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ABSTRACT | Energy harvesting generators are attractive as

inexhaustible replacements for batteries in low-power wireless

electronic devices and have received increasing research

interest in recent years. Ambient motion is one of the main

sources of energy for harvesting, and a wide range of motion-

powered energy harvesters have been proposed or demon-

strated, particularly at the microscale. This paper reviews the

principles and state-of-art in motion-driven miniature energy

harvesters and discusses trends, suitable applications, and

possible future developments.

KEYWORDS | Energy scavenging; micropower generator;

micropower supply; vibration-to-electric energy conversion

I . INTRODUCTION

Wireless power supplies have the same advantages for

electronic devices as do wireless communications: they

allow portability, and even for non-portable applications

they reduce installation costs by eliminating wiring. The

latter feature is particularly important where sources of

wired power are not locally available. For this reason,

improved wireless power supplies are increasingly sought

after as electronic systems proliferate. Batteries in their

various forms have so far been the primary solution;

however, they frequently dominate the size, and sometimes

the cost, of the devices in question and introduce an

unwanted maintenance burden of replacement or rechar-

ging. Alternative power sources that overcome these

limitations are thus highly desirable. The possible ap-

proaches to this challenge are to use local energy supplies

with higher capacity, to deliver power wirelessly from an

active source introduced for this purpose, or to extract

power from ambient sources in some way.

Improving the energy density (and other features such

as cost, number of charging cycles, and power density) of

batteries has been, and continues to be, a major research

field. Battery storage densities have increased substantially

in the last decades, with lithium-ion batteries in particular

now having typical capacities of about 160 W � h/kg [1], [2],
i.e., about 1 kJ/cc. Hydrocarbon fuels, however, offer

energy densities more than an order of magnitude above

even the theoretical potential of lithium-ion batteries, for

example, 8 kW � h/kg for methanol [1]. Of course the use of

fuel requires a conversion mechanism (which will also

impact on the system volume). Small-scale converters in-

vestigated to date include miniature turbine engines [3],

[4] and a micro Stirling-engine [5], but the most re-

searched and most promising to date are micro fuel cells

[6], [7]. Fuel-based power sources naturally do not over-

come the recharging requirement of batteries, but rather

replace it with a (less frequent) refuelling requirement.

Capacitors are another possible finite energy store; how-

ever, although some advantage may be obtained by their

much higher power densities and cycle lifetimes compared

to batteries, their energy densities remain relatively low,

with theoretical limits around 10 W � h/kg [8]. Conversely,
radioactive materials provide a possible power source with

low power density but long lifetimes, and miniature power
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supplies based on these have also been demonstrated [9].

More comprehensive reviews of portable power sources

are presented by Roundy et al. in [2] and [10] and Fukunda

and Menz in [11].

Power can be actively delivered continuously, period-

ically, or on demand, using far-field electromagnetic radia-

tion [12] or near-field coupling [13], [14]. Such power

supplies require the use of infrastructure in addition to the

powered device itself, and of course the supplying source

must in turn be supplied with power. However, this can be

a useful solution when the device to be powered is in-

accessible (e.g., implanted sensors) or when power is only

needed when information is extracted (e.g., passive RF

identification (RFID) tags).

Extracting power from ambient sources is generally

known as energy harvesting, or energy scavenging. This

approach has recently attracted a great deal of interest

within both the academic community and industry, as a

potential inexhaustible source for low-power devices.

Generally energy harvesting suffers from low, variable,

and unpredictable levels of available power. However, the

large reductions in power consumption achieved in

electronics, along with the increasing numbers of mobile

and other autonomous devices, are continuously increasing

the attractiveness of harvesting techniques. Consequently,

the amount of research in the field, and the number of

publications appearing, have risen greatly. Special issues

on energy harvesting have appeared, for example, in IEEE

Pervasive Computing Magazine [15] and the Intelligent
Materials Systems and Structures Journal [16].

The sources of energy available for harvesting are

essentially of four forms: light, radio-frequency (RF) elec-

tromagnetic radiation, thermal gradients, and motion, in-

cluding fluid flow. All have received attention, in varying

degrees. Solar cells are the most mature and commercially

established energy-harvesting solution [17]–[19], and are

of course exploited across a wide range of size scales and

power levels. While cost is a key parameter for large-scale

photovoltaic generation, at the small scale of portable

electronic devices this is less of an issue, and light avail-

ability is instead the key limitation. A wide range of work

has also been presented on small-scale thermoelectric

generation [20]–[23], and successful applications include

the Seiko Thermic watch.1 Temperature differences tend

to be small over the miniature size scale associated with

most harvesting applications, which leads to poor thermo-

dynamic efficiency, but useful power levels can be cap-

tured from differences as little as a few degrees celsius.

Ambient RF has also received some attention [13], [24],

[25], although availability of significant power levels is

again an issue [26], and efficient extraction using devices

much smaller than the radiation wavelength is another key

challenge. As an adjunct to the four main sources for

harvesting, fuel-based generation using ambient fluids as

fuel, specifically human bodily fluids, has also been

reported [27].

The relative advantages and disadvantages of the dif-

ferent sources for energy harvesting have been discussed

thoroughly by various authors [2], [10], [28]–[31]; con-

sequently, the arguments will not be repeated here in

detail. The general opinion from the literature is that while

each application should be evaluated individually with re-

gards to finding the best energy-harvesting method, kinetic

energy in the form of motion or vibration is generally the

most versatile and ubiquitous ambient energy source

available. The purpose of this paper is to review the prin-

ciples, achievements, future potential, and possible appli-

cations of motion-based energy harvesting.

II . APPLICATIONS FOR MOTION-BASED
ENERGY HARVESTING

A. Wireless Sensor Networks
Traditionally, health care has concentrated upon short-

term treatment rather than long-term monitoring and

prevention [32]. However, many chronically ill patients

could have a significant increase in quality of life and life

expectancy if certain biological signs could be continually

monitored and controlled during their daily lives. Three

examples illustrate the potential of this approach:

continually monitoring blood pressure in patients with

hypertension can significantly increase medication com-

pliance [33]; real-time processing of electrocardiograph

traces can be very effective at revealing early stages of

heart disease [34]; and closed-loop control of insulin

administration for diabetic patients would significantly

reduce the risk of hypoglycemia [35]. Monitoring can also

allow better targeting of medicines, reducing costs and

unwanted side-effects. In order to achieve these benefits,

many types of body-mounted or implanted medical devices

are desired [36].

Implantable or wearable devices will only significantly

increase quality of life if they are unobtrusive to the patient

[37], [38] in terms of both use and maintenance. It is

especially important to eliminate maintenance for im-

plantable devices, for which replacement of the power

source in particular must be avoided [39]. While some

implanted sensors can be totally passive and used in con-

junction with active equipment when a measurement is

needed [40], and some active devices could be powered up

occasionally by wireless energy transfer, many require a

continuous source of electrical power [36]. Ideally, all im-

plantable medical devices would have a power-supply life-

time as long as the required operational lifetime, thus

keeping surgery, and cost, to a minimum. This vision of

unobtrusive, automated health care [41] using wearable

and implanted wireless medical devices is the main focus

of a new and fast-growing multidisciplinary research area,

that of the body sensor network (BSN) [42], [43]. In general,1http://www.seikowatches.com.
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the tiny size of information-processing and RF integrated

circuits means that batteries dominate the size of devices

that require long operating times [2], [35], [44], such as

BSN nodes. However, the continual evolution of solid-

state electronics, combined with new circuit design

techniques, has led to vast reductions in power consump-

tion, as well as size, for circuits required to perform given

functions. This combination of low power requirements,

tight size constraints, and the need to eliminate mainte-

nance makes BSN a particularly attractive application for

energy harvesting.

The BSN is a specific instance of a more general topic,

the wireless sensor network (WSN) [45], [46]. The general

wireless sensor network concept is that of deploying many

small, inconspicuous, self-contained sensor nodes, often

referred to as motes, into an environment to collect and

transmit information, and possibly provide localized actua-

tion. Other than medical applications, potential uses for

WSNs include structural monitoring of buildings [47];

status monitoring of machinery; environmental monitor-

ing of domestic environments to make them more

comfortable [48], [49]; military tracking [49]; security;

wearable computing; aircraft engine monitoring [50]; and

personal tracking and recovery systems [51]. As with BSNs,

many application areas will only be attractive for WSN use

if motes can be powered by an inexhaustible energy

source, such as harvested energy.

Fig. 1 shows a block diagram of the signal and proces-

sing elements of a wireless sensor mote capable of sending

the data to a remote location for processing. The minimum

power requirements of such a device can be estimated

using a mixture of currently available off-the-shelf tech-

nology, and devices which are the current state-of-the-art

in research. As an example, consider the following three

elements.

1) Sensor: The STLM20 temperature sensor from ST

Micro [52] draws typically 12 �W quiescent power

at 2.4 V supply voltage.

2) ADC: An ADC reported by Sauerbrey et al. [53] has
power dissipation below 1 �W for 8 bit sampling

at 4 kS/s.

3) Transmitter: IMEC recently announced an IEEE

802.15.4a standard-compliant ultra-wide-band

transmitter [54] with a power consumption of

only 0.65 nJ per 16 chip burst operating at a low

duty cycle.

The required data rates for biomonitoring applications

tend to be quite low due to the relatively low rates of change

of the variables [44]. One of the highest rates required is for

heartbeat monitoring, at around 100 samples/s. If this is

combined with a resolution of 10 bits, then the data rate is

1 kbps, which, if the transmitter power quoted can be

scaled to such low data rates, requires only 0.65 �W. This

suggests a total power consumption for the sensor node of

10–20 �W, or even 1–2 �Wor less if the other components

are also duty cycled. There would be some extra overhead

for power-processing interface and timing circuitry, but it

is reasonable to estimate that the total device power

consumption could ultimately be reduced to a few �W, at

least for this biosensor application. As discussed below,

this is within achievable levels for energy harvesters of

modest (below 1 cc) size, even when harvesting low-

frequency body motion. It should be noted that while the

power values quoted above are achievable, currently

available wireless sensor nodes have substantially higher

levels of power consumption.

B. Other Applications
Limited battery life is a significant inconvenience for

most portable electronic devices, so target applications for

energy harvesting are primarily limited by the feasibility of

harvesting in each case. This feasibility depends mainly on

four factors: the typical power consumption of the device;

the usage pattern; the device size (and thus the acceptable

harvester size); and the motion to which the device is

subjected (for motion harvesting specifically). For exam-

ple, laptop computers are poor candidates for harvesting:

although they are relatively large, they have high power

consumption (10–40 W), and their typical usage patterns

comprise long periods (tens of minutes to hours) of con-

tinuous use, with idle periods mostly spent in a low-motion

environment. Even if harvesting is used to supplement

rather than replace batteries, the added battery life is likely

to be marginal at best for most users.

Mobile telephones (cell phones) are a somewhat more

attractive target, as they tend to be carried on the body for

much of the time, thus experiencing regular motion while

only being used (other than in low-power monitoring

mode) for relatively short periods. Of course the relative

amounts of motion and usage are highly dependent on the

user. The power levels during calls are typically a few

watts, and this is likely to reduce to some extent with

advances in the relevant technologies. However, space is

very much at a premium in handsets, and energy-

harvesting power densities reported to date for body

motion sources, as reviewed below, are well below the

levels at which this application becomes feasible. For other

Fig. 1. Basic wireless sensor arrangement.
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handheld devices, such as mp3 players and personal

organizers, the considerations are similar to those for

phones, with some differences in power requirements and

usage patterns.

Thus, wireless sensors would appear to be the primary

application area for motion harvesting, at least in the short

term. However, niche or unexpected applications are

likely to appear as well. One that has already been suc-

cessfully exploited is the harvesting of mechanical power

in a finger-actuated light switch to power a transmitter

circuit that relays the switching signal to a remote lighting

module [55].

III . MOTION-DRIVEN ENERGY
HARVESTERS: OPERATING PRINCIPLES

A. Introduction
Motion-driven microgenerators fall into two catego-

ries: those that utilize direct application of force and those

that make use of inertial forces acting on a proof mass. The

operating principle of a direct-force generator is shown in

Fig. 2. In this case, the driving force fdrðtÞ acts on a proof

mass m supported on a suspension with spring constant k,
with a damping element present to provide a force fð _zÞ
opposing the motion. If the damper is implemented using a

suitable transduction mechanism, then in opposing the

motion, energy is converted from mechanical to electrical

form. There are limits of �Zl on the displacement of the

mass, imposed by device size. Direct force generators must

make mechanical contact with two structures that move

relative to each other, and can thus apply a force on the

damper.

The operating principle of inertial microgenerators is

shown in Fig. 3. Again a proof mass is supported on a

suspension, and its inertia results in a relative displace-

ment zðtÞ when the frame, with absolute displacement

yðtÞ, experiences acceleration. The range of zðtÞ is again

�Zl. Energy is converted when work is done against the

damping force fð _zÞ, which opposes the relative motion.

Inertial generators require only one point of attachment to

a moving structure, which gives much more flexibility in

mounting than direct-force devices and allows a greater

degree of miniaturization.

In order to generate power, the damper must be im-

plemented by a suitable electromechanical transducer.

This can be done using one of the methods described

below.

B. Transduction Methods
In conventional, macroscale engineering, electrical

generators are overwhelmingly based on electromagnetic
transduction. In small-scale energy harvesting, two main

additional techniques are added. Electrostatic transduc-

tion, which is both impractical and inefficient for large

machines, becomes much more practical at small size

scales and is well suited to microelectromechanical

(MEMS) implementation. Piezoelectric transduction is

generally impractical for rotating systems but is well suited

to the reciprocating nature of the motions typically used

for harvesting (e.g., vibration).

Rotating electromagnetic generators are in common

use from power levels of a few watts (brushless dc domestic

wind turbine systems) to several hundred megawatts

(synchronous machines in power plants). It is possible to

implement the damper of a microgenerator using the same

principle, i.e., that described by Faraday’s law of induction,

as illustrated in Fig. 4. A change of magnetic flux linkage

with a coil induces a voltage vðtÞ in the coil, driving a

current iðtÞ in the circuit. The combined force fðtÞ on the

moving charges in the magnetic field acts to oppose the

relative motion, as described by Lenz’s law. Themechanical

work done against the opposing force is converted to heat in

the resistance of the circuit and to stored energy in the

magnetic field associated with the circuit inductance. Some

key practical issues for electromagnetic energy harvesters

are as follows: strong damping forces require rapid flux

changes, which are difficult to achieve in small geometriesFig. 2. Generic model of direct-force generator.

Fig. 3. Generic model of inertial generator.
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or at low frequency; the number of coil turns achievable in

a MEMS or other microscale device will be limited,

resulting in low output voltages; and integration of

permanent magnets, and ferromagnetic materials for the

flux path, is likely to be required.

In electrostatic generators, mechanical forces are

employed to do work against the attraction of oppositely

charged parts; in effect, such devices are mechanically

variable capacitors whose plates are separated by the

movement of the source. They have two fundamental

modes of operation: switched and continuous [56]. In the

switched type, the transducer and the circuitry is recon-

figured, through the operation of switches, at different

parts of the generation cycle. Switched transducers can

further be split into two main types: fixed charge and fixed

potential. The first is illustrated in Fig. 5(a). For a paral-

lel plate structure with a variable separation and constant

overlap (i.e., the horizontal component of _zðtÞ is zero)

and with a negligible fringing field, the field strength is

proportional to the (constant) charge, and thus the

energy density of the electric field is independent of plate

separation. As the electrode separation increases [by

doing mechanical work against the attractive force fðtÞ],
additional potential energy is stored in the increased

volume of electric field. If instead the plates are moved

relative to each other laterally (i.e., the vertical compo-

nent of _zðtÞ is zero), mechanical work is done against the

fringing field. There is an increase in stored electrical

energy because the electric field strength increases with

the reduction in plate overlap, and the energy density of

the field (proportional to the square of field strength)

increases faster than its volume decreases.

Constant voltage operation is illustrated in Fig. 5(b). If

the plate separation is increased with a fixed overlap, the

electric field strength falls, causing charge to be pushed off

the plates into an external circuit as a current iðtÞ. If the
plates are moved with constant separation and changing

overlap, the field strength stays constant but current is

again forced to flow into the source because the volume of

the field decreases. In both cases, the mechanical work

done is converted into additional electrical potential

energy in the voltage source.

For both modes, since the charge equals the

capacitance times the potential ðQ ¼ CVÞ, and stored

energy is 1=2CV 2, the electrostatic force is found to be half

the voltage squared times the rate of change of

capacitance, i.e.,

F ¼ 1

2
V2dC=dz (1)

for motion in the z-direction. Thus a constant force is

obtained for normal motion in the constant charge case

Fig. 5. Principle of operation of the electrostatic transducer:

(a) constant charge and (b) constant voltage.

Fig. 4. Principle of operation of the electromagnetic transducer.
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and for lateral motion in the constant potential case.

Because of practical constraints, such as nonzero conduc-

tance (for constant charge) and nonideal voltage sources

(for constant voltage), real electrostatic transducers work

somewhere between these two extremes, although in many

cases very close to one or the other, and both types have

been reported in the literature for implementations of

energy harvesting microgenerators.

A practical restriction of electrostatic transducers is

that they require a precharge (or priming) voltage in order

to operate. This can be avoided by use of an electret, i.e., a

permanent charge buried in a dielectric layer. On the other

hand, since the damping force depends on the initial

voltage, an active precharge system offers the possibility of

dynamically optimizing the generator to the applied

motion.

The piezoelectric effect is a phenomenon whereby a

strain in a material produces an electric field in that ma-

terial, and conversely an applied electric field produces a

mechanical strain [57]. The former can be used to realize

microgenerators. When an external force is applied, some

of the mechanical work done is stored as elastic strain

energy, and some in the electric field associated with the

induced polarization of the material. If an external conduc-

tion path through a load is provided, a current that neutra-

lizes the net charge results (Fig. 6). Piezoelectric materials

with high electromechanical coupling coefficients are gen-

erally ceramics, with lead zirconate titanate being the most

common. Such materials do not tolerate high strain levels,

so some form of lever is required to combine them with

devices of significant relative displacement. The most

common geometry is to apply the piezoelectric as a thin

layer on a cantilever beam from which the proof mass is

suspended.

Although the three transduction methods above

dominate the literature on energy harvesting, others are

possible, such as the magnetostrictive effect [58].

C. Performance Limits
Various estimates of the power available from motion

energy harvesting, both empirical and analytical, have

been reported. Niu et al. present a detailed study of bio-

mechanical energy harvesting in [59]. They suggest that

around 1 W is available from the heel strike of a shoe, and

that a previous estimation by Starner [31] was very opti-

mistic. The bending of the knee during walking is identi-

fied as one of the more promising opportunities to harvest

energy from the body, because the leg muscles work

against the motion of the leg for part of the gait cycle

(while the leg is falling), during which time energy is

turned into wasted heat. The authors estimate that up to

50 W could be harvested this way with little impact on the

gait, although a large device would be required with well-

separated attachment points.

Von Büren et al. [60] consider the available power from
a specific implementation of an inertial microgenerator

powered by human walking motion. Acceleration data

were collected from human male subjects walking on a

treadmill and fed into a time-domain model of the gener-

ator in order to determine the available power. For a proof

mass of 1 g and an available internal displacement of 5 mm,

power outputs as high as 200 �W were calculated; this

would appear to assume ideal harvester performance.

Analytic expressions for attainable power in the inertial

device of Fig. 3 can be derived by assuming harmonic

source motion, with amplitude Y0 and frequency !, for
which the maximum source acceleration amax is !

2Y0. The
fundamental parameters determining a generator’s output

capability are its proof mass m, its resonant frequency (if

any) !n, and the maximum internal displacement Zl. From
basic considerations, we can derive a maximum power for

any energy harvester driven by harmonic motion. The

damping force by which the energy is extracted cannot

exceed the inertial force on the proof mass, mamax; other-

wise there will be no internal motion. By assuming that

energy is extracted in both directions, and using the maxi-

mum motion range 2Zl, a total energy per cycle can be

derived of 4Zlmamax ¼ 4Zlm!
2Y0. To convert this to power

is simply a matter of dividing by the excitation period

2�=!, giving

Pmax ¼
2

�
Y0Zl!

3m: (2)

If we make the restriction that the proof mass motion

must be harmonic, as in a linear resonant device, then the

maximum power is in fact somewhat less than this, since

the acceleration is not amax for the whole travel, and so the

transduction force must be reduced accordingly. But (2)

does provide, on the basis of fundamental considerations,

an upper bound on the average power of an inertial energy

harvester of any architecture, construction, transduction

mechanism, or operating mode. It shows the linearFig. 6. Principle of operation of the piezoelectric transducer.
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dependence on mass and on travel range and the very

strong dependence on frequency, indicating the serious

challenge of achieving useful power levels in the low-

frequency environment of human motion.

Since mass is proportional to volume and maximum

displacement to linear dimension, this maximum power

scales as linear dimension to the fourth power, or as

volume4=3. Thus power density reduces as device size de-

creases, obviously an undesirable feature for miniaturiza-

tion. In Fig. 7, the maximum power versus size is plotted for

frequencies of 1 and 10 Hz, as reasonable bounds for the

fundamental component of human body motion. The

values are computed from (2), assuming a cubic device with

a proof mass of density 20 g/cc taking up half its volume and

the other half allowing its movement. It should be noted

that, as shown in [61], power density varies significantly

with device geometry as well as size. The source

acceleration magnitude ð!2Y0Þ is fixed at 1 g (10 m/s2),

representing quite vigorous motion (e.g., 25 cm displace-

ment amplitude at 1 Hz). Over this plot of harvester power,

the approximate size and power consumption is plotted for

each of four possible body-powered applications. It can be

seen that a wristwatch of a few cubic centimeters and

consuming a microwatt average power is easily within the

achievable range, as is a sensor node of 0.5 cc and 10 �W,

but the cellphone and laptop both require harvesters as

large as themselves, operating ideally and under constant

excitation, to be entirely harvester powered. For compar-

ison, a lithium-ion battery of density 1 kJ/cc will provide

an average power of 30 mW/cc and 30 �W/cc for times

between charging of 10 h and 1 y, respectively.

A detailed analytical framework for inertial energy

harvesters is presented in [62]. This analysis allows dif-

ferent architectures to be compared quantitatively and

derives the achievable power levels and their dependence

on both source and device characteristics. Key practical

constraints are also analyzed. The results of that study are

summarized below. It was found that for idealized cases of

the architectures considered, optimal output power can

always be derived as a function of two dimensionless

parameters Zl=Y0 and !=!n and can be normalized to a

characteristic power Y2
0!

3m.
One parametric and two resonant generator topologies

were considered. Of the resonant types, one is damped by a

force that is proportional to velocity, the velocity-damped
resonant generator (VDRG), and the other is damped by a

constant force, the Coulomb-damped resonant generator
(CDRG). Of the nonresonant, nonlinear generators, only

the Coulomb-force parametric-generator (CFPG) is discussed
here, as the velocity-damped parametric generator was found

to be ineffective. Variations of VDRGs and CDRGs have been

extensively reported; broadly speaking, electromagnetic and

piezoelectric devices correspond to VDRGs and electrostatic

devices correspond to CDRGs. In this analysis, the resonant

generators were considered to operate in modes in which the

proof mass does not strike the end-stop limits, i.e.,

�Zl G zðtÞ G þZl, and thus the only forces that act on the

mass are the inertial, spring, and damping forces.

Analysis of the output power can be done by integrating

the product of the damping force and the incremental

displacement and averaging this over a cycle. Then the

optimum power can be found by choosing the damping

coefficient to maximize this value. However, if resonant

motion is assumedwithout regard to travel limits, a derivation

is obtained that indicates infinite power at resonance,

although a corresponding infinite internal displacement is

implied. A realistic assessment requires that the damping

force be reduced only to the limit imposed by the maximum

travel range. Thus, the achievable power of an ideal VDRG

takes two forms: first, if the damping can be optimized

without the displacement constraint being breached

Pmax ¼
!2
cY

2
0!

3m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2!2
c þ !4

c

p (3)

and secondly, if the damping is constrained by this

displacement limit

Pmaxcz ¼ Y2
0!

3m
1

2!2
c

Zl
Y0

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!4
c

Y0
Zl

� �2

� 1� !2
c

� �2

s

: (4)

In each case, !c is the normalized frequency !=!n. It

can easily be shown that for harmonic operation at

resonance ð!c ¼ 1Þ, (4) reduces to

Pres ¼
1

2
Y0Zl!

3m: (5)

This is just a factor �=4 less than the more general limit

given by (2).

Fig. 7. Maximum power for motion driven harvesters as

a function of size, for frequencies as shown, and size and

power consumption of some possible applications.
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The Coulomb damped devices do not form linear

systems because the damping force is discontinuous at the

boundaries (where the direction changes), and so analyt-

ical solutions are not as straightforward to obtain. Never-

theless, closed-form solutions to the equations of motion

for the CDRG do exist, from which the optimal damping

coefficients, and the achievable power levels, can be de-

rived. Just as for the VDRG, the maximum power depends

on whether or not the optimal damping is limited by the

internal displacement constraint. If not

Pmax ¼
ffiffiffi

2
p

�
Y2
0!

3m
!3
c

1� !2
c

� �

U
�

�

�

�

1

1� !2
c

� �2 �
U

1� !2
c

� �

" #1
2

(6)

although for !c G 0:72, this is not valid because the

calculated optimal force results in sticking in the motion.

For displacement constrained operation

Pmaxcz ¼
2!cY

2
0!

3m

�jUj
Zl
Y0

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� !2
c

� �2 �
1

!4
c

Zl
Y0

� �2

v

u

u

t : (7)

In both cases the function U is defined as

U ¼
sin

�
!c

� 	

1þ cos
�
!c

� 	h i : (8)

It can easily be shown that at resonance, (7) reduces to

(5), i.e., the optimum power of the CDRG and VDRG are

the same if operated at resonance.

The analysis of the CFPG is essentially the same as that

used to derive (2); the Coulomb (electrostatic) force is

constant for the whole travel distance, and so the energy

per transit is just the applied force times the travel range.

However, a correction is needed to (2) because the force

applied, in the case of harmonic source motion, cannot be

equal to amax since this acceleration is reached only

instantaneously at the extremes of the frame displacement.

Thus the damping force must be reduced to �amax, where

� is a dimensionless coefficient less than one, giving

Pmax ¼
2�

�
Y0Z0!

3m: (9)

In this general formulation, the displacement limit of

the device Zl has been replaced by the actual internal

motion amplitude Z0. Thus, determination of the output

power requires not only the optimal value of � but also the

corresponding internal amplitude Z0 to be determined. For

large source displacement amplitudes, however, it can be

shown that the optimal � value is that value that just allows

the full travel range to be traversed, so that Z0 ¼ Zl.
Specifically, this proves to be the case for Zl G 0:566Y0,
i.e., the source motion amplitude is more than about

double the internal displacement limit. This is likely to be

the case for wearable or implanted devices excited by body

or limb motion. It may not be the case for implanted

devices driven by cardiac motion, and is unlikely to be for

many vibration-driven applications.

Comparison of the achievable power levels of the three

architectures can be used to determine which is the most

effective for a given operating regime. Fig. 8 shows the

result, indicating the operating regions where each

architecture is superior and what the maximum power

level is, normalized to Y20!
3m.

Several general conclusions can be drawn from Fig. 8.

For large devices or low source amplitudes ðZl=Y0 9 0:1Þ,
the resonant devices are superior, except where the

frequency of operation is less than half the resonant

frequency, in which case the parametric generator is

preferred. The enhancement obtained by resonant opera-

tion is proportional to the ratio ðY0=ZlÞ, which corresponds
to the mechanical Q (quality factor) of the resonance. The

CFPG is superior for all cases where the device size is well

below the source motion amplitude. As mentioned above,

this is likely to be the case for many BSN applications.

Furthermore, the CFPG, being nonresonant, can operate

effectively over a wide range of source frequencies and

waveforms without the need for dynamic tuning.

In fact, the spectral characteristics of motion sources

are a critical factor in the feasibility of energy harvesting. If

a device with fixed resonant frequency is driven by a

harmonic source of varying frequency, then the output

Fig. 8. Maximum normalized power for inertial energy harvesters

versus operating parameters, showing the architecture with the

highest power in each operating region (from [62]).
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power will vary with !c, as indicated by the equations

above, but only if the damping factor can be dynamically

optimized. If this is also fixed, the loss of power as oper-

ation moves away from resonance will be even greater. If

the excitation is nonharmonic in nature, then optimal

power extraction is likely to require a damping force and

corresponding mechanical Q adapted to the bandwidth of

the motion. Clearly body motion is of complex and varying

spectral form, and for that reason analysis of the output of

inertial energy harvesters with realistic body-motion exci-

tation has been carried out [63]. Motion waveforms were

captured using accelerometers for three orientation axes,

at each of a number of body locations. The power output of

the various harvester architectures, for a range of sizes,

was simulated and compared using these waveforms. The

results are shown in Fig. 9. As anticipated, the CFPG de-

vices are superior for small sizes, particularly for lower

body locations where the displacements are greater. It

should be noted that these results assume that the opti-

mum damping factor can be achieved in every case; in fact

this may not be the case, and the limits on damping

strength depend on the transduction method chosen. Ana-

lysis of resonant inertial generators driven by random

waveforms has been reported by Halvorsen [64], where it

is shown that the optimal load for maximum power

extraction is different from that for harmonic excitation.

For applications, such as body-mounted sensors, where

the source amplitude exceeds the device size, resonant

enhancement of the internal motion amplitude is not re-

quired, and so broadband operation is compatible with

maximizing output power. The key practical difficulty in

this case is achieving a strong enough damping force in the

transduction mechanism. For higher frequency motion

sources such as machine motion, however, resonant oper-

ation is generally desirable, as discussed in more detail

below. However, this is inherently associated with narrow

bandwidth, which creates a problem when the source

frequency is variable or not precisely known in advance.

Increasing the transduction damping factor, where possi-

ble, will increase the response bandwidth, but at a penalty

in output at the center frequency. Wider frequency re-

sponse can also be obtained using higher order resonators,

and in [65] designs of this type, using multiple masses and

springs, are proposed and analyzed. Flat frequency re-

sponse over an extended spectral range is obtained, but

again at the cost of reduced response compared to a high Q

device at resonance. For simple damped resonators, the

bandwidth and peak response are inversely proportional to

a good approximation, so that doubling the frequency

range (for example) halves the peak output power. For the

coupled oscillator devices in [65], a similar tradeoff is

shown, the key advantage being that a much flatter

response can be obtained within the operating bandwidth.

A better solution to varying source frequency, for

higher Q devices, would be active tuning of the resonant

frequency. In [66], Roundy and Zhang look at a design

methodology for online tuning of resonant inertial micro-

generators by varying the spring constant or the value of

the proof mass, with the former being clearly the more

feasible. Actuators to perform the tuning are placed into

two categories, active and passive, according to whether

frequency adaptation is continuous or intermittent respec-

tively. A passive actuator might alter the length, and thus

the spring constant, of a cantilever using a moveable

clamp. An active actuator might operate by creating a va-

riable spring-like force proportional to displacement, e.g.,

electrostatically. In [67], a passively tunable device is re-

ported in which the resonant frequency of a piezoelectric

cantilever is shifted by the application of magnetic forces,

and tuning achieved by adjusting the relative positions of

the magnets. The untuned half-power bandwidth is 2 Hz,

and a tuning range of 10 Hz is demonstrated.

Most reported analysis of inertial energy harvesters is

for devices with linear internal motion, excited by linear

source motion. However, although most reported devices

are of this type, rotational internal motion is also possible,

with wristwatch generators the notable examples. Analysis

of the possible operating modes and power limits of

rotating mass generators is presented in [68], and power

densities are found to be similar to the linear cases for

realistic excitation scenarios. Recently, a rotating harvester

has been reported that can be connected to a single point

on a source rotating at constant speed [69]. In this case,

since a counterforce to the input cannot be provided by

proof mass inertia, it is instead provided by gravitational

torque, using an offset mass.

D. Comparison of Transduction Methods
One important limitation to the analysis above is that

the damping is assumed to be entirely due to the energy-

harvesting transducer, whereas in reality there will also

be parasitic damping, resulting, for example, from air
Fig. 9. Performance of the three microgenerator architectures as a

function of size, when operated on the human body (from [63]).
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resistance. This will be a particularly important effect for

applications where the source motion is less than the

harvester internal displacement, as is likely with high-

frequency sources such as machine vibration. For resonant

devices, this effect can be introduced by way of a parasitic

quality factor Qp, which is the Q that would be obtained if

only the parasitic damping was present. If the Q resulting

from the electrical (transducer) damping is Qe, then the

combined Q will be given by 1=Qt ¼ 1=Qe þ 1=Qp. If Zl=Y0
and ! are then used as general operating parameters, limits

of operation can be plotted for electromagnetic and

piezoelectric devices. By adding the Qp and Qt of the

device, regions of operation can then be indicated as a

function of operating point [70] and optimal strategies can

be identified for each of these.

The regions are illustrated in Fig. 10 schematically, for

devices with parasitic damping present, operated at

resonance. The parasitic Q is assumed to be constant

with frequency for simplicity, but any actual frequency

dependence could easily be substituted. The operating

regions are as follows.

1) Harmonic motion is not possible. The maximum

combined damping is less than required for

oscillation within Zl and so the mass will strike

the end-stops. Here the electrical damping should

be set to the maximum achievable. Most body-

mounted devices will be in this regime.

2) In this region, for optimal operation, the electrical

damping should be set to give Z0 ¼ Zl. Electrical
damping will be greater than parasitic damping,

and so this generator can achieve the maximum

power for the level of parasitic damping present.

3) Here the electrical damping should be set to

equal the parasitic mechanical damping, i.e.,

Qe ¼ Qp. This will give Z0=Y0 ¼ Qp=2. Many

machine vibration powered devices will be in

this regime.

4) Here the electrical damping should be set to the

maximum that can be achieved, but it will still be

less than the parasitic damping, i.e., Qe 9 Qp. The

generator can operate within the displacement

constraint, but a different transducer could in

principle extract more power.

Figs. 11 and 12 show two specific examples of the

minimum Q-factor achievable from electromagnetic and

piezoelectric generators, as reported in [70]. In each case,

the device is taken as cubic, having length L and a mass of

relative density 8.9 (Ni) occupying half the volume. The

electromagnetic device is assumed to have a flux density of

1 T and a copper coil occupying 2% of the device volume,

and an active coil length L/2. For the piezoelectric device,

�r is taken as 1000, area L2, thickness L/10, and

e33 ¼ 0:15 C/m2. A leverage factor of 500 was chosen.

Because Qmin for electromagnetic and piezoelectric devices

scales as ! and !2, respectively, there will always be a

frequency above which electromagnetic devices can

achieve stronger damping (lower Q). As can be seen in

Figs. 11 and 12, the crossover frequency increases as device

size decreases. It can also be observed that the increasing

minimum Q with frequency (for both transducer types)

could explain the decreasing performance trend seen in

Fig. 28.

Fig. 11. Comparison of minimum Q factors with electromagnetic and

piezoelectric cube devices of volume 1 cc (from [70]).

Fig. 10. Damping optimization strategies versus operating regions

(from [70]).
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IV. REPORTED MOTION-ENERGY
HARVESTERS

A large number of research groups are currently active in

the field of motion-energy harvesting, and a wide range of

devices and applications have been reported. General

reviews of this work have also been published, such as [71].

Here we summarize some of the key developments and

trends, with examples for each of the main device types.

A. Direct Force Generators
Significantly less work has been reported on direct-

force generators than on the inertial type, possibly because

of the restricted application scenarios for the former,

particularly for miniature devices. The first reported work

appears in the patent literature. In [72], Enger proposes a

health-monitoring system powered by a piezoelectric

bimorph, which could be driven by the movement of

adjacent body tissue. The device described contains an RF

transmitter, which would operate intermittently, at a rate

depending upon the rate of power generation.

The first reported work on direct-force microgenera-

tors in the research literature is by Umeda et al. [73]. They
note that portable electronic equipment is often subjected

to mechanical shock during transportation and investigate

generation from such shock using a piezoelecric beam,

clamped at both ends, when a steel ball is dropped onto it.

González et al. address the problem of powering

portable electronics in [74] and [75]. They consider

common portable electronic items such as personal digital

assistants and mp3 players, and suggest that an average of

18–110 mW is required to run the devices that might be

carried around by a typical user. The authors assume that

as semiconductor devices shrink, the power requirements

to perform a given function scale as the linear dimension

cubed because of a linear decrease of size and of supply

voltage. It should be noted, however, that reducing the

supply voltage of a circuit means that the devices require

reduced threshold voltages, and thus static power dissipa-

tion can increase, and that some functions (such as

displays) have limited capacity for size reduction. The

authors conclude that around 1.2 W could be harvested

from human walking using piezoelectric materials (al-

though the particular configuration is not described), and

that 78 mW could be harvested from the expansion of the

chest from breathing.

Paradiso et al. of the MIT Media lab have investigated

power-harvesting from running shoes [76]–[78] as a method

of generating power for wearable electronics. The authors

describe three types of generators: a piezoelectric bender

placed in the sole, which flexes during the human gait; a

unimorph attached to a curved steel plate, which flexes under

the pressure of a heel strike, as shown in Fig. 13; and a rotating

electromagnetic generator in the heel, operated from a lever

that is pressed as the heel strikes the ground. The

piezoelectric sole and heel generators produce around 2 and

8 mW, respectively, and the electromagnetic generator is

capable of 250 mW. The harvested power is used to supply an

RFID tag transmitting an identification string every few steps.

Although the electromagnetic generator was capable of

harvesting one to two orders of magnitude more power

than the piezoelectric ones, it was reported to have a

noticeable effect on the user’s gait. The authors suggest that

the piezoelectric solutions are neater, and with the ever-

reducing power consumption of wearable devices, their

power output will be sufficient.

In [79], Kim et al. discuss the use of a piezoelectric

cymbal transducer to generate electricity from the vibra-

tion of a car engine. A cymbal-shaped device was chosen

because the authors state that this structure is efficient at

transferring stress through the material. The transducer

would be placed between the engine and engine mounting,

so that force is directly applied to it. The available power is

calculated from the effective capacitance and open circuit

voltage of the piezoelectric element. A fabricated device

was tested on a shaker, and the efficiency of the system was

Fig. 13. Energy-harvesting shoe (from [77]).

Fig. 12. Comparison of minimum Q factors with electromagnetic and

piezoelectric cube devices of volume 0.1 cc (from [70]).
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calculated to be 7.5%, although the accuracy of the method

used for calculating the mechanical energy input to the

system is uncertain. The device was then connected to a

full wave rectifier, smoothing capacitor, and buck

converter, giving a maximum processed output of about

30 mW. The target application is charging of the car’s

battery, for which the device size and power levels will

need to be much higher.

Lu et al. describe the modelling and analysis of a

piezoelectric generator in [80] for remote system moni-

toring. They suggest that using the d31 piezoelectric coef-
ficient (where the field is normal to the applied force) is

more suitable to MEMS applications than the d33 coeffi-

cient (where the force and field are parallel) because the

former allows the piezoelectric material to be strained on a

bending cantilever. This mode of operation has indeed

been the most widely adopted. The authors derive a closed-

form expression modelling a cantilever with known ac-

celeration at the free end of the beam when driving a

resistive load. The solution is valid for a direct-force appli-

cation generator rather than an inertial generator. The

authors show that there is an optimal load resistance that

will obtain the maximum electrical power.

Clark and Ramsay consider force-driven piezoelectric

generators [81] for medical applications. The input energy

for the generator is intended to be in the form of fluc-

tuating pressure in a blood vessel. The authors study a

square sheet of piezoelectric material held in a rigid frame,

with pressure applied normal to the sheet surface. They

find that the generated power increases as the sheet

thickness is decreased but, for the given operating fre-

quency of 1 Hz, a 1 cm2 sheet of piezoelectric material can

only generate around 1 �W. They suggest that the supply

could be used to power load electronics at a low duty cycle.

The possibility of harvesting energy from bending of

the knee, as discussed in Section III-C, has been realized

by Donelan et al. [82]. Their device extends over sub-

stantial portions of the upper and lower leg, so that large

torques can be produced, and output powers up to 7 W for

normal walking motion are obtained. The metabolic cost is

reduced by the generative braking action of the device, i.e.,

the transduction is actually assisting the leg motion on the

decelerating portion of the stride.

B. Electromagnetic Inertial Generators
The first examples of inertial generators using electro-

magnetic transducers are to be found in the patent liter-

ature. While mechanical self-winding watches were

successfully made by Perrelet around 1770 [83], the first

description of an electrically operated self-winding watch,

and indeed of a small inertial energy harvester, is a patent

filed in 1989 by Hayakawa of Seiko Epson Corporation

[84]. This describes the ideas behind the Seiko Kinetic

watch, which is now a commercial product . An exploded

view of the Kinetic generator is shown in Fig. 14. An

asymmetric proof mass, freely rotating about a point some

distance from its center of mass, is attached to a perma-

nent magnet electrical generator, through high ratio gears.

A more generic patent on inertial generators, from

Tiemann in 1996 [85], proposes the use of relative move-

ment between magnets and coils in a mass-spring system to

generate electrical energy from linear vibrational motion.

In the research literature, the first description of an

inertial microgenerator was of an electromagnetic type

driven by reciprocating vibration, presented by Williams

and Yates in 1995 [86]. Significant contributions of this

work are the application of the model of Fig. 3 to inertial

microgenerators, and the development of an equation for

power generation for linear inertial generators, based on

material presented by Thomson in [87]. Some basic

insights are given into the choice of generator design

parameters, e.g., that operating the generator at its reso-

nant frequency, and reducing the damping so that the mass

moves to the limit of its travel, are both beneficial to power

generation. It is also stated that both the mass and internal

travel range should be maximized. In fact, since (2) shows

that maximum power is proportional to both mass and

internal travel range, the optimal tradeoff between mass

and displacement is for the swept volume of the proof mass

to be twice its physical volume, since this maximizes the

product of travel range and mass dimension in the di-

rection of travel (by making the two equal). Power levels

from 1 to 100 �W are calculated for generators with a

15 mg mass operating between 70 Hz and 3.3 kHz. These

papers assume a real load, neglecting the inductance of the

coil; this is a valid approximation providing the reactance

of the coil is negligible at the operating frequency.

In [88], Shearwood and Yates report the first measured

results from a microengineered inertial generator

(Fig. 15). The device is similar in structure to a micro-

phone and was fabricated by patterning a planar coil on the

underside of a wafer, etching a cavity on the top, and

attaching a rare-earth magnet of mass 2.4 mg on a flexible

membrane above the cavity. An average output of 0.33 �W
was obtained from a 4.4 kHz input vibration. The mea-

sured power agrees with the model at low input ampli-

tudes, but for high amplitude inputs, spring stiffening

changes the resonant frequency and thus the output is less

Fig. 14. Exploded view of Seiko Kinetic watch

(courtesy of Seiko Instruments Inc.).

Mitcheson et al. : Energy Harvesting From Human and Machine Motion

1468 Proceedings of the IEEE | Vol. 96, No. 9, September 2008



than predicted, highlighting the potential disadvantage of

narrow bandwidth associated with using resonant struc-

tures in these systems.

In [89], for the first time, an equivalent electrical

circuit of the mass-spring damper system is used to calcu-

late an equation for the power output of linear inertial

generators. It is shown that, for maximum power genera-

tion, the electrical damping should be impedance matched

to the equivalent circuit impedance of any parasitic

damping, such as air damping. An advantage of mapping

the mechanics of the system into the electrical domain is

that it is then relatively easy to calculate generator per-

formance when loaded with an arbitrary electrical circuit.

Consequently, in this paper, the self-inductance of the coil

is included for the first time.

Digital integrated circuits and systems reseachers at

MIT, led by Chandrakasan, have investigated energy-

harvesting electromagnetic microgenerators for low-power

signal-processing applications [90]. The aim of this

research was to realize a self-powered digital signal-

processing (DSP) system having a generator and backup

voltage source, a voltage regulator, and a low-power DSP.

The authors built a generator from discrete components,

with fixed magnet and moving coil, having a proof mass of

0.5 g and a resonant frequency of 94 Hz. They note that the

output voltage (180 mV) induced is too low to be rectified

by a diode, and conclude that their system requires a

transformer, or more coil turns. For the first time, human

walking motion is considered and a simple model given.

Simulations show that around 400 �W can be generated

from this motion, although since parasitic damping effects

are not taken into account the figure presented is an upper

bound. The authors also designed and fabricated a

synchronous dc–dc converter for the system, using in-

tegrated transistors and discrete passive components.

A group of researchers from the Chinese University of

Hong Kong have reported an electromagnetic generator

with a laser micromachined spring [91]. This device also

suffers from insufficient output voltage, so a standard

voltage quadrupler circuit is used to obtain just over 2 V.

The 1 cm3 generator is shown to produce 40 �W of power

after rectification, when driven from an input vibration of

between 60 and 120 Hz, and is used to successfully drive a

commercial infrared transmitter at a duty cycle of 1%. The

same generator is also presented in [92], which describes

the integration of a microcontroller, temperature sensor,

and FM transmitter into the self-powered system. The

transmission of temperature data over a distance of 25 m is

demonstrated.

In [93], El-Hami et al. took a more fundamental

approach to electromagnetic inertial generator design than

previous authors. They describe an improved device that

uses four magnetic poles to give two flux paths flowing in

opposite directions (Fig. 16), thus doubling the rate of

change of linked flux compared to a two-pole design. In [94],

the same research group reports a condition monitoring

system powered from their four-pole electromagnetic har-

vester, tuned to 102 Hz and generating 2.5 mW for a source

displacement amplitude of 0.4 mm. A charge pump voltage

doubler circuit, and its advantages in size and efficiency over

a transformer and rectifier solution, are described. This self-

powered system measures acceleration and uses an infrared

communications link to transmit the data.

In a European collaborative project called VIBES, a

millimeter-scale cantilever beam device was developed

[95], also using the four-pole configuration (Fig. 17). The

intended motion source is an air compressor producing

large vibration amplitudes at 50 and 60 Hz. The device

volume is 150 mm3 and the measured output was 17.8 �W
at 89 mV, for a frequency of 60 Hz and input acceleration

0.6 m/s2.

Fig. 16. Four-pole electromagnetic generator (from [93]).

Fig. 15. Electromagnetic generator (from [88]).
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In [96], a method of optimization of electromagnetic

generators is simulated and demonstrated experimentally.

The authors considered a cantilever beam structure, and two

centimeter-scale generators were developed with varying

parasitic damping. The condition for maximum power

transfer for devices with strong parasitic damping is shown

to be when the coil resistance is equal to the load resistance.

Inertial generators using electromagnetic transduction

have also been developed at larger size scales. Rome et al. [97]
report backpack devices containing spring-mounted proof

masses of 20–38 kg, with the internal motion damped by a

conventional dc generator coupled to the proof mass via a

gear train. Output powers up to 7.4W are obtained. As for the

knee-bending device of [82], the metabolic cost of this power

extraction is less than would be expected based on muscle

efficiency, and this is attributed to adaptation of the gait to

maximize efficiency.

A more comprehensive review of miniature electro-

magnetic generators is presented in [98], which covers

conventional as well as inertial devices, presents scaling

laws, and discusses the significance of recent develop-

ments in permanent magnet technology.

C. Electrostatic Inertial Generators
Chandrakasan’s group at MIT has investigated MEMS-

based electrostatic harvesters, and in [99] and [100] they

report the first electrostatic microgenerator work in the

literature. These papers consider both the generator and

the associated control circuitry. They describe in detail a

comparison between constant charge and constant voltage

operation cycles, showing through the use of QV cycle plots

that constant voltage operation is superior to constant

charge operation for maximizing power generation

(although this conclusion is dependent on specific con-

straints on maximum operating voltage and capacitance

ratios in the devices considered). The authors achieve

constant voltage operation by attaching a large fixed capacitor

in parallel with the variable capacitor. A power processing

circuit is described, and optimizations are performed on the

dimensions of the metal–oxide–semiconductor field-effect

transistors (MOSFETs) and the inductor size to implement

the chosen QV cycle. Simulations of the device show that

this generator should produce 8.6 �W, with approximately

5.6 �W being available for driving a load and the rest being

used by the control scheme.

The proposed design of the variable capacitor has

evolved throughout the work presented by this MIT group.

In [101], the capacitor is a MEMS comb drive with 7-�m-

wide trenches, 500 �m deep, giving an aspect ratio of

around 70 (Fig. 18). The device would operate in constant-

gap mode with sliding combs, which is preferred to a

variable-gap parallel-plate capacitor because of the linear

change in capacitance with displacement for the former,

making control timing less critical than with the nonlinear

capacitance variation of the latter. However, attention

later moved to a parallel plate device with variable gap

because of fabrication difficulties for the comb drive.

Further analysis of the QV cycles is also given in [102],

where efforts are now concentrated on a constant charge

cycle and the power electronics for implementing that

cycle, since the circuits are deemed to be simpler to

implement for this case. No test results are presented for

the MEMS fabricated device. A discussion of the power

electronics in this paper is given in Section VI.

A major research effort on inertial microgenerators has

been undertaken by Roundy et al. at the University of

California at Berkeley. In [103], the authors describe the

design, optimization, and fabrication of a comb-drive

inertial generator similar in concept to the initial work by

Chandrakasan et al. In [2], Roundy describes three dif-

ferent topologies for electrostatic generators: in-plane

Fig. 17. Cantilever EM generator (from [95]).

Fig. 18. Electrostatic generator (from [99] and [100]).
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overlap, in-plane gap closing, and out-of-plane gap closing.

Expressions for parasitic air damping are given, and it is

stated that when operating in air, the out-of-plane gap-

closing generator will suffer particularly badly from fluid

damping. This conclusion is based on the assumption that a

very small gap must be achieved to produce high power

density. Although this is not a fundamental requirement, it

is likely to be a practical one, both to overcome parasitic

capacitances and to avoid excessive priming voltages.

Roundy notes that the out-of-plane device is significantly

harder to fabricate using standard MEMS technology than

the in-plane types; in MEMS devices, movement is gen-

erally designed to occur in the plane of the wafer. The

tradeoff between reduced travel and the number of fingers

for the in-plane gap-closing generator is comprehensively

explored and an optimal number of fingers found.

Simulations in Simulink are used by Roundy et al. to
investigate the effect of design parameters such as pressure

and dielectric thickness. They note that there are stability

pull-in problems associated with electrostatic comb

structures, and they anticipate that the pull-in distance

will set the minimum dielectric gap. The authors conclude

that the in-plane gap closing design can achieve the highest

power density because it does not suffer from electrostatic

pull-in or excessive parasitic damping. It is estimated that

such a device would generate around 100 �W/cm3 from a

vibration source of 2.25 m/s2 at 120 Hz. A scanning elec-

tron microscope picture of the device is shown in Fig. 19.

In [2], initial test results for a harvester are presented.

Diode-connected unpackaged junction field-effect transis-

tors were attached to the MEMS die using fluidic self-

assembly. Using an integrated thermal actuator, the combs

of the generator could be driven back and forth, and the

basic operation of the electrostatic converter was con-

firmed. It was found that a parasitic capacitance of 4.3 pF

dominated the operation, for a minimum inherent

capacitance of only 1.2 pF. Roundy calculates that the

device generates 1.4 nJ per cycle when precharged to 5 V

(corresponding to an input electrical energy of 0.15 nJ per

cycle). This is the first report of a MEMS-based elec-

trostatic generator that includes integrated electronics.

A much larger example of an inertial electrostatic

converter is described by Tashiro et al. in [104]. The aim is

to create an in vivo power supply for use with a device such

as a cardiac pacemaker. The variable capacitor is a honey-

comb structure variable between 110 and 32 nF and is

attached to a circuit with two rectifiers: one supplying

priming energy from a battery and one outputting the

generated energy into a storage capacitor. In order to

estimate the available acceleration from cardiac motion,

the authors attach a three-axis accelerometer directly to the

left ventricular wall of a small goat. When the generator,

with a resonant frequency of 4.76 Hz (the third harmonic)

and a proof mass of 640 g, is excited by a motion equivalent

to that measured from the goat, it produces 58 �W.

It is possible to run an electrostatic generator without

requiring priming by making use of an electret. This

technique is described by Sterken et al. in [105]. The

electret is placed in parallel with two variable comb drive

capacitors operating in antiphase, resulting in charge

transfer between the variable capacitors as the proof mass

moves. This charge transport drives current into the load.

The use of two variable capacitors means that the gener-

ated current does not have to flow through the electret

capacitor, thus avoiding the low-pass filtering effect of the

electret. In later work [106], a modified design is

presented where only one variable capacitor is used that

has been optimized towards energy generation. The

authors have presented results from a working prototype

device capable of generating 5 nW from a 500 Hz, 3 mm/s

vibration [107].

A further example of an electrostatic device utilizing an

electret is presented by Mizuno and Chetwynd in [108]

alongside their electromagnetic generator. The device uses

an electret with variable air gap and under testing produced

a 16 mV output when excited at the resonant frequency of

743 Hz, with input amplitude of 0.64 �m. No figure for

power output is given, but the authors do state that the

source impedance will be high because the capacitance of

the electret is very low. The authors suggest using many

generators in parallel but conclude that the power output of

their device is likely to be too low to be useful.

A working Coulomb force parametric generator has

been presented in [109]. The device was fabricated using a

three-wafer construction, as shown in Fig. 20. The central

wafer contains a silicon proof mass, forming one plate of

the variable capacitor, along with a silicon frame and

polyimide suspension metallized for electrical contact.

Polyimide is chosen to give a very low suspension stiffness

to avoid resonant effects. The bottom wafer is glass to

minimize parasitic capacitance. Charging and discharging

are through studs with which the moving mass makes

contact at the ends of its travel, resulting in self-

synchronous operation. Fig. 21 shows the completed
Fig. 19. In-plane generator by Roundy et al. (from [2] with kind

permission of Springer Science and Business Media).
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device, and operational waveforms are shown in Fig. 22.

The measured output energy was 120 nJ per cycle at 30 Hz,

with source acceleration of 10 m/s2. However, the power

obtained remains significantly below theoretically achiev-

able values. The authors believe an important limitation is

the motion of the proof mass in unwanted degrees of

freedom, in particular tilting.

A hybrid low frequency, low intensity vibration energy

harvester that couples piezoelectric and electrostatic

transduction mechanisms is proposed in [110]. It is an

electrostatic oscillator suspended by piezoelectric springs,

as shown in Fig. 23. The voltage developed by spring

elongation is used to prime the electrostatic transduction.

The piezoelectric springs also provide control signals for

charge and discharge cycles. A block diagram of the hybrid

harvester system is shown in Fig. 24.

An electrostatic microgenerator with 100 Hz band-

width to harvest energy over a wider spectrum of vibra-

tions is described in [111]. By using an in-plane gap-closing

charge-constrained mode, high electrical damping can be

achieved. A fabricated macroscale bulk tungsten structure,

with a volume of 18 cm3, delivered 1.76 mW at 50 Hz and

1 g acceleration, with a proof mass of 104 g. A flyback

power converter is proposed for charging and discharging

the variable capacitor.

Fig. 21. Prototype parametric generator (from [109]).

Fig. 20. Exploded view of parametric generator (from [109]).
Fig. 22. Parametric generator operational waveforms (from [109]).

Fig. 23. HALF-LIVES device structure (from [110]). (a) Plan view

and (b) elevation.

Mitcheson et al. : Energy Harvesting From Human and Machine Motion

1472 Proceedings of the IEEE | Vol. 96, No. 9, September 2008



D. Piezoelectric Inertial Generators
As with the electromagnetic inertial microgenerators,

the first instance of reported piezoelectric microgenerators

occurs in the patent literature. In [112] and [113], Snyder

describes the use of a piezoelectric generator embedded in

the wheel of a car to power a tire pressure sensor. The

generator would be powered from wheel vibration during

driving, and abnormal tire pressure could be reported to

the driver using a low-power radio link. Tire pressure

monitors have been required on every new car in the

United States since September 2007, and consequently

this application area is receiving much interest [114].

Segal and Bransky describe a novel application for a

piezoelectric inertial generator in [115], and this is the first

such device reported in the research literature. The

authors suggest using a piezoelectric disk to power the

guidance system of a projectile; although batteries are well

suited to the short operational life in this application,

energy harvesting would avoid the problem of battery

discharge during long storage times.

In [116], Elvin et al. discuss a self-powered strain sensor
for applications in structural and human health monitor-

ing. A piezoelectric material flexed by a sinusoidal force

charges a reservoir capacitor through a half bridge recti-

fier, and an RF transmitter attached to the reservoir trans-

mits a signal every time the voltage reaches a threshold.

Consequently, the time between transmissions decreases

as the piezoelectric is subject to higher forces and higher

frequency deflections, so that the time between transmis-

sions provides a measurement of strain.

In [117], Sodano et al. build upon previously published

models to derive a model of a piezoelectric cantilever that is

excited by a sinusoidal acceleration at the clamped end. In

[118], Xu et al. describe numerical simulation of a piezo-

electric material. The system is described by a parallel

conductance and capacitance. This model is in a form that

is implementable as a new device level model in SPICE.

In addition to the work described above on electromag-

netic generators, piezoelectric devices have also been

reported by the University of Southampton [119]. Proposed

applications are medical implants and structural monitoring.

The authors cite the model of [86] as a suitable ap-

proximation but state that hysteretic (or rate-independent)

damping is a more suitable model for piezoelectric devices.

In order to ease the modelling, the piezoelectric beam was

wedge shaped in order that, for a deflection of the beam by a

force applied at the tip, the stress throughout the piezoelec-

tric material is constant. The difficulties of fabrication with

piezoelectric materials are detailed. The device was tested on

a shaker table. The resonant frequency was measured as

80.1 Hz and the beam motion amplitude as 0.8 mm. The

recorded power output from the prototype was 1.5 �W.

Some of the most significant contributions of

Roundy et al. to the field of energy harvesting are in

the area of piezoelectric devices. They cite the advantages

that the maximum energy density of piezoelectric ma-

terial is higher than that of either magnetic or electric

fields in air [2], and that a piezoelectric generator does

not require an initial (priming) charge source as do

electrostatic transducers.

In [120], a detailed model of a vibration-driven piezo-

electric generator is presented. By calculating an effective

moment of inertia for their composite beam, the authors

then derive a relationship between the displacement of the

tip of the cantilever and the input acceleration. This is

dependent upon the stress of the beam, which itself is

dependent upon the electric field in the piezoelectric layer.

An equation for the power output as a function of the

mechanical excitation of the beam is then obtained. This is

the first time that such a closed-form expression is pre-

sented in the literature. The power output is first found for an

optimal resistive load; the equations are then modified to

show performance when a full bridge rectifier and smoothing

capacitor are added as a first stage of power processing.

In [121], the authors describe the realization of an RF

beacon powered by both a solar cell and the optimized

piezoelectric generator of [120]. Here 375 �W was gen-

erated from an acceleration of 2.25 m/s2 at 60 Hz, cor-

responding to a displacement amplitude of 16 �m. When

the generator drives a capacitive load through a bridge

rectifier, the power decreases by 50%. The radio can be

operated at a duty-cycle of 11% when illuminated in high

indoor lighting conditions; the duty-cycle when powered

from vibration alone is around 2%. In [122], the authors

discuss ideas for improving the power density of piezo-

electric generators, concentrating on three main methods:

employing an actuator for tuning the resonant frequency;

using multi-mass-spring systems to improve the band-

width; and changing the geometry of the beam to reduce

parasitic damping and improve robustness. The authors

also suggest that higher efficiencies could be achieved

through better integration of the mechanical generator and

power electronics.

In [123], Hammond et al. describe a working self-

powered TinyTemp node, 20 cm3 in volume (Fig. 25). This

device was designed, in a collaboration with the California

Energy Commission, as part of a building-wide sensor

network to facilitate fine-grained temperature control to

Fig. 24. HALF-LIVES block diagram (from [110]).
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increase personal comfort and energy efficiency. The dif-

ficulty of using piezoelectric materials with standard

MEMS and complementary metal–oxide–semiconductor

processing techniques is described, along with a new

process from Motorola that significantly improves process

compatibility. Design and fabrication of thin-film piezo-

electric unimorphs is described in [124]. A cantilever beam

of 800 � 800 �m2 with a proof mass of 24.7 pg on the

beam tip developed 5 mV and 24.5 pW. The initial

prototype power density was 13 �W/cm3.

Energy conversion efficiency for rectified piezoelectric

power harvesters has been studied in [125]. The relation-

ships among energy efficiency, electrically induced damp-

ing, and ac-dc power output are established explicitly. It is

shown that the optimization criteria depend on the coupling

strength. A comprehensive review of recent piezoelectric

power harvesting research is provided in [126].

E. Energy Harvester Performance Metrics
A key issue in the discussion of energy harvesters is what

performance metrics, or figures of merit, are appropriate to

compare different devices or design approaches. Power effi-

ciency could be defined for a harvester as the ratio of elec-

trical power out to mechanical power in, but while this

would give some indication of the effectiveness of the trans-

duction, it misses a key aspectVnamely, that the input me-

chanical power itself strongly depends on the device design.

On the other hand, we cannot easily define the efficiency in

terms of the potential mechanical power available from the

source since typically this is effectively limitless, i.e., loading

by the harvester has a negligible effect on the source.

Instead, the maximum output of the harvester is normally a

function of its own properties, particularly its size.

Various metrics other than efficiency have been pro-

posed, including power density [127], normalized power

density [128], and two proposed measures of effectiveness

[62], [129]. Power density is attractive because this measure

is very important to the end user; however, it only provides a

meaningful comparison for fixed vibration source character-

istics, since attainable output is so dependent on these, as

shown in (2). Also, if specific source characteristics are used

to compare two devices, they should each have been

optimized with such a source in mind.

To reach a more universal metric, a possible normalized

power density (with respect to source characteristics) is

given in [128], in which the power density is divided by

source acceleration amplitude squared. There are three

difficulties with this approach. First, it is desirable to have

performance metrics with a maximum value of unity, so that

it is clear how close the design is to optimality. Secondly,

maximum power is proportional to acceleration squared

divided by frequency, so the source dependence has not

been fully removed. Thirdly, since attainable power is

proportional to mass times internal displacement range, or

to volume4=3, dividing by volume does not remove the size

dependence completely and thus favors larger devices.

In [129], Roundy proposes a dimensionless figure of

merit called effectiveness to compare power output of

Fig. 25. (a) Piezoelectric generator and (b) self-powered sensor node (from [120] and [123]).
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various transduction mechanisms

e ¼ ðk2ÞQ2 �

�o

� �

�

�max

� �

(10)

where e is the effectiveness, k2 is a coupling coefficient of
the transduction mechanism, Q is the quality factor of the

design, �o is a baseline material density, � is the actual

density of the device, � is the transmission coefficient, and

�max the maximum transmission coefficient of the

transduction mechanism. Broad comparison of harvester

designs is possible with this metric, but it does not have a

defined maximum value, since Q has no fundamental limit,

and so it does not directly indicate how close a device is to

optimal performance.

An alternative definition of effectiveness is introduced

in [62], which we here label harvester effectiveness

EH ¼ Useful Power Output

Maximum Possible Output
(11)

¼ Useful Power Output
1
2
Y0Zl!3m

: (12)

The harvester effectiveness as defined above has a

theoretical maximum of 100% and is mainly a measure of

how closely a specific design approaches its ideal

performance; it does not distinguish between designs of

different proof mass density or geometry. For this reason,

we introduce here a variant of this metric, which we term

the volume figure of merit FoMV , which aims to compare the

performance of devices as a function of their overall size.

This is done by substituting the actual m and Zl of the
devices with values for an equivalent device of cubic

geometry, having the same total package volume but with a

proof mass, with the density of gold ð�AuÞ, occupying half
this volume, and space for displacement occupying the

other half. Such a device has a maximum power as

indicated in Fig. 7. This gives

FoMV ¼ Useful Power Output
1
16
Y0�AuVol

4
3!3

: (13)

A real device of cubic geometry could not reach an

FoMV of 100%, since some space must be taken up by the

frame, suspension, and transducer components. However,

since elongation of the device along the motion axis can

increase the power density, the value for a noncubic device

can in principle exceed 100%.

Tables 1–3 present a summary of the important

parameters of reported inertial energy harvesters. The devices

are presented in the order that they appear in the discussion

above, and the research team is identified by the first author

on the corresponding paper(s). Only papers reporting

experimental results are included in the tables. Several

observations can be made from the reported data.

• There has been significantly more work presented

on electromagnetic generators than on the other

two types.

• The typical size of electromagnetic generators has

been shrinking over the last decade.

• Around half of the reported work contains infor-

mation regarding models of microgenerators, the

other half giving measured results of prototypes.

There are six cases where results of a model and a

prototype are presented; of these, the piezoelectric

generator by Roundy et al. achieves the closest

match between the model and measurements.

• The designed operating frequency of most devices,

independent of transducer type, is 50–200 Hz.

Only three groupsVTashiro et al., Kulah et al., and
our ownVhave attempted to design inertial micro-

generators to operate at frequencies below 5 Hz.

• There is a large variation in the amplitudes of the

motion used to drive the generators, ranging from

less than 1 nm to several millimeters. Generally,

generators designed to work at higher frequencies

are driven by lower displacement amplitude

sources.

In Fig. 26, volume figure of merit is plotted against year

of publication. While there is considerable scatter, the

general trend is increasing, although at least a further

order of magnitude improvement should be possible.

Fig. 27 shows that harvester effectiveness values are mostly

in the 1–10% range, with the best value over 30%. It can

also be seen that the smallest devices have poor effective-

ness, indicating the difficulty involved in microengineered

implementations. In general, no obvious trends can be

discerned about the relative merits of the different trans-

ducer types. Fig. 28 gives harvester effectiveness replotted

against operating frequency and shows the reduced values

at high frequency, which is probably a result of the need

for higher mechanical Q in these devices and the stronger

influence of parasitic damping.

An important factor that is not captured by the metrics

used above is bandwidth of operation. For applications

where the device size is greater than the source motion

amplitude, high Q operation is generally needed to maxi-

mize output power, and this entails the penalty of reduced

frequency range of operation. However, the frequency

range over which a device can extract power effectively is

an important consideration for most applications. For this

reason, we propose a further figure of merit, the band-

width figure of merit, which is simply the volume figure of

merit times the fractional bandwidth

FoMBW ¼ FoMV �
�!1 dB

!
: (14)
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We have chosen the 1 dB bandwidth, i.e., the frequency

range within which the output power is less than 1 dB

below its maximum value; as opposed to the more common

3 dB figure, �!1dB gives greater credit to devices with

flatter frequency response, which is likely to include

tunable devices. We have not included this metric in the

tables or figures because information on frequency range is

rarely available in published reports, but presentation of

Table 1 Comparison of Effectiveness of Published Electromagnetic Motion Harvesters

Table 2 Comparison of Effectiveness of Published Electrostatic Motion Harvesters
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such data in future publications would be of considerable

value to the research and user communities.

V. ENERGY HARVESTING USING
AIR FLOW

The use of ambient airflow to power wireless sensors has

received little attention to date, which is perhaps

surprising given the relatively high power densities that

can be achieved. The kinetic energy per unit volume in a

fluid flowing at speed U is 1=2�U2, where � is the fluid

density. This corresponds to a power flow of 1=2�U3 per unit

area normal to the flow. An energy extraction device

placed in the flow cannot extract all of this power, since if

it did the fluid intercepted by the device would be brought

to rest and could not be removed from the downstream

side. The power extracted by a device of area A may

therefore be expressed as Pout ¼ 1=2CP�AU
3, where CP is a

power coefficient less than unity. It can be shown from

basic conservation laws that, for an ideal energy extraction

device, CP has a theoretical maximum of 16=27 ¼ 0:593,
the so-called Betz limit [160], with real devices achieving

lower CP values as a result of losses.

Table 3 Comparison of Effectiveness of Published Piezoelectric Motion Harvesters

Fig. 26. Volume figure of merit versus year of publication for

reported motion energy harvesters as indicated.

Fig. 27. Harvester effectiveness of reported devices versus

device volume.
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The best known device for extracting power from

airflows on a large scale is the wind turbine, and miniatu-

rization of this device is a natural starting point for airflow

harvesting on a smaller scale. Large-scale wind turbines

can be highly efficient, with power coefficients greater

than 0.5 being achievable. However, the performance of

miniature wind turbines is expected to be less good,

primarily because of the relatively high viscous drag on the

blades at low Reynolds numbers [161]. Other factors such

as bearing losses will also tend to lower the efficiency in

small devices. Fig. 29 shows the variation of output power

per unit area with flow rate for a device operating at the

Betz limit and for a device with a relatively conservative CP
value of 0.1. An air density of 1.2 kg/m3 is assumed. At the

lower CP value, a power density of 750 �W/cm2 is obtained

at a flow rate of 5 m/s, decreasing to 6 �W/cm2 at 1 m/s.

From these values, it seems that centimeter-scale energy

harvesters should be able to generate useful amounts of

power where modest ambient flows are present, for

example, in air-conditioning ducts, in outdoor environ-

ments, or on moving vehicles.

In recent years, several groups have demonstrated

small airflow harvesters based on the wind turbine prin-

ciple. For example, Federspiel and Chen [162] combined a

4-in-diameter fan rotor, a brushless dc motor operated as

a generator, and a three-phase bridge circuit to produce a

device that could deliver up to 28 mW at 5.1 m/s flow rate

or 8 mW at 2.5 m/s. More recently, Rancourt et al. [163]
have demonstrated a smaller device, with a 4.2-cm-

diameter rotor, that delivers powers of 2.4 and 130 mW

at flow rates of 5.5 and 12 m/s, respectively. In both cases,

existing commercial rotor and generator parts were used.

Myers et al. [164] have developed a custom piezoelectric

generator, which, when coupled to three 5-in-diameter fan

rotors via a crank assembly, can deliver 5 mW of output

power at a flow rate of 4.4 m/s. The relative performances

of these three devices are compared in Fig. 29.

While the results discussed above are encouraging, they

are for relatively large devices, which may not be

appropriate for many wireless sensor applications. Only

one smaller scale airflow harvester has been reported to

date. This device, shown in Fig. 30, was realized using

MEMS technology [165] and was aimed at higher flow-rate

applications. It comprises a 12-mm-diameter axial-flow

turbine integrated with an axial-flux electromagnetic

generator. Although it was not tested in a free stream,

duct tests showed that an output power of 1 mW could be

delivered at a volume flow of 35 l/min and a pressure drop

of 8.4 mbar. For operation in a free stream, the same output

power would be expected at a flow speed of around 40 m/s.

In addition to focusing on the design of more efficient

centimeter-scale turbines, ongoing work on airflow har-

vesters will need to address the problem of operation at

Fig. 28. Harvester effectiveness of reported devices versus

operating frequency.

Fig. 29. Energy harvesting from airflow: expected power output as a

function of flow speed and results for some prototype devices.

Fig. 30. MEMS airflow harvester, with 10 pence coin for scale

(from [165]).
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very low flow rates. In order to be useful in a wide range of

applications, airflow harvesters will need to operate at flow

speeds down to about 1 m/s; for this to be possible with

turbines, very low-friction bearing solutions will need to

be found. Because of this limitation, alternative ap-

proaches to airflow harvesting based on flapping or

vibrating elements, that can avoid the use of bearings,

are also likely to receive increased attention in future.

Such approaches have previously been used in flow

measurement and are currently being developed for larger

scale power generation.

VI. POWER ELECTRONICS FOR
MICROPOWER GENERATORS

There are two key reasons why conditioning of the output

power of a micropower generator is called for. First, it is very

unlikely that the unprocessed output of the transducer will

be directly compatible with the load electronics. Secondly,

in most cases it is desirable to maximize the power transfer

from the transducer by optimizing the apparent impedance

of the load presented to it. It may also be necessary to

provide energy storage for sources that are intermittent or

for relatively high power loads that run in burst mode.

It is clear from the literature to date that much more

attention has been paid to the transducer itself than the

power conditioning. Most researchers have used a simple

resistive load to determine the electrical power output of

their transducers. Some perform simple processing by

bridge rectifiers and smoothing capacitors, and only a

small number of publications describe more sophisticated

power processing stages with voltage regulation or power

transfer optimization.

Most of the work on power electronics for motion

harvesters has been for piezoelectric transducers, where

the transducer voltage is relatively high. A first report of

this by Shenck [78] addresses the direct-force piezoelectric

generator in a running shoe. It was found that a direct

discharge by connection to a rectifier and smoothing capa-

citor does not extract maximum power. Instead it is ne-

cessary to switch the connection between generator and

processing circuit so that the limited charge of the

piezoelectric material is removed only when it has reached

maximum voltage, thereby maximizing the energy ob-

tained. A step-down switch-mode power supply (incorpo-

rating a transformer to allow a reasonable duty cycle for

the large conversion ratio) was appended to regulate the

output voltage.

The optimization of power transfer through impedance

matching was first discussed in a piezoelectric design by

Ottman et al. in [166]. The piezoelectric element was

modelled as a sinusoidal current source and parallel

capacitor. Tests showed that constant model parameters

could be used for a range of loads at the resonant fre-

quency. The transducer is connected to a full-bridge diode

rectifier and smoothing capacitor with the capacitor volt-

age varied to maximize power transfer. The optimal volt-

age is found to be a function of the mechanical excitation

and so adaptive control of the voltage is required. For a

battery charging application, a dc–dc converter is proposed

and maximum power transfer is obtained by maximizing

the output current (into the near constant output voltage)

through iterative adjustment of the duty cycle of the con-

verter. Experimental results from a piezoelectric bimorph

mounted on a shaker closely match the theory. The adap-

tive controller takes 6 min to settle at the optimal duty

cycle and achieves a maximum efficiency of 88%. The

maximum harvested power of the converter was around

70 mW (not accounting for the consumption of the con-

troller itself). Calculation of the optimal duty cycle was

adopted in [167] to avoid iterative controllers. With this

approach, the power consumption of the controller itself

was 5.74 mW, and again experimental results confirmed

the theory. Maximum power output was 24 mw from a

transducer output of 30 mw. At low excitation, the con-

troller is bypassed to avoid consuming all the generated

power. Kim et al. in [80] showed an experimental approach

to finding an optimal duty cycle for a switch-mode power

converter, but without supporting theory.

In [168], Le et al. note that the diode rectifier used in

[166] and [167] will cause voltage drops that lose signi-

ficant power at the low transducer voltages possible in a

microgenerator, and go on to investigate charge pump and

voltage multiplier circuits which use MOSFET synchro-

nous rectifiers in place of diodes. Because the piezoelectric

material has a series capacitance, a half-wave voltage

doubler that makes use of that capacitance is easily in-

corporated into the rectifier. The synchronous half-wave

voltage doubler is shown to obtain the highest output

power of all the techniques tried. The authors use an

arbitrary waveform generator and a series RC circuit to

simulate the output of the piezoelectric device to conduct

tests. They report a maximum useful power output of

18.8 �W at a power processing efficiency of 92%, but the

details of excitation are not given. The use of charge pumps

to increase the transducer output voltage is also presented

by James et al. in [94] and Ching and Li et al. in [91], [92],

[130], [131], and [133] for electromagnetic generators.

James et al. note that this technique is superior to using a

transformer not only in terms of electrical efficiency but

also because of constraints on size and weight.

In [169], Le et al. describe a circuit for interfacing with
a pressure-excited piezoelectric membrane. The mem-

brane had a resonant frequency of 340 Hz with a signi-

ficant second-harmonic output, and the maximum open

circuit voltage is around 1 V. An equivalent circuit of two

sinusoidal voltage sources in series and a parallel RC cir-

cuit was developed. The low voltage and relatively high

output impedance of the transducer are cited as the main

difficulties in designing the power electronics. A half-

bridge synchronous rectifier and capacitive voltage

doubler were used and controlled by a circuit using FETs
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in subthreshold mode. In simulation, an efficiency of more

than 90% was obtained for current greater than 4 �A from

about output voltage of 0.5 V (with a 0.2 V output ripple).

Among suggested modifications, a full-bridge synchronous

rectifier with active control is found to be the most

efficient.

In [2], Roundy et al. provide analysis that shows the

maximum available power from a piezoelectric converter

is greater with a resistive load than with a capacitive load

connected through a full-bridge diode rectifier. Roundy’s

results agree with those of Ottman et al. for the rectifier

and capacitor case in that the maximal power transfer

occurs when the voltage on the smoothing capacitor is half

of the open circuit voltage of the piezoelectric element

(assuming that the smoothing capacitor is large compared

to the series capacitance of the transducer). The authors

note, however, that a pure resistive load is not useful and a

typical load will be a diode rectifier and smoothing

capacitor. A further possibility that should be investigated

is an active rectifier controlled to draw sinusoidal current

and present a resistive characteristic to the transducer.

Lefeuvre et al. have recently designed a power con-

verter for use with piezoelectric generators [170]. In order

to maximize the power harvested, the circuitry needs to

present an optimal load resistance to the piezoelectric

element. In order to achieve this in an efficient way, the

authors use a buck-boost converter running in discontin-

uous mode with a fixed duty cycle. When running in dis-

continuous mode, the input impedance of a buck-boost

converter is resistive (the input current automatically

increases in proportion to the input voltage) if the output

voltage is held constant (i.e., connected to a battery). This

feature of the circuit means that an adaptive control circut

is not needed, which reduces the power consumption of

the control circuitry. However, if the circuit enters con-

tinuous conduction mode, this linear relationship between

current and voltage is lost and so a closed-loop controller

would be required. Results obtained from the prototype

converter give an efficiency of 84% for input voltages

between 1.6 and 5.5 V and for output powers between

200 �W and 1.5 mW.

If a resistive load is connected to a piezoelectric ele-

ment, maximum power is generated when the resistance of

the load is the same as the magnitude of the impedance of

the capacitor at the given operating frequency. This can

significantly reduce the damping force available from the

transducer and the amount of energy that can be dissipated

in the load, as much of the energy generated is reactive,

being stored in the piezoelectric capacitance. A method to

reduce these problems is to use the nonlinear processing

technique presented by Guyomar et al. in [171]. In this

technique, the polarity of the charge on a piezoelectric

element is reversed by ringing the charge through an

inductor when the element is in a stressed state. In other

words, a cantilever beam is bent in one direction, charging

the piezoelectric material with a polarity in which the

electric field tries to straighten the beam. Then, the

polarity of the charge on the element is reversed, meaning

that the electric field direction is such that the beam bends

further. This technique allows an increase in the force

against which work is done to generate electrical energy.

In addition, the energy transfer from the piezoelectric

element to load is no longer hampered by the shunt

capacitance. It should be noted that this technique does

not allow the limits on power generation presented by the

linear equation of (5) to be exceeded, but it does allow

greater damping forces to be achieved in piezoelectric

harvesters and overcomes the limit on power transfer

brought about by the existence of the shunt capacitor.

Power electronics for electrostatic microgenerators is

considered in [102]. Although two circuit topologies for

both constant charge and constant voltage operation are

discussed, the work concentrates on the former. The pro-

posed circuit charges and discharges the variable capacitor

of the transducer from a reservoir via an inductor using

MOSFET switches. Standard commercial MOSFETs of

vertical structure were chosen because of their relatively

small capacitances. A scaled-up test transducer was built. A

simulation model in Matlab allowed circuit and transducer

to be modelled with several measured parasitic compo-

nents included, albeit with approximations such as

constant valued MOSFET capacitances. (Simulation in

SPICE, which allows accurate circuit simulation, is also

possible [172].) Results from the model agree very well

with the experimental results. Further work in [102]

applied the Matlab model to smaller scale devices,

although a relatively large inductor of 1 mH was used in

the processing circuit (too large for on-chip integration).

The MOSFETs are changed to lateral devices. These are

compatible with integrated circuit (IC) and MEMS pro-

cesses, whereas vertical devices are not, but the claimed

benefits of absence of body-drain diode and lower capaci-

tance we believe to be erroneous. The simulation results

show that for an energy generated by the moving plate

capacitor of around 24 nJ/cycle, only 0.5 nJ is transferred

to the output (an electrical efficiency of around 2%). The

author concludes that the parasitic capacitance of the

MOSFETs and the series resistance of the inductor are

the main contributing factor to the low efficiency, and

calculates that if the former could be reduced by a factor

of ten, the efficiency of the power electronics would

improve to 54%.

In an analysis of power processing circuits for the

CFPG, it was shown that the power converter attached to

this device needs to have an off-state impedance of more

than 1012 � and less than 1 pF of input capacitance to

maintain 80% of the generated energy [173]. To achieve

this high level of impedance, a thin-layer silicon-on-

insulator MOSFET was designed. The power converter

circuit was then simulated using finite element software,

so that the physical effects such as electron-hole pair

generation and impact ionization, substrate currents, and
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charge storage could be modelled. Detailed simulation

studies were carried out to optimize the MOSFET device

area to optimize the energy generated from the system,

taking into account conduction loss and charge-sharing

effects. The on-state voltage drop of the MOSFET

predominantly affects the conversion efficiency because

of high peak currents, which are due to the low inductance

used in the circuit in order that the inductor could be

integratable on chip. It was found that when the MOSFET

was replaced by an insulated-gate bipolar transistor

(IGBT), the size of the inductor could be reduced by a

factor of two while maintaining the same conversion

efficiency. Exploiting latch-up in the IGBT was found to

give further advantage [174].

In [175], the authors briefly discuss the power pro-

cessing circuits suitable for the three main transducer

types. A dual-polarity boost converter is proposed for the

electromagnetic transducer. This is convenient for two

reasons: the voltage from the transducer needs to be

stepped up in order to power circuitry and the dual polarity

nature of the converter removes the need for the voltage

drop associated with a bridge rectifier.

There is broader work on low-power on-chip power

processing relevant to energy harvesting, such as reported

in the special issue on BIntegrated Power Electronics[

of the IEEE Transactions on Power Electronics in

May 2005. For instance, Ó’Mathúna et al. in [176] report

work on integrated magnetics and note that integrated

inductors, a requirement for on-chip power processing, with

values of 1 �H and dc resistances less than 150 m�, have

been reported. They also note that lateral power MOSFETs

(compatible with IC design and MEMS) have been realized

with power capabilities comparable to the common vertical

power MOSFETs. These are two key technologies for

achieving highly efficient on-chip power processing.

VII. COMMERCIALLY AVAILABLE
MOTION HARVESTERS

There are clear application areas for motion-harvesting

microgenerators, particularly for wireless sensors, and to

meet these a number of commercial offerings have appeared.

This is still an immature market, with some companies

seeing themselves as pioneers, helping customers under-

stand what such microgenerators can offer. It is also the case

that the full range of generator types is not yet available, and

some of the offerings are still engineering samples.

The general position is that the power required in many

applications is well above that achieved by the micro-

engineered devices that are the focus in much of the re-

search community. The commercial suppliers bridge that

gap by offering miniature conventionally engineered gen-

erators rather than true MEMS devices. The target

applications are those where small size is not a crucial

requirement but avoidance of batteries is. Even with these

relatively large generators, it has been necessary to target

well-characterized narrow-band vibration sources of high

amplitude and frequency.

Two companies offering electromagnetic harvesters are

Perpetuum and Ferro Solutions. The similarities in their

devices are perhaps more evident than their differences.

Perpetuum offers devices such as its PMG17 [140] and

Ferro Solutions offers the VEH360 [141]. Both are mecha-

nically resonant devices with a relatively narrow band-

width centered on the frequencies at which electrical

machines are supplied, although the PMG17 is tuned to the

second harmonic (100 or 120 Hz) and the VEH360 to the

fundamental (50 or 60 Hz). The PMG17 is slightly larger at

55 mm diameter and 55 mm length against 66 and 39 mm

for the VEH360. The weights are 0.7 and 0.29 kg, respec-

tively. At a source acceleration of 0.1 g, the PMG17 has

a stated power of 4.5 mW, while that of the VEH360 is

10.8 mW. However, the former is rectified dc output,

while the latter is raw ac into a resistive load; for 3.3 VDC

output at 0.1 g, the VEH360 quotes only 2 mW. The

PMG17 also has a wider bandwidth at this acceleration,

7 Hz versus 3 Hz for the VEH360 (the fractional band-

width is thus roughly equal). For dc output, both show

power approximately proportional to source amplitude.

The VEH360 is also offered with a power processing cir-

cuit, containing a large storage capacitor that approxi-

mately doubles its length. The FoMVs of the PMG17 and

VEH360 are recorded in Table 1 and Fig. 26; while the

latter is significantly higher, other factors must also be

considered, as noted above, including bandwidth, power

processing circuitry, and usable input amplitude range.

Vibrations in the 100 Hz region are also being ad-

dressed with the Volture piezoelectric microgenerators

offered by Mide. The largest, the PEH20W [159], is

92 � 44 � 10 mm, including the power processing cir-

cuit. It is a resonant device with a 3 Hz bandwidth but can

be passively tuned (by choice of mass) within the range

50–150 Hz. With 1 g input excitation, it will produce

8 mW when tuned to 50 Hz and 1.8 mW when tuned to

150 Hz. The energy yield is almost a linear function of

acceleration amplitude down to 0.2 g. From a volume of

about 30% of the Perpetuum PMG17, it produces 3.5 mW

at 100 Hz and 1 g, which is less than 10% of the cor-

responding 40 mW of the PMG17. The FoMV of the

PEH20W (Table 3) varies from 0.16% at 50 Hz to 0.012%

at 150 Hz. However, the PEH20W includes the power

processing within the package volume. The piezoelectric

element without power processing, mounting, proof mass,

or case is very small at 50 � 38 � 0.76 mm.

Two other piezoelectric devices are worth noting but

can not be fully analyzed from publicly available data.

Advanced Cerametrics produces microgenerators using

fiber composite materials for integrating into clothing or

creating complex shapes.2 An example with a resonant

frequency of 35 Hz is claimed to yield 145 mW when

2http://www.advancedcerametrics.com/pages/energy_harvesting.
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driven with a force of 4 N, but there are no data available

on the device size. EnOcean offers a wireless switch [55]

that transmits data with each button press. Pressing the

button excites a piezoelectric element that powers the

transmitter.

Kinetron offers rotational generators for energy har-

vesting. These use permanent magnets rotating within coils

in a miniature variant of a conventional electrical gen-

erator. The smallest device is the MG204 at 4 mm dia-

meter and 2.2 mm length [177]. When rotated at 5000 rpm,

it can generate 10 mW. Direct comparison with the

vibration driven generators is difficult because of the

difference in movement source. It is offered with a water-

driven turbine, and also with an eccentric mass and spring

arrangement that can drive the generator from low-

frequency irregular body movement. For an assumed

4000 revolutions of the mass per day from wrist move-

ment, 400mJ can be generated, corresponding to about 5 �W
average power.

VIII. CONCLUSION

Energy harvesting is a topic of substantial and increasing

research attention, and motion-driven devices represent a

large fraction of this activity. Motion energy harvesting

devices are now offered commercially by several compa-

nies, mainly for applications where machine vibration is

the motion source, although body-powered applications

(particularly body sensor networks) are actively pursued.

Fundamental analysis indicates that for body motion in

particular, achievable power levels for miniature harvest-

ers (below 1 cc) will reach a few milliwatts at most, thus

limiting the range of devices that can be powered. Wireless

sensor nodes are the most promising application area for

vibration harvesting, with a wide range of application areas

and corresponding motion sources.

Reported implementations of energy harvesters are

showing progress on miniaturization, and practical MEMS

devices are beginning to appear. Piezoelectric, electrostat-

ic, and electromagnetic devices are all widely investigated.

Reported power levels are improving but remain well

below theoretical maxima. Metrics for comparing device

performance are not straightforward to define, with effec-

tiveness providing a more useful concept in this regard

than efficiency. Two performance metrics are used in this

paper for inertial harvesters: one (Bharvester effective-

ness[) that is relative to the chosen device parameters of

mass and internal motion range and one (volume figure-of-

merit) that is relative to the overall volume of the device.

Comparisons using these measures show that the highest

effectiveness values have been achieved for larger devices,

operating in the frequency range 10–100 Hz.

Practical exploitation of harvesting devices depends on

having efficient power processing and control circuitry,

and consequently electronics for energy harvesting devices

is a rapidly growing subtopic of research. Dynamic power

optimization solutions (e.g., maximum power point

tracking) are beginning to appear. Successful exploitation

of motion energy harvesting for many applications is likely

to require integrated design of the complete wireless

system, including power-aware operation of the powered

device. h
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