is

necessary to use the basis in practice. In this paper, we usually truncate by restricting

to the set of all multigraphs with at most d edges. This is a natural choice because

it corresponds to truncating the approximation of the angular function fN at degree d

polynomials. Furthermore, this truncation results in a finite number of EFPs at each order

of truncation, which is not true for truncation by the number of vertices. The number

of multigraphs with exactly d edges is Sequence A050535 in the On-Line Encyclopedia of

Integer Sequences (OEIS) [94, 95]; the number of connected multigraphs with exactly d

edges is Sequence A076864 in the OEIS [94]. The numbers of EFPs in our truncation of

the energy flow basis are the partial sums of these sequences, which are listed in table 2a

up to d = 10. Table 2b tabulates the number of prime EFPs of degree d binned by N up

to d = 10. Table 3 illustrates all connected multigraphs with d ≤ 5 edges.

2.2 Energy and angular measures

There are many possible choices for the energy fraction zi and angular measure θij used

to define the EFPs. In the analysis of section 3, this choice arises because there are many

systematic expansions of IRC-safe observables in terms of energy-like and angular-like

– 6 –
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Maximum degree d 0 1 2 3 4 5 6 7 8 9 10

Prime EFPs
A076864 1 1 2 5 12 33 103 333 1 183 4 442 17 576

Cumul. 1 2 4 9 21 54 157 490 1 673 6 115 23 691

All EFPs
A050535 1 1 3 8 23 66 212 686 2 389 8 682 33 160

Cumul. 1 2 5 13 36 102 314 1 000 3 389 12 071 45 231

(a)

d 1 2 3 4 5 6 7 8 9 10

N

2 1 1 1 1 1 1 1 1 1 1

3 1 2 3 4 6 7 9 11 13

4 2 5 11 22 37 61 95 141

5 3 11 34 85 193 396 771

6 6 29 110 348 969 2 445

7 11 70 339 1 318 4 457

8 23 185 1 067 4 940

9 47 479 3 294

10 106 1 279

11 235

(b)

Table 2. (a) The number of EFPs (prime and all) organized by degree d, for d up to 10. The

cumulative rows tally the number of EFPs with degree at most d, i.e. the number of basis elements

truncated at that d. While these sequences grow quickly, the total number of all basis elements is

at most 1000 for d ≤ 7, which is computationally tractable. (b) The number of prime EFPs broken

down by number of vertices N and number of edges d in the multigraph. All connected graphs

(prime EFPs) for d up to 5 are shown explicitly in table 3.
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Degree Connected Multigraphs

d = 0

d = 1

d = 2

d = 3

d = 4

d = 5

Table 3. All non-isomorphic, loopless, connected multigraphs organized by the total number of

edges d, up to d = 5, sorted by their number of vertices N . Note that for a fixed number of edges d,

the total number of multigraphs (connected or not) is finite. These graphs correspond to the d ≤ 5

prime EFPs counted in table 2a. Image files for all of the prime EFP multigraphs up to d = 7 are

available here.

– 8 –
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quantities. Typically, one wants to work with observables that respect the appropriate

Lorentz subgroup for the collision type of interest. For e+e− colliders, the symmetries

are the group of rotations about the interaction point, and for hadron colliders they are

rotations about and boosts along the beam axis (sometimes with a reflection in the plane

perpendicular to the beam). Therefore, the energy fractions zi usually use particle energies

Ei at an e+e− collider and particle transverse momenta pT,i at a hadron collider.

For the angular weighting function fN , though, there are many different angular struc-

tures one can build out of the particle directions p̂µi . The EFPs use the simplest and ar-

guably most natural choice to expand the angular behavior: pairwise angular distances

θij , determined using spherical coordinates (θ, φ) at an e+e− collider and rapidity-azimuth

coordinates (y, φ) at a hadron collider. Other classes of observables, such as ECFs [51] and

ECFGs [52], also use pairwise angles since they manifestly respect the underlying Lorentz

subgroup. For building the EFPs, is important that the θij , or any other choice of geomet-

ric object, be sufficient to reconstruct the value of the original function fN in terms of the

p̂µi . For pairwise angles, this property can be shown by triangulation, under the assump-

tion that the observable in question does not depend on the overall jet direction nor on

rotations or reflections about the jet axis. Since jets are collimated sprays of particles, the

θij are typically small and are good expansion parameters.

At various points in this paper, we explore three different energy/angular measures.

For e+e− collisions, our default is:

e+e− Default

zi =
Ei

EJ
, EJ ≡

M∑

i=1

Ei,

θij =

(
2 pµi pjµ
EiEj

)β/2

,

(2.3)

where β > 0 is an angular weighting factor. For the hadron collider studies in sections 5

and 6, we use:

Hadronic Default
zi =

pT,i
pT,J

, pT,J ≡
M∑

i=1

pT,i,

θij =
(
∆y2ij +∆φ2

ij

)β/2
,

(2.4)

where ∆yij ≡ yi − yj , ∆φij ≡ φi − φj are determined by the rapidity yi and azimuth φi

of particle i. This measure is rotationally-symmetric in the (y, φ) plane, which is the most

commonly used case in jet substructure. For situations where this rotational symmetry is

not desirable (such as for jet pull [96]), we can instead use a two-dimensional measure that

treats the rapidity and azimuthal directions separately:

Hadronic Two-Dimensional
zi =

pT,i
pT,J

, pT,J ≡
M∑

i=1

pT,i,

θij = ∆yij or ∆φij ,

(2.5)

where each line on the multigraph now has an additional decoration to indicate whether it

corresponds to ∆y or ∆φ.

– 9 –
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We emphasize that the choice of measure is not unique, though it is constrained by the

IRC-safety arguments in section 3. For example, IRC safety requires that the energy-like

quantities appear linearly in zi. For the default measures, the angular exponent β can take

on any positive value and still be consistent with IRC safety. Depending on the context,

different choices of β can lead to faster or slower convergence of the EFP expansion, with

β < 1 emphasizing smaller values of θij and β > 1 emphasizing larger values of θij . For

special choices of zi and θij , some EFPs may be linearly related, a point we return to briefly

in section 4.1.

2.3 Relation to existing substructure observables

Many familiar jet observables can be nicely interpreted in the energy flow basis. When an

observable can be written as a simple expression in terms of particle four-momenta or in

terms of energies and angles, the energy flow decomposition can often be performed exactly.

Some of the most well-known observables, such as jet mass and energy correlation functions,

are exactly finite linear combinations of EFPs (with appropriate choice of measure), which

one might expect since they also correspond to natural C-correlators. Unless otherwise

specified, the analysis below uses the default hadronic measure in eq. (2.4) with β = 1 and

treats all particles as massless.2

2.3.1 Jet mass

Jet mass is most basic jet substructure observable, and not surprisingly, it has a nice

expansion in the energy flow basis. In particular, the squared jet mass divided by the jet

energy squared is an exact N = 2 EFP using the e+e− measure in eq. (2.3) with β = 1:

e+e− :
m2

J

E2
J

=
1

2

M∑

i1=1

M∑

i2=1

zi1zi2

(

2 pµi1pi2µ

Ei1Ei2

)

=
1

2
× . (2.6)

Note that mass is exactly an EFP for any β = 2/N measure choice.

For the hadronic measure in eq. (2.4) with β = 1, there is an approximate equivalence

with the squared jet mass divided by the jet (scalar) transverse momentum:

Hadronic :
m2

J

p2TJ

=
M∑

i1=1

M∑

i2=1

zi1zi2(cosh(∆yi1i2)− cos(∆φi1i2)) =
1

2
× + · · · . (2.7)

Since the jet mass is not exactly rotationally symmetric in the rapidity-azimuth plane, the

subleading terms in eq. (2.7) are not fully encompassed by the simplified set of hadronic

2A proper treatment of non-zero particle masses would require an additional expansion in the velocities

of the particles (see related discussion in refs. [97, 98]). To avoid these complications, one can interpret all

particles as being massless in the E-scheme [97], i.e. pµrescaled = E (1, p̂) with p̂ = ~p/|~p|.

– 10 –
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observables depending only on {∆y2ij +∆φ2
ij}, but could be fully encompassed by using an

expansion in {∆yij ,∆φij} as in eq. (2.5). For narrow jets, these higher-order terms in the

expansion become less relevant since ∆yij , ∆φij ≪ 1.3

2.3.2 Energy correlation functions

The ECFs are designed to be sensitive to N -prong jet substructure [51]. They can be

written as a C-correlator, eq. (1.3), with a particular choice of angular weighting function:

f
(β)
N ({θij}) =

∏

i<j

θβij , (2.8)

where θij = (∆y2ij +∆φ2
ij)

1/2. In terms of multigraphs, the ECFs correspond to complete

graphs on N vertices:

e
(β)
2 = , e

(β)
3 = , e

(β)
4 = , (2.9)

which are EFPs using the measure in eq. (2.4) with exponent β.

The ECFs have since been expanded to a more flexible set of observables referred to

as the ECFGs [52]. Letting min(m) indicate the m-th smallest element in a set, the ECFGs

are also C-correlators with angular weighting function:

vf
(β)
N ({θij}) =

v∏

m=1

(m)

min
i<j

{θβij}. (2.10)

The ECFGs do not have an exact multigraph correspondence due to the presence of the min

function, but are evidently closely related to the EFPs since they share a common energy

structure. The min function itself can be approximated by polynomials in its arguments,

which induces an approximating series for the ECFGs in terms of EFPs when plugged into

the common energy structure.

Both the EFPs and the ECFGs represent natural extensions of the ECFs but in dif-

ferent directions. From our graph-theoretic perspective, the EFPs extend the ECFs to

non-fully-connected graphs. The ECFGs extend the scaling properties of the ECFs into

observables with independent energy and angular scalings. As discussed in section 2.4,

there are angular structures possible in the EFPs that are not possible in the ECFGs. As

with any jet substructure analysis, the choice of which set of observables to use depends

on the physics of interest, with the EFPs designed for linear completeness and the ECFGs

designed for nice power-counting properties.

3Alternatively, we could use a measure with θij =
(

2 p
µ
i
pjµ

pT,ipT,j

)β/2

, similar in spirit to the Conical Geo-

metric measure of ref. [99], to exactly recover the jet mass.
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2.3.3 Angularities

Next, we consider the IRC-safe jet angularities [75] (see also refs. [100–103]) defined by:

λ(α) =

M∑

i=1

zi θ
α
i , (2.11)

where α > 0 is an angular exponent and θi denotes the distance of particle i to the jet

axis. For concreteness and analytic tractability, we take the jet axis to be the pT -weighted

centroid in (y, φ)-space, such that the jet axis is located at:

yJ =
M∑

j=1

zjyj , φJ =
M∑

j=1

zjφj . (2.12)

With this, the angularities can be expressed as:

λ(α) =

M∑

i1=1

zi1
(
(yi1 − yJ)

2 + (φi1 − φJ)
2
)α/2

=

M∑

i1=1

zi1





(
M∑

i2=1

zi2∆yi1i2

)2

+

(
M∑

i2=1

zi2∆φi1i2

)2




α/2

=
M∑

i1=1

zi1

(
M∑

i2=1

zi2θ
2
i1i2 −

1

2

M∑

i2=1

M∑

i3=1

zi2zi3θ
2
i2i3

)α/2

. (2.13)

For even α, the parenthetical in eq. (2.13) can be expanded and identified to be a

linear combination of EFPs with N = α and d = α (see ref. [49] for a related discussion).

For α = 2, eq. (2.13) implies:

λ(2) =
1

2

∑

i∈J

∑

j∈J

zizjθ
2
ij =

1

2
× . (2.14)

For α = 4 and α = 6, eq. (2.13) implies:

λ(4) = − 3

4
× , (2.15)

λ(6) = − 3

2
× +

5

8
× . (2.16)
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This can be continued for arbitrarily high, even α. Thus, the even α angularities are

exact, non-trivial linear combinations of EFPs, illustrating the close connections between

the two classes of observables. While angularities with odd or non-integer α do not have

the same analytic tractability, the specific case of α = 1/2 is shown to be numerically well

approximated by EFPs in section 5.3.

2.3.4 Geometric moment tensors

Next, we consider observables based on the two-dimensional geometric moment tensor of

the energy distribution in the (y, φ)-plane [49, 60]:

C =
∑

i∈J

zi

(

∆y2i ∆yi∆φi

∆φi∆yi ∆φ2
i

)

=

(
1
2

∑

i,j zizj∆y2ij
1
2

∑

i,j zizj∆yij∆φij

1
2

∑

i,j zizj∆φij∆yij
1
2

∑

i,j zizj∆φ2
ij

)

, (2.17)

where the distances are measured with respect to the pT -weighted centroid axis (yJ , φJ)

from eq. (2.12). Useful observables can be constructed from the trace and determinant of

C, such as planar flow Pf = 4detC/(trC)2 [101, 104], which is a ratio of two IRC-safe

observables.

We see that eq. (2.17) is exactly a matrix of EFPs with N = 2 and the two-dimensional

hadronic measure from eq. (2.5). The trace trC and determinant detC have the rotational

symmetry in the (y, φ)-plane of the default hadronic measure from eq. (2.4), allowing them

to be written as linear combinations of EFPs with that measure:

trC =
1

2
× , 4 detC = − 1

2
× . (2.18)

In ref. [49], a general class of energy flow moments was explored and categorized,

with the goal of classifying observables according to their energy flow distributions. These

energy flow moments are defined with respect to a specified jet axis:

Ik1···kN ≡
M∑

i=1

zi x
(i)
k1

· · ·x(i)kN
, (2.19)

where ki ∈ {1, 2}, x
(i)
1 = ∆yi = yi − yJ and x

(i)
2 = ∆φi = φi − φJ . Using the pT -

weighted centroid axis, this is the natural generalization of eq. (2.17), with the special case

of Ik1k2 = (C)k1k2 . By performing a similar analysis to the one used to arrive at eq. (2.18),

one can show that any scalar constructed by contracting the indices of a product of objects

in eq. (2.19) can be decomposed into an exact linear combination of EFPs.

2.4 Going beyond existing substructure observables

Because the EFPs are C-correlators that span the space of IRC-safe observables, their

angular structures should encompass all possible behaviors of C-correlators. By contrast,
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the ECFs and ECFGs mentioned in section 2.3.2 have more restricted behaviors, and it is

illuminating to understand the new kinds of structures present in the EFPs.

Without loss of generality, the angular weighting function fN in eq. (1.3) can be taken

to be a symmetric function of the particle directions p̂µi due to the symmetrization provided

by the sum structure (see eq. (3.14) below). The ECFs and ECFGs exhibit a stronger

symmetry, though, since the angular functions in eqs. (2.8) and (2.10) are invariant under

the swapping any two pairwise angles θij . This symmetry is manifested in the ECFs

multigraphs in eq. (2.9) by the fact that all pairs of indices are connected by the same

number of edges.

We can easily see that the pairwise swap symmetry of the ECFs is stronger than the

full permutation symmetry of the EFPs: the group of permutations of the angular dis-

tances θij has
(
N
2

)
! elements, whereas the group of permutations of the indices {ia} has

N ! elements. An example of an EFP that does not satisfy the stronger symmetry is the

following N = 4 graph:

=
M∑

i1=1

M∑

i2=1

M∑

i3=1

M∑

i4=1

zi1zi2zi3zi4θi1i2θi1i3θi1i4 . (2.20)

The angular weighting function of the EFP in eq. (2.20) is symmetric under the 4! permu-

tations in the indices (vertices) ia → iσ(a) but not under the exchange of pairwise angles

(edges) θi1i3 → θi2i3 which would result in a different EFP, namely:

6= . (2.21)

Another feature of the ECFs and ECFGs is that their angular weighting function

fN vanishes whenever two of its arguments become collinear. Indeed, one of the present

authors made the erroneous claim in ref. [52] that this vanishing behavior was required by

collinear safety.4 Instead, the argument in section 3.1.3 shows this not to be the case, and

observables defined by eq. (1.3) are IRC safe for any sufficiently smooth and non-singular

fN . An example of an EFP that does not necessarily vanish when two of its arguments

become collinear is the following N = 3 graph:

=
M∑

i1=1

M∑

i2=1

M∑

i3=1

zi1zi2zi3θi1i2θi1i3 , (2.22)

which does not vanish when p̂µi2 → p̂µi3 . More generally, any non-fully-connected graph will

not vanish in every collinear limit, but the corresponding EFP will still be collinear safe.

By relaxing the restrictions on the angular weighting function fN to those minimally

required by IRC safety, the energy flow basis captures all topological structures which can

possibly appear in a C-correlator, beyond just the ones described by ECFs and ECFGs.

4If the sums are taken over distinct N -tuples as in ref. [52], then the angular function does have to vanish

on collinearity for C safety. In general, non-collinearly-vanishing angular functions are C safe if the sum is

taken over all N -tuples of particles, including sets with repeated indices.
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3 Constructing a linear basis of IRC-safe observables

Having introduced the EFPs, we now give a detailed argument that they linearly span

the space of IRC-safe observables. Due to its more technical nature, this section can be

omitted on a first reading, and the reader may skip to section 4. Refs. [74, 87–89] argue

that, from the point of view of quantum field theory, all IRC-safe information about the

jet structure should be contained in the C-correlators. In section 3.1, we independently

arrive at the same conclusion by a direct application of IRC safety. We then go on in

section 3.2 to expand the angular structure of the C-correlators to find a correspondence

between multigraphs and EFPs.

An IRC-safe observable S depends only on the unordered set of particle four-momenta

{pµi }Mi=1, and not any non-kinematic quantum numbers. An observable defined on {pµi }Mi=1

can alternatively be thought of as a collection of functions, one for each number of particles

M . IRC safety then imposes constraints on this collection and thereby induces relations

between the functions. The requirement of IR safety imposes the constraint [81]:

S({pµ1 , . . . , p
µ
M}) = lim

ε→0
S({pµ1 , . . . , p

µ
M , ε pµM+1}), ∀pµM+1, (3.1)

while the requirement of C safety imposes the constraint:

S({pµ1 , . . . , p
µ
M}) = S({pµ1 , . . . , (1− λ)pµM , λpµM}), ∀λ ∈ [0, 1]. (3.2)

Eq. (3.1) says that the observable is unchanged by the addition of infinitesimally soft

particles, while eq. (3.2) guarantees that the observable is insensitive to a collinear splitting

of particles.

As written, only particle M is affected in eq. (3.2). The indexing used to identify

particles, however, is arbitrary and these properties continue to hold when the particles

are reindexed. This particle relabeling symmetry is not an additional constraint that is

imposed but rather a consequence of assigning labels to an unordered set of particles.

These three restrictions — IR safety, C safety, and particle relabeling symmetry — are

necessary and sufficient conditions for obtaining the energy flow basis.

Throughout this analysis, particles are treated as massless, pµi = Ei p̂
µ
i , where p̂µi is

purely geometric. Note that we could replace Ei with any quantity linearly dependent on

energy, such as the transverse momentum pT,i, which corresponds to making a different

choice of measure in section 2.2.

3.1 Expansion in energy

Consider an arbitrary IRC-safe observable S, expanded in terms of the particle energies.

If the observable has a simple analytic dependence on the energies, then the usual Taylor

expansion can be used:

S = SM |{E}=0 +
M∑

i1=1

Ei
∂SM

∂Ei1

∣
∣
∣
∣
{E}=0

+
1

2

M∑

i1=1

M∑

i2=1

Ei1Ei2

∂2SM

∂Ei1∂Ei2

∣
∣
∣
∣
{E}=0

+ · · · , (3.3)
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where M is the particle multiplicity and the derivatives are evaluated at vanishing energies.

An example of this is the jet mass from eq. (2.6):

m2
J =

M∑

i=1

M∑

j=1

ηµνp
µ
i p

ν
j =

M∑

i=1

M∑

j=1

EiEjηµν p̂
µ
i p̂

ν
j , (3.4)

where ηµν is the Minkowski metric. This expression is already in the form of eq. (3.3) with:

∂2m2
J

∂Ei1∂Ei2

= 2ηµν p̂
µ
i1
p̂νi2 , (3.5)

and all other Taylor coefficients zero. See section 2.3 for additional examples of observables

with explicit formulas for which eq. (3.3) can be applied.

For some observables, though, a Taylor expansion may be difficult or impossible to

obtain. The simplest example is a non-differentiable observable. This is the case for mJ

(rather than m2
J); the presence of the square root spoils the existence of a Taylor expansion,

but the square root can be nonetheless approximated by polynomials arbitrarily well in a

bounded interval. A more complicated case is if the observable is defined in terms of an

algorithm, such as a groomed jet mass [5, 105–109], and an explicit formula in terms of

particle four-momenta would not be practical to differentiate or write down. Similarly, the

observable could be a non-obvious function of the particles, i.e. the optimal observable to

accomplish some task.

In cases without a Taylor expansion, the Stone-Weierstrass theorem [76] still guarantees

that the observable can be approximated over some bounded energy range by polynomials

in the energies.5 We write down such an expansion by considering all possible polynomials

in the energies and multiplying each one by a different geometric function. Combining all

terms of degree N into CN , the expansion is:

S ≃
Nmax∑

N=0

CN , CN ≡
M∑

i1=1

· · ·
M∑

iN=1

C
(M)
i1···iN

(p̂µ1 , . . . , p̂
µ
M )

N∏

j=1

Eij , (3.6)

where C
(M)
i1···in

(p̂µ1 , . . . , p̂
µ
M ) are geometric angular functions, which depend on the indices of

the energy factors i1 · · · in and could in general be different for different multiplicities M .

The Stone-Weierstrass theorem guarantees that there is a maximum degree Nmax in this en-

ergy expansion for any given desired accuracy, but places no further restrictions on the CN .

To derive constraints on these angular functions C
(M)
i1···iN

, we impose the three key

properties of IR safety in section 3.1.1, particle relabeling invariance in section 3.1.2, and

C safety in section 3.1.3, which we summarize in section 3.1.4. In applying these properties,

we will often use the fact that when setting two expressions for the observable S equal to

each other, we can read off term-by-term equality by treating the particle energies as

5A version of this theorem that suffices for our purposes can be phrased as follows: for any continuous,

real-valued function f defined on a compact subset X ⊂ R
n, for all ǫ > 0 there exists a polynomial p of

finite degree at most Nmax such that |p(x)− f(x)| < ǫ for all x ∈ X. Conceptually, this theorem is used to

approximate any continuous function on a bounded region by a polynomial.
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independent quantities:

S = S ′ =⇒ CN = C′
N , ∀N ≤ Nmax. (3.7)

Note that the sum structure in eq. (3.6) implies that, without loss of generality, the angular

functions can be taken to depend only on the labels i1, . . . , iN as an unordered set.

3.1.1 Infrared safety

IR safety constrains the angular functions appearing in the expansion of eq. (3.6) in two

ways: by restricting which particle directions contribute to a particular term in the sum

and by relating angular functions of different multiplicities.

First, consider a particular angular function, C
(M)
i1···iN

in eq. (3.6), and some particle

j 6∈ {i1, . . . , iN}. Consider particle j in the soft limit: if C
(M)
i1···iN

depends on p̂µj in any way,

then IR safety is violated because Ej does not appear in the product of energies but the

value of the observable changes as the direction of j is changed. Hence, IR safety imposes

the requirement that

C
(M)
i1···iN

(p̂µ1 , . . . , p̂
µ
M ) = C

(M)
i1···iN

(p̂µi1 , . . . , p̂
µ
iN
), (3.8)

namely the indices of the arguments must match those of the angular function. Note that

we must always write C
(M)
i1···iN

with N arguments, even if some are equal due to indices

coinciding.

Next, consider two polynomial approximations of the same observable: one as a func-

tion of M particles and the other as a function of M + 1 particles. In the soft limit of

particle M + 1, EM+1 → 0, the IR safety of S, written formally in eq. (3.1), guarantees

that the function of M + 1 particles approaches the function of M particles. In terms of

the corresponding polynomial approximations, we have that:

M+1∑

i1=1

· · ·
M+1∑

iN=1

C
(M+1)
i1···iN

(p̂µi1 , . . . , p̂
µ
iN
)

N∏

j=1

Eij =
M∑

i1=1

· · ·
M∑

iN=1

C
(M)
i1···iN

(p̂µi1 , . . . , p̂
µ
iN
)

N∏

j=1

Eij +O(EM+1).

(3.9)

We see from eq. (3.9) that the same angular coefficients from the polynomial approx-

imation of the function of M + 1 particles can be validly chosen for the approximation of

the function of M particles, with the following equality of angular functions:

C
(M+1)
i1···iN

(p̂µi1 , . . . , p̂
µ
iN
) = C

(M)
i1···iN

(p̂µi1 , . . . , p̂
µ
iN
) ≡ Ci1···iN (p̂

µ
i1
, . . . , p̂µiN ), (3.10)

which says that the multiplicity label on the angular functions can be dropped.

As a result of enforcing IR safety, the dependence of the angular functions on multi-

plicity has been eliminated, as well as the dependence of a given angular function on any

particles with indices not appearing in its subscripts.

3.1.2 Particle relabeling symmetry

Now, using particle relabeling symmetry, for all σ ∈ SM , where SM is the group of permu-

tations of M objects, we have that CN is unchanged by the replacement Eij → Eσ(ij) and
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p̂µij → p̂µσ(ij). With the angular functions as constrained by IR safety, the particle relabeling

invariance of CN can be written as:

CN =
M∑

i1=1

· · ·
M∑

iN=1

Ci1···iN (p̂
µ
i1
, . . . , p̂µiN )

N∏

j=1

Eij (3.11)

=
M∑

i1=1

· · ·
M∑

iN=1

Ci1···iN (p̂
µ
σ(i1)

, . . . , p̂µσ(iN ))
N∏

j=1

Eσ(ij)

=

M∑

i1=1

· · ·
M∑

iN=1

Cσ−1(i1)···σ−1(iN )(p̂
µ
i1
, . . . , p̂µiN )

N∏

j=1

Eij , (3.12)

where the sums were reindexed according to σ−1. In particular, from eq. (3.12), we have

for any σ ∈ SM that:

Ci1···iN (p̂
µ
i1
, . . . , p̂µiN ) = Cσ(i1)···σ(iN )(p̂

µ
i1
, . . . , p̂µiN ). (3.13)

Eq. (3.13) allows us to permute the indices of Ci1···iN within SM , equating previously

unrelated angular functions.

As written, Ci1···iN is not necessarily symmetric in its arguments. Without loss of

generality, though, we can symmetrize Ci1···iN without changing the value of CN as follows:

CN =
M∑

i1=1

· · ·
M∑

iN=1

1

N !

∑

σ∈SN

Ci1···iN (p̂
µ
σ(i1)

, . . . , p̂µσ(iN ))

︸ ︷︷ ︸

C′

i1···iN
(p̂µi1

,...,p̂µiN
)

N∏

j=1

Eij , (3.14)

where C ′
i1···iN

is now symmetric in its arguments. We assume in the next step of the

derivation that the angular weighting functions are symmetric in their arguments.

3.1.3 Collinear safety

The key requirement for restricting the form of Ci1···iN is C safety. If the angular weighting

function(s) were required to vanish whenever two of the inputs were collinear, then the

observable would be manifestly C safe (see e.g. [52]); this is a sufficient condition for C

safety but not a necessary one. More generally, one can have non-zero angular functions

of N arguments even when subsets of the arguments are collinear.

Using the IR safety argument of eq. (3.10) and the particle relabeling symmetry of

eq. (3.13), we can relate any angular function Ci1···iN to one of the following:

C123···N (p̂µi1 , p̂
µ
i2
, p̂µi3 , . . . , p̂

µ
iN
),

C1123···(N−1)(p̂
µ
i1
, p̂µi1 , p̂

µ
i2
, p̂µi3 , . . . , p̂

µ
iN−1

),

C112234···(N−2)(p̂
µ
i1
, p̂µi1 , p̂

µ
i2
, p̂µi2 , p̂

µ
i3
, p̂µi4 , . . . , p̂

µ
iN−2

),

C1112234···(N−3)(p̂
µ
i1
, p̂µi1 , p̂

µ
i1
, p̂µi2 , p̂

µ
i2
, p̂µi3 , p̂

µ
i4
, . . . , p̂µiN−3

),

...

C11···1(p̂
µ
i1
, p̂µi1 , . . . , p̂

µ
i1
), (3.15)
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where there is one of these “standard” angular functions for each integer partition of N .

In particular, the length of the integer partition is how many unique indices appear in the

subscript and the values of the partition indicate how many times each index is repeated.

The role of C safety is to impose relationships between these standard angular func-

tions, eventually showing that the only required function is C123···N . Intuitively, this means

that as any set of particles become collinear, the angular dependence is that of collinear

limit of N arbitrary directions. The proof that this follows from C safety, however, is the

most technically involved step of this derivation.

The requirement of C safety in eq. (3.2) implies that S is unchanged whether one

considers {Ei, p̂
µ
i }Mi=1 or the same particles with a collinear splitting of the first particle,

{Ẽi, p̂
µ
i }Mi=0, where:

Ẽ0 = (1− λ)E1, Ẽ1 = λE1, p̂µ0 = p̂µ1 , Ẽi = Ei, (3.16)

for all λ ∈ [0, 1] and i > 1. Rewriting eq. (3.11), we can explicitly separate out the terms

of the sums involving k collinearly split indices {0, 1}:

CN =
M∑

i1=0

· · ·
M∑

iN=0

Ci1···iN (p̂
µ
i1
, . . . , p̂µiN )

N∏

j=1

Ẽij (3.17)

=
N∑

k=0

(
N

k

) 1∑

i1=0

· · ·
1∑

ik=0

M∑

ik+1=2

· · ·
M∑

iN=2

Ci1···iN (p̂
µ
i1
, . . . , p̂µiN )

N∏

j=1

Ẽij , (3.18)

where in going to this last expression, we have used the symmetry of Ci1···iN in its arguments

and accounted for the degeneracy of such terms using the binomial factor
(
N
k

)
. We then

insert the collinear splitting kinematics of eq. (3.16) into eq. (3.18),

CN =
N∑

k=0

(
N

k

) 1∑

i1=0

· · ·
1∑

ik=0

λ
∑k

a=1 ia(1− λ)k−
∑k

a=1 iaEk
1 (3.19)

×
M∑

ik+1=2

· · ·
M∑

iN=2

Ci1···iN (p̂
µ
i1
, . . . , p̂µiN )

N∏

j=k+1

Eij

=
N∑

k=0

(
N

k

) k∑

ℓ=0

(
k

ℓ

)

λℓ(1− λ)k−ℓEk
1 (3.20)

×
M∑

ik+1=2

· · ·
M∑

iN=2

C 0···0
︸︷︷︸

ℓ

1···1
︸︷︷︸
k−ℓ

ik+1···in(p̂
µ
1 , . . . , p̂

µ
1 , p̂

µ
ik+1

, . . . , p̂µiN )

N∏

j=k+1

Eij ,

where in going to this last expression, we have used the particle relabeling symmetry of

eq. (3.13) to sort the {0, 1} subscript indices of the angular functions.

The constraint of C safety says that eq. (3.20) is equal to eq. (3.11) on the non-

collinearly split event. To make this constraint more useful, we use the binomial theorem

to write 1 in a suggestive way:

1 = (λ+ 1− λ)k =
k∑

ℓ=0

(
k

ℓ

)

λℓ(1− λ)k−ℓ, (3.21)
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and insert this expression into eq. (3.11), separating out factors where k of the indices are

equal to 1:

CN =
N∑

k=0

(
N

k

) k∑

ℓ=0

(
k

ℓ

)

λℓ(1− λ)k−ℓEk
1 (3.22)

×
M∑

ik+1=2

· · ·
M∑

iN=2

C 1···1
︸︷︷︸

k

ik+1···iN (p̂
µ
1 , . . . , p̂

µ
1 , p̂

µ
ik+1

, . . . , p̂µiN )

N∏

j=k+1

Eij .

Subtracting eq. (3.22) from eq. (3.20) and treating the energies as independent quantities,

the following constraint can be read off:

k∑

ℓ=0

(
k

ℓ

)

λℓ(1− λ)k−ℓ



C 0···0
︸︷︷︸

ℓ

1···1
︸︷︷︸
k−ℓ

ik+1···iN − C 1···1
︸︷︷︸

k

ik+1···iN



 = 0, (3.23)

where the identical arguments of the angular functions are suppressed for compactness.

We would like to obtain that the quantity in parentheses in eq. (3.23) vanishes since

the equation holds for all λ. To see this, suppose that the quantity in parentheses does not

vanish, and let ℓ̂ be the smallest such ℓ where this happens. Consider the regime 0 < λ ≪ 1:

by the definition of ℓ̂, there are no O(λℓ) terms for ℓ < ℓ̂ and thus the left-hand side of

eq. (3.23) is O(λℓ̂) 6= 0, contradicting eq. (3.23). We thus obtain:

C 0···0
︸︷︷︸

ℓ

1···1
︸︷︷︸
k−ℓ

ik+1···iN (p̂
µ
1 , . . . , p̂

µ
1 , p̂

µ
ik+1

, . . . , p̂µin) = C 1···1
︸︷︷︸

k

ik+1···iN (p̂
µ
1 , . . . , p̂

µ
1 , p̂

µ
ik+1

, . . . , p̂µiN ),

(3.24)

for 0 ≤ ℓ ≤ k. Note that in this expression, the first k arguments of the functions are

identical.

The constraint in eq. (3.24) is very powerful, especially when combined with the re-

labeling symmetry of eq. (3.13). While we obtained eq. (3.24) using the collinear limit,

the particle direction p̂0 appears nowhere in this expression, so the 0 subscript is simply

an index on the angular function. Therefore, when any k arguments of one of the angular

functions become collinear, any ℓ ≤ k of the corresponding subscript labels may be swapped

out for values not appearing anywhere else in the indices. A concrete example of this is

C1123···N−1(p̂
µ
i1
, p̂µi1 , p̂

µ
i2
, . . . , p̂µiN−1

) = C1234···N (p̂µi1 , p̂
µ
i1
, p̂µi2 , . . . , p̂

µ
iN−1

), (3.25)

where the N index here plays the role of the 0 index in eq. (3.24). This then implies that

all of the angular functions in eq. (3.15) can related to a single function:

Ci1···iN (p̂
µ
i1
, . . . , p̂µiN ) = C123···N (p̂µi1 , . . . , p̂

µ
iN
) ≡ fN (p̂µi1 , . . . , p̂

µ
iN
), (3.26)

yielding the intuitive result that the angular dependence when some number of particles

become collinear should follow from the collinear limit of N arbitrary directions.
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3.1.4 A new derivation of C-correlators

Finally, substituting eq. (3.26) into eq. (3.11) implies that

S ≃
Nmax∑

N=0

CfN
N , CfN

N =

M∑

i1=1

· · ·
M∑

iN=1

Ei1 · · ·EiN fN (p̂µi1 , . . . , p̂
µ
iN
), (3.27)

where we recognize CfN
N as the C-correlators of eq. (1.3). This expression says that an

arbitrary IRC-safe observable can be approximated arbitrarily well by a linear combination

of C-correlators. In this way, we have given a new derivation that C-correlators linearly

span the space of IRC-safe observables by directly imposing the constraints of IRC safety

and particle relabeling symmetry on an arbitrary observable.

The argument presented here suffices to show the IRC-safety of the C-correlators with

any continuous angular weighting function, even if it is not symmetric. Though we used the

symmetrization in eq. (3.14) to aid the C-safety derivation in section 3.1.3, it is now per-

fectly valid to relax this constraint on fN . In particular, we can simply consider eq. (3.14)

applied in reverse and select a single term in the symmetrization sum to represent fN . Thus

we are not constrained merely to symmetric fN , which will be helpful in obtaining the EFPs.

3.2 Expansion in geometry

Having now established that the C-correlators linearly span the space of IRC-safe observ-

ables, we now expand the angular weighting function fN in eq. (3.27) in terms of a discrete

linear angular basis.6 By virtue of the sum structure of the C-correlators, this angular

basis directly translates into a basis of IRC-safe observables, i.e. the energy flow basis.

Following the discussion in section 2.2, we take the angular function fN to depend

only on the pairwise angular distances θij . Note that the results of section 3.1 continue

to hold with pairwise angular distances in place of particle directions, as long as θij is a

dimensionless function of p̂µi and p̂µj with no residual dependence on energy. Of course,

this choice would not be valid for expanding IRC-safe observables that do not respect the

symmetries implied by θij , such as trying to use the default hadronic measure in eq. (2.4)

for observables that depend on the overall jet rapidity. In such cases, one can perform an

expansion directly in the p̂µi , though we will not pursue that here.

Expanding the angular function fN in terms of polynomials up to order dmax in the

pairwise angular distances yields:

fN (p̂µi1 , . . . , p̂
µ
iN
) ≃

dmax∑

d=0

∑

M∈Θd

bMM, (3.28)

where Θd is the set of monomials in {θij | i < j ∈ {i1, . . . , iN}} of degree d, M is one of

these monomials, and the bM are numerical coefficients. While this is a perfectly valid

expansion, it represents a vast overcounting of the number of potential angular structures.

6Our approach here turns out to be similar to the construction of kinematic polynomial rings for operator

bases in ref. [110].
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Our goal is to substitute eq. (3.28) into the definition of a C-correlator in eq. (3.27) and

identify the unique analytic structures that emerge. Note that two monomials M1,M2 ∈
Θd that are related by a permutation σ ∈ SN with action θiaib → θiσ(a)iσ(b)

give rise to

identical C-correlators, CM1 = CM2 , as a result of the relabeling symmetry in section 3.1.2.

Thus, we can greatly simplify the angular expansion by summing only over equivalence

classes of monomials not related by permutations, which we write as Θd/SN . Writing this

out in terms of E ∈ Θd/SN :

CfN
N ≃

M∑

i1=1

· · ·
M∑

iN=1

Ei1 · · ·EiN

dmax∑

d=0

∑

E∈Θd/SN

∑

M∈E

bMM (3.29)

=

dmax∑

d=0

∑

E∈Θd/SN

bE

M∑

i1=1

· · ·
M∑

iN=1

Ei1 · · ·EiNME , (3.30)

where, by the relabeling symmetry, ME can be any representative monomial in the equiv-

alence class E , and the coefficient bE = |E| bM absorbs the size |E| of the equivalence class.

As described in section 2.1, the set of monomials Θd is in bijection with the set of multi-

graphs with d edges and N vertices, and the set of equivalence classes Θd/SN is in bijection

with the set of non-isomorphic multigraphs with d edges and N vertices. In particular,

each edge (k, ℓ) in a multigraph G corresponds to a factor of θikiℓ in the monomial ME :

ME =
∏

(k,ℓ)∈G

θikiℓ , (3.31)

where G corresponds to the equivalence class E . By substituting eq. (3.31) into eq. (3.30)

and relabeling the coefficient bE to bG, we can identify the resulting analytic structures

that linearly span the space of C-correlators as the (unnormalized) EFPs:

CfN
N ≃

dmax∑

d=0

∑

G∈GN,d

bG EFPG, EFPG ≡
M∑

i1=1

· · ·
M∑

iN=1

Ei1 · · ·EiN

∏

(k,ℓ)∈G

θikiℓ , (3.32)

where GN,d is the set of non-isomorphic multigraphs with d edges on N vertices.

In section 3.1.4, it was shown that the set of IRC-safe observables is linearly spanned

by the set of C-correlators, summarized in eq. (3.27). In this section, we have shown

in eq. (3.32) that the C-correlators themselves are linearly spanned by the EFPs, whose

angular structures are efficiently encoded by multigraphs. By linearity, the EFPs therefore

form a complete linear basis for all IRC-safe observables, completing our argument.

4 Computational complexity of the energy flow basis

Since we would like to apply the energy flow basis in the context of jet substructure,

the efficient computation of EFPs is of great practical interest. Naively, calculating an

EFP whose graph has a large number of vertices requires a prohibitively large amount of

computation time, especially as the number of particles in the jet grows large. In practice,

though, we can dramatically speed up the implementation of the EFPs by making use of the

correspondence with multigraphs. Beta code to calculate the EFPs using these methods is

available through our EnergyFlow module.
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4.1 Algebraic structure

The set of EFPs has a rich algebraic structure which will allow in some cases for faster

computation. Firstly, they form a monoid (a group without inverses) under multiplication.

In analogy with the natural numbers, the composite EFPs, those with disconnected multi-

graphs, can be expressed as a product of the prime EFPs corresponding to the connected

components of a disconnected graph:

EFPG =
∏

g∈C(G)

EFPg, (4.1)

where C(G) is the set of connected components of the multigraph G.

As a concrete example of eq. (4.1), consider:

=

(
M∑

i1=1

M∑

i1=1

M∑

i3=1

zi1zi2zi3θ
2
i1i2θi2i3

)(
M∑

i4=1

M∑

i5=1

zi4zi5θ
4
i4i5

)

. (4.2)

Thus, we only need to perform summations for the computation of prime EFPs, with

the composite ones given by eq. (4.1). Note that if one were combining EFPs with a

nonlinear method, such as a neural network, the composite EFPs would not be needed as

separate inputs since the model could in principle learn to compute them on its own. The

composite EFPs are, however, required to have a linear basis and should be included when

linear methods are employed, such as those in sections 5 and 6.

The relationship between prime and composite EFPs is just the simplest example

of the algebraic structure of the energy flow basis. The EFPs depend on M energies

and
(
M
2

)
pairwise angles, but there are only 3M − 4 degrees of freedom for the phase

space of M massless particles, leading generically to additional (linear) relations among

the EFPs. Hence, the EFPs are an overcomplete linear basis. We leave further analysis and

exploration of these relations to future work, and simply remark here that linear methods

continue to work even if there are redundancies in the basis elements.

4.2 Dispelling the O(MN) myth for N-particle correlators

It is useful to analyze the complexity of computing an EFP.7 A naive implementation of

eq. (1.1) runs in O(MN ) due to the N nested sums over M particles. There is a compu-

tational simplification, however, that can be used to tremendously speed up calculations

of certain EFPs by making use of the graph structure of G. As an example, consider the

following EFP:

=

M∑

i1=1

M∑

i2=1

M∑

i3=1

M∑

i4=1

zi1zi2zi3zi4θi1i2θi1i3θi1i4 =

M∑

i1=1

zi1

(
M∑

i2=1

zi2θi1i2

)3

,

(4.3)

7The title of this section is inspired by ref. [111].
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d 1 2 3 4 5 6 7 8 9 10

Prime
χ

2 1 2 4 9 21 55 146 415 1 212 3 653

3 1 3 12 47 185 757 3 181 13 691

4 1 2 11 49 231

5 1

Total 1 2 5 12 33 103 333 1 183 4 442 17 576

All
χ

2 1 3 7 19 48 135 371 1 077 3 161 9 539

3 1 4 18 76 312 1 296 5 447 23 268

4 1 3 16 74 352

5 1

Total 1 3 8 23 66 212 686 2 389 8 682 33 160

(a)

N

d χ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 1

2 2 1 1 1

3
2 1 1 3 1 1

3 1

4
2 1 2 5 5 4 1 1

3 1 2 1

5
2 1 2 8 10 14 7 4 1 1

3 2 5 7 3 1

6

2 1 3 12 21 33 30 21 8 4 1 1

3 3 12 23 23 11 3 1

4 1

7

2 1 3 16 35 71 82 81 45 23 8 4 1 1

3 4 23 65 92 76 36 12 3 1

4 1 1 1

8

2 1 4 21 58 134 205 245 197 122 52 24 8 4 1 1

3 5 41 153 311 355 257 118 40 12 3 1

4 3 5 5 2 1

(b)

Table 4. (a) The number of prime/all EFPs binned by degree d and complexity χ up to d = 10.

The complexity is that of our EnergyFlow implementation, running in time O(Mχ). The partial

sums of the “Total” rows are the entries of table 2a. (b) The number of EFPs binned by degree d,

complexity χ, and N up to d = 8. Note that the majority of EFPs shown here have N > 4, which

would be computationally intractable without algorithmic speedups such as VE.
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which can be computed in O(M2) rather than O(M4) by first computing the M objects

in parentheses in eq. (4.3) and then performing the overall sum.

In general, since the summand is a product of factors, the distributive property allows

one to put parentheses around combinations of sum operators and factors. A clever choice

of such parentheses, known as an elimination ordering, can often be used to perform the

N sums of eq. (1.1) in a way which greatly reduces the number of operations needed to

obtain the value of the EFP for a given set of particles. This technique is known as the

Variable Elimination (VE) algorithm [77] (see also ref. [112] for a review).

When run optimally, the VE algorithm reduces the complexity of computing EFPG to

O(M tw(G)+1) where tw(G) is the treewidth of the graph G, neglecting multiple edges in the

case of multigraphs. The treewidth is a measure which captures how tangled a graph is,

with trees (graphs with no cycles) being the least tangled (with treewidth 1) and complete

graphs the most tangled (with treewidth N − 1). Additionally, we have that for graphs

with a single cycle the treewidth is 2 and for complete graphs minus one edge the treewidth

is N − 2. Thus the EFPs corresponding to tree multigraphs can be computed with VE in

O(M2) whereas complete graphs do require the naive O(MN ) to compute with VE. Since

the ECFs correspond to complete graphs (see eq. (2.9)), they do not benefit from VE.

Similarly, VE cannot speed up the computation of ECFGs, since the ECFGs do not have

a factorable summand.

Finding the optimal elimination ordering and computing the treewidth for a graph G

are both NP-hard. In practice, heuristics are used to decide on a pretty-good elimination

ordering (which for the small graphs we consider here is often optimal) and to approximate

the treewidth. In principle, these orderings need only be computed once for a fixed set of

graphs of interest. Similarly, many algebraic structures reappear when computing a set of

EFPs for the same set of particles, making dynamic programming a viable technique for

further improving the computational complexity of the method.

Table 4a shows the number of EFPs listed by degree d and VE complexity χ (with

respect to the heuristics used in our implementation), and table 4b further breaks up the

EFP counts by N . Figure 1 shows the time to compute the average d ≤ 7 EFP as a

function of multiplicity M for different VE complexity χ. Finally, we note that though

VE often provides a significant speedup over the naive algorithm, there may be even faster

ways of computing the EFPs.8

5 Linear regression with jet observables

Regression, classification, and generation are three dominant machine learning paradigms.

Machine learning applications in collider physics have been largely focused on classifica-

tion (e.g. jet tagging) [65–73] with recent developments in regression [113] and genera-

tion [114, 115]. For a more complete review of modern machine learning techniques in jet

substructure, see ref. [48]. The lack of established regression problems in jet physics is due

8At the risk of burying the lede in a footnote, we have found that with certain choices of the angular

measure, it is possible to compute all EFPs in O(M). We leave a further exploration of these interesting

special cases to future work.
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χ = 2

χ = 3

χ = 4

Figure 1. Compute time (in seconds) per EFP for different VE complexities χ as a function of the

number of inputs M . The quoted value is based on all EFPs with d ≤ 7, and each data point is the

average of 10 computations. The dashed lines show the expected O(Mχ) scaling behavior. As χ

increases, the relative amount of overhead decreases and the asymptotic behavior is achieved more

rapidly than for smaller χ. Computations were run with Python 3.5.2 and NumPy 1.13.3 on a 2.3 GHz

Intel Xeon E5-2673 v4 (Broadwell) processor on Microsoft Azure using our EnergyFlow module.

in part to the difficulty of theoretically probing multivariate combinations as well as the

challenges associated with extracting physics information from trained regressions models.

In this section, we show that the linearity of the energy flow basis mitigates many of

these problems, providing a natural regression framework using simple linear models, prob-

ing the learned observable combinations, and gaining insight into the physics of the target

observables. Since regression requires training samples, we observe how the regression per-

formance compares on jets with three characteristic phase-space configurations: one-prong

QCD jets, two-prong boosted W jets, and three-prong boosted top jets. We use linear

regression to demonstrate convergence of the energy flow basis on IRC-safe observables,

while illustrating their less-performant behavior for non-IRC-safe observables.

5.1 Linear models with the energy flow basis

Linear models assume a linear relationship between the input and target variables, making

them the natural choice for (machine) learning with the energy flow basis for both regression

and classification. A linear model M with EFPs as the inputs is defined by a finite set G
of multigraphs and numerical coefficients w = {wG}G∈G :

M =
∑

G∈G

wG EFPG. (5.1)

The fundamental relationship between EFPs, linear models, and IRC-safe observables is

highlighted by comparing eq. (5.1) to eq. (1.5), where the linear model M in eq. (5.1) takes

the place of the IRC-safe observable S in eq. (1.5). Because the EFPs are a complete linear

basis, M is capable of approximating any S for a sufficiently large set of EFPs.

– 26 –

https://pkomiske.github.io/EnergyFlow


J
H
E
P
0
4
(
2
0
1
8
)
0
1
3

The linear structure of eq. (5.1) allows for an avenue to “open the box” and interpret

the learned coefficients as defining a unique multiparticle correlator for each N . To see

this, partition the set G into subsets GN of graphs with N vertices. The sum in eq. (5.1)

can be broken into two sums, one over N and the other over all graphs in GN . The linear

energy structure of the EFPs in eq. (1.1) allows for the second sum to be pushed inside

the product of energies onto the angular weighting function:

M =

Nmax∑

N=0

M∑

i1=1

· · ·
M∑

iN=1

zi1 · · · ziN




∑

G∈GN

wG

∏

(k,ℓ)∈G

θikiℓ



 , (5.2)

where Nmax is the maximum number of vertices of any graph in G. The quantity in paren-

theses in eq. (5.2) may be though of as a single angular weighting function. The linear model

written in this way reveals itself to be a sum of C-correlators (similar to eq. (3.27)), one for

each N , where the linear coefficients within each GN parameterize the angular weighting

function fN of that C-correlator. This arrangement of the learned parameters of the linear

model into Nmax C-correlators contrasts sharply with the lack of a physical organization

of parameters in nonlinear methods such as neural networks or boosted decision trees.

5.2 Event generation and EFP computation

For the studies in this section and in section 6, we generate events using Pythia 8.226 [116–

118] with the default tunings and shower parameters at
√
s = 13TeV. Hadronization and

multiple parton interactions (i.e. underlying event) are included, and a 400GeV parton-

level pT cut is applied. For quark/gluon distribution, quark (signal) jets are generated

through pp → qZ(→ νν̄), and gluon (background) jets through pp → gZ(→ νν̄), where

only light-quarks (uds) appear in the quark sample. For W and top tagging, signal jets

are generated through pp → W+W−(→ hadrons) and pp → tt̄(→ hadrons), respectively.

For both W and top events, the background consists of QCD dijets.

Final state, non-neutrino particles were made massless, keeping y, φ, and pT fixed,9

and then were clustered with FastJet 3.3.0 [119] using the anti-kT algorithm [120] with a

jet radius of R = 0.4 for quark/gluon samples and R = 0.8 for W and top samples (and the

relevant dijet background). The hardest jet with rapidity |y| < 1.7 and 500 GeV ≤ pT ≤
550GeV was kept. For each type of sample, 200k jets were generated. For the regression

models, 75% were used for training and 25% for testing.

For these events, all EFPs up to degree d ≤ 7 were computed in Python using our

EnergyFlow module making use of NumPy’s einsum function. See tables 2 and 4 for counts

of EFPs tabulated by various properties such as N , d, and χ. Note that all but 4 of the

1000 d ≤ 7 EFPs can be computed in O(M2) or O(M3) in the VE paradigm, making the

set of EFPs with d ≤ 7 efficient to compute.

5.3 Spanning substructure observables with linear regression

We now consider the specific case of training linear models to approximate substructure

observables with linear combinations of EFPs. For an arbitrary observable O, we use

9Using massless inputs is not a requirement for using the EFPs, but for these initial EFP studies, we

wanted to avoid the caveats associated with massive inputs for the validity of section 3.
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Observable Properties

mJ/pT,J Scaled jet mass No Taylor expansion about zero energy limit

λ(α=1/2) Les Houches Angularity No analytic relationship beyond even integer α

τ
(β=1)
2 2-subjettiness Algorithmically defined IRC-safe observable

τ
(β=1)
21 N -subjettiness ratio Sudakov safe, safe for two-prong kinematics

τ
(β=1)
32 N -subjettiness ratio Sudakov safe, safe for three-prong kinematics

M Particle multiplicity IRC unsafe

Table 5. The six substructure observables used as targets for linear regression, listed with relevant

properties. The first three are IRC safe, the next two are Sudakov safe in general (and IRC safe

in the noted regions of phase space), and particle multiplicity is IRC unsafe. The Les Houches

Angularity [124, 125] is calculated with respect to the pT -weighted centroid axis in eq. (2.12), and

the N -subjettiness observables [54, 55] are calculated using kT axes.

least-squares regression to find a suitable set of coefficients w∗:

w∗ = argmin
w







∑

J∈jets

(

O(J)−
∑

G∈G

wG EFPG(J)

)2





, (5.3)

where O(J) is the value of the observable and EFPG(J) the value of the EFP given by

multigraph G on jet J . There are possible modifications to eq. (5.3) which introduce

penalties proportional to ‖w‖1 or ‖w‖22 where ‖ · ‖1 is the 1-norm and ‖ · ‖2 is the 2-

norm. The first of these choices, referred to as lasso regression [121], may be particularly

interesting because of the variable selection behavior of this model, which would aid in

selecting the most important EFPs to approximate a particular observable. We leave such

investigation to future work. See ref. [122] for a review of linear models for regression.

We use the LinearRegression class of the scikit-learn python module [123] to

implement eq. (5.3) with no regularization on the samples described in section 5.2. In

general, the smallest possible regularization which prevents overfitting (if any) should be

used. Because of the linear nature of linear regression and the analytic tractability of

eq. (5.3), the w∗ corresponding to the global minimum of the squared loss function can be

found efficiently using convex optimization techniques. Such techniques include closed-form

solutions or convergent iterative methods.

As targets for the regression, we consider the six jet observables in table 5 to highlight

some interesting test cases. As our measure of the success of the regression, we use a

variant of the correlation coefficient between the true and predicted observables that is less

sensitive to outliers than the unadulterated correlation coefficient. When evaluating the

trained linear model on the test set, only test samples with predicted values within the

5th and 95th percentiles of the predictions are included. In the contexts considered in this

paper, narrowing this percentile range lowers the correlation coefficient and widening the

range out toward all of the test set increases the correlation coefficient. The qualitative

nature of the results are insensitive to the specific choice of percentile cutoffs. We perform
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Figure 2. Correlation coefficients between true and predicted values for the jet observables in

table 5, plotted as a function of maximum EFP degree. Shown are the (a) QCD dijet, (b) W

jet, and (c) top jet samples, and as explained in the text, we restrict to predictions in the 5th–

95th percentiles. Observables in IRC-safe regions of phase space are shown with solid lines and

those in IRC-unsafe regions (including Sudakov-safe regions) are shown with dashed lines. The

IRC-safe observables are all learned with correlation coefficient above 0.98 in all three cases by

d = 7. Multiplicity (black triangles) sets the scale for the regression performance on IRC-unsafe

observables. Note that τ21 has performance similar to the IRC-safe observables only when jets are

characteristically two-pronged or higher (W and top jets), and similarly for τ32 when the jets are

characteristically three-pronged (top jets).

this regression using EFPs of degree up to d for d from 2 to 7 on all three jet samples,

with the results shown in figure 2. Histograms of the true and predicted distributions for a

subset of these observables are shown in figure 3 for the three types of jets considered here.

Since the learned coefficients depend on the training set, in principle different linear

combinations may be learned to approximate the substructure observables in different jet

contexts. This stands in contrast to the analysis in section 2.3, where many jet substructure

observables were identified as exact linear combinations of EFPs, independent of the choice

of inputs. The IRC-safe observables — mass, Les Houches angularity, and 2-subjettiness

— are all learned with a correlation coefficient above 0.98 in all three cases by d = 7.

The IRC-unsafe multiplicity sets the scale of performance for observables that are not

IRC safe. For the N -subjettiness ratios, the regression performance depends on whether

the observable is IRC safe or only Sudakov safe [82, 83]. The ratio τ21 is only IRC safe

for regions of phase space with two prongs or more (i.e. the W and top samples), and τ32
is only IRC safe for three prongs or more (i.e. just the top sample). In cases where the

N -subjettiness ratio is IRC safe, the regression performs similarly to the other IRC-safe

observables, whereas for the cases where the N -subjettiness ratio is only Sudakov safe, the

regression performance is poor (even worse than for multiplicity). It is satisfying to see the

expected behavior between the safety of the observable and the quality of the regression

with EFPs.

As a final cross check of the regression, we can use the linear model in eq. (5.1)

to confirm some of the analytic results of section 2.3. Specifically, we perform a linear
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Figure 3. The distributions of true and predicted scaled jet mass (top), τ
(β=1)
2 (middle), and

τ
(β=1)
21 (bottom) using linear regression with EFPs up to different maximum degrees d on QCD

jets (left), W jets (center), and top jets (right). Note the excellent agreement for the IRC-safe

observables in the first two rows. Observables in IRC-safe regions of phase space are shown with

solid lines and those in IRC-unsafe regions are shown with dashed lines. The Sudakov-safe τ
(β=1)
21

predicted distributions match the true distributions for jets typically with two or more prongs (W

and top jets) better than for typically one-pronged (QCD) jets.
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Figure 4. The linear combinations of EFPs learned by linear regression for even-α angularities with

theW jet samples. Shown are (a) α = 2, (b) α = 4, and (c) α = 6. All but the highlighted EFP coef-

ficients are learned to be near zero. The EFPs corresponding to those non-zero coefficients are illus-

trated directly on the figure. The learned linear coefficients are exactly those predicted analytically

in eqs. (2.14), (2.15) and (2.16). The same behavior is found with the QCD and top jet samples.

regression with the target observable being the even-α angularities with respect to the

pT -weighted centroid axis. These were shown to be non-trivial linear combinations of

EFPs in section 2.3.3. Regressing onto λ(2), λ(4), and λ(6), the linear model learned the

observables with effectively 100% accuracy and the learned linear combination was exactly

that predicted by eqs. (2.14), (2.15) and (2.16), up to a precision of 10−6. Figure 4 shows

the learned linear combinations of EFPs for the W jet sample.

6 Linear jet tagging

We now apply the energy flow basis to three representative jet tagging problems — light-

quark/gluon classification, W tagging, and top tagging — providing a broad set of contexts

in which to study the EFPs. Since the energy flow basis is linear, we can (in principle)

access the optimal IRC-safe observable for jet tagging by training a linear classifier for this

problem. As mentioned in section 5.3, one benefit of linear models, in addition to their

inherent simplicity, is that they are typically convex problems which can be solved exactly

or with gradient descent to a global minimum. See ref. [122] for a review of linear models

for classification.

A (binary) linear classifier learns a vector w∗ that defines a hyperplane orthogonal to

the vector. A bias term, which can be related to the distance of this hyperplane from the ori-

gin, sets the location of the decision boundary, which is the hyperplane translated away from

the origin. The decision function for a particular point in the input space is the normal dis-

tance to the decision boundary. In contrast with regression, where the target variable is usu-

ally continuous, classification predictions are classes, typically 0 or 1 for a binary classifier.

Different methods of determining the vector w∗ — such as logistic regression, sup-

port vector machines, or linear discriminant analysis — may learn different linear classi-

fiers since the methods optimize different loss functions. For our linear classifier, we use

Fisher’s linear discriminant [126] provided by the LinearDiscriminantAnalysis class of
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the scikit-learn python module [123]. The choice of logistic regression was also explored,

and jet tagging performance was found to be insensitive to which type of linear classifier

was used.

The details of the event generation and EFP computation are the same as in section 5.2.

To avoid a proliferation of plots, we present only the case of W tagging in the text and

refer to appendix B for the corresponding results for quark/gluon discrimination and top

tagging. Qualitatively similar results are obtained on all three tagging problems, with the

conclusion that linear classification with EFPs yields comparable classification performance

to other powerful machine learning techniques. This is good evidence that the EFPs

provides a suitable linear expansion of generic IRC-safe information relevant for practical

jet substructure applications.

6.1 Alternative jet representations

In order to benchmark the EFPs, we compare them to two alternative jet tagging

paradigms:

• The jet images approach [50] treats calorimeter deposits as pixels and the jet as

an image, often using convolutional neural networks to determine a classifier. Jet

images have been applied successfully to the same tagging problems considered here:

quark/gluon discrimination [65], W tagging [63], and top tagging [66, 68].

• The N-subjettiness basis was introduced for W tagging in ref. [57] and later

applied to tagging non-QCD jets [73]. We use the same choice of N -subjettiness

basis elements as ref. [57], namely:

{τ (1/2)1 , τ
(1)
1 , τ

(2)
1 , τ

(1/2)
2 , τ

(1)
2 , τ

(2)
2 , · · · , τ (1/2)N−2 , τ

(1)
N−2, τ

(2)
N−2, τ

(1)
N−1, τ

(2)
N−1}, (6.1)

with 3N − 4 elements needed to probe N -body phase space. These are then used as

inputs to a DNN.

Both of these learning paradigms are expected to perform well, and we will see below

that this is the case. As a strawman, we also consider linear classification with the N -

subjettiness basis elements in eq. (6.1), which is not expected to yield good performance.

For completeness, we also perform DNN classification with the energy flow basis.

We now summarize the technical details of these alternative jet tagging approaches.

For jet images, we create 33 × 33 jet images spanning 2R × 2R in the rapidity-azimuth

plane. Motivated by ref. [65], both single-channel “grayscale” jet images of the pT per pixel

and two-channel “color” jet images consisting of the pT channel and particle multiplicity

per pixel were used. The pT -channel of the jet image was normalized such that the sum of

the pixels was one. Standardization was used to ensure that each pixel had zero mean and

unit standard deviation by subtracting the training set mean and dividing by the training

set standard deviation of each pixel in each channel. A jet image CNN architecture similar

to that used in ref. [65] was employed: three 36-filter convolutional layers with filter sizes

of 8 × 8, 4 × 4, and 4 × 4, respectively, followed by a 128-unit dense layer and a 2-unit

softmaxed output. A rectified linear unit (ReLU) activation [127] was applied to the output
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of each internal layer. Maxpooling of size 2×2 was performed after each convolutional layer

with a stride length of 2. The dropout rate was taken to be 0.1 for all layers. He-uniform

initialization [128] was used to initialize the model weights.

For the DNN (both for the N -subjettiness basis and for the EFPs), we use an architec-

ture consisting of three dense layers of 100 units each connected to a 2-unit softmax output

layer, with ReLU activation functions applied to the output of each internal layer. For

the training of all networks, 300k samples were used for training, 50k for validation, and

50k for testing. Networks were trained using the Adam algorithm [129] using categorical

cross-entropy as a loss function with a learning rate of 10−3 and a batch size of 100 over

a maximum of 50 epochs. Early stopping was employed, monitoring the validation loss,

with a patience parameter of 5. The python deep learning library Keras [130] with the

Theano backend [131] was used to instantiate and train all neural networks. Training of the

CNNs was performed on Microsoft Azure using NVIDIA Tesla K80 GPUs and the NVIDIA

CUDA framework. Neural network performance was checked to be mildly insensitive to

these parameter choices, but these parameter choices were not tuned for optimality. As a

general rule, the neural networks used here are employed to give a sense of scale for the

performance attainable with jet images and the N -subjettiness basis using out-of-the-box

techniques; improvements in classification accuracy may be possible for these methods with

additional hyperparameter tuning.

6.2 W tagging results and comparisons

We present results for the W tagging study here, with the other two classification problems

discussed in appendix B. The performance of a binary classifier is encapsulated by the

background mistag rate εb at a given signal efficiency εs. For all of the figures below,

we plot inverse receiver operator characteristic (ROC) curves, 1/εb as a function of εs,

on a semi-log scale; a higher ROC curve indicates a better classifier. The corresponding

standard ROC (εb vs. εs) and significance improvement (εs/
√
εb vs. εs) curves are available

in the source files of the arXiv preprint as additional pages in the figure.

We begin by studying the performance for different choices of angular exponent β in

the default hadronic measure from eq. (2.4). Figure 5 shows ROC curves for the choices

of β = 0.2, β = 0.5, and β = 1, using all EFPs with d ≤ 7. The differences in performance

are mild, but β = 0.5 slightly improves the ROC curves for W tagging, so we use β = 0.5

for the remainder of our studies. The choice of β = 0.5 was also found to be optimal for

the cases of quark/gluon and top tagging discussed in appendix B.

Next, in figure 6a, we test the linear spanning nature of the EFPs by comparing the

ROC curves of the linear and nonlinear models trained on EFPs up to different d. With

linear regression, there is a large jump in performance in going from d ≤ 3 (13 EFPs) to

d ≤ 6 (314 EFPs), and a slight increase in performance from d ≤ 6 to d ≤ 7 (1000 EFPs),

indicating good convergence to the optimal IRC-safe observable for W jet discrimination.

To avoid cluttering the plot, d ≤ 4 and d ≤ 5 are not shown in figure 6a, but their ROC

curves fall between those of d ≤ 3 and d ≤ 6, highlighting that the higher d EFPs carry

essential information for linear classification. By contrast, using nonlinear classification

with a DNN, the EFPs performance with d ≤ 3 is already very good, since functions of the
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choices of angular exponent β in eq. (2.4). Though the improvement is mild, β = 0.5 shows the

best overall performance. See figure 10 for the corresponding quark/gluon discrimination and top

tagging results, where β = 0.5 is also the best choice by a slight margin.
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Figure 6. Inverse ROC curves for W tagging with (a) the energy flow basis including degrees

up to d = 7 and (b) the N -subjettiness basis up to 10-body phase space information. In both

cases, we show the observables combined linearly (solid) and with a DNN (dashed). The linear

combinations of EFPs can be seen to approach the nonlinear combinations, particularly for higher

signal efficiencies, while the linear combinations of the N -subjettiness basis can be seen to saturate

well below the nonlinear combinations as the number of observables is increased. See figure 11 for

the corresponding quark/gluon discrimination and top tagging results.
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low d EFPs can be combined in a nonlinear fashion to construct information contained in

higher d composite EFPs. The linear and nonlinear performance is similar with the d ≤ 7

EFPs for operating points of εs & 0.5, though the nonlinear DNN outperforms the linear

classifier in the low signal efficiency region. It should be noted that the linear classifier

is not trained specifically for the low signal efficiency region and it may be possible that

choosing a different hyperplane could boost performance there. We leave to future work a

more detailed investigation of optimizing the choice of linear classifier.

The performance of theN -subjettiness basis with both linear and nonlinear classifiers is

shown in figure 6b. For both linear classification and the DNN, performance appears to sat-

urate with the 6-body (14 τN s) phase space, with not much gained in going to 10-body (26

τN s) phase space, except for a small increase in the low signal efficiency region for the DNN;

we confirmed up to 30-body (86 τN s) phase space that no change in ROC curves was ob-

served compared to 10-body phase space. As expected, there is relativity poor performance

with linear classification even as the dimension of phase space is increased. Classification

with a DNN, though, shows an immense increase in performance over linear classification,

as expected since the N -subjettiness basis is expected to nonlinearly capture all of the

relevant IRC-safe kinematic information [57]. This illustrates that nonlinear combinations

of the N -subjettiness observables are crucial for extracting the full physics information.

The corresponding quark/gluon and top tagging plots in figure 11 effectively tell the

same story as figure 6, robustly demonstrating the linear spanning nature of the EFPs

used for classification across a wide variety of kinematic configurations. As a side note, in

appendix B there are sometimes cases where a linear combination of EFPs yields improved

performance compared to a DNN on the same inputs, particularly at medium to high signal

efficiencies. Since even a one-node DNN should theoretically be able to learn the linear com-

bination of EFPs learned by the linear classifier, regimes where the linear classifier outper-

forms the DNN demonstrate the inherent difficulty of training complex multivariate models.

In figure 7 we directly compare the EFP classification power against the N -subjettiness

basis and the 1-channel (“grayscale”) and 2-channel (“color”) CNNs. For operating points

with εs & 0.5, all methods except the linear N -subjettiness classifier show essentially the

same performance. The worse performance of the linear EFP classifier at low signal effi-

ciencies is expected, since the Fisher linear discriminant is not optimized for that regime.

Overall, it is remarkable that similar classification performance can be achieved with these

three very different learning paradigms, especially considering that the DNNs and grayscale

CNN implicitly, and the color CNN explicitly, have access to non-IRC-safe information (in-

cluding Sudakov-safe combinations of the IRC-safe inputs). This agreement gives evidence

that the tagging techniques have approached a global bound on the maximum possible

discrimination power achievable, at least in the context of parton shower simulations.

Once again, the analogous quark/gluon and top tagging plots, shown in figure 12,

show very similar behavior to the W tagging case in figure 7. Linear classification with

the EFPs performs similarly to the DNNs and CNNs, tending to slightly outperform at

high signal efficiencies and underperform at low signal efficiencies. Ultimately, the choice

of tagging method comes down to a trade off between the simplicity of the inputs and the

simplicity of the training method, with the EFPs presently requiring more inputs than the
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Figure 7. Inverse ROC curves for W tagging comparing six different methods: linear and DNN

classification with the energy flow basis up to d ≤ 7, linear and DNN classification with the N -

subjettiness basis up to 10-body phase space, and grayscale and color jet images with CNNs.

The most evident gap is between the linearly-combined N -subjettiness basis and the remaining

curves, which achieve similar classification performance for medium and high signal efficiencies. See

figure 12 for the corresponding quark/gluon discrimination and top tagging results.

N -subjettiness basis but with the benefit of using a linear model. In the future, we plan to

study ways of reducing the size of the EFP basis by exploiting linear redundancies among

the EFPs and using powerful linear methods to automatically select the most important

observables for a given task.

6.3 Opening the energy flow box

As argued in eq. (5.2), one of the main advantages of linear methods with the energy

flow basis is that one can attempt to “open the box” and directly explore what features

have been learned. We leave to future work a full exploration of this possibility, but

here we attempt to probe which topological structures within the EFP basis carry the

discrimination power for the different tagging problems. Since we have shown that the EFPs

with d ≤ 7 have sufficient discrimination power to qualitatively match the performance of

alternative tagging methods, we will restrict to this set of observables.

In figure 8a, we vary the maximum number of vertices in the EFP graphs, where the

maximum N is 14 for d ≤ 7, finding that the performance roughly saturates at N = 9,

highlighting the importance of higher N EFPs. The algorithmic advances described in

section 4 allow for the efficient computation of these higher N EFPs, which have com-

plexities as intractable as O(M9) with the naive algorithm. Additionally, note that nearly

every EFP (all except those corresponding to complete graphs) has a non-vanishing an-

gular weighting function, which is a new feature compared to the ECFs and ECFGs (see

section 2.4). In figure 8b, we vary the maximum computational complexity χ of the EFP

graphs, where the maximum χ is 4 for d ≤ 7. Remarkably, the full performance of linear
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Figure 8. Inverse ROC curves for linear W tagging with the energy flow basis with d ≤ 7, sweeping

over (a) which N -point correlators and (b) observables of which VE computational complexity

O(Mχ) are included in the linear fit. It is clear that important information is contained in the

higher N -particle correlators, which can be included because the algorithm in section 4 evades the

naive O(MN ) scaling. Interestingly, the discrimination power appears to be almost saturated by

the graphs computable in O(M2). See figure 13 for the corresponding quark/gluon discrimination

and top tagging results.

classification with the d ≤ 7 EFPs can be obtained with merely those observables calcu-

lable in O(M2) with VE. Thus, fortuitously for the purposes of jet tagging, it seems that

restricting to the most efficiently computable EFPs (in the VE paradigm) is sufficient for

extracting the near-optimal IRC-safe observable for jet discrimination. Similar results hold

for quark/gluon discrimination and top tagging, shown in figure 13.

7 Conclusions

In this paper, we have introduced the EFPs, which linearly span the space of IRC-safe

observables.10 The core argument, presented in section 3, is that one can systematically

expand an arbitrary IRC-safe observable in terms of energies and angles and read off the

unique resulting analytic structures. This expansion yields a new way to understand the

importance of C-correlators [74, 87–89] for IRC safety, and it enables a powerful graph-

theoretic representation of the various angular structures. The multigraph correspondence

makes manifest a more efficient algorithm than the naive O(MN ) one for computing EFPs,

overcoming a primary obstacle to exploring higher-N multiparticle correlators for jet sub-

structure.

10In the course of this research, we encountered a more descriptive acronym than “EFPs” albeit with an

unintended biblical reference: polynomials of Energies and Angles Result in a Linear Spanning Basis for

Energy Flow Observables Relevant for Extracting Substructure With Improved Nuance and Efficiency.
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To demonstrate the power of the energy flow basis, we performed a variety of repre-

sentative regression and classification tasks for jet substructure. Crucially, linear methods

were sufficient to achieve good performance with the EFPs. As a not-quite apples-to-apples

comparison in three representative jet tagging applications, linear classification with 1000

EFPs achieved comparable performance to a CNN acting on a jet image with 33×33 = 1089

pixels. Because of the wide variety of linear learning methods available [122], we expect that

the EFPs will be a useful starting point to explore more applications in jet substructure

and potentially elsewhere in collider physics.

There are many possible refinements and extensions to the energy flow basis. In this

paper, we truncated the EFPs at a fixed maximum degree d; alternatively, one could trun-

cate the prime EFPs at a fixed d and compute all composite EFPs up to a specified cutoff.

Since the EFPs yield an overcomplete basis, it could be valuable to cull the list of required

multigraphs. A similar problem of overcompleteness was solved for kinematic polynomial

rings in ref. [110], and that strategy may be relevant for EFPs with a suitable choice of

measure. In the other direction, it may be valuable to make the energy flow basis even more

redundant by including EFPs with multiple measures. With a vastly overcomplete basis,

one could use techniques like lasso regression [121] to zero out unnecessary terms. While

we have restricted our attention to IRC-safe observables, it would be straightforward to

relax the restriction to just infrared safety. In particular, the set of IR-safe (but C-unsafe)

functions in eq. (3.15) can be expanded into multigraphs that have an extra integer dec-

oration on each vertex to indicate the energy scaling. Finally, the EFPs are based on an

expansion in pairwise angles, but one could explore alternative angular expansions in terms

of single particle directions or multiparticle factors.

To gain some perspective, we find it useful to discuss the EFPs in the broader context

of machine learning for jet substructure. Over the past few years, there has been a surge

of interest in using powerful tools from machine learning to learn useful observables from

low-level or high-level representations of a jet [50, 57–63, 65–73]. The power of these

machine learning methods is formidable, and techniques like neural networks and boosted

decision trees have shifted the focus away from single- or few-variable jet substructure

taggers to multivariate methods. On the other hand, multivariate methods can sometimes

obscure the specific physics information that the model learns, leading to recent efforts

to “open the box” of machine learning tools [63, 72, 113, 132, 133]. Even with an open

box, though, theoretical calculations of multivariate distributions are impractical (if not

impossible). Furthermore, training multivariate models is often difficult, requiring large

datasets, hyperparameter tuning, and preprocessing of the data.

The EFPs represent both a continuation of and a break from these machine learning

trends. The EFPs continue the trend from multivariate to hypervariate representations for

jet information, with O(100) elements needed for effective regression and classification. On

the other hand, the linear-spanning nature of the EFPs make it feasible to move away from

“black box” nonlinear algorithms and return to simpler linear methods (explored previously

for jet substructure in e.g. [50, 55]) without loss of generality. Armed with the energy flow

basis, there is a suite of powerful tools and ideas from linear regression and classification

which can now be fully utilized for jet substructure applications, with simpler training
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processes compared to DNNs and stronger guarantees of optimal training convergence.

Multivariate methods would ideally be trained directly on data to avoid relying on imperfect

simulations, as discussed in ref. [134]. The energy flow basis may be compelling for recent

data-driven learning approaches [134–136] due to its completeness, the simplicity of linear

learning algorithms, and a potentially lessened requirement on the size of training samples.

As with any jet observable, the impact of non-perturbative effects on the EFPs is

important to understand. Even with IRC safety, hadronization modifies the distributions

predicted by pQCD and therefore complicates first-principles calculations. It would be

interesting to see if the shape function formalism [137, 138] could be used to predict the

impact of non-perturbative contributions to EFP distributions. Alternatively, one standard

tool that is used to mitigate non-perturbative effects is jet grooming [5, 105–109], which

also simplifies first-principles calculations and allows for “quark” and “gluon” jets to be

theoretically well-defined [139]. We leave a detailed study of the effects of non-perturbative

contributions and jet grooming on EFPs to future work.

Eventually, one hopes that the EFPs will be amenable to precision theoretical calcula-

tions of jet substructure (see e.g. refs. [108, 139–148]). This is by no means obvious, since

generic EFPs have different power-counting structures from the ECFs [51] or ECFGs [52].

That said, phrasing jet substructure entirely in the language of energy flow observables

and energy correlations may provide interesting new theoretical avenues to probe QCD,

realizing the C-correlator vision of refs. [74, 87–89]. Most IRC-safe jet observables rely

on particle-level definitions and calculations, but there has been theoretical interest in di-

rectly analyzing the correlations of energy flow in specific angular directions [149–151],

particularly in the context of conformal field theory [152–156]. The energy flow basis is a

step towards connecting the particle-level and energy-correlation pictures, and one could

even imagine that the energy flow logic could be applied directly at the path integral level.

Ultimately, the structure of the EFPs is a direct consequence of IRC safety, resulting in a

practical tool for jet substructure at colliders as well as a new way of thinking about the

space of observables more generally.
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A Energy flow and the stress-energy tensor

In this appendix, we review the connection between the energy flow of an event, as described

by the stress-energy tensor, to multiparticle energy correlators [74, 87–89].
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Figure 9. An example calorimeter cell configuration to measure a 5-point energy correlator. The

red regions indicate the five calorimeter cells chosen to measure the energy infinitely far from the

interaction. For each event, the values of the five energy deposits are multiplied together to obtain

the value of the observable in eq. (A.3).

Consider an idealized hadronic calorimeter cell at position n̂ in pseudorapidity-azimuth

(η, φ)-space, spanning a patch of size dη dφ. The energy flow operator ET (n̂) corresponding
to the total transverse momentum density flowing into the calorimeter cell can be written

in terms of the stress-energy tensor Tµν [87, 98, 157–159] as:

ET (n̂) =
1

cosh3 η
lim

R→∞
R2

∫ ∞

0
dt n̂i T

0i(t, Rn̂), (A.1)

with its action on a state |X〉 of M massless particles given by:

ET (n̂) |X〉 =
∑

i∈X

pT,iδ(η − ηi)δ(φ− φi) |X〉 . (A.2)

Next, consider N calorimeter cells at positions (n̂1, · · · , n̂N ). An illustration of an ex-

ample calorimeter cell configuration is shown in figure 9. For an event X, multiply together

the measured energy deposits in each of these N cells. The corresponding observable is

then the energy N -point correlator as defined in refs. [149, 150]:

ET (n̂1) · · · ET (n̂N ) |X〉 =
∑

i1∈X

· · ·
∑

iN∈X





N∏

j=1

pT,ijδ
2(n̂j − p̂ij )



 |X〉 , (A.3)

where n̂a = (ηa, φa) for the calorimeters cells and p̂a = (ηa, φa) for the particles in the event.

– 40 –



J
H
E
P
0
4
(
2
0
1
8
)
0
1
3

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

10−1

100

101

102

103
In
v
er
se

G
lu
o
n
J
et

M
is
ta
g
R
a
te

EFPs: Quark vs. Gluon

Pythia 8.226,
√
s = 13 TeV

R = 0.4, pT ∈ [500, 550] GeV

EFP d ≤ 7

β = 0.2

β = 0.5

β = 1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

10−1

100

101

102

103

In
v
er
se

Q
C
D

J
et

M
is
ta
g
R
a
te

EFPs: Top vs. QCD

Pythia 8.226,
√
s = 13 TeV

R = 0.8, pT ∈ [500, 550] GeV

EFP d ≤ 7

β = 0.2

β = 0.5

β = 1.0

(b)

Figure 10. Same as figure 5, but for (a) quark/gluon discrimination and (b) top tagging. Similar

to the W tagging case, the β = 0.5 choice has the best performance (marginally) for both tagging

problems.

We can define a new set of observables in terms of the N -point correlators in eq. (A.3).

Consider averaging eq. (A.3) over all calorimeter cells with an arbitrary angular weighting

function fN (n̂1, . . . , n̂N ). The resulting observables are then of the form:

CfN
N |X〉 =

∫

d2n̂1 · · · d2n̂N fN (n̂1, . . . , n̂N )ET (n̂1) · · · ET (n̂N ) |X〉 (A.4)

=
∑

i1∈X

· · ·
∑

iN∈X

pT,i1 · · · pT,iN fN (p̂i1 , . . . , p̂iN ) |X〉 , (A.5)

namely, these observables CfN
N written in the form of eq. (A.5) are exactly the C-correlators

defined in eq. (1.3). Thus the averaging process of eq. (A.4) relates the particle-level C-

correlators of eq. (1.3) to the energy flow of the stress-energy tensor Tµν .

B Quark/gluon discrimination and top tagging results

In this appendix, we supplement the W tagging results of section 6 with the corresponding

results for quark/gluon discrimination and top tagging. The details of the event generation

are given in section 5.2.

We compare the EFP linear classification performance with β = 0.2, β = 0.5, and β = 1

in figure 10. Consistent with the W tagging case in figure 5, we find that the optimal per-

formance is achieved with β = 0.5. We therefore use β = 0.5 for the remainder of this study.

In figure 11 we compare the linear and nonlinear performances of the energy flow basis

and the N -subjettiness basis. There is a clear gap between the linear and nonlinear N -

subjettiness classifiers, whereas no such gap exists for the EFPs. Interestingly, the linear
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Figure 11. Same as figure 6, but for quark/gluon discrimination (top) and top tagging (bottom).

As in the W tagging case, the linear combinations of EFPs can be seen to approach (or even exceed)

the nonlinear combinations, particularly for higher signal efficiencies.

classifier of EFPs tends to outperform the DNN at medium and high signal efficiencies,

indicating the difficulty of training high-dimensional neural networks. This behavior was

not seen in figure 6, most likely because the achievable efficiency is overall higher in the W

tagging case.

A summary of the six tagging methods is shown in figure 12, comparing linear and

nonlinear combinations of the energy flow basis and N -subjettiness basis to grayscale and

color jet images. As in figure 7, linear combinations of EFP tend to match or outperform

the other methods, especially at high signal efficiencies.
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Figure 12. Same as figure 7 for (a) quark/gluon discrimination and (b) top tagging. As in the W

tagging case, the linear classification with EFPs can match (or even outperform) the other methods

at high signal efficiencies.
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Figure 13. Same as figure 8 but for (top) quark/gluon discrimination and (bottom) top tagging.
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Finally, we truncate the set of EFPs with d ≤ 7 by the number of vertices N and

by the VE computational complexity χ in figure 13. As in figure 8, the higher N -particle

correlators contribute to the classification performance up to at least N = 7, whereas the

higher-complexity EFPs beyond χ = 2 do not significantly contribute to the classification

performance.
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