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On exactly taking into account the attractive effect of the 3Pz- 3Fz coupling due to the 

two-nucleon tensor force and the effect of the one-body potential, the density region in the 

neutron-star matter where the a P2-superfluid state exists is determined as p ~ (2"-'8) X 1014gcm -s. 

The tensor coupling effect is shown to play an indispensable role on the existence of the 

3P2-gap in neutron-star matter. The 1So-gap is also investigated, leading to the result that 

the 1S0-superfluid state exists in the density region p~ (l.Oxl011"-'l.5X1014)gcm-s. On the 

basis of these results, the region p~ (1.5"-'2.0) X1014gcm·3 is considered to result in the 

normal state. 

§ l. Introduction 

In a series of papers I,..__,IIp>-3> we have investigated the existence of the 

neutron superfluidity originating from the 3P2-pairing in a high-density region of 

the neutron-star matter. Its presence has been pointed out in P> and demonstrated 

in IP> by solving the coupled integral equations for all the types of the 3P2-gap 

by using the existing several semiphenomenological two-nucleon potentials. The 

boundaries in the density for its existence have not yet been sharply determined, 

although we have concluded that it appears at least for p::::::: (2"-'5) X 1014gcm - 3• 

In a low-density region of neutron-star matter, p:S1 X 1014gcm-8, the super

fluidity is well known to exist in the 1S0 state. The 1S0-gap in neutron-star 

matter has been particularly investigated by several authors,'>• 5> but the boundaries 

for its existence in neutron-star matter remain undetermined, too. 

It has also been remarked in II that the intermediate~density region, p::::::: (1"' 

2) X 1014gcm-3 where both the 1S0- and 8P 2-gaps are considered to be zero or 

vanishingly small, should be more carefully investigated. Whether this region 

corresponds to the normal or superfluid state will be connected with the proper

ties of a neutron star (thermal, rotational, magnetic and so on), because it is in 

the typical densities of neutron-star matter. As for the 1D 2-pairing, it has been 

concluded in II that the energy gap due to this pairing does not take place. 

Therefore, our investigation of this intermediate region may be safely restricted 

to the 1S0- and 3P2-pairings. 

In this paper we intend to determine more reliably the density region where 

the 3P2-superfluid state exists. We also determine the density region where the 

1S0-superfluid state is present. Based on these studies, we aim to investigate 

*> A preliminary -report on a part of this paper has been published in Ref. 1). 
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1518 T. Takatsuka 

whether the intermediate region in question yields the normal or superfluid state. 
We pay attention especially to the following two points: 

(1) Generally, every gap in the matter of nucleons is very sensitive to the 
effective mass, M*, of a nucleon. Therefore it is very important to treat this 
effect properly. In order to determine the region where the 1S0- or 8 P~-superfluid 
state exists in neutron-star matter, we must take into account that the realistic 
M* is strongly density-dependent. In the calculation in II, we have simply adopted 
the effective mass approximation in e~ (the single-particle energy measured from 
the Fermi surface) and have not taken into account the density-dependence of 
M*. In this paper, we take into account the effect of one-body potential V,.(k) 
on ek as ek=h~(k 1 -kF 1 )/2M+ V,.(k)- V,.(kF) and the density-dependence of V,.(k) 
(or corresponding M*). For V,.(k) we use the potentials given in Table I, 

Table I. One-body potential V,.(k), whiCh reproduces the potential values calculated for 
k < kp by lkeuchi et al. and tends to zero as k ~ oo. The realistic effective mass 
parameters m* are also shown. 

EF(MeV) I (1014gcm -8) I V,.(k)(MeV) [ m*(=M*/M) 

8 0.1 -4.71 exp ( -0.13k8) 0.98 
16 0.4 -9.95exp( -0.15k2) 0.95 
23 0.7 -13.05 exp(-0.10k2)-3.0 exp(-0.25k2) 0.93 
30 1.0 -18.11 exp (-0.10k2) -4.06 · exp ( -0.28k2) 0.91 
39 1.5 -26.93 exP( -O.lOkB) -3.30 exp( -0.30k2) 0.89 
45 1.8 -32.34 exp ( -0.13k8) -5.19 exp ( -0.10k2). 0.86 
54 2.4 -35.0 exp ( -0.15k2) -12.0 exP ( -0.10k2) 0.82 
76 4.0 -41.0 exp(-0.15k8)-29.0 exp(-O.tOk2) 0.78 
94 5.5 -8.6 · exp ( -0.16k2) 0.75 

120 7.9 20.0 exp( -0.704k2) -123.0 exp( ....:o.215k8) 0.70 

which reproduce the potential values calculated for k<kF by Ikeuchi, Nagata, 
Mizutani and Nakazawa6> and tend to zero as k-HXJ. Realistic values of the ef
fective mass parameter m*(=M*/M) at k=kF are also shown there for several 
typical densities. For the low density such as p:S7x1013 gcm-3 we take m*=1 
in the calculation of the 180-gap. 

(2) The 8P 2-gap becomes negligibly Sl1lall for the realistic nuclear force and 
the realistic density-dependence of M*. In such a situation, the attractive effect 
of the 3P 2- 3F 2 coupling due to tensor force neglected in II is expected to play an 
important role to increase the 8P 2-gap.8> In Fig. 1, the 8P 2-phase shifts for nu
cleon-nucleon scattering are shown as functions of the nucleon incident energy in 
Lab., EJl:!'l'; those calculated from one of the existing semiphenomenological poten
tials, G3RS potential/' with and without the 8P 2- 8F 2 tensor coupling. From Fig. 1 
we see that the effect of the 3P 2- 3F 3 tensor coupling brings only a small correction 
of several percent to the 8P 2-phase shifts. In the problem of pairing interaction 
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Energy Gap in NeutroncStar Matter 1519 

under consideration, however, for the 

realistic nuclear force and realistic M* 

the 3P 2 interaction without this coupling 

is attractive just enough to bring such a 

critical situation that the 3P2-gap begins 

to appear. In such a delicate situation, 

the effect of this coupling, although its 

effect to scattering is small, is consi

dered to become very important because 

the energy gap is generally very sensitive 

to the strength of attractive force. We 

extend the pairing theory for the nonzero 

angular momentum states developed in 

I by taking into account this tensor 

coupling effect and solve the gap equa-

tion with the 3P2- 3F 2 tensor coupling. 

3rt' 

2Cf 

'p. phase shifts 

200 300 400 500 

E~':Nb) (MeV) 

Fig. 1. 3P 2-phase shifts for nucleon-nucleon 

scattering· as functions of the nucleon in

cident energy in Lab., E~~k calculated 

from one of the existing semi-phenome

nological potentials, G3RS potential,7J 

with and without the tensor coupling: 

-: with the 3P 2 - 3F 2 tensor coupling, 

. ---: without the 8P2-BF2 tensor coupling. 

Calculations are done only with the two-nucleon OPEG 30 -1 potentiaFl 

which has the OPEP-tail and 2 Ge V Gaussian soft core, because this is one of 

the most realistic soft-core potentials currently used. We treat the simplest case 

with m1 = 0 component only, i.e., SoL 2-type among the five solutions discussed 

in II, since all of these have almost the same values of the 3P 2-gap and Sol. 2 

belongs to the class with the lower ground state energy among five solutions.3l 

In § 2, we extend the pairing theory along the line developed in I, and derive 

the gap equation with the 3P 2- 3F 2 tensor coupling. In § 3, the results of calcu

lation are shown and the properties of the gap equation with the 3P2- 3F 2 tensor 

coupling are investigated. § 4 is devoted to discussions. 

§ 2. Gap equation with the tensor coupling 

The formulation given in this section is parallel with that in I, and the gap 

equation with the 8P 2- 3F 2 tensor coupling is obtained. The notation follows those 

of I. As in I, we take the model Hamiltonian with a pair interaction as follows: 

Hmoo.eJ =I; ekC~"Ckd+ t I; I; (k'lJ/, -k'l12'i VjklJ~> -kl12) 
kd kk' spin 

(2·1) 

On defining a boson operator, b;;,./k), representing a pair with relative momentum 

k and angular-momentum quantum numbers ).= (s, j), l and m1 by 

b;;..1(k)= 1_ I; (l.l.l11l12ism,)(slm,mdjm1) ldkYzm 1 (k)C~",C~k", 
../2 "•"• 2 2 J' 

(2·2) 

and using 
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1520 T. Takatsuka 

we have 

Hmodel = ,L:skC~tTCkcr+ (47!")
2 I: I: I: CiY'-1(k'l V/'1lk) ,L: b;~,./k')bt,. 1 (k). 

kiT !J k k' All' "'J 

(2·4) 

As discussed in I, if the attractive interaction is dominant in a particular 

pair state A, superfluidity is mainly determined by this A-state pair interaction and 

we can consider a more restricted model Hamiltonian with the A-pair interac

tion only: 

H~o. =I: ekC~crCkcr + ( 4n-)2 I: I: I: CiY'-\k'l V~o.~' 1 lk) I: b;~, 1 (k')bt,.,(k), 
ka !J k k' Z'£ mj 

(2 ·4') 

where 

f <k' I V,"' I k >= J r'drjv (k' r) V,''' (r) j, (kr), 

l V~o. 1 ' 1 (r) = J d!JrQ}1"f!/1, 2) Vu(r)CLJ/,.1(1, 2), 

Q}/,1 (1, 2) = ,L: (slm,mrijm,) Y1,1 ( r) x.,. (1, 2). 
ms+mt=m.j 

(2·5) 

The coupled state results from the fact that the matrix element, (k'l V~o.~' 1 jk) does 

not vanish for l=j±1, l'=j±1 through tensor force in v12(r) and the sum for 

l, l' in Eq. (2·4') is taken for j±l. For j=2, s=1 and l=1 and 3 correspond 

to the 8P2 and 8F 2 states, respectively. We define an operator Sin the following 
way: 

This operator is different from S in Eq. (3 · 3) in I in the point that it should 

include the l-sum in order to take into account the tensor coupling. The unitary 

transformation (a generalized Bogoliubov transformation) is given in the form 

(2·7) 

where l(])o) is the Fermi-gas ground state and j?Jf0) the ground state for quasi
particles. Then, 

We write C kcr, C~cr and (}~o. in the following matrix forms: 
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Energy Gap in Neutron-Star Matter 

c *=(c;;t) 
k C* ' 

kj. 

{}). (kj t) l. 
o).(kH) I 

1521 

(2·10) 

When @).(k) is given, we can obtain the quasiparticle operators akin the matrix 

representation in the formally identical way discussed in I: 

= U).*(k)Ck*- V).*(k)C-k 

with 

U).(k) =cos@/(k), 

V).(k) =l).'-1 (k) sin 1/ (k)l).(k), 

where 1).' (k) is the Hermite matrix defined by 

l/2(k) =l).(k)f).t(k). 

(2·11) 

(2·12) 

(2 ·13) 

Here, 1).' (k) in this paper is different from 1/ (k) defined in I in the point that 

it contains the summation of l(=j±1) through {}).(krNJ2) in Eq. (2·9) due to 

the tensor coupling. But, as is generally shown in Appendix A, 1).' (k) with 

the tensor coupling is written in the form proportional to unit matrix: 

(2 ·14) 

where {}D(k) is given in Appendix A. The Fermion commutation relations for 

C's are transformed into those for a's: 

(2·15) 

Using Eq. (2 ·14) and the properties of 1). (k), we can show that the condi

tions (3 ·13arvd) in I are also satisfied by the U). and V). defined by Eq. (2 ·12). 

This is shown in Appendix B. The inverse transformation can be written in 

the same form as Eq. (3 ·14) in I as ·follows: 

Ck= U).t(k)ak- V).( -k)a!k= U).(k)ak·* V;...(k)a!k, 

(2 ·16) 

Using Eq. (2 ·16), boson operator b;:,.1 (k') becomes 

b;:,.,(k') = 1_ sdk'~ {(U).(k')Gt,.,(k') (J).(k'))pp'a;;,pa!k'p' 
../2 pp' .. 

- (U)..(k')Gf,./k') V).t(k'))pp'aj!,pak'p' 
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1522 T. Takatsuka 

+ (V~t(k')Gtm 1 (k') U~(k'))pp'a-k'pa'!'.k:p' 

- (V~t(k')Gtm/k') V~t(k'))pp'a-k'pak'p'}, (2·17) 

where 

(2·18) 

is the 2 X 2 matrix in spin space. 

In terms of Eq. (2·17) and the corresponding equation for btm1 (k), H~ is 
rewritten by quasiparticle operators a, a* and is separated into H 00 (constant 
terms), H 11 (a*a term), H 20 (a*a*, aa terms) and the higher-order terms with 
respect to quasiparticle operators. On neglecting the terms "'-'0 (1/ .Q) and the 
higher-order terms, H 20 becomes as follows: 

H "'"' * * {- (U (k)V (k·)) (4rr)2 (-)1-• "'"' (")~'-z 20 = £....J £....J akpa-kp' c:k ~ ~ pp' + -- £....J £....J z 
k p p' .Q 2 k' !V 

x (kJ V~~' 1 Jk') I:; Tr [U~ (k') G;!,1 (k') V~(k')] (U~(k) Gt,m1 (k) 
mJ 

+Hermitian conjugate. (2·19) 

Then, by the use of the relation 

(kl v~~'~Jk'>=<k'l v~~~'Jk> 

and rewriting l by l' and l' by l in the second term in the curly bracket on 
the right-hand side of Eq. (2 ·19), we obtain 

* * {- . (4rr)2 
(-y-• H2o=:E I:; akpa-kp ek(U~(k) V~(k))pp'+-- __o__--"-----

k pp' .Q 2 

x (U,.(k)Gtm/k) U,.(k) )pp'- Tr[V,.t(k')Gt,m/k') U~(k')] 

X (V~(k)G;!./k) V,.(k))pp'}} +Hermitian conjugate, (2·19') 

where we have used the relation that Jl' -ll is even. The elimination of the 
dangerous term H 20 leads to the equation 

2ekU~(k) V,.(k) = L;{.dtm1 (k) U,.(k)Gtm/k) U~(k) 
!,mi 

-.J;!,1 (k) V~(k)G;!./k) v.(k)} 

= U~(k)J~(k) U~(k)- V~(k)J'-f(k) V~(k), (2·20) 

where 
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Energy Gap in Neutron-Star Matter 1523 

4tm (k) =- C4n)2 C-y-• :E :ECiY'-l(k'l v._l'llk> 
J !J k' I' 

x Tr[U).(k')G;~m 1 (k') V(k')] (2·21) 

and 

(2·22) 

is the 2 X 2 matrix in spin space. By the use of the relation (2 ·14) that 8/ (k) 

is proportional to unit matrix, we can solve Eq. (2 · 20) in the same way as 

shown for Eqs. ( 4 ·19)'"'""' ( 4 · 24) in I and obtain the following gap equation with 

the tensor coupling: 

where 

D.,:(k') =!-Tr(.4).t(k').4).(k')) 

= !- :E :E 4tm1 (k')dt;mJ' (k') Tr[Gtm/k')Gi~mJ' (k')]. 
LV 11lJmJ' 

(2·24) 

Here we write down explicitly the energy-gap equation for the CSP2 + 8F 2) -state 

(J.(j=2, s=1) and l=1, 3). For the simplest case (m1 =0 component only), the 
3P 2 energy-gap function dio(k) and 3F 2-one d~ 0 (k) satisfy the following gap equa

tion with the 8P 2- 8F 2 tensor coupling (V).31 and V).13): 

dio(k) =- ~ J k' 2dk'(k'l V).11lk) J dk' {dio(k')f(O)+d~ 0 (k')g(O)} /Ek, 

+ ~ Sk' 2dk'(k'l V).31 lk) J dk' {dfo(k')g(O) +d~o(k')h(O)} !Ek'> 

(2·25a) 

d~o(k) = ~ J k' 2dk'(k'l V/8 lk) J dk' {dto(k')f(O) + 4Mk') g(O)} /Ek, 

where 

- ~ Jk' 2dk'(k'IV).88 Ik) Jak'{dfo(k')g(O)+d~o(k')h(O)}/Ek,, 

(2·25b) 

j 
1 

f(O) =-(1+3 cos20), 
8n 

g (0) = ...;'o (1-7 cos20 + 5 sin 0 sin 30 -10 cos 0 cos 30), 
64n · 
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and 

T.- Tak'atsuka 

l h (()) = - 3- (13 + 4 cos2 () + 5 sin () sin 3() + 15 cos () cos 3()), 
128tr 

(2·26) 

D).2 (k') =if(()) (.d~o(k')) 2 +!h(()) (.d~ 0 (k')) 2 +g(()).d~ 0 (k').d~ 0 (k'). (2·27) 

Here () is the polar angle of the vector k'. Equations (2 · 25a)'"'""' (2 · 27) are 

solved by an iterative method. 

For 18 0-pairing (j = 0, s = 0, l = 0) we solve the following well-known energy

gap equation: 

(2·28) 

by the same method, where IJ(k) is the 18 0 energy-gap function and V, 8 , is a 

nucleon-nucleon potential in the 180 state. 

§ 3. Calculated results and the properties of the gap equation 

with the 3P 2- 3F2 tensor co-upling 

§ 3-1 Calculated results 

In Fig. 2 the values of the 3P 2-gap at k=kF, .d~ 0 (kF) (with the tensor coupl

ing), and that of 180, (} (kF), obtained using the rea,listic density dependence 

of the effective mass parameter, m* (M* / M) are plotted as functions of the den

sity of the neutron-star matter p or Fermi energy EF. The density dependence 

of m* is indicated by arrows in Fig. 2. The critical temperature, Tc, cal
culated from the relation8l 

KBTc-::::.0.57X.d~ 0 (kF)/·./2T 0 , lnTo=l.22 for 3P2, 

-:::::.0.57 X IJ (kF) for 18 0 (3 ·1) 

is shown in Fig. 3. The 18 0- and 3P 2-superfluid states exist in the region p-::::. (1.0 

X 1011rvl.5 X 1014) gcm- 3 and p-::::. (2rv8) X 1014gcm- 3, respectively. The maximum 
3P 2-gap takes place near the region p-:::::.4 X 101'gcm-3 and its value is about 0.6 

MeV. To compare the 3P 2-gap with 180-one quantitatively, Tc in Fig. 3 should be 

used because of the angular dependence of the 3P 2-gap. 

In our previous calculations neglecting the 3P 2- 3F 2 tensor coupling, we have 

found that the 3P 2-gap was very small (rv0,02MeV) for m*=0.8, EF=75MeV 

although it was sufficiently large (rv2.2MeV) for m*=1,EF=75MeV.8l From 

these it is known that the 3P 2-gap is very sensitive to m*. Realisti~ m*(m* in 

actual neutron-star) is strongly density-dependent and becomes small as p in

creases (m*=0.82~0.70 for p= (2~8) x1014gcm-3). Therefore, whether the 3P 2-

gap exists in neutron-star or not is considered to be in a critical situation for 

realistic m* and without the 3P 2 - 8F 2 tensor-coupling effect, which is attractive 
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Energy Gap in Neutron-Star Matter 1525 

and increases the 3P 2-gap. In fact, without this coupling, we have negligibly small 

3P 2-gap in neutron-star matter for any realistic value of m * or Vn (k): 

.d~~(kF) :::::::0 MeV for p::::::2 X lOugcm-8 (EF::::::54 MeV), m*::::::0.82, 

<0.008 MeV for p::::::4 X 1014gcm-8 (EF::::::76 MeV), m*::::::0.78, 

<0.003 MeV for p::::::6 X 1014gcm- 3 (EF::::::94 MeV), m*::::::0.75, 

(MeV) 

3.0 

1. 

.. 
et;~ergy gap 

150 

Fig. 2. The 1S0- and SPz-gaps as functions of 

the density of neutron-star matter p or 

Fermi energy EF. 

-: The 3Pz-gap at k=kF, J1o~CkF) (with 

the tensor coupling), and that of 1S0, 

8(kF), for the realistic density depend-

ence of the effective mass parameter, 

m*(==M*/M), 

----:The 3Pz-gap at k=kF, J10'~(kF) (with

out the tensor coupling), and 8 (kF) 

for m*=l, 

• : J1o'•(kF) for m*=l and EF=lOOMeV, 

0: J10~CkF) for m*=l and EF=lOOMeV, 

,!, : the values of m*. 

0 2 345678910 

critical 
temperature 

Fig. 3. Density dependence of the critical tem

perature T •. 

where .d~~(kF) denotes the 3P 2-gap at k 

= kF without tensor coupling. But 

with tensor coupling, we have the 3P 2-

gap ("-'0.5 MeV) shown in Fig. 2. 

From those we can say that for the 

case with realistic m * and p, the ten

sor-coupling effect is especially import

ant. For larger values of m*, for ex

ample, if we put m * = 1 at EF = 100 

MeV, .d~~(kF) is 2.22 MeV, while Aio(kF) 

is 3.28 MeV as is shown in Fig. 2. 

In such a case that the gap is large, 

the tensor-coupling effect has a role to 

increase the 8P 2-gap by a factor ,-,.;1.5. In § 3-2, we investigate the mechanism 

that the 3P 2- 3F 2 tensor coupling increases the 8P 2-gap. 

§ 3-2 The properties of the gap equation with the 3P 2 - 8F 2 tensor coupling 

In Fig. 4, the nucleon-nucleon interaction potential V;~, 11 (r) = v.p,, V;~, 33 (r) 
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1526 T. Takatsuka 

= v.F, and VA 51 (r) = VA18 (r) = v couple are shown in the case of OPEG so -1 
potential.7) Vap 2 is Strongly attractive for r;;::0.6 fm- 1 due tO the medium-range 
spin-orbit force and turns repulsive for r;S0.6 fm- 1 due to the repulsive core. 
VaF, is repulsive for r::S1.6 fm- 1 and has a weak attractive tail for r21.6 fm- 1 

due to the long-range nature of the tensor force. V couple is positive for all r mainly 
due to the OPE (one-pion-exchange) tensor potential. The matrix elements of 
these potentials (k'/ VA~' 1 /kF) at k =kF are shown in Fig. 5. These matrix 

200 

(MeV) 

100 

-100 

v. •• 

nucleon-nucleon 
potential 

OPEG 'o-1 
4 

-4 

-6 

{MeV fm5) 

<k'JV1"1kf> 

, matrix elements 
OPEG "0-1 potential 
£F=100MeV 

10 11 

Fig. 5. Matrix elements of Vl'1 (r), (FI VF11kF>• at k 
=kF as functions of k' for m*=l and EF=lOOMeV. 

Fig. 4. Nucleon-nucleon interaction 
potential VFl (r) in the case of 

elements for k'=:::.kF play an important role to 

the existence of the energy gap because the 
OPEG ao-1 potential:7J integration over k' in the gap equation acts 
VP(r) = V•P, (without the 3P2· mainly for k'=:::.kF. From Fig. 5; we know 
3
F2 tensor coupling) that only (k'/ VA11 /kF) is negative for k'=:::.kF and 
Vl33(r) = VaF., (without the 3P2-
3F2 tensor coupling) others, i.e., (k'/ VA13 /kF), (k'/ v .. 31 /kF) and (k' 
Vl81(r) = VP(r) = Vcouple. (the I VA88 /kF) are positive for k'=kF. 
3P2-3F2 tensor coupling term) Here we turn to investigation of the struc-

ture of the gap equation with the 3P 2- 3F 2 tensor coupling, i.e., Eqs. (2 · 25)"" (2 · 
27). In Eqs. (2·25 a, b), the contributions of J~ 0 (k')g(O) and J~ 0 (k')g(O) are 
small compared with that of A~o (k')f(O) and A~o (k') h (0) after the angular inte
gration .over k'. So we can approximately rewrite Eqs. (2·25a, b) at k=kF in 
the following forms: 

A~o(kF) =:::.- ~ Sk' 2dk'(k'/ VA11 /kF) J dk' A~o(k')f(O)/Ek, 

+ ~ Sk' 2dk'(k'/VA81 /kF) sdk'A~o(k')h(O)/Ek'• 

A;o(kF)=:::. ~ Sk' 2dk'(k'/VA18 /kF) sdk'A~o(k')f(O)/Ek, 

(3·2a) 
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(3·2b) 

If the tensor coupling is absent, i.e., v ... 81 = 0, the second term on the right-hand side 

of Eq. (3 · 2a) does not appear, which is the case of m1 = 0 component only, i.e., 

Sol. 2 in II. With the tensor coupling, however, the second term appears and 

plays a role to increase the 3P 2-gap, J~o (kF). Roughly speaking, this is caused 

by the following mechanism of this gap equation. If J~ 0 (k') is positive for k' 

-:::::.kF the second term integrated over k' contributes to increase Jt0 (kF) because 

the quantity <k'l VA81 IkF> is positive for k'-:::::.kF and the integration OVer k' aCtS 

mainly for k'-:::::.kF. Whether J~ 0 (k') has a role mentioned above is determined 

by the properties of Eq. (3·2b). As is shown in Fig. 4, both <k'IV/8 IkF> and 

<k'IVA33 IkF> are positive and of the same order. Therefore J~o (k') ~ IJ~ 0 (k') I 

leads to the positive J~ 0 (kF) in Eq. (3·2b). J~ 0 (k) also becomes positive for k 

-:::::.kF for the same reason mentioned above and plays a role to increase Jt0 (kF) 

in Eq. (3·2a). 

)( 

3.0 
gap function 

E.=100 MeV m*=1 

10 11 

Fig. 6. The gap function with the 8P2'3F2 tensor coupling, J10A(k), (3P2) and ilso'(k), (3F2) for m*=l 
and Ep=lOOMeV. The 3Pz-gap function without this coupling J 10A(k) for m*=l and Ep=lOO 

MeV is also shown by the dotted lines for comparison. dto'(kp)obtained by using Mongan's 
potential is indicated by the cross. 

(MeV) 
1.0 

-0.5 

gop function 

E.=76MeV m'"=0.78 

6 7 8 9 10 

Fig. 7. The gap function with the SP2-3F2 tensor coupling, J 10A(k) and J 30A(k) for the realistic 

case with m*=0.78 and Ep=76MeV. In this case, the gap function without this coupling dto''(k) 

becomes zero for all k and the 3P 2-gap cannot exist. 
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1528 T. Takatsuka 

In fact, the coupled integral equations (2 · 25) ,.._, (2 · 27) are solved by an 
iterative method. The resulting gap function with the tensor coupling, .dto(k) and 
J~ 0 (k), are shown in Fig. 6 in comparison with the gap fu,nction without the 
tensor coupling J;~(k) for m*=1 and EF=100 MeV. From these, J~ 0 (k) at k 
=.kF is seen to be surely positive, being consistent with the arguments mentioned 
above. .d~o(k) is increased by a factor rvl.5 due to the effect of this tensor 
coupling. For the realistic case with m*=0.78 and EF=76 MeV, the .d~o(k) and 
J~ 0 (k) are shown in Fig. 7. In this case, the value of J~~(k) becomes zero for 
all k, and the 3P 2-gap cannot exist. These are the reason why the 8P2-energy 

1.o .----;:.2 __ 3T-_4::;-___,_s -::-:.6 _7;..---~s-

0.5 

0 
50 

,.. ... -,...---Mongan's 
I \ 

I \ 
I \ 

/ \ 
I \ 

I 3 3 \ 
~ with P2 - F, \ 

tensor coupling \ 
~ 

EF(MeV) 100 

gap is increased by the 8P 2- 8F 2 tensor coup!~ 

ing. The qualitative feature of these re

sults can be simulated by taking into 

account the reasonable density dependence 

of m* on the 8P 2-gap calculated from a 

simple phenomenological, nonlocal separ

able potential. The calculated results of 

the Jfo(kF) for m*=1 and EF=100 MeV 
in the case of Mongan's potential8l is 4.01 
MeV as is shown by the cross in Fig. 6. 

This value is a little larger than .d~o (kF) 
= 3.28 MeV obtained by solving the gap 

equation with the 8P 2- 8F2 tensor coupling. 

From these, we can say that a conventional 

way used to get the 8P 2-gap by the use of 

some effective potentials such as Mongan's8l 

or Tabakin's9l one is allowed as a rough 

Fig. 8. The density dependence of •lto'(kF) 
calculated by solving the gap equation 
with the 8 P 2.8 F2 tensor coupling for 
OPEG 8Q-l in comparison with that 
obtained by the use of Mongan's effec
tive 8 P2 potential and the density de
pendence of m*.8> 

estimate, if we suitably choose the correct 
density dependence of m* shown in Fig. 2. Jf0 (kF) calculated from Mongan's 
potential for realistic density dependence of m* is shown in Fig. 8 by dashed 
lines. In order to get more accurate results, it is necessary to solve the gap 
equation with the tensor coupling. 

§ 4. Discussion on calculated results 

§ 4-1 Density region of the 8P2- and 18 0-superfluid state 

From Fig. 2 we can conclude that there exists a 3P 2-superfluid state in the 
density region p:::::. (2rv8) X 1014gcm-8 and that the effect of the 3P 2- 8F 2 tensor 
coupling plays a role indispensable to the existence of the 8P 2-superfluid state in 
neutron-star matter. We have the maximum value of the energy gap, Ji0 (kF) at 
p:::::.4 X 1014gcm-3 (EF = 76 MeV) and its value is about 0.6 MeV. As p goes away 
from the above value, Jfo(kF) is seen to decrease quite rapidly. For the low
density side (p:::::. (2'"'"'3.5) X 1014gcm-8, EF:::::. (50rv70) MeV), which is mainly due 
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Energy Gap in Neutron-Star Matter 1529 

to that the two-nucleon attractive potentials are masked by the centrifugal effect. 

For the high-density one (p::::::::(5~8)x10 14 gcm- 3 , EF::::::::(90~120)MeV), which is 

mainly caused by the fact that m* becomes smaller as p increases. But the 

above results for higher densities (p?:;6 X 1014gcm-3) get quantitatively somewhat 

less reliable than for lower densities, because the applicability of Brueckner theory 

up to such a high density. is an open question.6l 

The 1S0-superfluid state is seen to exist in the region p:::::::: (1.0 X 10 11 ~1.5 

x l014)gcm-3• On the basis of these results, the neutron-star matter in the re

gion p:::::::: (1.5~2.0) X 1014gcm-s is considered to be normal. In our calculation, 

the density at which the 1S0-gap vanishes is somewhat higher than that calculated 

by Ishihara et al.,l0l R. Kennedy et al.11l and N.-C. Chao et al.,"l but is approxi

mately equal to that calculated by M. Hoffberg et al.4l The small differences 

may be due to t'he variety in the calculational methods, the potentials and the 

m* values adopted. Therefore, we cannot deny a possibility that the density 

region of the 1S0-superfluid state becomes somewhat narrower in the high-den

sity side and the density region of the normal state in neutron-star matter is 

wider than that concluded above. In the neutron star, a gas of free neutrons 

appears at 1p::::::::3 X 1011gcm-3 12)' 13) therefore our results suggest that the free neut

rons are in the superfluid state as soon as they appear in the neutron star. 

§ 4-2 The influence of the tensor coupling on the total energy shift 

The total energy shift is estimated by the relation3l 

(4·1) 

where NF=3N/4EF is the level density at k=kF for the total neutron number 

N and the explicit form for the solution with and without the tensor coupling 

in the case of m 1 = 0 component only is 

(4·2) 

and 

(4·3) 

respectively, where .d~~(kF) is the 8P:-gap without the tensor coupling. Equation 

(4·2) shows that not only the 3P 2-gap but also the 3F2"gap contribute to the total 

energy shift due to the 3P 2-8F 2 tensor coupling. For m*=1 and EF=100MeV, 

the ratio (.dMkF)/.d~~(kF)Y takesthe value of ~2.3 and (.d~o(kF)/.dfo(kF)) 2 ~0.03, 

as is seen from Fig. 5. From these we can say that the contribution of .d~ 0 (kF) 

to .dE:;.~'!Je is negligibly small compared with that of .df0 (kF) and the increase of 

the total energy shift due to the effect of the 3P2-3F2 tensor coupling is caused 

wholly by the increase of the 3P 2-gap due to this effect. The total energy shift 

becomes large by a factor ~2.3 by this effect. 
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1530 T. Takatsuka 

§ 4-3 Remarks on the state of the interior of a neutron star 
Density distribution in the interior of a neutron star is strongly connected 

with its mass M. As is already mentioned, the existence of the superfl.uid state 
in neutron-star matter strongly depends on its density. In connection with these, 
it is interesting to investigate how the state of the interior of neutron stars is 
connected with their masses. At this stage, we can use our results that neutrons in 
neutron stars are in the 3P 3-superfluid state for p=::_ (2,...,_,8) X 1014gcm-3, in the 1So
superfluid one for p:::::(l.O X 1011 ,...,_,1.5 X 1014)gcm-s and in the normal state for p:::::(1.5 
""2.0) X 101'gcm-3• The proton density in a neutron star is so low that protons 
are considered to be in the 1S0-superfl.uid state.8>• 5> Here we discuss only the states 
ofthe neutrons in a neutron star. Making use of the above mentioned results and the 
density distribution as a function of the distance r from the center of a neutron 
star, we can see what portion of a neutron star is occupied by the normal fluid 
or the superfl.uid. This is shown in Fig. 9 with the aid of the recent results 
of the neutron-star model ob-
tained by Ikeuchi et al. 6> for 
M/ M0 = 0.55, where M0 de
note the solar mass. In this 
case, the 3P 3-superfluid occu
pies the region of r::::: ( 4.0'"'-' 

p (gem-a) 

,s.
super 

Fig. 9. (J·r (the distance from the 
center of a neutron star) curve 
obtained by Ikeuchi et al. for 
M/M®=0.55 and the procedure 
to know the state of the inter
ior of a neutron star. 

r 

0 

0 

Fig. 10. Mass-dependence of the multiphase structure of the 
interior of neutron. stars. 

) 
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6.7) km and the 18 0-superfluid occupies that of r-::= (7.1""'9.0)km. The regions 

of r-::=(6.7""'7.1)km and r:S4km are in the normal state. In this way, we can 

know the state of the interior of a neutron star. For other typical masses 

of neutron stars, M = 0.16M0 and M = 1.34M0 , the same procedure is used to 

draw the schematic graphs in Fig. 10, representing how the structure of the 

interior of neutron stars changes according to their masses. 

These graphs show that as M becomes large, each of the layers, where the 
18 0- and 8P 2-superfluids occupy, becomes thinner and shifts to the outer side, 

while as M becomes small it becomes thicker and expands to the inner side. 

The layer of the normal state existing between the 18 0-superfluid layer and the 
8P2-one has a tendency that it expands as M becomes small. For a neutron star 

with small mass such as M/ M 0 :S0.16, the superfluids occupy a large portion of 

it and the 8P 2-superfluid fills particularly its core region. On the other hand, for 

a neutron star with a large mass such as M/ M 0 ;?:1.34, the normal fluid occu

pies a wide region extending from its core region to its surface. Based on these 

results, we want to remark the following points: The structure of the interior 

of a neutron star strongly depends on the mass. Therefore we must pay atten

tion to the strong-density dependence of existence of the energy gaps when we 

discuss the properties of neutron stars connected with the superfluidity. The 

multiphase structure of the interior of a neutron star is dependent on neutron 

star models. For example, the 3P2-superfluid expands to a core region of a neutron 

star for a model shown by Cameron12l for the case of M/ M 0 -::=0.55, differing from 

the results shown in Fig. 10. 
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Appendix A 

--Proof of Eq. (2 ·14)--

If we impose the time-reversal invariance on the transformation operator 

S in Eq. (2 · 7), we can derive the following condition on ()>. (krJ1rJ2) given in 

Eq. (2·9): 

(A·1) 

For the triplet case, because s=1 and l=odd, (J>.(k) is a symmetric matrix and 

odd for k~ -k. On the other hand, for the singlet case, (J>.(k) is an antisym-
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1532 T. T akatsuka 

metric matrix and even for k----? - k because s = 0 and l =even. By the ·use of 
Eq. (A ·1) and the above mentioned properties of tJ~(k), the following .relations 
are obtained: 

{ e~*(k, -(lJ, -u2) = (- Y'+a·e~(k, uh u2), 

e~(k, uh u2) =fJ~(k, u2, u1) 

for the triplet case and 

{ f)~*(k, -(jh -u2) = ( -.)l+a,H,fJ~(k, U1o u2), .. 

e~ (k, ub u2) = - e~ (k, u2, u1) 

(A·2) 

(A·3) 

for the singlet case. In any case, we can easily show that fJ)..'(k) given in Eq. 
(2 ·13) is written in the form proportional to unit matrix by using the relations 
give~ in Eqs. (A·2) and (A·3): 

where 

for the triplet case and 

e~Ckt D ) 
e~Ck~ ~) ·' 

. (A·4) 

(A·5) 

(A·6) 

for the singlet case. Here we note that f)D(k) is real and has the following 
relation: 

(A·7) 

In the partial wave representation, the condition given in Eq. (A ·1) is equi
valent to 

¢?;,./k) = (- )i+mJ¢t,-mj(k). (A·8) 

By the use of Eq. (A· 8), we obtain the following relation: 

LJ;:n,(k) = ( -)f+miLJt.-mj(k) (A·9) 

in the same form given in Appendix B in I even with the presence of the tensor 
coupling. 

Appendix B 

--General proof of Eqs. (3.13 a"'d) in I in the case 
with the tensor coupling--

As is mentioned in Appendix A, ~~ (k) has the properties 
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(B·l) 

By the use of Eq. (A·4), we can rewrite U)..(k) and V)..(k) in the following 

form: 

(B·2) 

(B·3) 

where 

(B·4) 

and 

Vk=sin(JD(k)j(JD(k). (B·5) 

By the use of Eqs. (B·1~5) and Eq. (A·/) with (JD(k) being real, we can 

easily verify that Eqs. (3 ·13a~d) in I holds for the case with the tensor coupl

ing. 
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