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SUMMARY 

 

This dissertation examines residential energy behavior through three studies.  A meta-

analysis of the residential rebound effect located 20 studies.  Transportation area studies were 

excluded.  A study-level random effects model finds an average rebound effect size of 42%.  

Fixed effects meta-regression models suggest studies focused on comfort factor, which examines 

largely consumer behavior change, find 34 – 36 percentage point lower rebound effects than 

other studies.  This difference may be due to issues with predicting savings, implementation, 

performance, and other factors.  Meta-regression findings also suggest rebound effect estimates 

may be impacted by study characteristics such as the participant selection method, availability of 

financial incentives, and the measures implemented.  

The second study finds current residential smart grid deployment, as determined by 

Advanced Metering Infrastructure (AMI) installations, correlated with reduced average utility 

household electricity use.  However, the predicted decrease (0.9% reduction at 100% AMI 

penetration in the residential sector) is lower than some experimental research findings. This 

suggests current smart grid information feedback may not be fully deployed, optimally designed, 

or readily accessible. 

Lastly, the impacts of national residential smart grid were projected using the National 

Energy Modeling System.  Twelve smart grid scenarios were developed by varying price 

elasticity and rebound effect in the source code.  These scenarios are projected to realize energy 

and environmental benefits over the long term.  However, residential sector energy savings are 

projected to be greater than all sector savings.  With these scenarios for residential smart grid, 

energy use in the commercial, industrial, and transportation sectors are projected to increase.  

This suggests cross-sector policies may benefit smart grid implementation. 
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INTRODUCTION 
 
 
 
It may be difficult to imagine how our individual energy patterns impact national energy 

demand.  Many might believe that business and industry have more impact on energy and 

environment.  Perhaps, to the surprise of some, the combined energy decisions of Americans at 

home exceeds the energy used by the commercial sector in the United States by 3% (U.S. Energy 

Information Administration, 2015).  In 2014, the residential sector consumed about 22% 

compared to the 19% of total U.S. energy consumed by the commercial sector (U.S. Energy 

Information Administration, 2015).  Further, the residential sector more significantly impacts 

carbon emissions than the industrial sector.  Over a third of national carbon emissions can be 

attributed to the residential sector, greater than that of the industrial sector, due to its high 

reliance on electricity (Gardner & Stern, 2008; Vandenbergh, Stern, Gardner, Dietz, & Gilligan, 

2010).   

Our decisions at home, when examined collectively, have significant national impact.  

Reductions in residential energy use through energy efficiency or other measures can lead to 

reductions in carbon emissions and environmental improvement.  Energy efficiency is 

recognized as one of the most productive energy resources (Natural Resources Defense Council, 

2013), one that can lead to significant energy savings (Brown, Gumerman, Sun, Baek, Wang, 

Cortes, & Soumonni, 2010).  Household decisions to pursue energy efficiency or changes in 

energy behavior can, collectively, reduce national energy consumption and improve energy 

security.  How do we realize this potential?  Perhaps technology, especially information 

technology advancements, might empower consumers to capture this potential. 
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Electricity generation and transmission have long stagnated in terms of innovation.  

Electrical generation efficiency has not increased for more than half a century while transmission 

cables are largely 1950s technology facing significant electrical transmission losses (Brown, 

2007).  Recent energy policy has focused on upgrading current electrical grids.  The American 

Recovery and Reinvestment Act (ARRA) of 2009 provided $4.5 billion in grid modernization 

support.  With a match of over $5.5 billion in private sector funds, grid modernization funds 

totaled over $10 billion.  In June 2011, smart-grid development in rural U.S. received an 

additional $250 million in loans (U. S. Department of Energy, 2011).  Smart grids incorporate 

information technology within the existing electrical infrastructure, sending information among 

utilities, power producers, and consumers.  Due to improved knowledge and management of 

electrical system production and demands, smart grids incorporate renewable energy better than 

the traditional electric grid.  Since utility awareness of the electric grid improves with smart 

grids, issues are fixed more rapidly.  Smart grid programs not only provide funds to upgrade and 

improve the electrical grid, they also support technologies to provide real-time information 

capabilities within consumers’ homes.  Smart meters transmit electrical usage to the utility 

directly without a human meter reader in time intervals of an hour or less.  They may also 

transmit pricing and usage information to the consumer, remotely turn electrical service on or 

off, and report outage information to the utility (U.S. Department of Energy, n.d.).  To date, over 

58.5 million smart meters have been installed in the U.S., with about 88% of them in the 

residential sector (U.S. Energy Information Administration, 2016).   

The large financial investments in smart grids were made based on claims that they 

would advance utility operations, improve customer information and subsequent energy use, and 

enable a clean energy economy.  At the time of the ARRA, “there was very little data from actual 
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smart grid deployments to back up [these] claims” (U.S. Department of Energy, 2011), despite 

over thirty years of household energy consumption research (e.g., Dubin, Miedema, & Chandran, 

1986; Hayes & Cone, 1977; Quigley, 1984; Seligman & Darley, 1977; Shin, 1985; Stern, Dietz, 

Gardner, Gilligan, & Vandenbergh, 2010).  How information, such as real-time energy 

consumption and pricing information, can be presented to be most useful in consumer energy 

decisions is a needed area of improvement (Dietz, 2010).  Likewise, the translation of behavioral 

insights into practice has been a missing effort (Allcott & Mullainathan, 2010).  Effective use of 

behavioral insights in technologies like smart meters will help increase residential energy 

efficiency by providing “credible information at points of decision” (Vandenbergh et al., 2010).  

These areas of knowledge are key to understanding the impact of smart grid technologies and 

how they can be best utilized. 

Smart grid projects can help realize the potential of information programs in altering 

consumer behavior.  The acknowledgement of how additional information impacts human 

decision making goes against traditional economic assumptions.  In reality, consumers generally 

tend to underestimate their energy use and savings (Attari, DeKay, Davidson, & De Bruin, 

2010).  Residential consumers have minimal knowledge of energy units, consumption, and other 

related knowledge (Attari, DeKay, Davidson, & de Bruin, 2011; Carrico et al., 2010; Frederick, 

Meyer, & Mochon, 2011).  In general, the U.S. population has low environmental literacy, to 

which energy knowledge is greatly linked, likely due to fragmented environmental exposure 

provided by media sound bites (McKeown, 2007).  Smart grid technologies provide a platform to 

improve consumer energy and environmental knowledge.  Leveraged effectively, they may 

significantly alter U.S. residential energy demand by providing easily accessible information, 

improving consumer knowledge, and informing behavioral change.   
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Energy savings from household behavioral changes can result in up to 20% reduction in 

residential emissions (Dietz, Gardner, Gilligan, Stern, & Vandenbergh, 2009).  Since “energy use 

is not a behavior but an outcome of behavior” (Stern, 1992), policies expecting to affect 

residential energy use require a realistic behavioral model to realize policy goals.  In reality, the 

“self-focused maximization of consequential material outcomes” is only a subset of goals driving 

human behavior (Weber & Johnson, 2012).  Actual human behavior is complex and impacted by 

various factors.   

How people behave impact the success of energy programs and policies.  The Hood 

River Conservation Project achieved a high participation rate of 85% of eligible households in 

retrofit measures in part due to the mobilization of social networks through word-of-mouth 

recruitment (Hirst, 1989).  Households with similar equipment and device setups exhibited an 

almost 40% difference in actual energy use, one attributed to differences in behavior (Desmedt, 

Vekemans, & Maes, 2009).  

Even in the same household, different behavior can occur. When a household purchases 

an energy efficient technology, their energy behavior may change.  This phenomenon is called 

the rebound effect or the takeback effect (e.g., Deurinck, Saelens, & Roels, 2012; Dinan & 

Trumble, 1989; Schwarz & Taylor, 1995).  After consumers implement an energy efficient 

technology, energy savings are predicted by assuming the same energy behavior before 

efficiency implementation.  The rebound effect occurs when the predicted energy savings are not 

realized fully.  Consumers “take back” some of the potential energy savings from the efficient 

technology when they use more energy services after efficiency implementation.  Energy 

efficient technologies effectively reduce the unit price of the provided energy service.  

Householders may opt to use the energy service provided by efficient technology more.  
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Householders may also opt to use other energy services more as they apply the monetary savings 

from efficiency implementation elsewhere (Greening, Greene, & Difiglio, 2000).   

Policies designed with a false or incomplete understanding of human behavior may fail to 

realize the projected technical energy efficiency potential.  Policies aimed towards reduction in 

residential sector energy use should intervene at the level of the decision maker, the residential 

consumer (Dietz, Stern, & Weber, 2013).  A better understanding of how consumers respond to 

new technologies may lead to better predictions of energy policy impacts.  With an improved 

understanding of decision factors impacting household energy use, policymakers may craft more 

effective residential policies.   

In recent years, the number of studies regarding consumer behavior, especially 

addressing novel energy technologies and rapid real-time provision of energy information, has 

increased.  Many researchers promote more multi-faceted and comprehensive approaches in 

examining consumer behavior and how it relates to energy use (e.g., Gram‐Hanssen, 2010; Van 

den Bergh, 2008).  Though these efforts arise from varied disciplinary areas, they all recognize 

the complexity of human behavior, a complexity that cannot be explained fully by existing 

theories.  These efforts also recognize the impact of individual, social, and cultural variables.  As 

the understanding of human behavior improves, it has been readily incorporated into energy use 

models, blending social, psychological, and economic approaches (e.g., Czap & Czap, 2010; 

Hargreaves, Nye, & Burgess, 2013; Hori, Kondo, Nogata, & Ben, 2013; Sahakian & Steinberger, 

2011; Sardianou, 2007; Thogersen & Gronhoj, 2010; Urban & Scasny, 2012). 

The work reported here examines the impact of information, like that provided by smart 

grid technologies, on consumer behavior and energy use.  This study uses a comprehensive 

approach to understand residential consumer energy behavior through three analytical chapters.   
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The first analytical chapter, a meta-analysis of residential rebound effect, examines how 

consumers respond to energy efficiency measures.  A meta-analysis is well suited for examining 

the current state of a field, especially where small sized studies, like some rebound effect studies, 

dominate (Card, 2012).  No meta-analysis of this subject area has been yet conducted, despite the 

vitriolic arguments over the magnitude of the rebound effect.  One faction believes the rebound 

effect to be smaller than the overall energy savings (<100%) and the other faction believes it is 

larger than the overall energy savings (>100%), thereby leading to an increase in energy use with 

energy efficiency implementation (González, 2010).   

Next, an analysis of advanced metering infrastructure projects, a key component to smart 

grid, determines how current smart grid developments have impacted residential energy 

consumption.  A more integrative approach is taken, one that includes consumer socioeconomic 

variables and socio-physical characteristics. 

Lastly, the results from the previous analyses inform inputs in the National Energy 

Modeling System to forecast a national residential smart grid.  This allows examination of 

residential smart grid policies with more realistic rebound effect assumptions on regional and 

national energy demand over the long term.  Sensitivities with different rebound effect and price 

elasticity of electricity assumptions are performed to determine the impact of varied consumer 

behaviors and assumptions. 

Overall, this project increases the understanding of factors affecting energy behavior and 

demand and how these impact future policy projections.  This work contributes to the 

accumulating research on consumer energy behavior.  Currently, policy makers and utility 

operators need more understanding of actual consumer behavior to design effective programs.  It 
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is imperative that the impact of smart grid technology and energy efficiency measures be well 

understood to craft pertinent and successful energy policies.     
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CHAPTER 2. META-ANALYSIS OF RESIDENTIAL REBOUND EFFECT 
 
 
 

2.1 Introduction  

Energy efficiency is often cited as an effective measure to help combat climate change 

through its reductions in energy use and associated emissions.  In the residential sector alone, the 

combination of energy efficiency measures and behavioral changes has been projected to reduce 

20% of direct household emissions and over 7% of total U.S. national emissions (Dietz, Gardner, 

Gilligan, Stern, & Vandenbergh, 2009).  However, the issue of the rebound effect, the re-

optimization of demand given the price and income changes from energy efficiency 

implementation (Borenstein, 2015), continues to be a thorn in the side of energy efficiency 

advocates.  The rebound effect issue has led to statements such as (Herring, 2006): 

 

…energy efficiency is not as ‘environmentally friendly’ as many claim. Its promotion will 

not necessarily lead to a reduction in energy use and hence reduced CO2 emissions.  

 

The rebound effect leads to uncomfortable implications for energy and climate policy.  

This discomfort may lead many researchers to ignore the rebound effect issue, despite its policy 

and environmental significance (Sorrell, 2009).  The size of the rebound effect, which dictates 

whether energy efficiency does or does not realize energy and environmental benefits, remains 

contentious (Freire González, 2010).  Conversations about the impacts of energy efficiency and 

the rebound effect are inconclusive, polarized, and many times theoretical (Sorrell, 2009).  

However, these previously academic disagreements have spilled into the mainstream press 

(Herring, 2006), with recent publications in The New York Times and The New Yorker (Owen, 

2010; Revkin, 2014a, 2014b; Shellenberger & Nordhaus, 2014; Tierney, 2011).  The controversy 
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regarding the size and source of the rebound effect needs to be addressed to create effective 

policies (Greening, Greene, & Difiglio, 2000).   

The rebound effect describes the phenomenon where energy efficiency implementation 

saves less energy than expected (e.g., Deurinck, Saelens, & Roels, 2012; Dinan & Trumble, 

1989; Schwarz & Taylor, 1995).  It is usually attributed to change in consumer energy behavior 

after efficiency implementation.  Inconsistent usages and definitions of rebound effect add to the 

contention and confusion (Borenstein, 2015; Greening et al., 2000).  The term rebound effect 

arose from the microeconomic literature to describe how technical efficiency improvements can 

increase the supply of an energy service and its demand (Khazzoom, 1980, 1987, 1989).  Since 

then, rebound effect has also been used to describe macroeconomic effects (Greening et al., 

2000).   

The rebound effect literature is dominated by a dichotomy of usually small experimental 

direct measure studies and large econometric studies.  Direct measure studies many times have 

poor methodological quality, lacking random assignment of experimental households, control 

groups, and large study sizes (Greening et al., 2000; Sorrell, Dimitropoulos, & Sommerville, 

2009).  These studies do not have the rigorous design of true experiments and are called quasi-

experimental studies.  Quasi-experimental studies are often dismissed due to small sample sizes 

and potential complications.  Researchers, like Greening et al., often emphasize econometric 

findings over direct measure ones (2000).  Yet, quasi-experimental studies are the only ones that 

examine consumer behavior in-place and try to measure its impact on energy use.   

The dismissal of quasi-experimental studies for their shortcomings effectively minimizes 

or removes the contributions of engineering and consumer behavior studies from the rebound 

effect conversation.  To craft effective policies and to improve efficiency equipment, a thorough 
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understanding of real world consumer energy behavior is required.  Stern notes the integration of 

knowledge across fields is necessary to understand individual household interactions with energy 

systems and that the knowledge of one discipline rarely provides enough insight to fully grasp 

such interactions (2014).  The dismissal of the quasi-experimental literature is a loss of 

information to consider and guide future energy research.   

Research at the micro level, focusing on an individual household or small samples, can 

provide unique insights into consumer behavior.  As Bladh (2011, p. 238) says, “the advantage 

of micro-level studies is that you can find the mechanisms at work in a process of change” and 

examine the “fine details of consumer behavior.”  Many econometric studies rely on historical or 

cross-sectional energy price variation to estimate rebound effect from price elasticity.  These 

studies are not immune to bias and may provide over-estimates of rebound effect (Sorrell & 

Dimitropoulos, 2008; Sorrell et al., 2009).  They also miss household level interactions that 

quasi-experimental studies can capture.  This study aims to address the current emphasis on 

econometric findings within the rebound effect literature by examining the quasi-experimental 

residential literature and its contributions. 

 Meta-analysis is a statistical tool that allows researchers to assess the current state of a 

field through including all relevant studies, regardless of sample size (Card, 2012).  No meta-

analysis of the quasi-experimental residential rebound effect studies has been yet conducted, 

despite the vitriolic arguments over the rebound effect magnitude.  This chapter examines the 

rebound effect through a meta-analysis of the quasi-experimental residential energy efficiency 

literature.  This analysis aims to clarify what the quasi-experimental research says about the 

rebound effect and its size.  First, pertinent literature is covered, followed by research goals, data 

description, and methodology.  Results, discussion, and conclusions follow.       
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2.2 Literature Review 

2.2.1 Rebound Effect Components and Size 

Energy efficiency saves money by using less energy to provide the same level of service 

as a less efficient measure.  The rebound effect is the re-optimization of demand based on price 

and income changes caused by energy efficiency implementation (Borenstein, 2015).  The 

microeconomic view of rebound effect divides it into two effects, direct and indirect rebound.  

The direct rebound effect occurs when the monetary savings from efficiency are spent on using 

the energy efficient service more.  This can be decomposed into income and substitution effects 

in consuming the energy service in question (Berkhout, Muskens, & Velthuijsen, 2000; 

Borenstein, 2015; Greening, Greene, & Difiglio, 2000).  The indirect rebound effect occurs when 

monetary savings from energy efficiency are applied to other areas of consumption.  Though this 

is an income effect, it is not the full income effect from energy efficiency upgrade which also 

includes the consumption change of the efficient energy service due to income effect 

(Borenstein, 2015).  If energy cost is low, actual household income savings from efficiency is 

small.  The indirect residential rebound effect is likely small (Greening et al., 2000).   

There are many empirical estimates of rebound effect.  After reviewing the direct 

rebound effect literature, Sorrel finds a residential rebound effect of generally less than 30% 

(Sorrell, Dimitropoulos, & Sommerville, 2009).  Greening et al. review 75 empirical studies of 

rebound effect.  From this, they estimate a 10-30% rebound effect for space heating, 0-50% 

rebound effect for space cooling, and 5-20% rebound effect for lighting (Greening et al., 2000).  

Borenstein finds rebound effects reduce energy savings by 10-40% (2015).  Sanders and 

Phillipson examine 13 papers on insulation retrofits in UK households.  They find a rebound 

effect of 50%, of which 15% is attributed to the comfort factor (Sanders & Phillipson, 2006).   
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The rebound effect can lead to economy-wide and transformational changes.  The 

economy-wide rebound effect is the totality of direct and indirect rebound effects from energy 

efficiency implementation (Sorrell, 2009).  Economy-wide impacts, in turn, may lead to 

transformational changes.  As consumer preferences change, technologies adjust, and social 

institutions and norms revise, society itself may transform (Greening et al., 2000).  Sometimes, 

the rebound effect is estimated to be over 100% of the expected savings.  This special case is 

called “backfire,” where the increase in energy use exceeds theoretical savings from the 

efficiency measure (Jenkins, Nordhaus, & Shellenberger, 2011; Sorrell, 2009).  See Figure 1 for 

a summary diagram of the rebound effect, its estimated size, and terminology. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 2-1. Summary of Rebound Effect 

 

Research supporting backfire focus mainly on the macroeconomic impacts and are 

largely theoretical (Sorrell, 2009).  The idea of backfire is not new.  The Jevon’s Paradox, first 
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Brookes Postulate (Sorrell, 2009), which states “With fixed real energy price, energy efficiency 

gains will increase energy consumption above where it would be without these gains” (Saunders, 

1992).  Estimating the macroeconomic effect of many microeconomic changes in energy use is 

impossible, causing a lack of strong empirical support for backfire (Brookes, 2000).  Historical 

evidence frequently is cited, where energy efficiency innovations led to greater energy demand 

by enabling other processes or products (Sorrell, 2009).  For instance, energy efficient 

innovations in steel production allowed new applications for steel that led to greater overall 

energy use (Rosenberg, 1989).   

The difficulty of separating energy efficiency improvements from other attributes of an 

energy service complicates the issue.  Energy services are provided by a combination of useful 

work and broader attributes (Sorrell & Dimitropoulos, 2008).  Demand for an energy service 

may increase due to demand for other attributes and changing societal interest.  To attribute 

increased demand to only the efficiency improvement and the rebound effect would be incorrect 

(Borenstein, 2015; Sorrell, 2009).   

Rebound effects can be estimated in varied ways for varied system boundaries, but there 

is no consensus as to which system boundary should be used (Sorrell, 2009).  Rebound effect can 

be calculated at varied system levels such as household, sector, or economy wide.  The lack of a 

consensus system boundary for rebound estimations may also contribute to the disagreement on 

the size of the rebound effect and the impacts of energy efficiency.   

2.2.2 Rebound Effect and Quasi-Experimental Research 

Quasi-experimental research pertaining to residential rebound effect measure the impacts 

of household energy efficiency retrofits.  Conducting household level research requires access to 

homes for data collection and instrumentation, which can be difficult to obtain.  Sample sizes are 

many times small, varying from a single household to a few thousand.  Very rarely do studies on 
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energy efficiency and rebound effect have sample sizes of millions or more.  Studies on an 

individual home are more likely to provide detailed consumer behavioral information from 

interviews.  For instance, Meier and Nordman provide detailed information regarding five 

households, with information to calculate rebound effect for each.  With a small number of 

homes, they detail the specifics of each house, such as size, supplemental heating, and insulation 

levels.  The researchers can then better explain why certain households saved more or less 

energy than expected (Meier, Nordman, Miller, & Hadley, 1989).  Bladh also conducts lighting 

retrofits in a single home, converting nearly all lights to LED and CFLs.  From the homeowner 

interview, Bladh knows a period of low energy use was due to absence from the home.  The 

homeowners describe their views on individual lights, from the color, brightness, and 

compatibility with existing fixtures (Bladh, 2011).  Details on household behavior and attitudes 

toward energy efficient retrofits allow a better understanding of the rebound effect size. 

Terminology for the rebound effect can be confusing.  Outside of rebound effect, other 

terms like take-back effect, reduction factor, comfort factor, shortfall, and snap-back are also 

used (Sanders & Phillipson, 2006; Scheer, Clancy, & Hogain, 2013; Sebold & Fox, 1985).  

Though these terms are used interchangeably at times, they are not necessarily equivalent.  The 

“take-back effect” reflects the idea that consumers “take back” some portion of the energy 

savings.   

Similarly, “comfort factor” reflects how some consumers increase comfort, especially by 

increasing indoor temperatures, after efficiency implementation.  Comfort factor is the energy 

increase due to improved internal temperature, but it is sometimes confused with the rebound 

effect or reduction factor (Sanders & Phillipson, 2006).   
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The rebound effect is mathematically expressed as the percentage difference in actual and 

calculated energy consumption after energy efficiency implementation (See Equation 1) 

(Druckman, Chitnis, Sorrell, & Jackson, 2011; Freire-González, 2011; Haas & Biermayr, 2000).    

 

 

 
Theoretically, the rebound effect as calculated by Equation 1 should be attributed to only 

consumer behavior change and equivalent to the take-back effect and comfort factor.  Many 

times, it is taken to be equivalent, as in the case of the most energy efficiency programs in the 

UK (Henderson, Staniaszek, Anderson, & Philipson, 2003).  In application, however, other 

issues unrelated to actual consumer behavioral change can increase the difference between 

theoretical and actual energy savings.   

Several issues can inflate the estimated rebound effect that are unrelated to consumer 

behavioral change.  If the theoretical savings are calculated from inadequate models, the 

predicted savings will be flawed (Sanders & Phillipson, 2006; Sorrell, Dimitropoulos, & 

Sommerville, 2009).  If inaccurate engineering models predict more savings than actually 

possible, the rebound effect will be inflated.  Improper installation might decrease measured 

effectiveness and the realized energy savings (Sorrell et al., 2009).  For instance, existing homes 

may lack insulation in some wall areas.  Installers may not detect that and believe the home is 

fully insulated when it is not (Hong, Oreszczyn, & Ridley, 2006).  Defective manufacturing or 

unforeseen issues might lead to measures performing below advertised levels, leading to larger 

rebound effects (Sorrell et al., 2009).  Inadequate recruitment of the target population may also 

decrease a program’s expected savings by inflating the theoretical savings.  In Mexico’s 

𝑅𝑒𝑏𝑜𝑢𝑛𝑑 𝐸𝑓𝑓𝑒𝑐𝑡 =  
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑆𝑎𝑣𝑖𝑛𝑔𝑠  
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appliance replacement program, households with older appliances are not well represented.  Only 

5% of air conditioners were a more than 15 years old and only 10% of refrigerators were 20 

years or older.  This low recruitment of the target population may contribute to the low realized 

energy savings (Davis, Fuchs, & Gertler, 2014).  These inflating issues arise due to 

complications in estimating energy savings and implementing energy efficiency measures.  None 

of these issues are from consumer behavior change after energy efficiency implementation.   

Due to these issues which act to artificially inflate the rebound effect, calculation of the 

rebound effect using the rebound effect equation will usually generate an overestimate of the 

rebound effect when applied to empirical results.  See Figure 2-2 for a diagram of possible 

complications that enlarge the difference between theoretical and actual energy savings.            

 

                
Figure 2-2. Causes of Energy Savings Shortfall in Empirical Studies 

 

There are also cases where actual energy savings exceed theoretical predictions.  

Weatherization and insulation might lead to improved thermal comfort by reducing drafts.  In 

these cases, homeowners might feel just as warm at a lower thermostat setting than before 
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implementing the efficiency measures.  If the theoretical calculations of energy savings did not 

consider savings from improved thermal comfort, then more energy might be saved than 

predicted, leading to a negative rebound effect.   

Efforts to increase the accuracy in which rebound effect is calculated from empirical 

research have been limited.  Most efforts center on improving the engineering models that 

estimate theoretical energy savings from energy efficient upgrades.  Few, if any, other efforts 

have been made to understand other aspects inflating rebound effects.  This, in part, may be due 

to the dismissal of quasi-experimental research in the rebound effect literature.  More work to 

examine household energy behavior is required. 

2.2.3 Introduction to Meta-Analysis 

Meta-analysis is a methodological and statistical review summarizing past empirical 

research addressing similar or identical hypotheses (Card, 2012; Cooper, 2010; Lipsey & 

Wilson, 2001; Nelson & Kennedy, 2009).  It can alleviate the difficulty of comparing and 

contrasting findings from different studies (Card, 2013).  The process reveals the state of 

knowledge in a study area and elucidates areas of future research (Cooper, 2010).  Meta-analysis 

has been used broadly in the health sciences, psychology, education, marketing, and the social 

sciences (Nelson & Kennedy, 2009).  It now encompasses all methods and techniques of 

quantitative research synthesis (Lipsey & Wilson, 2001).   

Meta-analyses do not deal with raw data specifically since they analyze the results of 

multiple studies.  A common empirical value is examined from a set of studies.  This common 

value is called the effect size.  The studies inform a combined estimate of effect-size and may 

help explain study-to-study variation (Nelson & Kennedy, 2009).  By examining bodies of 

literature, meta-analyses allow scholars to understand how individual variables impact effect 
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size.  These variables may be sample characteristics such as socioeconomic data, study size and 

location, and other independent variables (Card, 2012).  

A meta-analysis can include studies of any size, regardless of the statistical significance 

of the individual findings.  The focus in a meta-analysis is on the effect size, not the significance, 

from each study.  In this way, meta-analysis is a preferred tool for examining research areas with 

small studies, which individually provide inconclusive evidence (Card, 2012). 

2.3 Research Goal and Hypotheses 

In this meta-analysis, the research goal is to examine the typical residential rebound 

effect in quasi-experimental research where efficiency measures are implemented.  This study 

seeks to distill lessons from these energy efficiency studies and their rebound effect implications.  

Though there are vocal supporters of large rebound effects and potentially backfire, much of the 

literature supports moderate rebound effects.  I hypothesized that the residential rebound effect 

exists (i.e., is greater than zero), but it is less than the possible energy savings from efficiency 

(i.e. is less than 100%). 

2.4 Data Sources 

The following areas were searched for relevant studies:  

 published peer-reviewed literature,  

 published non-peer reviewed literature,  

 utility studies on rebound effect,  

 utility studies on energy efficiency, 

 conference proceedings,  

 white papers,  

 and unpublished literature. 

 

 

Academic databases were used to gather pertinent rebound effect studies from the 

published literature.  Example academic databases are: Academic Search Complete, EconLit, 
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JSTOR, Web of Knowledge, and Google Scholar.  Non-academic literature was located using 

search engines.   

2.5 Methodology 

2.5.1. Effect Size and Unit of Analysis  

Residential rebound effect estimates are from the literature directly, if estimates were 

consistent with Equation 1, or calculated using provided information.  The rebound effect is used 

in its raw form due to the clarity of its interpretation and the avoidance of complications 

introduced by standard-deviation scaling (Bond, Wiitala, & Richard, 2003).  The unit of analysis 

is each individual estimate of residential rebound effect.    

2.5.2 Literature Search and Inclusion Criteria 

Empirical studies pertaining to the residential rebound effect and energy efficiency were 

located using academic literature and internet searches.  Only studies pertaining to the residential 

sector were included.  Studies focusing on residential transportation were excluded.  Studies 

were included if they pertained to the: 

 residential sector, 

 rebound effect for all utilities (electricity, natural gas, and water), 

 energy efficiency studies with information to calculate the rebound effect, 

 and studies reporting the rebound effect from efficiency implementation. 

 
Of the 231 located studies, 19 studies met these criteria.  Most of these studies (16) were 

from the published academic literature.  There was one conference paper, academic white paper, 

and government report.  In some cases, such as Roy’s study on solar lighting in India (2000), 

additional literature was required to complete coding (Roy & Jana, 1998).  One study, by Scheer, 

was cited in a published article even though the data are from a dissertation (Haas & Biermayr, 
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2000; Scheer, 1996).  Through communications with authors regarding additional information, a 

twentieth study was recommended.  This study on appliance replacement in Mexico was 

published in late 2014 (Davis et al., 2014).  See Appendix A.1 for documentation of the literature 

search.  See Appendix A.3 for the final list of located rebound effect studies.   

2.5.3 Data Coding 

Publication details were coded to allow analysis of publication bias.  These include venue 

of publication, year of publication, and author affiliation.  Study details such as sample size, 

sample collection method, and duration of study, were also included.  Likewise, household 

socioeconomics and the implemented efficiency measures were also included.  For empirical 

publications, papers that mention possible complications impacting the rebound effect, such as 

issues with theoretical calculations of savings and improper installation, were also be noted.  In 

cases where additional information was required to calculate standard deviation, authors were 

contacted, if possible, to request further information.  See Appendix A.2 for the coding protocol.   

2.5.4 Statistical Analysis 

Two models are commonly used in meta-analyses, the fixed effects and random effects 

models.  The two models differ conceptually in their estimation of the effect size.  The fixed 

effect model assumes there is one population effect size and any differences from this are due to 

sampling error.  The random effects model assumes a distribution of population effect sizes, 

(Borenstein, Hedges, Higgins, & Rothstein, 2009; Card, 2012; Cooper, Hedges, & Valentine, 

2009).  Both the fixed effects and random effects models were examined for this analysis. 

Some of the examined studies did not provide sufficient statistical information to 

calculate standard deviations directly.  Several estimates of rebound effect were also from a 

single individual household or multi-family building and not from a sample population.   
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Usually, each study in a meta-analysis has a weight that is proportional to the inverse 

conditional variance.  Though formulas for the conditional variance differ depending on the 

effect size indices, they are all inversely proportion to the sample size of each study.  In this way, 

larger studies have more weight within the meta-analysis than smaller studies (Konstantopoulos 

& Hedges, 2009).   Due to incomplete information, the usual methods of weighting effect sizes 

could not be pursued for all studies in this analysis. 

Two methods of weighting were used.  Due to missing statistical information for some 

studies, especially ones with only a sample size of one, the first method weighted studies by 

sample size in a fixed effects model.  The second method, used to generate a random effects 

model, weighted effect size by standard meta-analysis procedures of inverse conditional 

variance.  Since not all effect size estimates have standard deviations associated with them, the 

number of rebound effect estimates decreases.  Averages and standard deviations were calculated 

for some studies that provided several estimates of rebound effect from individual households.  

The twenty studies provided 162 estimates of rebound effect.  Only 81 estimates of rebound 

effect provided information to calculate or estimate standard deviation.  If the outlier study is 

removed, only 62 estimates of rebound effect have standard deviation information.  In some 

cases, standard deviation could be estimated from provided information.  In the cases where the 

standard deviation is provided for the average savings, the standard deviation for the rebound 

effect can be calculated by the following formula:  𝑠𝑅𝐸 =  𝑠𝐴𝑆𝐶  

where 𝑠𝑅𝐸 is the sample standard deviation of the rebound effect, 𝑠𝐴𝑆 is the sample standard 

deviation of the average savings, and 𝐶 is the calculated or theoretical savings.  See Appendix B 

for the derivation of this formula. 
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In cases where only the range of values was provided, the standard deviation was 

estimated from the range using the following formulas suggested by Hozo, Djulbegovic, and 

Hozo (2005): 

      𝑠 ≈ √ 112 ((𝑎−2𝑚+𝑏)24 + (𝑏 − 𝑎)2)  for N < 15 

𝑠 ≈ 𝑏−𝑎4 = 𝑅4     for N > 15 

where s is the sample standard deviation, m is the median, a is the low end of the range, b is the 

high end of the range, R is the range, and N is the sample size.  Estimating the standard deviation 

by R/4 was used rarely and only if no other methods were available. 

For small sample sizes, the median was estimated using the following formula for mean 

(Hozo, Djulbegovic, & Hozo, 2005). 

 �̅� ≈ 𝑎 + 2𝑚 + 𝑏4 + 𝑎 − 2𝑚 + 𝑏4𝑁  

 
Solving for the median, m, we get: 

 𝑚 ≈ �̅� ∗ 4𝑁 − 𝑎(𝑁 + 1) − 𝑏(𝑁 + 1)2(𝑁 − 1)  

  
Some statistical options for meta-analyses only examine study-level data, such as 

metareg and metaan commands in Stata.  Therefore, weighted averages were obtained for each 

study to generate one estimate of rebound effect for each study.  The estimates for rebound effect 

were weighted by the study size for each estimate, which sometimes varies within studies for 

different rebound effect estimates.  In the case where study size did not vary or was not reported 

to vary, the effect estimates were weighted equally.   
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Fixed effects models were generated using the metaan and areg commands in Stata.  

Random effects models were examined using metareg command, which allows a meta-analysis 

regression or meta-regression, and metaan command, which requires only the effect size and 

standard errors (Harbord & Higgins, 2008; Kontopantelis & Reeves, 2010).  In the case for both 

metareg and metaan, study standard errors are substituted by the inverse study size.  This 

weights the analysis by study size, allowing larger studies to hold more weight in the results. 

2.6 Summary of Collected Studies 

There is significant variation in study characteristics, end uses of efficiency measures, 

and reporting in the targeted research.  Sometimes, the mean rebound effect was given or enough 

information was provided to calculate it.  Other times, this information was missing and the 

study had to be excluded.  Even in cases where the rebound effect is given or can be calculated, 

sometimes no deviations or confidence intervals were provided.  In these cases, the authors were 

contacted, if possible, to request the missing information.  

Twenty studies were collected, providing 162 estimates of rebound effect.  Of these 

studies, one far surpassed the others in study size (Davis et al., 2014).  It has sample sizes of up 

to 1.9 million households, while other studies had more modest sample sizes ranging from one to 

7,923 households.  This outlier study was excluded in some of the analyses for comparison 

purposes.  This study does not itself predict the energy savings from appliance replacement.  

Instead, it compares actual savings to assumed savings from a World Bank report (Davis et al., 

2014).  The World Bank report does not detail how it arrived at its assumptions for air 

conditioner and refrigerator replacement (Johnson, Alatorre, Romo, & Liu, 2010).  Davis et al. 

discuss the World Bank estimates for refrigerators and air conditioner replacement savings and 

find that it likely assumes mainly older appliance replacements.  In the Davis report, only 10% of 
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refrigerators were 20 years or older and only 5% of air conditioners were 15 years or older 

(Davis et al., 2014).  This discrepancy may cause the predicted energy savings to be 

unrealistically high for the appliance replacements in the Davis study, thereby artificially 

inflating the calculated rebound effect.  The 19 remaining studies provide 142 rebound effect 

estimates.  Table 2-1 details the authors, year of publication, publication type, country, and study 

size.   

 
 

Table 2-1. Publication Type, Nation, and Study Size from Collected Studies 

 Authors Year 
Publication 

Type 
Country 

Study Size 

(min/max) 

1 Bell and Lowe 2000 Journal UK (1/30) 

2 Bennear et al. 2013 Journal US 683 

3 Bladh 2011 Journal Sweden 1 

4 Davis 2009 Journal US 95 

5 Davis et al. 2014 Journal Mexico (957,080/1,914,160) 

6 Elmroth et al.  1984 Journal Sweden (10/51) 

7 Gram-Hanssen et al.  2012 Journal Denmark (42/70) 

8 Scheer 1996 Dissertation Austria (1/11) 

9 Henderson et al.   2003 Conference UK (28/7,923) 

10 Hewett et al. 1986 Journal US (1/20) 

11 Hirst et al. 1985 Journal US (1/243) 

12 Hirst 1986 Journal US (1/484) 

13 Hirst et al 1989 Journal US 2362 

14 Hong et al.  2006 Journal UK (22/720) 

15 Martin and Watson  2006 Report UK 59 

16 Meier et al. 1989 Journal US 1 

17 Roy 2000 Journal India 38 

18 Sanders and Phillipson 2006 Report US (59/1,632) 

19 Scheer et al. 2013 Journal Ireland 210 

20 Sebold and Fox 1985 Journal US 450 

 

Table 2-2 details the number of estimates from each study and the minimum, maximum, 

and median effect sizes.  It also provides a weighted average for the rebound effect size for each 
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study.  The average is weighted by the sample size used to generate each rebound effect estimate, 

which can vary from estimate to estimate within each study.  For studies where no variation in 

sample population was provided for each rebound effect estimate, each estimate was weighted 

equally. 

 
Table 2-2. Summary of Rebound Effect Estimates from Collected Studies 

Authors Year 

Rebound Effect 

Estimates, 

Number 
Min Max Median 

Average, 

Weighted* 

1 Bell and Lowe 2000 3 0.29 0.66 0.38 0.63 

2 Bennear et al. 2013 3 0.01 0.19 0.18 0.12 

3 Bladh 2011 1 -0.69 -0.69 -0.69 -0.69 

4 Davis 2009 3 -0.01 0.08 0.01 0.03 

5 Davis et al. 2014 21 0.69 1.09 1.03 0.91 

6 Elmroth et al.  1984 27 -2.13 0.63 0.05 -0.21 

7 Gram-Hanssen et al.  2012 3 0.19 1.00 0.20 0.41 

8 Scheer 1996 12 -0.02 0.61 0.29 0.30 

9 Henderson et al.   2003 30 -2.11 0.97 0.65 0.67 

10 Hewett et al. 1986 6 0.21 0.55 0.36 0.31 

11 Hirst et al. 1985 9 -0.10 2.30 0.34 0.54 

12 Hirst 1986 4 0.20 0.55 0.38 0.38 

13 Hirst et al 1989 2 0.20 0.57 0.39 0.39 

14 Hong et al.  2006 6 0.06 1.00 0.87 0.61 

15 Martin and Watson  2006 3 0.16 0.40 0.29 0.28 

16 Meier et al. 1989 10 -0.69 0.91 0.00 0.10 

17 Roy 2000 3 0.50 2.00 0.80 1.10 

18 Sanders and Phillipson 2006 6 0.14 0.53 0.29 0.63 

19 Scheer et al. 2013 1 0.36 0.36 0.36 0.36 

20 Sebold and Fox 1985 10 0.19 0.86 0.63 0.62 
*The average is weighted by the effect size sample size, which can vary within each study by estimate. 
 

2.7 Results and Discussion 

Ideally, the random effects model should be used for meta-analyses of studies with 

different study designs, as it is unlikely that there is one true population effect size across studies 

with different designs and sample populations (Borenstein, Hedges, & Rothstein, 2007; 
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Konstantopoulos & Hedges, 2009).  In small sample meta-analyses, the fixed effects model can 

be used when the random effects model cannot be estimated (Borenstein et al., 2007; 

Konstantopoulos & Hedges, 2009).  This study explores random effects and fixed effects models 

for the rebound effect meta-analysis using study level data and effect size level data.  In cases 

where the random effects model cannot be estimated, the study examines fixed effects models. 

2.7.1 Study Level Results 

The metaan command was used to generate the fixed effects and random effects models 

using study level data, where each study provides one estimate for rebound effect.  Four different 

methods for random-effects models were used: the DerSimonian-Laird, maximum likelihood, 

restricted maximum likelihood, and profile likelihood methods.   

All random effects models generated an overall rebound effect estimate of 0.42 or 42%.  

Only the random effects model for the most commonly used method, the DerSimonian-Laird 

method (Kontopantelis & Reeves, 2010), is reported.  See Figure 2-3 for the forest plot for this 

random-effects model.  The forest plot provides each study’s weight, which is based on study 

size where larger studies have more weight.  The effect sizes (ES) presented are the weighted 

averages of rebound effect estimates within each paper.  The 95% CI are also provided, but 

should be considered cautiously as they are estimated based on inverse sample size and not 

actual standard errors, which were not available for all studies. 
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Figure 2-3. Random-Effects Model Forest Plot (DerSimonian-Laird Method) 

 
 
The overall estimated rebound effect is 0.42 and the 95% confidence interval does not 

include zero, suggesting the overall effect size is significant at the 95% level.  As this is a 

random effects model, this overall estimated rebound effect is the estimated mean of rebound 

effect estimates.  According to the heterogeneity measures such as I2, there is considerable 

heterogeneity across studies.  This suggests that the rebound effect literature in this sample, 

though quite disparate, appears to have an average rebound effect of around 42%.  This study 

does not support claims of backfire and finds the average rebound effect to be less than 100%.  

NOTE: Weights are from random effects analysis
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Even though consumers increase their energy use after energy efficiency implementation, an 

average of 58% of the expected energy savings from efficiency are retained.   

The fixed effects model is not preferred due to its assumptions of one true mean.  In the 

fixed effects model, the overall effect size is 0.88 (See Appendix C for the fixed effects model 

forest plot).  Large studies are given more weight in fixed effects models and the result is based 

on two large studies, with all other studies given zero weight.  Since the rebound effect literature 

examines different populations, applications, and study designs, it is unlikely that there is one 

true rebound effect estimate.  Because of this, the random-effects model is preferred in the 

examination of study-level data.  

2.7.2 Estimate Level Results 

Further analyses were conducted at the effect estimate level.  Instead of confining the 

analysis to study level estimates, where each of the twenty studies provide one estimate, like in 

the previous analysis, the following analyses use all or nearly all estimates of the rebound effect.  

This expands the data analyzed from twenty to up to 162 estimates of rebound effect. 

The random effects model was implemented using the metareg command in Stata.  Two 

versions were attempted.  The first one used the data subset with reported, calculated, or 

estimated standard errors and these were used to weight the data.  The second one used the 

inverse study size to weight estimates by sample size.  No predictors were significant in either 

random effects meta-regression likely due to the low number of studies in this meta-analysis 

which make it difficult to measure variation between studies with precision (Borenstein et al., 

2007; Konstantopoulos & Hedges, 2009).   

In small sample meta-analyses, the fixed effects model can be used (Borenstein et al., 

2007; Konstantopoulos & Hedges, 2009).  In this case, only the fixed effects models provided 
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any significant predictors.  The FE model of the rebound effect meta-analysis was conducted 

using the areg command in Stata.  Estimates were weighted by sample size.   

2.7.2-1 Impact of Individual Study Variation 

Two FE models examining within study impacts are shown in Table 2-3.  The first model 

does not include the outlier study by Davis et al. with much larger study sizes than the other 

studies within the meta-analysis.  The second model excludes the outlier study. 

 

 

Table 2-3. Fixed Effects Models Within Study 

VARIABLES (1) Without Outlier Study (2) With Outlier Study 

Study Size -8.63E-07 1.18e-08* 
  (1.51E-05) (6.73E-09) 
Single Family House 0.112 0.102 
  (0.117) (0.309) 
Preferred Estimate 0.0323 -0.000464 
  (0.0920) (0.00644) 
Comfort Factor -0.359*** -0.359 
  (0.114) (0.304) 
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Heating and Cooling 0.533*** 0.334*** 
 (0.144) (0.00393) 
Water Heating 0.412*** 0.323 
 (0.155) (0.377) 
Insulation 0.046 0.0405 
 (0.191) (0.510) 
Weatherization -0.221 -0.212 
 (0.216) (0.576) 
Windows/Doors 0.318 0.316 
 (0.215) (0.573) 
Programmable Thermostat 0.227 0.251 
 (0.336) (0.896) 
Lighting -0.342 -0.276 
 (0.382) (1.014) 
Other Measure 0.587*** 0.493 
 (0.192) (0.480) 

Constant 0.369** 0.708*** 
  (0.184) (0.0124) 
    
Observations 141 162 
R-squared 0.499 0.982 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 



34 
 

The rebound effect estimates vary depending on the implemented efficiency measures.  

FE (1), which excludes the outlier study, finds heating and cooling, water heating, and other 

measures to be highly significant.  If heating and cooling measures, such as water heaters or 

furnaces, are installed, the expected rebound effect increases by 53.3 percentage points, all else 

constant.  For water heating measures, the expected rebound effect increases by 41.2 percentage 

points, all else constant.  Other measures include low flow toilets and pool water heaters.  For 

these measures, the expected rebound effect increases by 58.7 percentage points, all else 

constant.  As the rebound effect from low flow toilets in this dataset were low to moderate, 

ranging from 1-19%, the high increase in expected rebound effect is likely due to the 

contribution of pool water heaters, which had much higher rebound effects of around 80%.  The 

higher rebound effect from these efficiency measures may be due to a few possible issues.  First, 

there may be unmet need for these services.  Households may desire more heating or cooling or 

hot water than they can afford with inefficient devices.  Installing an energy efficient device 

allows them to better meet their desired use of these services.  Second, there may be higher 

inaccuracy in estimating the actual savings from these measures. 

FE (1) finds the comfort factor to be highly significant.  Holding all else constant, if a 

study includes a comfort factor, the expected rebound effect is 36 percentage points lower.  The 

comfort factor is highly significant at the 1% level.  This suggests that for this sample of studies, 

the comfort factor, or amount of the rebound effect attributed to largely consumer behavior 

change, is about 36 percentage points lower than the overall rebound effect, all else constant.  

About 36 percentage points of rebound effect estimates might be due to inaccurate engineering 

estimates of energy savings, implementation issues, performance issues, inadequate program 
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targeting, and other inflating factors.  The intercept of the equation is also significant (at the 5% 

level), suggesting a general rebound effect estimate of 36.9% across studies.   

FE (1) suggests that studies focusing on the comfort factor, which largely addresses the 

behavioral component for energy demand changes after efficiency implementation, find lower 

rebound effects than others.  Comfort factor is caused mainly by behavioral increases in home 

temperature but part of the temperature rise can be a side benefit from shell improvements, such 

as insulation and reduced draft.  Prediction models may underestimate possible energy savings 

from temperature improvements after efficiency retrofits.  This finding may suggest that current 

energy savings prediction methods can be further improved to provide more accurate predictions.   

A fixed effects model, FE (2) with all twenty studies, was also developed.  In FE (2), 

only heating and cooling efficiency measures, study size, and the constant are significant.  

Holding all else constant, the presence of heating and cooling efficiency measures increases 

rebound effect estimates by 33.4 percentage points.  By including the outlier study, the 

coefficient for heating and cooling variable decreases from 0.533 to 0.334 and the comfort factor 

coefficient is no longer significant.  However, sample size is significant at the 10% level.  With 

each increase in study size, the expected rebound effect increases minutely (1.18e-08), all else 

constant.  For the largest sample size of 1.9 million from Davis et al., this translates to an 

expected rebound effect increase of about 0.02 or 2 percentage points, all else constant.  The 

constant in FE (2) is also significant, suggesting that a general expected rebound effect of 70.8% 

across studies, all else constant.   

FE (2), which includes the outlier study, suggests that energy use changes after heating 

and cooling efficiency implementation may negate all the expected energy savings from 

efficiency and may increase the expected energy savings.  In cases where heating and cooling 
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measures are installed, the expected rebound effect increases to about 104%.  The difference 

between FE (1) and (2) are substantial and point to the high impact of the outlier study.  Larger 

studies have more influence in a fixed effects models compared to a random effects models 

(Borenstein, Hedges, Higgins, & Rothstein, 2009).  Due to the large study size of over 1.9 

million households, the outlier Davis et al. study has a large impact in the fixed effects model.   

The F-test in areg tests whether all the coefficients except the dummies, in this case 

individual studies, and the constant are equal to zero (Harbord & Higgins, 2008).  We reject this 

null hypothesis at the 0.05 significance level for both FE models.   

The command areg also conducts another F-test to test whether all dummy variables are 

equal to zero in all equations that contain them (StataCorp, n.d.-a, n.d.-b).  For the FE (1), which 

excludes the outlier study, we reject the null hypothesis that all dummy variables are equal to 

zero at 0.4% significance.  Therefore, some individual studies help explain the variation in 

rebound effect.  For FE (2), which includes the outlier study, we fail to reject the null hypothesis 

that all dummy variables are equal to zero at 97% significance.   

2.7.2-2 Impact of Study Size & High Frequency Author 

The impact of study size and authorship were also examined.  A dummy variable was 

created to examine the impact authorships.  Papers with Hirst, an author on three of the studies, 

were coded with 1.  Two models were created, one using data including the outlier study and one 

using data excluding the outlier study.  See Table 2-4 for these models. 

In examining the impact of authorship, I find that the significant variables are not much 

impacted in comparison to previous models regardless of whether the outlier study is included or 

not.  When the outlier study is included, rebound effect estimates do not significantly differ due 

to study size.  However, when the outlier study is excluded, rebound effect estimates are 

significantly different between large and small sized studies.   
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Table 2-4. Fixed Effects Models within Groups by Author 
Variables (3) No Outlier (4) Outlier 

Peer Review  
     Publication 

-0.22 -0.0657 
(0.325) (0.571) 

Academic Lead  
     Author 

0.107 0.114 
(0.185) (0.428) 

Academic Study -0.507 -0.468 
  (1.315) (3.384) 
Study Size 0.000011 1.19e-08* 
 (0.000) (0.000) 
Single Family House 7.55E-02 5.03E-02 
  (0.106) (0.268) 
Control Group -0.217 -0.475 
  (0.265) (0.475) 
Random Sample -0.665 -0.792 
  (0.445) (0.906) 
Metered Energy  
     Readings 

0.00934 -0.126 
(0.321) (0.390) 

No Monetary Scheme -0.185 -0.119 
  (0.394) (0.686) 
Energy Audit -0.114 -0.0175 
 (0.232) (0.524) 
Preferred RE Estimate -0.0565 -0.00054 
 (0.085) (0.006) 
Comfort Factor -0.363*** -0.335 
 (0.114) (0.292) 

E
ff

ic
ie

n
cy

 M
ea

su
re

s 

Heating and  
     Cooling 

0.345* 0.334*** 
(0.183) (0.004) 

Water Heating 0.314** 0.254 
 (0.153) (0.326) 
Insulation -0.109 0.056 
 (0.161) (0.360) 
Weatherization -0.179 -0.0963 
 (0.188) (0.474) 
Appliances -0.567 0.0232 
 (0.563) (0.535) 
Windows/Doors 0.103 0.138 
 (0.164) (0.403) 
Programmable  
     Thermostat 

-0.0374 -0.0567 
(0.290) (0.646) 

Lighting 0.0224 0.000636 
 (0.291) (0.720) 
Other Measure -0.221 0.209 
 (0.259) (0.370) 

Calculation Issues 0.145 0.198 

  (0.173) (0.376) 
Constant 0.676 0.565 
  (0.807) (1.207) 
    
Observations 139 162 
R-squared 0.457 0.982 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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The impact of study size was also considered through different groupings based on study 

size.  Three sets of dummy variables were created.  In the first one, the largest studies, Davis et 

al. (2014) and Henderson et al. (2003), were coded as one.  These studies had sample sizes 

greater than 5000.  In the second grouping, studies with sample sizes above one thousand were 

coded one.  In the last dummy variable, studies with sample sizes more than one hundred were 

coded one.  See Table 2-5 for all models pertaining to study size. 

Once the outlier study is excluded, different factors are significant when controlling for 

varied study sizes.  Depending on how study sizes are grouped, authorship, study design, 

calculation issues, and financing are significant in addition to comfort factor and heating and 

cooling, water heating, and other measures.  Results suggests author affiliation may provide bias 

in rebound effect studies.  Author affiliation is significant at the 10% level in model 6.1.  

Controlling for large or small studies, studies with university affiliated lead authors report higher 

expected rebound effects, all else constant.  This suggests author affiliation may provide bias in 

rebound effect studies. 

Study designs also impact rebound effect estimates.  A study with randomly selected 

participants has lower expected rebound effect estimates, all else constant, after controlling for 

study size.  This is significant at the 1% level in both model 6.1 and 6.2.  Issues with calculating 

potential energy savings during the study also can impact the resulting rebound effect.  A study 

with issues calculating the predicted energy savings from energy efficiency has higher expected 

rebound effect estimates, all else constant, after controlling for study size (See model 6.2). 
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Table 2-5. Fixed Effects Models within Groups by Study Size (SS) 

    With Outlier  Without Outlier  

    (5) SS >5000 (6.1) SS >5000 (6.2) SS >1000 (6.3) SS >100 

Peer Review  -0.0694 -0.547 0.132 -0.051 
     Publication (0.557) (0.372) (0.403) (0.340) 
Academic Lead  0.4 0.596* 0.317 0.0945 
     Author (0.645) (0.329) (0.204) (0.138) 
Academic Study -0.415 -0.235 -0.264 -0.19 

  (3.382) (1.304) (1.309) (1.322) 
Study Size 1.18e-08* 7.61E-06 8.94E-06 9.31E-06 

 -6.58E-09 -1.45E-05 -1.44E-05 -1.44E-05 
Single Family House 0.0632 0.13 0.109 0.139 

  (0.264) (0.106) (0.103) (0.112) 
Control Group -0.48 -0.257 -0.0752 -0.273 

  (0.463) (0.233) (0.253) (0.237) 
Random Sample -0.99 -1.470*** -0.704*** -0.127 

  (1.001) (0.550) (0.240) (0.481) 
Metered Energy  0.0014 -0.143 0.448 0.305 
     Readings (0.388) (0.249) (0.390) (0.326) 
No Monetary  
     Scheme 

-0.227 -0.912* -0.213 -0.0754 
(0.694) (0.513) (0.252) (0.265) 

Energy Audit 0.055 0.232 0.204 -0.266 
 (0.519) (0.281) (0.294) (0.218) 
Preferred Estimate -0.00054 -0.0289 -0.0402 -0.0402 

 (0.006) (0.086) (0.085) (0.085) 
Comfort Factor -0.332 -0.342*** -0.388*** -0.369*** 
 (0.292) (0.113) (0.114) (0.113) 
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Heating and  0.334*** 0.360** 0.444** 0.336* 
     Cooling (0.00385) (0.169) (0.184) (0.170) 
Water Heating 0.237 0.318** 0.309** 0.281* 
 (0.328) (0.149) (0.150) (0.152) 
Insulation 0.0909 -0.107 -0.151 -0.135 

 (0.366) (0.157) (0.160) (0.159) 
Weatherization -0.088 -0.128 -0.274 -0.201 

 (0.446) (0.173) (0.184) (0.172) 
Appliances -0.342 -0.65 -1.141* -0.74 

 (0.992) (0.503) (0.649) (0.520) 
Windows/Doors 0.152 0.114 0.0482 0.0901 

 (0.392) (0.158) (0.163) (0.159) 
Programmable  0.0676 0.0427 0.153 -0.0416 
     Thermostat (0.627) (0.278) (0.307) (0.275) 
Lighting -0.124 -0.138 -0.0754 0.0683 

 (0.772) (0.304) (0.297) (0.291) 
Other Measure 0.168 -0.575* -0.0623 -0.242 

 (0.385) (0.329) (0.271) (0.247) 
Calculation Issues 0.11 -0.201 0.369* 0.154  

 (0.440) (0.251) (0.209) (0.134) 
Constant 0.608 1.602* -0.0794 0.284 

  (1.048) (0.818) (0.797) (0.660) 
      

Observations 162 139 139 139 
R-squared 0.982 0.469 0.466 0.465 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Lastly, financing for the energy efficiency measures also significantly impacts the 

rebound effect estimates after controlling for study size greater than 5000.  In the studies 

included in this analysis, the energy efficiency financing schemes focus on free measures, 

rebates, or zero and low interest loans.  Holding all else constant and controlling for study size, 

studies with no monetary scheme for energy efficiency measures find lower expected rebound 

effect estimates.  This is significant at the 10% level in model 6.1.  This finding suggests that 

having no financing schemes for energy efficiency may realize lower rebound effects in 

households.  Subsidies, though popular, can promote the rebound effect by lowering the effective 

price of the energy efficient service (Linares & Labandeira, 2010).  By lowering equipment cost, 

energy efficiency subsidies also lower the total cost for each use of the energy service provided 

by the efficient equipment.  Due to the lower cost of the energy services, a rebound effect can 

occur if the demand for the energy service from the efficient measure increases.    

The provision of extrinsic financial incentives may cause unintended consequences.  

Financial incentives may “crowd out” or undermine intrinsic motivation to engage in 

conservation efforts (Rode, Gómez-Baggethun, & Krause, 2015).  Financial incentives may 

impair conservation efforts by changing the frame from a social to a monetary one or by 

decreasing the degree that households view conservation as a pro-social act (Pellerano, Price, 

Puller, & Sánchez, 2015).  Likewise, there may be “moral license” effect, where consumers may 

believe the implementation of an energy efficient device gives them moral license to increase 

their electricity consumption in other areas, leading to a rebound effect.  Other energy 

conservation campaigns have found evidence for a moral license effect (McCoy and Lyons, 

2016; Tiefenbeck, Staake, Roth, & Sachs, 2013).  There is a tension between economic and 

biospheric appeals when trying to elicit environmental behavior.  In tire-check appeals, 
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biospheric and neutral appeals prompted greater compliance than economic appeals.  Consumers 

may “prefer to see themselves as ‘green’ rather than ‘greedy’” (Bolderdijk, Steg, Geller, 

Lehman, & Postmes, 2013, p. 1).  Economic subsidies for energy efficiency may experience a 

similar tension, with the financial incentives reducing the “warm glow” from efficiency 

implementation and impacting further pro-environmental behavior.  Certain subsidy designs may 

help ameliorate the impact of a moral license effect.  In their evaluation of four California utility 

energy efficiency programs, Brown and Mihlmester found a median realization rate of 1.06 for 

residential shared-savings incentive programs (1995).  Since actual program savings were similar 

to predicted savings, shared savings incentive programs may be effective in counteracting 

rebound effects and moral license.  More studies on how subsidies impact the rebound effect and 

consumer energy behavior are needed and may lead to improvements in energy savings as we 

better understand consumer responses.   

The findings in this chapter suggest that the way many utility programs are conducted, 

with targeted populations and rebates or other financial incentives, likely realize higher rebound 

effects and lower average energy savings per household than if participants are randomly 

selected and no financial incentives are provided when efficiency measures are installed.  

Improved program targeting may improve energy savings from utility programs.  This study 

finds evidence that programs with random selection of participants have lower expected rebound 

effects.  This suggests that current targeted participation selection for energy efficiency programs 

may impact realized rebound effects.  Allcott, Knittel, and Taubinsky find utility subsidies are 

adopted by “wealthy environmentalist homeowners.”  Some utilities target previous program 

participants and environmentalist households due to a higher likelihood of efficiency 
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implementation.  Such efforts may not be economically efficient with greater welfare gains 

possible with improved targeting (Allcott, Knittel, & Taubinsky, 2015).   

Currently, most studies appear to examine the impact of energy and renewable energy 

subsidies.  Studies examining energy efficiency subsidies generally focus on either the uptake of 

the subsidized energy efficiency technologies, projected energy impacts of subsidies, or their 

impact on lower quality goods (Ameer & Krarti, 2016; Nauleau, Giraudet, & Quirion, 2015; 

Yang & Zhao, 2015).  Few studies examine the subsequent energy demand impacts of energy 

efficiency subsidies after efficiency implementation within actual households.  Also, due to the 

lack of consistent verification that energy efficiency investments have paid off as expected 

(Palmer, Walls, Gordon, & Gerarden, 2013), future energy efficiency studies may desire to 

examine energy efficiency investments and their impact on rebound effects.  Further research on 

the impact of energy efficiency subsidies on post implementation behavior is warranted.   

Due to the limited study size of this meta-analysis, further studies are needed to explore 

and confirm how energy efficiency financing for energy efficiency and study designs impacts 

household energy behavior after efficiency installation.  However, if this effect is confirmed, the 

impact of financing options and study designs on post implementation energy consumption 

should be considered in future analyses of energy policies and energy efficiency programs.  It 

may have significant impacts on the realized energy savings from energy efficiency 

implementation. 

Though there have been decades of energy efficiency literature, this meta-analysis finds 

only a handful of quasi-experimental residential studies that provide enough information to be 

included.  There are many energy efficiency studies that fail to predict the expected energy 

savings from efficiency measures and measure only pre and post energy use.  Whereas past 
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studies criticized the quasi-experimental literature for its methodological weaknesses, this study 

sheds light on specific areas of the quasi-experimental studies that may especially impact 

rebound effect.  Further studies are needed to explore and confirm how energy efficiency 

financing for energy efficiency impacts household energy behavior after efficiency installation.   

2.8 Policy Implications 

There is a need for more empirical research about energy efficiency and the rebound 

effect, especially multi-disciplinary efforts between engineers and social scientists.  With 

advancements in smart homes and devices, engineers should be able to gather tailored data more 

easily for more accurate calculations of potential energy savings.  Engineering efforts must be 

combined with social science knowledge and consumer behavior research to further residential 

energy research.  Policies can support such interdisciplinary research efforts. 

Government funded energy efficiency studies should require a consistent reporting 

convention that allows easy estimation of rebound effect and pertinent statistical information.  

The followings should be documented: 

 participant recruitment methods and total sample size, 

 applied energy efficiency measures, 

 efficiency levels pre and post energy efficiency upgrades, 

 measured energy consumption before and after retrofits for each household, 

 measurement methods and associated errors, 

 standard deviations for sample measurements, and 

 predicted savings calculation method and assumptions. 
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All energy efficiency studies should be encouraged to adhere to this convention, but government 

funded studies can be mandated to provide it.  By reporting the same information across studies, 

researchers enable their research findings to be included in future meta-analyses.   

If efforts are coordinated globally, a consistent protocol and large database of energy 

research may more quickly enable data improvements and understanding of consumer energy 

behavior.  Past researchers have also recommended developing a protocol for energy efficiency 

studies and a large database (Sanders & Phillipson, 2006), but these efforts, if any, are not well 

publicized.  Coordinating research efforts will improve the accessibility and usability of research 

findings to inform policymakers and future researchers.  Future meta-analyses would be easier to 

conduct and any discord regarding energy efficiency and rebound effects can be better alleviated.  

Social science contributions to quasi-experimental research may be especially important 

in understanding the policy implications from different program and subsidy designs.  Current 

quasi-experimental research focus on examining the impact of energy efficiency on household 

energy demand.  Many studies fail to predict the expected savings beforehand, focusing instead 

on the energy saved compared to pre-implementation levels.  However, if research designs and 

subsidies impact the magnitude of the rebound effect, then these issues can significantly impact 

the realized energy savings and have implications for how energy efficiency policies and 

programs are designed and implemented.  By also examining the impact of program and subsidy 

design within quasi-experimental research, we will garner more information on how consumer 

energy demand reacts towards such levers.  Though the findings in this study is based on a small 

sample, its findings, especially if confirmed in future quasi-experimental research, may have 

significant impact on future energy efficiency program and policy designs.  It warrants further 

exploration and research.  
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Likewise, further examination on the impact of subsidies for energy efficiency is 

warranted.  This meta-analysis finds evidence that suggests subsidies may increase rebound 

effects in current energy efficiency studies.  However, much current literature on energy 

efficiency subsidies focus on the impact of subsidies on uptake of energy efficiency technologies 

or free ridership.  Few studies examine the impact of subsidies on within household energy use 

before and after implementation (Alberini & Bigano, 2015).  This may be because current 

concepts of success for subsidy programs focus on the uptake of energy technologies and the 

cost of implementation.  Little notice is given to the impact of subsidies on post implementation 

energy use.  Further examination of the impact of various energy efficiency subsidies on 

residential energy behavior and the subsequent rebound effect is warranted.  Research results 

will have significant policy implications and may suggest which subsidies are better suited to 

energy demand goals.   

By combining engineering and social science insights, a holistic understanding of energy 

efficient technology and consumer behavior can be developed, one that may foster new 

technologies focused on providing convenience, comfort and energy savings to residential 

consumers.   Policymakers can leverage improved understandings of the rebound effect to 

support new smart residential technologies.  Policies can encourage the development of energy 

efficient technologies that better meet the demands of more air-tight and efficient homes (Bell & 

Lowe, 2000).  Technology design matters in how much energy use is automatic or user 

controlled (Bladh, 2011).  Policies can support the development of technologies with more 

automated features.  Not only will consumers have greater convenience, but utilities will also 

have more predictable energy demand as fluctuations in energy use are reduced.   
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2.9 Conclusions  

Time has not decreased the vitriolic arguments over the rebound effect and whether 

energy efficiency saves energy.  This study aims to contribute to the discussion through a meta-

analysis of quasi-experimental household studies.  In total, twenty studies in eight countries 

provided 162 estimates of rebound effect.  One study was an outlier in its large study size.  Once 

this study is excluded, the remaining 19 studies provided 142 estimates of rebound effect.  

Though the majority of the rebound effect estimates were below 100%, there was variation in 

estimates within and between studies.   

In conducting this meta-analysis, the dearth of quasi-experimental literature allowing 

rebound effect estimates was clearly evident.  Only twenty studies were located.  Though many 

energy efficiency studies are available, not all studies predict savings beforehand and report 

information to allow the rebound effect to be estimated.  Many estimates of rebound effect also 

lack statistical information.  Due to the missing information regarding standard deviations and 

standard errors, the presented analyses were weighted by study size, allowing larger studies to 

have more weight.   

A random effects model of study level estimates of rebound effect finds an average 

rebound effect estimate of 42%, with high heterogeneity between studies.  This average value for 

rebound effect is moderately high, but still less than 100%.  Therefore, the study level random 

effects model does not find evidence of average rebound effects with backfire.  Energy 

efficiency, on average, saves energy after implementation even after accounting for the rebound 

effect.  Random effects meta-regression models did not find significant factors, likely due to the 

small number of studies in this analysis.  Therefore, study factors impacting rebound effect 

estimates could not be examined in a random effects model. 
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Instead, fixed effects models were created to examined the impacts of various factors.  

Since the fixed effects models cannot account for the variation in study designs, which was large 

in this sample, these results should be considered cautiously.  Future researchers should revisit 

this with larger studies providing more statistical information or explore these issues in quasi-

experimental studies.  Several fixed effects models were created that examine different groups: 

individual studies, large and small sized studies, and high frequency author studies and other 

studies.     

Rebound effect estimates vary based on the efficiency measures that are implemented.  

Heating and cooling measures and water heating measures are significant factors in all three 

fixed effects models excluding the outlier study. The presence of heating and cooling efficiency 

measures increases expected rebound effect from 35-53 percentage points higher, all else equal.  

The presence of water heating measures increases expected rebound effect from 31-41 

percentage points higher, all else equal.  The increase in rebound effect for these two end uses 

suggests that there might be unmet demand for heating, cooling, and water heating services. 

This study also finds a difference between studies focused on examining comfort factor, 

which focuses mainly the behavioral change after efficiency, and general rebound effect 

estimates in models excluding the outlier study.  Studies that examine comfort factor find 

rebound effect estimates that are 34-36 percentage points lower than general studies of rebound 

effect, all else constant.  Since comfort factor focuses largely on energy increases from consumer 

behavior, the 34-36 percentage point difference may be due to inflating factors like issues with 

predicting savings, implementation, and performance.  This suggests calculation methods for 

predicted savings may need improvement.  
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After controlling for study size (large or small), this study also finds author affiliation, 

study design, and financing options measures significant in rebound effect estimates.  After 

controlling for study size, studies with university affiliated lead authors have higher expected 

rebound effects, all else constant.  Studies with randomly selected participants have lower 

expected rebound effect estimates when study size is controlled, all else constant.  These suggest 

that author affiliation and method of selecting participants may bias rebound effect estimates.  

Studies that did not offer financing options have lower expected rebound effects after controlling 

for study size, all else constant.  This suggests that special financing measures for energy 

efficiency, such as low or no interest loans, rebates, and free measures, may impact consumer 

energy behavior after implementation.  Further research on how study designs and financing 

options for energy efficiency measures impact consumer energy behavior after implementation is 

needed.  If this impact is confirmed, then these impacts should be considered when designing 

energy policies and programs for they have significant implications for energy efficiency 

programs and policies.  

There is a need for more empirical research about energy efficiency, the rebound effect, 

and household energy behavior.  Likewise, and perhaps even more importantly, a consistent 

reporting convention should be created to include data and statistical information applicable to 

multiple energy researchers so findings can be used by a range of energy scholars.  For instance, 

participant recruitment methods, measured energy consumption before and after retrofits, 

predicted savings, and measurement methods are just a few of the items that should be included 

in such a protocol.  By reporting the same information across studies, researchers enable their 

research findings to be included in future meta-analyses and can contribute to other ongoing 

energy discussions.  Gathering all such energy research into a large database would only further 
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the ease of access, contributions to other energy research, and dissemination of results.  Past 

researchers have also recommended developing a protocol for energy efficiency studies and a 

large database (Sanders & Phillipson, 2006), but these efforts, if any, are not well publicized.  

Coordinating research efforts will improve the accessibility and usability of research findings to 

inform policymakers and future researchers.  Future meta-analyses would be easier to conduct 

and have larger sample sizes.  Such efforts would help alleviate discord regarding energy 

efficiency and rebound effects.  

Lastly, engineers should combine efforts with social scientists to design energy efficiency 

studies.  How technologies improve energy efficiency is entirely technical, but how consumers 

use them at home is not.  A multi-disciplinary team will be better able to study all aspects of how 

consumers interact with energy efficient technologies and the policy impacts and implications.  

Engaging households to allow access to their homes and energy information is challenging and it 

may be difficult for energy research within actual households to go beyond quasi-experimental 

designs.  However, it is essential that we understand consumer energy behavior.  Limiting 

ourselves to large economic studies based on historical energy data will never allow us to 

understand the intricacies of household energy decisions and behavior.  We cannot ignore the 

contributions of the quasi-experimental literature.  Apprehensions regarding its methodological 

weaknesses should instead motivate better and improved research.  A holistic multi-disciplinary 

understanding of how consumers, technology, and energy interact will not only inform energy 

policies, but also help create improved energy efficient designs. 

The rebound effect is an uncomfortable topic, one that has been overlooked in the past 

(Sorrell, 2009).  Faced with evermore dire climate change predictions, we must understand how 

people respond to energy efficient technologies to create effective environmental policies.  The 
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topic, regardless of how uncomfortable, needs to be met head on with better and more research.  

The heated debates about rebound effect and energy efficiency can only be cooled by real-world 

evidence.  The implications for our environment and world are too significant for us to muddle 

forward without fully understanding consumer energy behavior.  Understanding our daily energy 

decisions should be a building block in addressing the climate challenges we face.  Our energy 

decisions at home matter and in a big way.   
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CHAPTER 3. THE IMPACT OF SMART GRID PROJECTS AND OTHER 

FACTORS ON RESIDENTIAL ENERGY DEMAND 
 
 
 

3.1 Introduction 

Innovation in electricity generation and transmission in the U.S. have long stagnated.  

Electrical generation efficiency did not increase for more than half a century and transmission 

cables are still largely 1950s technology facing significant electrical transmission losses (M.A. 

Brown, 2007).  Recent energy policy has focused on upgrading current electrical grids.  The 

American Recovery and Reinvestment Act (ARRA) of 2009 provided $4.5 billion in grid 

modernization support.  With a match of over $5.5 billion in private sector funds, grid 

modernization funds totaled over $10 billion.  In June 2011, smart-grid development in rural 

U.S. received an additional $250 million in loans (U. S. Department of Energy, 2011).  As more 

information technology capabilities are incorporated, electrical grids become “smarter” and are 

commonly referred to as “smart-grids.”   

Of the two types of information technology currently incorporated into the electrical grid, 

automated meter reading (AMR) and advanced metering infrastructure (AMI), only AMI is 

essential to smart grid development.  AMR uses one-way communication to collect and transmit 

usage information from customer to the utility for billing purposes (U.S. Energy Information 

Agency, n.d.).  AMI uses two-way communication to not only measure and record usage from 

customers, but to also deliver this information to customers more frequently than the monthly 

electric bill (U.S. Department of Energy, n.d.; U.S. Energy Information Agency, n.d.).  Utilities 

are moving away from AMR technologies, which cannot support demand-side management due 

to one-way communication, to focus on AMI technologies, which enable the transition to smart 

grid (Farhangi, 2010).  By the end of 2014, 51.7 million residential customers had AMI and 41.8 
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million residential customers had AMR.  In total, these technologies serviced 41% and 33% of 

all residential electrical meters, respectively (U.S. Energy Information Administration, 2015).  

By the end of 2015, an estimated 65 million smart meters, an integral part of AMI, servicing over 

a third of electricity customers, were to be installed (U. S. Department of Energy, 2014).   

The large financial investments in smart grids were made based on claims that they 

would improve utility operations, improve customer information and subsequent energy use, and 

enable a clean energy economy.  At the time of the ARRA, “there was very little data from actual 

smart grid deployments to back up [these] claims” (U.S. Department of Energy, 2011), despite 

over thirty years of household energy consumption research (Dubin, Miedema, & Chandran, 

1986; Hayes & Cone, 1977; Quigley, 1984; Seligman & Darley, 1977; Shin, 1985; Stern, Dietz, 

Gardner, Gilligan, & Vandenbergh, 2010).   

Previous research focused largely on pilot studies and a sample of usually one utility’s 

customers.  No studies, to the author’s knowledge, focuses on examining actual deployments of 

smart grid across utilities.  Of the utilities with AMI programs, how has residential electricity 

consumption been impacted?  How do other utility specific factors, such as customer 

demographics, geographic variables, and local cultural characteristics, impact utility residential 

electricity demand?  

This work estimates a model of average consumer electricity demand at the utility level 

to better understand how AMI and other factors impact residential electricity demand.  It adopts 

the simplified model of the “reduced form model of behavioral public finance” from Allcott and 

Sunstein (2015) and Mullainathan, Schwartzstein, and Congdon (2012) to examine how 

information biases impact residential electricity use.  This work seeks to inform a better 

understanding of AMI impacts and socio-physical variables effecting utility level electricity use.  
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First, literature about consumer behavior are discussed.  Next, the data and methodology are 

described, followed by results, discussion, and conclusions.   

3.2 Literature Review  

As the understanding of human behavior improves, it has been incorporated into 

consumer models that blend social, psychological, and economic approaches to be more 

comprehensive (Czap & Czap, 2010; Hargreaves, Nye, & Burgess, 2013; Hori, Kondo, Nogata, 

& Ben, 2013; Sahakian & Steinberger, 2011; Sardianou, 2007; Thogersen & Gronhoj, 2010; 

Urban & Scasny, 2012).  By examining sociological and psychological factors in economic 

frameworks, these studies further knowledge of human behavior and behavioral economics.  This 

work continues these efforts by studying consumer electricity use and the impact of information.  

3.2.1 Consumer Bias and Additional Information  

Behavioral economics includes insights from other social sciences, especially 

psychology, to examine markets with consumers that have human limitations (Diamond & 

Vartiainen, 2012; Mullainathan & Thaler, 2000; Sent, 2005).  Humans deviate from the standard 

economic model due to bounded rationality, bounded will power, and bounded self-interest.  Not 

only is human problem solving constrained by limited cognitive abilities (bounded rationality), it 

is also impacted by the propensity to make choices that are not in one’s long term interest 

(bounded will power) and a willingness to sacrifice self-interest to assist others (bounded self-

interest) (Mullainathan & Thaler, 2000).  Though there have been radical technological 

innovations in information, data storage, and communication, frameworks for attention and 

decision making have remained much the same (van Knippenberg, Dahlander, Haas, & George, 

2015).  Theories of bounded rationality describe constraints on consumer information processing 

abilities (Simon, 1972).  Two theories of bounded rationality in particular pertain to this work.  
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First, rationality may be bounded by incomplete information regarding alternatives or 

consequences.  The information available to the consumer is determined by the amount of 

resources dedicated towards searching for alternatives or consequences (Simon, 1972).  Second, 

rationality may be bounded by complexity, where environmental factors limit the consumer’s 

ability to select the best choice (Simon, 1972), such as institutional, social, and psychological 

factors that can substantially impact human decision making and cognition (Bertrand, 

Mullainathan, & Shafir, 2006).   

Residential decision-making is limited by lack of information (Carrico et al., 2010; 

Gardner & Stern, 2008).  The invisible nature of electricity use also complicates the issue.  

Consumers are interested in energy services, which electricity supports.  It may be difficult for 

consumers to link the activities involved in electricity use, as varied as selecting appliances, 

listening to music, and calling a friend, with a coherent and comprehensible cognitive frame 

(Fischer, 2008).  When provided feedback on their consumption, residential consumers 

decreased energy use (Matsukawa, 2004).  Empirical studies on consumption feedback to 

residential households finds it decreases subsequent use by as much as 5-10% (Abrahamse, Steg, 

Vlek, & Rothengatter, 2005; Matsukawa, 2004; Seligman & Darley, 1977).   

Consumers are also influenced by the decisions of others (Kasanen & Lakshmanan, 

1989).  However, the impact of information with social norms, group feedback (e.g. like for all 

households in a city), or comparison with other households can be mixed.   In their meta-analysis 

of social influence approaches, Abrahamse and Steg find smaller impacts from these types of 

information than face to face interactions in impacting resource conservation.  This may be due 

to the differing impact of such information, depending on the subgroups.  If participants already 

conform to the desired action, there may be a boomerang effect, where low resource users 
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increase their use with the additional information, while high resource users decrease their use 

with the additional information (Abrahamse and Steg, 2013).  In studies of OPower home energy 

reports with peer comparison, electricity decreased by 1.2-2.1% and was sustained or increased 

as time went on (Allcott, 2011b; Ayres, Raseman, & Shih, 2013).  After two years of home 

energy reports, the reports still impacted household energy behavior.  The effects from receiving 

such additional home energy information showed persistence, with decay of 10-20% after 

cessation after two years of treatment (Allcott & Rogers, 2014).  Electricity use declined nearly 

1% with information comparing household electricity use with a benchmark neighbor.  When 

information on financial incentives were included with the information, the impact of social 

comparison was negated, suggesting there may be a conflict between monetary and non-

monetary information measures in reducing consumer energy use (Pellerano, Price, Puller, & 

Sánchez, 2015).  There is evidence that financial incentives may “crowd out” or undermine 

intrinsic motivation to engage in conservation efforts (Rode, Gómez-Baggethun, & Krause, 

2015).   

Residential consumers may not be fully informed on electricity prices.  Shin finds 

residential consumers responded to the perceived average electricity price from their bills.  When 

an incorrect perceived average price is corrected with information, substantial changes in 

demand may occur (Shin, 1985).  After examining water bills from 383 utilities for 1995 in an 

aggregate water demand model, Gaudin found a 30% or more increase in price elasticity when 

additional price information was added to bills.  The impact of additional price and quantity 

information on water bills are examined through dichotomous variables interacting with the price 

variable (2006).  Jessoe and Rapson also found increased price elasticity of demand in 

consumers exposed to more frequent electricity usage information (Jessoe & Rapson, 2014).  As 



61 
 

price elasticity becomes more negative, demand decreases more as prices increase.  At the same 

time, demand increases more as prices decrease. 

Not all additional information decreases energy use.  In an experiment when normative 

messages were provided to residential consumers comparing their energy use with the average 

use of the neighborhood, Schultz et al. find a boomerang effect on electricity use.  Households 

using more than the average reduced their electricity use while households using less than the 

average increased their electricity use.  Once an injunctive message of a smiling or sad face was 

added, the boomerang effect was eliminated.  In these cases, households consuming less than the 

average did not change their electricity use (Schultz, Nolan, Cialdini, Goldstein, & Griskevicius, 

2007).  This suggests that how information is designed and relayed can significantly impact 

residential electricity use.   

Mullainathan et al. put forth a reduced form approach to behavioral modeling that 

addresses the fragmented and diverse findings from behavioral economics in a parsimonious 

framework (2012).  Allcott and Sunstein further simplify this approach to describe the impact of 

consumer bias on demand (2015).  In their framework, individuals decide whether to take action 

with an equilibrium price p and a perfectly competitive supply curve S(p).  A bias parameter, b, 

is introduced to represent a number of the biases from behavioral economics.  Normally, 

consumers act when their utility, v, is greater than the price, p.  The market demand in this case 

is represented by DM(p).   

In the behavioral model, consumers act when their decision utility (v – b) is greater than 

p, where b can be negative, zero, or positive.  In a case where b > 0, the unbiased market demand 

is represented by DU(p).  The vertical distance between DM(p) and DU(p) is bias b, quantified in 
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dollars (Allcott & Sunstein, 2015).  See Figure 3-1 for a graphical depiction of this simplified 

reduced form approach of behavioral modeling.   

 

 

Figure 3-1. Reduced Form Approach to Behavioral Modeling 
(Adapted from Allcott & Sunstein, 2015) 

 
 
 
As seen in Figure 3-1, the bias from consumer imperfections, such as the lack of full 

information, leads to a reduced share of consumers taking that action in the market.  When the 

bias is corrected, the share of consumers taking the action increases.  Previous studies have tried 

to measure the bias from imperfect information empirically by providing information to 

treatment groups (Allcott & Sunstein, 2015).  Similarly, information feedback programs 

provided by AMI reduces bias by providing additional and readily accessible information.  

Therefore, these programs likely increase demand for energy efficiency or conservation and 

decreases electricity use according to the reduced form approach to behavioral modeling.  The 

following hypotheses are formed based on these insights and previous research findings.   
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Hypothesis 1 (H1): More AMI installations, which enable the provision of detailed energy 

information, decreases average household electricity use, controlling for weather, socio-

demographic factors, suburbia, and year time trends. 

 
Hypothesis 2 (H2): More frequent energy pricing information from time response programs 

decreases average household electricity use, controlling for weather, socio-demographic factors, 

suburbia, and year time trends. 

3.2.2 Price Elasticity Impacts 

Price elasticity of demand (ε) describes the relationship between price and quantity 

demanded.  It is the percentage change in quantity, q, over the percentage change in price, p.  𝜺 =  ∆𝒒/𝒒∆𝒑/𝒑      

An accurate estimate of price elasticity allows estimation of how long policy goals take to 

be realized (Baek, 2011).  The information smart grid provides to consumers are expected to 

inform changes in their consumption of energy.  Short run price elasticity focuses on 

consumption changes, while long run price elasticity also includes equipment stock changes 

(Gillingham, Newell, & Palmer, 2009).  In the case of smart grid, short-run price elasticity is of 

main interest.    

Price elasticity shifts with evolving consumer behavior and structural changes, such as 

changing land-use patterns, social characteristics, and vehicle trends (Hughes, Knittel, & 

Sperling, 2006).  In the case of gasoline demand, U.S. consumer price elasticity differs 

considerably due to these issues.  Short-run price elasticity values range from -0.21 to -0.34 

during 1975-1980.  During 2001-2006, these values decreased, ranging from -0.034 to -0.077 

(Hughes et al., 2006).  Consumers became less responsive to price increases in 2001-2006 
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compared to 1975-1980.  Smart grid technologies provide a structural change, one that can 

increase consumer price elasticity of electricity demand (Allcott, 2011).   

3.2.3 Community Factors 

Increased complexity within households, such as reduced time to research and consider 

alternatives, from environmental factors can limit the capacity to find optimal solutions.  Past 

research suggests that individuals with less time may increase energy use due to limited time 

resources dedicated to making optimal energy decisions and by relying on emotions instead 

(Finucane, Alhakami, Slovic, & Johnson, 2000).  This is an aspect of bounded rationality 

(Simon, 1972).  It is expected that communities with more time constraints, such as those with 

higher average commutes to work, will consume more electricity due to less time resources 

committed to more optimal energy choices.   

Consumer environments, from country of residence to household characteristics, can 

affect behavior (Bowles, 1998).  Isenhour finds evidence of more economic, market, social, and 

political barriers to environmental actions than lifestyle and informational barriers (2010).  

Thogersen and Gronhoj suggest socio-structural changes can support reductions of household 

electricity use (2010).  Individuals in countries with higher energy intensity have higher 

willingness to pay for environmental quality (Owen & Videras, 2006).  Residents of green 

communities use more sustainable travel compared to other communities, controlling for 

demographics and the built environment (Kahn & Morris, 2009).  Residents drive less and walk 

or bike more in areas with high residential density, land use mix, connectivity, and transit access 

(Frank, Greenwald, Winkelman, Chapman, & Kavage, 2010; Saelens, Sallis, & Frank, 2003).  

Metro areas with higher density, development concentration, and rail transit have, 

unsurprisingly, lower per capita carbon emissions (Brown, Southworth, & Sarzynski, 2009).  

Many of the pro-environmental behaviors appear to be supported by dense urban developments 
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with access to public transportation.  It is possible that residents of green communities elect to 

make more sustainable choices due to the availability of environmental information in these 

communities. 

  
Hypothesis 3 (H3): Utilities in communities with more readily available environmental 

information have lower average household electricity use than those in other communities, 

controlling for weather, socio-demographic factors, suburbia, and year time trends.   

 

Hypothesis 4 (H4): Utilities in communities with higher commute times will have increased 

average household electricity use, controlling for weather, socio-demographic factors, suburbia, 

and year time trends. 

3.2.4 Impact of Socio-Demographic Factors on Energy Demand 

Sociodemographic variables impact consumer energy and environmental decisions.  Yue, 

Long, and Chen find sociodemographic characteristics (age, gender, income, household 

structure, and education) are important factors impacting energy saving behavior (2013).    

The effect of income on energy and environmental decisions is mixed.  Low income 

families focus on income limitations when making energy decisions (Sahakian & Steinberger, 

2011).  Since energy services represent a larger portion of their budget, these families are 

constrained in daily energy use and equipment purchases (Cayla, Maizi, & Marchand, 2011).  

Low income households are more likely to prioritize economic growth over energy conservation 

and environmental protection (Owen & Videras, 2006).  In general, low income families focus 

more on energy reduction while high income families focus more on energy efficiency.  High 

income families are also more likely to have the means to purchase and implement efficiency 

measures (Nair, Gustavsson, & Mahapatra, 2010; Yue et al., 2013).    
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With higher household income, considerations beyond economics enter into energy 

decisions.  Social and cultural factors, such as comfort and fashion trends, impacted air 

conditioning use in Manila at higher income levels (Sahakian & Steinberger, 2011).  Black, 

Stern, and Elworth find an indirect impact of income, largely through home ownership, on 

increasing efficiency investments (Black, Stern, & Elworth, 1985).  As income increases, 

electricity use and carbon dioxide emissions also increase (Baiocchi, Minx, & Hubacek, 2010; 

Wilson, Tyedmers, & Spinney, 2013; Yohanis, Mondol, Wright, & Norton, 2008).    

The impact of age varies.  In China, age increased the adoption of energy conservation 

methods and decreased the likelihood of adopting energy efficiency options (Yue et al., 2013).   

In Greece, age is negatively associated with willingness to adopt energy conservation strategies 

(Sardianou, 2007).  Gronhoj and Thogersen find households with young children have the 

highest per household electricity use, followed by households with teenagers and households 

with older couples.  At the same time, households with children have the lowest per person 

usage, those with older couples used slightly more, and households with teenagers have the 

highest electricity use per person (Gronhoj & Thogersen, 2011).   

3.3 Electricity Demand Model and Data 

In this paper, an aggregate electricity demand model is estimated, based on the 

conventional demand function from classical consumer theory where demand is a function of 

price and income is the base (Reiss & White, 2005).  The functional form and variables included 

are informed by previous studies, data limitations, and areas of interest for this study.   

Several variables that may impact the information bias are included.  The main variable 

of interest is AMI penetration in the residential sector.  More Leadership in Energy and 

Environmental Design (LEED) certified buildings are included as a factor possibly increasing 
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available energy information.  Commute time is also included to estimate how limited time 

impacts consumer energy decisions.  As commute time decreases, consumers have less available 

time for energy information and decisions.   

Variables controlling for the suburban nature of a utility’s service area are included, such 

as public transportation use, age of the housing stock, percentage of detached houses, and owner 

occupancy.  Socio-economic variables, like average household income, percentage of the 

population below 18, the percentage of the population 65 and above, and average residential 

electricity price for the utility are included as control variables.  Lastly, weather and year effects 

are included as control variables.  The following modified demand model is estimated: 

 ln(𝑄) = 𝛼1𝐴𝑀𝐼 + 𝛼2𝐴𝑀𝐼 +  𝛼3 ln(𝐿𝐸𝐸𝐷) +  𝛼4𝑇 +  𝛼5𝑃𝑇 + 𝛼6𝑂𝐶 + 𝛼7𝐷𝐻 +  𝛼8𝑀𝑌+ 𝛼9𝐴𝐺𝐸18 + 𝛼10𝐴𝐺𝐸65 + 𝛼11ln(𝑃) + 𝛼12𝐼 + 𝛼13𝐶𝐷𝐷 + 𝛼14𝐻𝐷𝐷 + 𝛽𝑖 𝑌𝑖 + 𝜀 

 
where AMI is the percentage of residential customers with AMI, LEED is the number of LEED 

certified buildings in a state per capita, T is the mean travel time to work, PT is the percentage of 

workers taking public transportation, OC is the percentage of owner occupants, DH is the 

percentage of detached homes, MY is the median year built for housing, 𝐴𝐺𝐸18 is the percentage 

of population under 18, 𝐴𝐺𝐸65 is the percentage of population 65 and over, P is the average 

annual residential electricity price, I is the average household income, CDD is the annual cooling 

degree days, and HDD is the annual heating degree days, 𝑌𝑖 is the vector of dummy coefficients 

for year effects, and 𝜀 is the unobservable characteristics. 
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3.3.1 Data Sources and Description 

This study examines utilities with advanced metering projects from 2009-2013 in the 48 

contiguous states.  It is an unbalanced panel dataset with 3,004 unique utilities from 2009-2013.  

Not all utilities have information available for all years.   

Data for the smart grid analysis were collected from online data sources.  Utility and 

pricing data were from the Energy Information Administration (EIA) Form 861.  The ARRA of 

2009 funded many projects through Smart Grid Investment Grant Projects (SGIG) and Smart 

Grid Demonstration Projects.  There are 70 utilities with a total of 87 SGIG projects covering 42 

states affecting the residential sector.  There are also an additional nine Smart Grid 

Demonstration Projects with a residential aspect ("Recovery Act Project Information," n.d.).  

Due to the limited number of ARRA funded projects, this study examines all residential smart 

grid projects implemented in the U.S. with available EIA data from 2009-2013 without 

restriction to only ARRA funded projects.   

Census data were used to obtain a representative consumer for each utility.  Demographic 

data are from the American Community Survey (ACS) 5-Year Estimates.  The 5-year estimates 

were selected due to the greater data availability for smaller populations, even though it is not the 

most current data (U.S. Census Bureau, 2015).  Several data tables were used from the ACS.1  

The study is limited to 2009-2013 due to the availability of the ACS 5-year estimates.   

Counties within each utility's service area were obtained from EIA Form-861 (Service 

Territory).  Census data for each of these counties were located from the ACS 5-year estimates.  

Data for service area counties were then averaged to obtain representative utility values.  In some 

                                                 
1 ACS data tables that were used are:  DP04 Selected Housing Characteristics, DP05 ACS Demographic and 
Housing Estimates, B25035 Median Year Structure Built, B25010 Average Household Size of Occupied Housing 
Units by Tenure, S1902 Mean Income in the Past 12 Months, S0802 Means of Transportation to Work by Selected 
Characteristics.  
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cases, no census data were available for certain counties.  These counties were then excluded and 

only the counties with available data were used to generate the utility level demographic data.  

Heating and cooling degree days for each state are from the National Climatic Data 

Center of the National Oceanic and Atmospheric Administration (National Climatic Data Center, 

2015).  Weather information for Washington D.C. is obtained from Weather Underground 

("Weather History from KDCA.," 2015).  Cooling and heating degree days are calculated by 

summing the difference between the daily mean temperature and a base temperature of 65°F over 

any period of interest.  Heating degree days arise when mean daily temperature is below 65°F.  

Cooling degree days arise when mean daily temperature is above 65°F (NOAA, 2005).   

The LEED certified buildings per capita in the state of operation is also included as 

another measure of available information on building energy use.  LEED certification is a 

voluntary process, where new and retrofit buildings meeting certain prerequisites earn points to 

reach different certification levels (certified, silver, gold, and platinum).  Buildings with LEED 

certification distinguish themselves and their use of environmental building strategies and 

practices ("LEED," 2015).   

3.3.2 Data Caveats 

Examining average household electricity usage at the utility level presents several 

challenges.  The first challenge is from examining a utility’s electricity demand as the 

aggregation of individual household energy demand, a constraint presented by the available data.  

It is possible that impacts of household specific socioeconomic factors, such as income and 

composition, on residential electricity use are weakened when aggregated at the utility level.  By 

studying average residential electricity use in a utility, this study is limited to examining the 

impact of average electricity price in the utility.  Even though studies show consumers respond to 

average price for electricity demand (Shin, 1985; van Helden, Leeflang, & Sterken, 1987), 
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families may not necessarily experience the be that the average electricity price in a utility, 

especially with the recently proliferation of different pricing options (such as conventional, green 

electricity, and time response).  Second, the impacts of specific utility programs, especially 

relatively new programs like AMI with low penetration rates, may be diluted or lost when 

averaged across the utility.   

Lastly, there are limits to the level of detail in the data when aggregated at the utility 

level.  For instance, in the case of the time response variable, the number reflects the percentage 

of residential customers that participate in time response programs.  However, these types of 

programs include:  time of use pricing, real time pricing, variable peak pricing, critical peak 

pricing, and critical peak rebate (U.S. EIA, 2015a).   

3.4 Methodology 

Three different methods were compared in developing the model:  ordinary least squares 

(OLS), fixed effects (FE), and random effects (RE) models clustered by utility operation.  OLS 

and FE were compared using the F-test.  FE and RE models were compared using the Hausmann 

test, as is commonly used (Baltagi, 2013). Based on these tests, the FE model was selected.   
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3.4.1 Variables Considered 

Table 3-1 presents the examined variables, their abbreviations, and descriptions. 

 

Table 3-1. List and Description of Variables 

Abbreviation  Description 

ln(KWH) Natural log of average household electricity use (kWh/yr). 

AMI Percentage of residential customers with AMI (decimal), 
lagged by one year. 

Time Response Percentage of residential customers with time response 
programs (decimal), lagged by one year. 

ln(LEED Buildings) Natural log of LEED buildings in a state per capita. 

Commute Time Mean travel time to work (hours). 

Public Transportation Percentage of workers taking public transportation (decimal). 

Owner Occupants Percentage of all households that are owner occupants 
(decimal). 

Detached Houses Percentage of detached houses (decimal). 

Median Year Built Median year built for housing stock. 

Population under 18 Percentage of population under 18 years of age (decimal). 

Population 65 and over Percentage population 65 years old and older (decimal). 

ln(Electricity Price) Natural log of the mean electricity price per utility. 

ln(Average Income) Natural log of mean household income. 

CDD Cooling degree days by state (in thousands of degree days). 

HDD Heating degree days by state (in thousands of degree days). 

2010 Dummy variable for 2010. 

2011 Dummy variable for 2011. 

2012 Dummy variable for 2012. 

2013 Dummy variable for 2013. 

 

3.5 Results & Discussion 

This works examines the impact of smart grid programs and socio-physical factors on 

utility residential electricity use.  Table 3-2 reports the average residential electricity demand 

models for OLS, FE, and RE models.  There are 7,459 observations with 2,730 utility operations 

studied by all models.  All three models are substantially different.  The FE model is compared 

with the RE model using the Hausman test (test statistic = 913.21, Prob>χ2 = 0.000).  We reject 

the null hypothesis that the RE adequately models the utility-level effects.  The current 

specification of the RE model is biased and we select the FE model. 
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Table 3-2. Estimation Results of Average Utility Residential Electricity Demand, 2009-2013 

VARIABLES (1) OLS (2) FE 

AMI  0.160*** -0.00905** 
  (0.0100)  (0.00376) 

Time Response 0.253*** 0.0189 
  (0.0457) (0.0169) 

ln (LEED Buildings per Capita) -0.0916*** -0.00564 
  (0.00642) (0.00383) 

Commute Time 0.304*** -0.0298 
  (0.0562) (0.0353) 

Public Transportation -0.580*** 0.802** 
  (0.1980) (0.3310) 

Owner Occupants -0.253*** -0.486*** 
  (0.0805) (0.0911) 

Detached Houses -0.0566 -0.0142 
  (0.0577) (0.101) 

Median Year Built 0.00318*** -0.00421*** 
  (0.000398) (0.000920) 

Population < 18 0.459*** 0.821*** 
  (0.147) (0.259) 

Population > 65  0.966*** -0.201 
  (0.153) (0.273) 

ln Electricity Price -0.549*** -0.176*** 
  (0.0125) (0.0135) 

ln Average Income -0.0903*** 0.277*** 
  (0.0203) (0.0334) 

CDD  0.0749*** 0.0984*** 
  (0.00817) (0.00422) 

HDD  0.00435 0.0485*** 
  (0.00356) (0.00203) 

2010   0.00701 
   (0.00565) 
2011  0.0601*** 0.00841** 
  (0.00771) (0.00377) 
2012  0.0766*** -0.00679** 
  (0.00962) (0.00289) 
2013  0.138***  

  (0.01050)  
Constant  4.116*** 14.81*** 

  (0.837) (1.826) 
    

R-squared 0.339 0.395 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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3.5.1 Utility Programs 

3.5.1-1 Advanced Metering Infrastructure 

The coefficient for AMI varies in sign when moving from the OLS to FE model.  In the 

OLS model, the coefficient is positive, suggesting that AMI increases average residential 

electricity use in a utility.  Once within utility time-invariant effects are controlled by the FE 

model, the coefficient is negative.  

 In the FE model, the AMI coefficient is statistically significant in reducing residential 

electricity use at the alpha = 0.05 level (p-value = 0.016; 95% CI: -0.0164 to -0.00168).  Holding 

all else constant, each percentage increase in AMI penetration for residential utility customers 

results in a -0.006% change in expected average residential electricity use.  We reject the null 

hypothesis that utility customers with AMI have the same electricity use as those without.   

The average AMI penetration for utility operations in this dataset is 10.8% of residential 

customers.  If each percentage increase in AMI penetration decreases average utility 

consumption by 0.009%, then the electricity reduction from 10.8% AMI penetration is about 

0.097%.  In a meta-review of studies providing real-time information feedback, such as that from 

AMI, electricity reductions ranged from 0.5% to 18% from (Ehrhardt-Martinez, Donnelly, & 

Laitner, 2010).   This study finds a smaller impact from information feedback, almost a 

magnitude lower than the lower bound from the meta-review.  AMI installations are ongoing.  It 

may be that even though AMI meters are installed, consumers may not have access to 

information feedback.  In 2013, 37.8% of all meters were AMI enabled and only 22.5% of all 

metered households had access to daily digital access (U.S. EIA, 2015b).  There may be a lack of 

urgency in implementing information feedback programs as this additional benefit from AMI 

may not be the core motivation or initial focus.  Many utilities are installing AMI and smart grid 

infrastructure for the cost savings they afford (Allcott, 2011).  If a portion of installed AMI 
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meters do not yet provide information feedback to residential consumers, the full consumer side 

benefits will not be realized until information feedback programs are fully instituted.  Likewise, 

if information feedback is not readily accessible, such as if consumers just go to a website to 

retrieve their daily usage, the information may not be as impactful and the results from these 

programs may not be as pronounced.  If either of these arise, then the electricity reductions from 

AMI installations will be lower than the full potential savings from these technologies.   

3.5.1-2 Time Response Programs 

In both the OLS and FE model, the coefficient for time response programs is positive and 

of the opposite sign than expected.  In the OLS model, the coefficient is positive and significant, 

suggesting that higher time response program participation increases average residential 

electricity use in a utility.  Once within utility time-invariant effects are controlled by the FE 

model, the coefficient is still positive, suggesting that each percentage increase in time response 

program penetration increases residential energy use by 0.017%.  However, this coefficient is no 

longer significant in the FE model.   

Because the result is not significant, we fail to reject the null hypothesis that the average 

residential electricity use of utilities with more time response program participants and energy 

pricing information is the same as the average residential electricity use of utilities without such 

programs, controlling for weather, socio-demographic factors, suburbia, and year time trends.   

Few utilities in the dataset had high penetration of time response programs in their 

residential programs.  On average, less than one percent (0.91%) of all residential customers in 

this dataset from 2009 to 2013 were enrolled in time response programs.  Of the utilities with 

time response programs, only 0.54% had 50% or more of all residential customers enrolled in 

time response programs.  This question should be revisited with more detailed data on time 

response programs. 
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3.5.2 Environmental Information 

In the OLS model, the coefficient for the per capita LEED buildings is negative and 

highly significant.  According to the OLS model, as the per capita LEED buildings increase in a 

state, the average utility residential electricity use decreases, holding all else constant.  Once 

utility level characteristics are accounted for in the fixed effects model, the coefficient is no 

longer significant.  As the number of LEED certified buildings per capita increase in a state, the 

FE model finds no significant impact on average utility residential electricity use.  It appears that 

the greater availability of building energy information from higher prevalence of LEED certified 

buildings in a state have no significant impact on residential electricity use.   

3.5.3 Commute Time 

Communities with higher work commutes have higher average residential electricity use, 

holding all else constant.  However, once we control for utility level characteristics, we find that 

as commute times increase, average residential electricity use in a utility actually decreases, all 

else constant.  As the average work commute increases by one hour in a utility, expected average 

household electricity use decreases by 2.3%, holding all other variables constant.  However, this 

result is not significant.  There is only weak support that household electricity use decreases as 

work commutes increase in time, which is opposite of the expected direction.  It may be that 

longer work commutes mean less time for not only making better energy decisions, but also less 

time for all other activities, such as purchasing new gadgets and using technologies in the home.  

However, the current data are inconclusive on the impact of work commutes on residential 

energy use.  The hypothesis that utilities in communities with higher commute times have 

increased average household electricity use, controlling for weather, socio-demographics, 

suburbia, and year time trends, is rejected.   
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3.5.4 Control Variables 

3.5.4-1 Income Elasticity  

In the fixed effects model, estimated income elasticity is 0.277 and highly significant.  

Holding all else equal, for each percentage increase in average income, expected annual 

residential electricity use in a utility increases by 0.277%.  As expected, households use more 

electricity as income increases.  This value is similar to the results of Espey and Espey’s meta-

analysis of residential electricity demand, where they find a mean income elasticity of 0.28 

(2004).   

3.5.4-2 Price Elasticity 

In the FE model, the price elasticity is -0.176 and highly significant.  This suggests that 

holding all else constant, for each percentage increase in average electricity price, expected 

annual residential electricity demand decreases by 0.176%.  This price elasticity estimate is 

similar to the upper bound of -0.15 in Taylor’s survey of residential short-run price elasticity for 

electricity demand of studies using average price.  It is also similar to Bohi and Zimmerman’s 

consensus estimate of -0.20 in their review of 18 studies examining periods between 1957-1980 

(Bohi & Zimmerman, 1984; Taylor, 1975).  It is lower than Espey and Espey’s mean -0.35 for 

short-term price elasticity of residential electricity demand in their meta-analysis of 30 studies 

published from 1973-2000 (Espey & Espey, 2004).  This study finds a largely similar price 

elasticity to the upper bound of Taylor’s range and Bohi’s consensus estimate, which included 

the energy crises of the 1970s.  However, this study finds consumers are less elastic than 

suggested by Espey and Espey’s mean of -0.35 from their meta-analysis, which included studies 

examining more recently time periods up to 2000.  Espey and Espey find residential consumers 

were more inelastic in the short-run during the 1970s energy crises (Espey & Espey, 2004).  It 
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may be that consumers became more inelastic during 2009-2013 as a response to the Great 

Recession.  

3.5.4-4 Suburbia Variables 

A one percent increase in owner occupants in the population served results in a 0.49% 

decrease in expected annual household electricity use, holding all other variables constant.  This 

is highly significant and suggests that owner occupants may implement more energy efficiency 

and energy conservation measures than renters.  This may be due to their greater ability to alter 

the home and its energy efficiency since they own it.  The impact of the percentage of detached 

houses in a utility’s service area does not significantly impact expected average residential 

electricity use in either the OLS or FE model. 

The OLS model suggests that average residential electricity use in a utility increases 

when the residential building stock is newer, all else equal.  Once within group effects are 

considered, the FE model finds the average residential energy consumption in a utility decreases 

by 0.42% as the median year built for residential building stock increases by one year.  This 

result is highly significant.  As newer residential buildings are built, average residential 

electricity use in the utility decreases, all else constant.  This suggests that newer residential 

buildings are more energy efficient than older buildings and that the energy savings from their 

improved energy efficiency can be seen at the utility level.   

The coefficient on the percentage of the working population using public transportation is 

significant at the alpha = 0.05 level.  Holding all else constant, a one percent increase in the 

working population taking public transportation leads to an expected increase in annual 

household electricity use of 0.8%.  This may be due to an indirect rebound effect, where 

individuals using public transportation increase their energy use at home.  Householders may feel 

justified in applying the economic savings from using public transportation to increase household 
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comfort, such as more heating and cooling, or to increase enjoyment, like purchasing or using 

more electronic devices.  Since income is included in these models, these results already control 

for income.   

To explore the potential rebound effect impact, further analysis was conducted to 

estimate the rebound effect from an approximate 0.8% increase in average household electricity 

use in households using public transportation for work.  The minimum and maximum fuel 

efficiency between 2009-2013, as reported by the Bureau of Transportation Statistics, was used 

in the calculation (U.S. Department of Transportation, 2015).  The minimum and maximum 

travel times for the dataset (9.1 and 42.1 minutes respectively), were used and speeds of 25 mph 

and 70 mph were assumed.  See Table 3-3 for values used in the rebound effect calculation.  

 

Table 3-3. Values Used in Rebound Effect Calculation 

 Mean Min Max 

Average Fuel Efficiency1 (mpg)  17.1 37.1 

Travel time (minutes) 22.25 9.1 42.1 

Speed (mph)  25 70 

Energy Conversions 

Ave Energy Content of Gasoline2 114,500 BTU/gal 

1 kWh  3412 BTU 
1 U.S. Department of Transportation, 2015 
2 U.S. Environmental Protection Agency, 1995 
 

Using the analysis results and assumptions above, a range of rebound effect estimates 

were obtained from varied assumptions of commute time, speed, fuel efficiency, household 

electricity use.  It is assumed that only one working householder using public transportation 

yields the increased electricity use.  This provides an upper bound estimate of the impact, as the 

rebound effect will decrease as more householders use public transportation for the same 

estimated impact.  From these results, the estimated rebound effect from public transportation 
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usage varies from 0.03% to 19.5%.  Results for rebound effect calculations are presented in 

Table 3-4, assuming one working and commuting via public transportation, respectively.   

 

Table 3-4. Estimated Rebound Effect from Public Transportation, One Worker/Household 

Household 

Electricity Use 

Increase 

(kWh) 

Min Trip Max Trip 

Gas Use - Increase 

(kWh) 

Rebound 

Effect 

Gas Use- Increase 

(kWh) 

Rebound 

Effect 

Min 1,667 13.4 1,564.28 0.85% 44,326 0.03% 

Ave 11,956 95.9 1,481.76 6.08% 44,243 0.22% 

Max 38,380 307.8 1,269.84 19.51% 44,031 0.69% 

 

The estimated household electricity impact from a one percent increase of public 

transportation use by workers, when constrained to examining average household electricity use 

and assuming one working householder using public transportation, yields an approximate 0.22 – 

6.08% rebound effect.  This implies that, on average, about 94% or more of the energy savings 

from using public transportation versus private transport are still retained.  Therefore, though the 

results suggest householders using public transportation for work commutes increase their 

household electricity use by about 0.8%, this increase is slight.  Public transportation is an 

effective method to reduce transportation energy use even considering this potential rebound 

effect. 

3.5.4-3 Impact of Age 

Though the percentage of the population over 65 did not significantly impact residential 

energy use, the percentage of youth was significant at alpha = 0.05.  For each percentage 

increase in the population under 18, expected annual household electricity use in a utility 

increases by 0.82%, holding all else constant.  Utilities in areas with a higher youth population 

have higher expected average household electricity use, all else constant.  
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3.5.5 Weather 

Lastly, weather is commonly included in models of residential energy behavior.  Both 

CDD and HDD were examined in this study.  Holding all else constant, for each additional 

thousand CDD per year, expected annual residential electricity use in a utility increases by about 

10%.  For each additional thousand HDD per year, expected annual residential electricity use in 

a utility increases by about 4.9%, holding all else constant.  This result suggests that an 

additional CDD increases household electricity demand more than a HDD.  This is not 

unexpected as air conditioning is electric powered and heating can be either electric or natural 

gas powered. 

3.6 Conclusions and Policy Impacts  

This study uses utility level residential data to explore the impacts of advanced metering 

infrastructure and time response programs on residential electricity demand.  Few studies have 

examined how these smart grid components impact residential energy use across utilities.   

Utility smart grid is still developing and in early stages of implementation.  Only 10.8% 

of utility operations in the dataset have AMI available.  Of those with these programs, only 

10.7% had them available to 50% or more of their residential customers.  Within a utility 

operation, each percentage increase in residential AMI penetration significantly reduces average 

utility residential electricity use by 0.009%, holding all else constant.  Even with 100% AMI 

penetration within a utility, the current energy savings realized by AMI in this sample would 

reduce average residential electricity use by 0.9%.   

At these early stages of smart grid implementation, it appears that the full possible 

benefits of information feedback to residential consumers is not currently realized.  Even though 

AMI installations have increased over the years, smart grid information feedback to residential 

consumers may not be at maximal effectiveness.  This may be due to several issues.  First, even 
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though smart grid infrastructure has been installed, it may be that smart grid information 

feedback has not been fully implemented in all existing smart grids.  Second, smart grid 

information feedback may not be readily accessible and consumers may not be viewing it.  

Third, the information provided by smart grid may not be optimally designed to impact 

consumer energy behavior.  If immediate smart grid effects on residential energy use are desired, 

more efforts need to support understanding and implementing effective information feedback.    

Smart grid policies can support data gathering and research to inform future smart grid 

success.  Policies can request data from electric utilities regarding the types of information 

feedback provided by their smart grids, the percentage of their customers that access this 

information, and how households participate in these information programs (opt in or opt out).  

With this information, determining why some smart grids are more effective than others in 

modulating residential electricity demand will be easier.  Policies can also support additional 

research to support smart grid success.  More research is needed to determine the best ways to 

display information feedback to consumers.  Research should also explore how consumers 

respond to different access methods and determine which are the most effective methods.  

Future researchers should revisit the impact of AMI programs on average household 

utility consumption when smart grid penetration increase and information feedback is fully 

functional.  Smart grid impacts may be more visible across utilities as they become more 

prevalent, information feedback is more uniformly implemented, and utilities gain additional 

expertise with these new technologies.  Though smart grid development may be initially focused 

on updating the electrical infrastructure to obtain real-time information feedback to the utility, 

real-time information feedback to consumers brings added benefits by lessening residential 

energy demand.  Understanding smart grid impacts on utility demand is important as we 
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modernize our electrical grid.  Only then will we fully grasp all the opportunities a smarter 

electrical grid can provide.   
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CHAPTER 4. PROJECTIONS OF A NATIONAL RESIDENTIAL SMART 

GRID 
 
 
 

4.1 Introduction  

The next generation electrical grid, the smart grid, is being rapidly deployed throughout 

the world.  Smart grids introduce two-way communications and computational intelligence into 

the electrical grid to achieve a secure, resilience, and sustainable system (Fang, Misra, Xue, & 

Yang, 2012; Farhangi, 2010; Sintov & Schultz, 2015).  Automatic metering infrastructure (AMI) 

technology is central to smart grids by enabling two-way communications between consumers 

and utilities (Sintov & Schultz, 2015).  Smart grid introduces a new paradigm of active 

distribution where consumers become active players (Gangale, Mengolini, & Onyeji, 2013).  The 

importance of consumer adoption, engagement, and trust in smart grids are considered essential 

for successful roll-out of the technology (Sintov & Schultz, 2015; Xenias et al., 2015).  This 

reliance on consumer engagement is considered a barrier by some experts (Xenias et al., 2015).  

Despite this and other concerns like cyber security (Wang & Lu, 2013), experts consider the 

evolution to a smarter grid necessary (Farhangi, 2010; Xenias et al., 2015).   

The traditional electrical grid faces many issues.  The electrical grid is unidirectional with 

clear demarcations between generation, transmission, and distribution subsystems (Farhangi, 

2010).  Electrical generation efficiency has not increased for more than half a century and 

transmission cables are still largely 1950s technology facing significant electrical transmission 

losses (Brown, 2007).  About only one third of fuel is converted to electricity, with another 8% 

lost along transmission lines.  The traditional system is engineered to meet maximum anticipated 

peak demand.  About 20% of generation capacity is for this purpose alone and only used about 

5% of the time.  The traditional electrical system lacks real-time control.  Even in North 
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America, with one of the world’s most advanced electrical systems, more than 75% of the 

distribution system lacks information and communication systems.  Meanwhile, increased 

electricity demand and decreased electrical infrastructure investment compromises system 

stability (Farhangi, 2010).   

Smart grid addresses many of these issues.  Not only does it accommodate many 

generation options, its real-time communications allow rapid identification of problems.  System 

intelligence allows more rapid resolution or mitigation of problems (Fang et al., 2012; Farhangi, 

2010).  Though its predicted benefits are many, smart grid is in early developmental stages, 

where new technologies and methods are emerging, competing, and demonstrating effectiveness 

(Erol-Kantarci & Mouftah, 2015; Fang et al., 2012).   

Smart grid progress relies not only on technological, regulatory, and legislative 

innovations.  It also requires consumer engagement and acceptance (Colak, Fulli, Sagiroglu, 

Yesilbudak, & Covrig, 2015).  Experts believe smart grid data and privacy must be assured to 

gain consumers trust (Xenias et al., 2015).  As smart grid is more ubiquitous, larger in size, and 

more automated, it faces increasing security challenges (Yan, Qian, Sharif, & Tipper, 2013).  

The heterogeneous smart grid communication network, with varied devices, architecture, and 

capabilities, make uniform deployment of security approaches across the grid unlikely (Wang & 

Lu, 2013).  Instead, security solutions designed for specific network applications will be 

necessary (Wang & Lu, 2013), making smart grid and smart meter security a challenging area of 

research (Sharma & Mohan Saini, 2015; Wang & Lu, 2013).   

Smart grid deployment is not uniform.  Its implementation is dependent on factors such 

as state policies, utility technological experience, and regulatory incentives (U. S. Department of 

Energy, 2014).  It is difficult to extrapolate lessons learned from individual smart grid programs 
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to understand the implications of a national residential smart grid.  This chapter explores the 

energy impacts from effective consumer engagement with smart grids through policy modeling.  

This chapter models the impacts of price elasticity and rebound effect changes that 

approximate the consumer engagement programs supported by national residential smart grid.  It 

uses the National Energy Modeling System (NEMS) to project economy wide impacts.  Smart 

grid technology is still undergoing research and development.  It is difficult to determine the 

final form and cost of a national smart grid.  This chapter makes no assumptions regarding the 

technologies employed in such a scenario.  To do so in an area with new and emerging 

technologies requires prophetic powers of which this author does not possess.  Instead, it focuses 

on examining the energy and economy wide impacts from price elasticity and rebound effect 

changes that might be expected from smart grid.  First, pertinent literature and methodology are 

described.  Next, the results are detailed and discussed, followed by the conclusions. 

4.2 Literature Review and Background 

Much research has been conducted to understand consumer energy behavior, especially 

the impact of additional information on behavior.  Still, research on how to best present 

information to consumers and strategies for increased consumer engagement are lacking 

(Gangale et al., 2013).  Consumer engagement is essential to the success of smart grid (Sintov & 

Schultz, 2015; Xenias et al., 2015).  There is a growing need for behavioral research in the 

energy sector to inform smart grid development through program evaluations and readily 

available results (Sintov & Schultz, 2015).   

Thus far, we know that there are many ways to elicit consumer behavior change through 

information provision.  Consumer decisions can be biased or “anchored” by previously presented 

material (Arana & Leon, 2008; Bond, Carlson, Meloy, Russo, & Tanner, 2007).  Emotional cues 



92 
 

can increase attention and processing speed (Dolan, 2002).  Emotional intensity and anchoring 

have a U-shaped relationship, where anchoring effects impact consumer preferences more when 

emotional intensity are at extremes (Arana & Leon, 2008).  Social norms and peer influence can 

affect energy behavior and recycling (Abbott, Nandeibam, & O'Shea, 2013; Yue, Long, & Chen, 

2013).  Consumer behavioral change is greater when information is from known people and 

trusted information sources (Kua & Wong, 2012; McMichael & Shipworth, 2013).  The 

likelihood of adopting energy efficiency measures increases by up to four times when consumers 

receive information from personal contacts (McMichael & Shipworth, 2013).  Consumers are 

more likely to overweigh information from high expertise and high correlation sources (Luan, 

Sorkin, & Itzkowitz, 2004).  All of these consumer behavior findings can be implemented in the 

smart grids by designing the information content and delivery style.   

However, few researchers have examined how to best present this information, even 

many projects have explored information provision to consumers (Gangale et al., 2013).  More 

studies on how to best present information are required.   Several studies on the impact of 

information on residential energy use are discussed below.   

Smart grid technologies provide a structural change, one that can increase consumer price 

elasticity of electricity demand (Allcott, 2011a).  Price elasticity increases from more frequent 

consumption and pricing information, like that which smart grid programs can provide (Jessoe & 

Rapson, 2014; Wolak, 2011).  Few papers estimate the price elasticity change from providing 

more information. In one of these, Gaudin estimates the price elasticity impacts from additional 

pricing information on water bills from 383 utilities.  He finds a 30% or more decrease in price 

elasticity (-0.36 for areas without and -0.51 for areas with additional price information) when 

additional price information is added to bills (2006).  Just providing pricing information to 
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consumers more frequently, as smart grid technologies are capable of doing, can make consumer 

demand more elastic.  At high prices, higher price elasticity decreases demand for the energy 

service.  At lower prices, higher price elasticity increases energy service demand.   

Residential consumers decrease electricity use when provided with additional 

consumption information.  Empirical studies on consumption feedback to residential households 

finds it decreases subsequent use by as much as 5-10% (Abrahamse, Steg, Vlek, & Rothengatter, 

2005; Matsukawa, 2004; Seligman & Darley, 1977).  Consumers are also influenced by others’ 

decisions (Kasanen & Lakshmanan, 1989).  Studies on providing peer consumption of feedback 

finds sustained electricity decreases of 1.2-2.1% (Allcott, 2011b; Ayres, Raseman, & Shih, 

2013).  These findings show that consumers decrease electricity use when additional 

consumption information is provided on their electricity consumption.   

Decreased electricity use with more consumption information suggests consumers change 

their behavior to save energy.  This may arise due to consumers changing their price elasticity, 

similar to their response to additional pricing information.  It may also be due to consumers 

decreasing existing rebound effects within their household by decreasing non-essential electricity 

use.  The rebound effect can be mathematically expressed as the percentage difference in actual 

and calculated energy consumption after energy efficiency implementation (Druckman, Chitnis, 

Sorrell, & Jackson, 2011; Freire-González, 2011; Haas & Biermayr, 2000).  Theoretically, the 

rebound effect is attributed to only changes in consumer energy behavior after efficiency 

implementation.  Though the price elasticity is closely related to the rebound effect and is used 

many times to empirically estimate it (Berkhout, Muskens, & Velthuijsen, 2000), the rebound 

effect is distinct.  The rebound effect is a function of not only price elasticity of the energy 

service in question, but also its energy intensity as compared to other substitutes and 
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complements (Berkhout et al., 2000).  Therefore, change in energy consumption from altered 

rebound effect need not be identical to changes from altered price elasticity and the rebound 

effect may be modulated by additional consumption information.      

4.2.1 NEMS Background 

NEMS is a modeling program used by the Energy Information Administration (EIA) to 

project the energy, economic, environmental, and security impacts of U.S. energy policies and 

market changes (U.S. EIA, 2009).  The program uses a general equilibrium model to project U.S. 

energy supply and demand for each year up to 2040 (U.S. EIA, 2014b).  NEMS is updated 

annually with recent energy policies.  Though used mainly to generate EIA’s Annual Energy 

Outlook, NEMS is also used for policy analyses for the Administration, Congress, and 

governmental agencies on request (U.S. EIA, 2009).  As such, NEMS has significant policy 

impacts.   

NEMS uses a modular approach with various supply, demand, and conversion modules.  

Each is relatively self-contained.  An integrating module achieves a general market equilibrium 

among all modules.  Modules share information such as price, quantity, economic activity, 

capital expenditure, and international energy supply curves (U.S. EIA, 2014a).  See Figure 4-1 

for a figure of the various NEMS modules and their relationships. 

This chapter focuses on the residential sector and the NEMS Residential Demand Module 

(RDM).  Using NEMS inputs of energy prices and macroeconomic indicators, the RDM 

generates residential energy consumption by end-use service, fuel type, and Census Division.  It 

then computes equilibrium energy prices and quantities.  It also outputs information needed in 

the NEMS integration process (U.S. EIA, 2014b). 



95 
 

 
Figure 4-1. NEMS Model Structure and Flow (U.S. EIA, 2014a) 

 
 

 
In the residential sector, NEMS employs changes to short-term price elasticity of 

electricity demand to simulate successful smart grid deployment.  Short run price elasticity 

focuses on consumption changes, while long run price elasticity also includes changes in 

equipment stock (Gillingham, Newell, & Palmer, 2009).  In the residential sector, the short-term 

price elasticity of demand decreases from -0.15 to -0.30 from 2010 onwards for electricity (U.S. 

Energy Information Administration, 2015).  Bohi and Zimmerman review 18 publications with 

estimates of short-term price elasticity for residential electricity demand.  From this review, they 

arrive at a consensus estimate of -0.20 for short-term price elasticity (Bohi & Zimmerman, 

1984).  This estimate is higher than the -0.15 value assumed by NEMS under status quo 

situations without smart grid.  Espey and Espey examine 30 studies published from 1973-2000 

for estimates of short-term price elasticity of residential electricity demand.  Values range from -

2.1 to -0.004 with a mean of -0.35 and a median of -0.28 (Espey & Espey, 2004).  The mean 
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value of -0.35 is higher than the assumed short-run price elasticity assumed within NEMS of        

-0.30 to model smart grid implementation.  Price elasticity varies for geographic regions and 

methods employed, but it is likely that the short-run price elasticity of electricity demand without 

smart grid implementation is near or higher than short-run price elasticity of electricity of -0.30 

assumed by NEMS with residential smart grid. 

The NEMS RDM applies price elasticity and efficiency rebound effects to three end-uses:  

heating, cooling, and lighting (U.S. Energy Information Administration, 2015).  For heating and 

cooling end-uses, the rebound effect is calculated by the following general equation (U.S. Energy 

Information Administration, 2014b): 

 𝑅𝐵𝑦,𝑒𝑔,𝑏,𝑟 = (𝑊𝑇𝐸𝑄𝐶𝐸𝐹𝐹𝑦,𝑒𝑔,𝑏,𝑟 ∗ 𝑅𝑇𝐵𝐴𝑆𝐸𝐹𝐹𝑏𝑎𝑠𝑒𝑦𝑟,𝑒𝑔)𝛼1   
 

where  𝑅𝐵𝑦,𝑒𝑔,𝑏,𝑟 is the rebound effect, 𝑊𝑇𝐸𝑄𝐶𝐸𝐹𝐹𝑦,𝑒𝑔,𝑏,𝑟 is the equipment efficiency weighted 

by market share of the specific equipment from technology choice, and 𝑅𝑇𝐵𝐴𝑆𝐸𝐹𝐹𝑏𝑎𝑠𝑒𝑦𝑟,𝑒𝑔 is 

the efficiency of the weighted average of units from existing base year stock, 𝛼1 is the short term 

price elasticity of energy demand (rebound effect elasticity) valued at -0.15, y is the year, eg is 

the equipment class, b is the housing type, and r is the Census Division.   

There are three equations for rebound effect: surviving equipment (RBA), replacement 

equipment (RBR), and new equipment (RBN) (U.S. EIA, 2014b).  Rebound effect values vary 

by equipment, housing type, and census division.  The NEMS definition of rebound effect is 

different than the usual definition of rebound effect.  For example, a rebound effect of 3% is 

given a value of 1.03 in NEMS.  The magnitude of rebound effect for equipment within NEMS 

is low compared to some estimates of rebound effect.  Table 4-1 and 4-2 display the average 

rebound effect values for all census divisions by equipment type for heating and cooling end 
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uses, respectively, in 2015 within the NEMS 2015 version that is used here.  Rebound effects 

used in NEMS are presented as percentages. 

 

Table 4-1. Average Heating Rebound Effects in 2015 

Equipment 

Type 

Surviving 

Equipment 

Replacement 

Equipment 

New 

Equipment 

Electric Radiator 0% 0% 0% 

Electric Heat Pump 5.25% 4.04% 4.02% 

Natural Gas Furnace 1.47% 1.69% 1.54% 

Natural Gas Radiator 0.63% 0.57% 0.56% 

Kerosene Furnace 0.93% 0.78% 0.75% 

LPG Furnace 1.97% 2.13% 1.63% 

Distillate Fuel Oil Furnace 1.50% 1.08% 0.93% 

Distillate Fuel Oil Radiator 0.79% 0.81% 0.80% 

Wood Heat -7.27% -8.71% -8.71% 

Geothermal Heat Pump 4.98% 1.00% 1.00% 

Natural Gas Heat Pump 0% 0% 0% 

 
 

Table 4-2. Average Cooling Rebound Effects in 2015 

Equipment Type Surviving 

Equipment 

Replacement 

Equipment 

New 

Equipment 

Room Air Conditioner 1.96% 1.96% 1.96% 

Central Air Conditioner 2.32% 2.68% 2.67% 

Electric Heat Pump 2.96% 2.41% 2.43% 

Geothermal Heat Pump 2.78% 2.19% 2.19% 

Natural Gas Heat Pump 0% 0% 0% 

  
 

4.3 Research Question  

This study examines the impact of rebound effect and price elasticity of electricity 

changes that might arise from a national residential smart grid.  It asks:  What are the impacts of 

rebound effect and price elasticity of electricity changes in the residential sector at varying 

levels?   
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4.4 Methodology 

The NEMS modeling plan focuses on source code alterations.  A similar methodology 

was used in the NEMS modeling for Making Homes Part of the Climate Solution (Wang, Wang, 

Brown, & Jackson, 2011).  

First, the residential sector module and source code were both examined to determine 

possible levers.  Modifiable levers within the residential sector include: price elasticity, rebound 

effect, discount rate, equipment efficiencies, and implementation dates for efficient technologies 

(U.S. EIA, 2014).  Price elasticity and rebound effect changes, the most likely levers to model a 

smart grid program, cannot be altered through existing input files within NEMS.  They can only 

be modified through source code changes. 

The value for electricity price elasticity was first modified to reflect literature findings.  

Two values for short-run price elasticity are used, -0.24 and -0.35.  The estimate from Bohi and 

Zimmerman is averaged with the median estimate from Espey and Espey to arrive at -0.24.  

Espey and Espey’s mean value of -0.35 is also used as a sensitivity (Bohi & Zimmerman, 1984; 

Espey & Espey, 2004).  Since Gaudin found a 30% increase in price elasticity with additional 

pricing information (2006), the short-run price elasticity of electricity is next increased by 30% 

to reflect smart grid implementation.  The values assumed for short-run price elasticity after 

smart grid implementation are listed in Table 4-3. 

 
 

Table 4-3. Assumed Values for Short-run Price Elasticity of Electricity 

 Before Smart Grid Implementation After Smart Grid Implementation 

Value 1 -0.24 -0.31 

Value 2 -0.35 -0.46 
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To implement the price elasticity changes, all source code values for short-term price 

elasticity for electricity (denoted by “alpha”) were changed from the reference case values to  

-0.31 or -0.46.  Price elasticity for electricity for the following uses were changed: 

 heating,  

 cooling,  

 water heating,  

 dryers,  

 lighting,  

 miscellaneous electrical devices  

 electric motors,  

 and electric heating elements. 

 
NEMS rebound effects values for heating and cooling end uses are altered.  Three 

sensitivities for rebound effect are implemented, 100%, 90%, and 65% of NEMS reference case 

rebound effect formula.  The rebound effect was attenuated by each percentage in the source 

code if the rebound effect was positive (i.e. RBA, RBR, and RBN all greater than 1).   

An additional six scenarios were also tested with increased the NEMS reference case 

rebound effects formulas for heating and cooling end-uses.  Multipliers were calculated to 

increase the rebound effects to an average of 42% for 2015 NEMS reference case values for 

heating and cooling rebound effects by equipment type.  This value is based on the average 

rebound effect of 42% found in meta-analysis of residential rebound effect in Chapter 2.  

Rebound effect multipliers are 1.42 for heating end-uses and 1.39 for cooling end-uses based on 

reference case 2015 values for heating and cooling rebound effects averaged over equipment 

types.  In total, twelve different scenarios combining price elasticity and rebound effect changes 

were examined.   

The NEMS 2015 reference case currently includes smart grid.  In it, the short-run price 

elasticity of electricity increased from -0.15 to -0.30 for years 2009 and later to model the impact 

of stimulus funding for smart grid.  To better estimate the total projected savings from national 
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smart grid, the six scenarios are compared to a scenario where short-run price elasticity of 

electricity remains at a constant -0.15 (no smart grid assumed) throughout the projection period.  

This scenario with a constant -0.15 short run price elasticity of electricity will be called the 

revised NEMS 2015 reference case or the revised reference case.  Likewise, another revised 

NEMS 2015 reference case scenario with inflated rebound effect was also created to compare 

with the high rebound effect scenarios.  This version will be called the revised NEMS 2015 

reference case with high rebound effects. 

The six different scenarios relying on reference case rebound effects were compared with 

the revised reference case, where no smart grid is assumed.  There are three scenarios per 

assumed price elasticity.  As rebound effect decreases in the scenarios, they can be interpreted as 

increasingly effective smart grid programs through providing more effective information.   

The six different scenarios relying on inflated rebound effects were compared with the 

revised reference case with high rebound effects.  See Table 4-4 for scenario names and 

descriptions of short-term price elasticity of electricity and rebound effect changes. 

 
Table 4-4. Scenario Names and Descriptions 

Scenario Name Short-term 

Price Elasticity 

of Electricity 

Reduction of Rebound 

Effect (Heating & 

Cooling End Uses) 

Rebound Effect Size 

PE31 -0.31 0% NEMS reference values 

PE31RE90 -0.31 10% NEMS reference values 

PE31RE65 -0.31 35% NEMS reference values 

PE46 -0.46 0% NEMS reference values 

PE46RE90 -0.46 10% NEMS reference values 

PE46RE65 -0.46 35% NEMS reference values 

PE31REHI -0.31 0% Inflated values 

PE31RE90REHI -0.31 10% Inflated values 

PE31RE65REHI -0.31 35% Inflated values 

PE46REHI -0.46 0% Inflated values 

PE46RE90REHI -0.46 10% Inflated values 

PE46RE65REHI -0.46 35% Inflated values 
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4.5 Results and Discussion 

4.5.1 Total Energy Savings 

All scenarios reduce overall total energy compared to the scenario without residential 

smart grid.  Though there are fluctuations over time, the total energy savings over all sectors 

generally increases during the projection period for all scenarios.  See Figure 4-2 for the yearly 

projected total energy savings over all sectors from 2016 through 2040 for scenarios with low 

assumed rebound effects.  See Figure 4-3 for yearly projected energy savings for scenarios with 

high rebound effects.  Each scenario is compared to the applicable revised reference case. 

 

 
Figure 4-2. Total Energy Savings from Smart Grid Scenarios, All Sectors, Low Rebound 
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Figure 4-3. Total Energy Savings from Smart Grid Scenarios, All Sectors, High Rebound 

 

The total projected energy savings across all sectors does not necessarily increase as the 

rebound effect decreases.  In some cases, total energy savings across all sectors decreases as the 

rebound effect decreases, as in the case PE46RE65.  This can be seen in Table 4-5.  For example, 

PE46RE65 is projected to save 5,093 trillion Btu cumulatively from 2016 to 2040 across all 

sectors.  However, PE46RE90, which reduces rebound effect to 90% of the reference case 

amount instead of 65%, is projected to save an additional 260 trillion Btu during the same time 

frame.  Even though PE46RE65 models a scenario that reduces residential energy use more, it 

does not save more total energy across all sectors as a smart grid scenario assuming a higher 

rebound effect.   

Generally, more total energy is saved in the residential sector than across all sectors.  

Cumulative total energy savings in the residential sector, ranging from 4,059 to 8,459 trillion Btu 

for low rebound effect assumptions and 4,257 to 8,403 trillion Btu for high rebound effect 



103 
 

assumptions, generally exceed the overall savings across all sectors.  Energy consumption 

changes in other sectors induced by a national residential smart grid program can substantially 

decrease realized energy savings from national residential smart grid, especially in the scenarios 

with low rebound effect assumptions.  In these cases, 35-45% of residential sector energy 

savings are offset by energy demand changes in other sectors.  With higher assumed rebound 

effects, less of the residential energy savings are offset by energy demand changes in other 

sectors.  The amount offset ranges from -0.8% to 76.5%, with the majority ranging from 8.2%-

19.1% reduction in residential sector savings from demand changes in other sectors.  See Table 

4-5 for the cumulative total energy savings in the residential sector and all sectors from a 

national residential smart grid program from 2016 to 2040 by scenario.   

 
Table 4-5. Cumulative Total Energy Savings, 2016 to 2040, Residential and All Sectors 

Scenario 

Total Energy, 

Residential Sector 

(Trillion Btu) 

Total Energy, 

All Sectors 

(Trillion Btu) 

Reduction in 

Residential Sector 

Savings from 

Other Sectors (%) 

PE31 4,059 2,224 45.2% 

PE31RE90 4,319 2,619 39.4% 

PE31RE65 4,702 2,950 37.3% 

PE46 8,054 4,985 38.1% 

PE46RE90 8,247 5,353 35.1% 

PE46RE65 8,459 5,093 39.8% 

PE31REHI 4,257 3,909 8.2% 

PE31RE90REHI 4,496 3,761 16.3% 

PE31RE65REHI 4,385 3,546 19.1% 

PE46REHI 8,286 1,945 76.5% 

PE46RE90REHI 8,403 7,395 12.0% 

PE46RE65REHI 7,139 7,194 -0.8% 

 
 
 
From these results, it is evident that rebound effect and price elasticity changes realize 

overall energy savings.  However, there is significant variation in the projected energy savings 
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depending on the scenario though.  The expected demand changes cannot be predicted based on 

the degree at which rebound effects are attenuated.  Lower rebound effects do not necessarily 

always lead to increased energy savings.  However, it does appear that a scenario with lower 

price elasticity (-0.46 versus -0.31) realize greater energy savings than the same scenario but at a 

higher price elasticity. 

The consumption changes in other sectors likely arise from projected lower energy prices 

in the smart grid scenarios.  For the most part, residential smart grid scenarios decrease projected 

energy prices throughout most, if not all, of the projection period.  This effect is most evident for 

electricity and natural gas prices.  Projected average electricity prices and natural gas prices 

decrease for the majority of the projection period.  Figures 4-3 and 4-4 shows projected changes 

in average electricity and natural gas price from 2016 to 2040 for the scenarios with low rebound 

effect assumptions.   

The reduction in energy prices from reduced energy demand is called the “demand 

reduction induced price effect” (DRIPE) and has been suggested for energy efficiency 

investment.  As consumers spend the resulting savings from reduced prices on more job-

intensive goods and services, jobs are likely generated across the economy (Baer, Brown, & 

Kim, 2015).  Smart grid programs reduce energy consumption much like energy efficiency 

technologies.  It is not surprising, then, to see that DRIPE also applies to smart grid technologies.  

It is likely that smart grid may also stimulates some degree of job creation.   
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Figure 4-4. Average Electricity Price Changes from Low Rebound Effect Scenarios 

 

 
Figure 4-5. Average Natural Gas Price Changes from Low Rebound Effect Scenarios 
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Sectoral changes in energy demand are similar across scenarios with different short-run 

price elasticity scenarios for electricity.  Even though the total energy savings are greater in 

scenarios with -0.46 price elasticity, similar trends are seen in both price elasticity scenarios 

regarding sectoral changes in energy use.  The residential and electric power sectors are 

projected to reduce energy use.  Energy savings in the residential sector are seen immediately, 

while energy savings in the electric power sector are more prominent beginning around 2030.  

Due to its dependency on long-lived equipment, the electric power sector may react more slowly 

to changes in demand as old technologies are retired and new facilities built.  See Figure 4-5 and 

4-6 for the projected annual total energy savings by sector for scenarios with price elasticity of    

-0.31 and -0.46, respectively, and low assumed rebound effects.  See Appendix D for the 

projected sectoral total energy savings by year for scenarios with high rebound effects.   

 
 

 
Figure 4-6. Total Energy Savings by Sector, Low Rebound Effect & Price Elasticity -0.31 
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Figure 4-7. Total Energy Savings by Sector, Low Rebound Effects & Price Elasticity -0.46 

 

Increased consumption is projected in the commercial, industrial, and transportation 

sectors.  Most of the increased energy consumption is from the industrial and commercial sectors 

(See Figures 4-5 and 4-6).  Electricity and natural gas change the most in price in the smart grid 

scenarios.  Not only are industrial and commercial sectors more impacted by these energy price 

changes than the transportation sector, they also have more opportunities for fuel switching than 

the transportation sector.   

However, increased consumption in these sectors are projected to be modest.  Changes in 

total energy use in non-residential sectors are less than 1% absolute change.  Excluding the 

electric power sector, change in total energy is below 0.5% absolute change.  See Table 4-6 for 

percentage change in total energy use in 2040, where the impacts are most extreme, for scenarios 

with low rebound effects.  See Appendix D for the table for scenarios with high rebound effects. 
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Table 4-6. Percentage Savings of Total Sector Energy Use in 2040, Low Rebound Effect*  

Sector REF15 PE31 PE31RE90 PE31RE65 PE46 PE46PE90 PE46PE65 

Residential 1.25% 1.29% 1.37% 1.47% 2.44% 2.56% 2.62% 

Commercial -0.11% -0.16% -0.11% -0.12% -0.31% -0.26% -0.29% 

Industrial -0.06% -0.09% -0.12% -0.13% -0.21% -0.12% -0.22% 

Transportation -0.01% -0.01% -0.05% -0.06% -0.05% -0.05% -0.05% 

Elec. Power 0.31% 0.31% 0.34% 0.33% 0.60% 0.58% 0.61% 

TOTAL 0.20% 0.21% 0.20% 0.19% 0.37% 0.40% 0.34% 

*If the percentages are negative, then total energy use increases and no energy is saved within 
that sector. 

 
 

Total energy savings in the residential sector is projected to vary from 0.43% to 0.95% in 

2020 and 1.3% to 2.7% in 2040 of total residential energy, depending on the scenario.  The 

predicted reductions from smart grid information in the residential sector are similar to the 

energy reductions from NEMS projections of energy benchmarking for commercial buildings, 

which also address information access.  Energy benchmarking is predicted to realize energy 

savings of 1.3-1.4% in 2020 and 2.2-2.4% in 2035 for the commercial sector (Cox, Brown, & 

Sun, 2013).  In regards to past residential research on information provision, the level of energy 

reduction from the smart grid scenarios is in the modest range of the previous study findings 

which ranged from 0.5-18% (Ehrhardt-Martinez, Donnelly, & Laitner, 2010).  Reductions seen 

in 2040 are similar to the electricity decreases from providing peer comparisons in electricity 

feedback which realized sustained decreases of 1.2-2.1% (Allcott, 2011; Ayres, Raseman, & 

Shih, 2013).  Many experimental studies on information feedback have realized much higher 

reductions in residential energy usage than projected here, suggesting the smart grid scenarios 

presented here are conservative.   

Though the percentage of residential energy savings of total sector energy use may seem 

small, the avoided energy expenditures are significant.  In 2013, energy expenditures in the U.S. 
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were 1.38 trillion dollars (U.S. EIA, 2016).   Projected total energy savings across all examined 

scenarios range from 0.05% to 0.4% of all energy use.  Assuming 2013 energy expenditure, this 

equates to $0.69 to $5.5 billion in avoided energy expenditure from these scenarios.  If the 

percentage of energy savings in the residential sector can be maintained across all sectors, then 

additional avoided energy expenditures may be possible.  Projected energy savings in the 

residential sector ranged from 1.25% to 2.64% across all scenarios.  Assuming 2013 energy 

expenditure, this equates to a range of $17.3 to $36.4 billion of avoided energy expenditures.  

The energy savings projected from rebound effect and price elasticity changes that might arise 

from smart grid informational programs may seem small in light of total sector energy use, but 

they can result in substantial dollar savings. 

4.5.2 Emissions and Other Impacts 

These scenarios generally are projected to contribute to CO2 emissions goals in 2030.  

The Clean Power Plan sets a goal of 32% reduction in the power sector CO2 emissions from 

2005 levels (US EPA, 2015).  Additional CO2 emissions reductions from these scenarios in 2030 

range from -0.01% (PE31) to 0.74% (PE46RE65REHI).  See Table 4-7 for the additional CO2 

reduction from each scenario in 2030 over 2005 levels in comparison to the associated revised 

reference scenario. 
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Table 4-7. Additional CO2 Emissions Reduction in 2030 over 2005 levels (Percent) 

  SCENARIO 

 Scenario Low Rebound Effect High Rebound Effect 

PE31RE65 0.05% 0.09% 

PE31RE90 0.04% 0.03% 

PE31 -0.01% 0.04% 

PE46RE65 0.10% 0.74% 

PE46RE90 0.09% 0.14% 

PE46 0.09% 0.15% 

 

 

Carbon and energy intensity are both projected to decrease across all but one scenario, 

but there is a greater decline in energy intensity.  In the residential sector, the majority of the 

energy savings from smart grid programs are due to reductions in electricity use and electricity 

related losses.  These projections suggest the complex interactions initiated by the examined 

rebound effect and price elasticity changes lead towards a shift towards more carbon intensive 

fuels for electric generation, such as coal.  See Appendix E for projected energy intensity, carbon 

intensity, sectoral energy fuel use, and electric generation fuel graphics. 

4.6 Policy Implications 

Due to the energy changes induced in other sectors, residential smart grid saves less total 

energy across all sectors than it does within the residential sector alone.  This suggests that 

sectoral policy impacts cannot be examined in only the sector of focus.  The economy wide 

impacts of policies need to be examined and considered in designing sectoral policies.  If not, the 

realized energy savings might be less than expected and unexpected impacts, such as changes to 

electric generation fuel mix and fuel prices, with economy wide effects might occur.  Based on 

these projections, residential smart grid might realize more overall total energy savings if 

accompanied by a suite of cross-sectoral energy policies. 



111 
 

Supportive policies for the commercial and industrial sectors, where the greatest energy 

increases are projected, might be especially helpful.  Smart grid programs can also be 

implemented in the commercial and industrial sectors, allowing users to be more cognizant of 

their energy use and prices.  Such a suite of smart grid policies may help realize greater energy 

savings from smart grid programs across sectors than when such programs are implemented 

individually.  Future research should explore the impact of smart grid programs at varying 

effectiveness in the residential, commercial, and industrial sectors.  Similarly, policy support of 

increased energy efficiency within the commercial and industrial sectors may also help limit the 

increased energy demand in these sectors with residential smart grid.      

Though energy savings are projected in the long term for the electric power sector with 

these scenarios, electric power sector policies can help counteract projected increases in more 

carbon intensive fuels like coal.  Increasing policy support for less carbon intensive fuels, such as 

renewable energy, while also implementing residential smart grid programs will likely increase 

the realized environmental benefits by supporting further CO2 emissions reductions.   

4.7 Conclusions 

This chapter examines twelve different scenarios to project economy wide impacts of a 

national residential smart grid with consumer engagement.  These twelve scenarios are divided 

between high and low rebound effect assumptions for residential heating and cooling end-uses.  

These scenarios are projected to save a cumulative 3,060 to 8,460 trillion Btu of total energy in 

the residential sector from 2016 to 2040.  Across all sectors, these scenarios are projected to 

realize a cumulative 2,220 to 7,395 trillion Btu of total energy savings from 2016 to 2040.  The 

energy savings realized by a residential smart grid in the residential and electric power sectors 

are reduced by increased energy consumption in the commercial, industrial, and, more minutely, 
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transportation sectors.  The increases in these three sectors are a form of takeback resulting from 

the lower electricity prices that occur economy-wide with large-scale energy savings in the 

residential sector. 

Assuming 2013 energy expenditure, the projected savings across all sectors equates to 

$0.69 to $5.5 billion in avoided energy expenditure from these scenarios.  If the percentage of 

energy savings in the residential sector can be maintained across all sectors, then additional 

avoided energy expenditures may be possible.  Projected energy savings in the residential sector 

ranged from 1.25% to 2.64% across all scenarios.  Assuming 2013 energy expenditure, this 

equates to a range of $17.3 to $36.4 billion of avoided energy expenditures.   

The energy savings from these projects contribute modestly to the reductions in overall 

CO2 emissions, carbon intensity, and energy intensity.  These scenarios contribute from -0.01% 

to 0.74% additional reduction in CO2 emissions in 2030 when compared to 2005 levels.  They 

assist modestly in realizing the Clean Power Plan emissions goals. 

Through examining scenarios with reduced rebound effect and price elasticity of 

electricity in the residential sector, this study examines the potential impacts from consumer 

engagement programs from residential smart grid.  These scenarios suggest residential smart grid 

programs have the capacity to significantly reduce national energy consumption and energy 

expenditures while also helping realize emission reduction goals.  However, residential smart 

grid policies may be more impactful if accompanied by a suite of cross-sectoral policies.  

Research into the types of cross-sectoral policies that support fuller realization of residential 

sector savings from residential smart grid across all sectors may be useful.  Likewise, further 

research may be conducted into the scenarios modeling electricity reductions similar to the 

higher range of experimental studies and the possible economy wide changes.  However, from 
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these scenarios, it appears that residential smart grid programs causing the rebound effect and 

price elasticity changes assumed here, can effectively help realize national energy and 

environmental goals.   
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CHAPTER 5. CONCLUSIONS 
 
 

5.1 Introduction 

Smart grid may not only revolutionize our electrical grid, but also may change how 

consumers understand and interact with energy and the environment.  Smart grid, if implemented 

widely, will provide a high-tech information interface to every residential household.  The 

majority of U.S. adults obtain their environmental information from only news sound bites.  The 

overall low environmental literacy of the U.S. population may be attributed to the fragmented 

and incomplete environmental exposure provided by the media (McKeown, 2007).  Real-time 

energy information from smart grid on a large-scale has the potential, if executed thoughtfully, to 

transform how we interact with not only energy, but also nature and the environment.  To 

effectively realize this opportunity, a greater understanding of effective measures impacting 

residential energy use is required.  The various analyses in this dissertation aim to help better 

understand residential energy behavior, especially energy savings from efficiency and smart grid 

measures.  For us to understand residential energy behavior and maximize the advantages of 

smart grid, improved energy study designs and data reporting, increased interdisciplinary energy 

research, and engagement of the broader public is required.   

5.2 Meta-Analysis Energy Efficiency Programs and Opportunities for Improvement 

The meta-analysis of residential rebound effect is severely affected by the lack of rigor in 

residential energy research.  Many studies of residential energy efficiency implementation lack 

large study sizes, random selection of participants, control groups, and controls for confounding 

factors (Frondel & Schmidt, 2005; Greening, Greene, & Difiglio, 2000; Sorrell, Dimitropoulos, 

& Sommerville, 2009).  The lack of rigorous study designs, the presence of measurement issues, 

and the exclusion of confounding variables lead many researchers to discount the quasi-
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experimental literature and to favor econometric findings (Greening et al., 2000).  This lack of 

rigor plagues the quasi-experimental research in the rebound effect literature.  It contributes to 

the lack of trusted evidence that can resolve the longstanding disagreement on the rebound 

effect.  Though more rigorous studies will improve confidence in experimental energy research 

results, researchers also need to improve consistency in reporting results. 

Consistency in reporting energy research findings and more reported details are needed to 

broaden the usability of research findings.  In residential energy efficiency research, there is 

great inconsistency in what results are reported.  Many studies fail to mention theoretical or 

expected energy savings from measures and only provide energy use after implementing 

efficiency measures.  If expected energy savings are reported, more energy efficiency research 

can contribute to understanding the residential rebound effect.  The inconsistency in reporting 

and the tendency to apply similar terms to different concepts only further clouds quasi-

experimental research contributions.   

Limited data reporting severely impacted the meta-analysis of residential rebound effect, 

which relies on the quasi-experimental literature.  Only twenty studies were located that provided 

expected theoretical energy savings and actual realized energy savings.  Without standard 

deviations or standard errors for much of the data, the meta-analysis relies largely on weighing 

rebound effect estimates by study size.  The meta-analysis finds a moderate average rebound 

effect of 42% from a random effects model of study level rebound effect estimates.  The meta-

analysis is limited in its ability to determine what variables impact the rebound effect.  Normally, 

a random effects model should be used given the diversity in study samples and designs, but 

random effects meta-regression models did not find significant factors.  This is likely due to the 

small sample of located studies.  Fixed effects models, though flawed for this application, were 
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used to provide some insight.  Studies focused on comfort factor found lower rebound effects 

than other studies.  Since comfort factor largely measures the increase from behavior change, the 

meta-analysis finds that over 34 percentage points of the rebound effect may be attributed to 

issues with measurement, implementation, and other inflating factors, holding all else constant.  

The meta-analysis also finds that different efficiency applications realize different rebound 

effects.  Aspects of study design and lead authorship may also impact the rebound effect 

estimate.  Hopefully improvements in the study design and data reporting from energy efficiency 

studies will allow a more detailed and larger meta-analysis of residential rebound effect in the 

future to confirm these findings. 

5.3 Impact of AMI Installations 

More research on effective energy information and how to relay it may increase energy 

savings from current smart grid programs.  Chapter 3 finds evidence that current U.S. residential 

smart grid programs, even at this developmental stage, realize energy savings.  Holding all else 

constant, each percentage increase in AMI penetration for residential utility customers decreases 

the expected average residential electricity by about 0.009%.  Even at 100% AMI penetration in 

residential customers, this would realize a decrease of 0.9% in average residential electricity use.  

This impact is on the low end of findings from a meta-review of studies providing real-time 

information feedback where electricity reductions ranged from 0.5% to 18% (Ehrhardt-Martinez, 

Donnelly, & Laitner, 2010).  This suggests several possibilities regarding current residential 

smart grid.  First, though AMI has been incorporated into utilities, information feedback 

programs may have not been fully implemented.  Second, if information feedback programs have 

been implemented, their design or methods of access may not be optimal for consumer 

utilization.  This analysis did not examine how information was relayed to customers, but if 
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customers have to proactively search for the information (like log into websites), the information 

may not be conveniently accessible and actionable.  Insights from future research on effective 

information feedback methods will help smart grid programs provide more impactful 

information.         

5.4 Projections of Economy Wide Impacts 

Residential energy issues can be complex and have economy wide impacts.  In projecting 

the impacts of a national residential smart grid program in NEMS, Chapter 4 finds residential 

smart grid to effectively reduce projected energy use in the residential and electric power sectors.  

At the same time, a residential smart grid induces changes in energy prices, fuel mix, and 

demand in other sectors.  The increase in energy demand from other sectors, especially the 

commercial and industrial sectors, offsets some of the energy savings realized in the residential 

and electric power sectors.  This suggests that when examining energy policy impacts, the 

analysis should extend beyond the targeted sector to examine broader, economy wide impacts.  

Even if an energy policy is successful in its targeted sector, it may induce changes in the 

economy that impact the overall energy savings.  Only a holistic understanding allows the full 

impact of sectoral policies to be understood.   

5.5 Multidisciplinary Efforts and Coordination Needed 

Currently, there are unmet opportunities for multidisciplinary research in residential 

energy behavior.  Though there has been substantial human behavior and energy research, more 

research insights need to be translated to field trials and practice (Allcott & Mullainathan, 2010).  

In the case of residential energy, there is a need for stronger interdisciplinary research that 

extends beyond the realm of social scientists, economists, and psychologists.  Engineers should 

be better included in future research.  Energy behavior occurs when consumers interact with 
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energy technologies.  Just studying behavior alone, separate from technology, presents a false 

divide.  The full system must be examined to understand complex human energy behavior and to 

design technologies that incorporate social science, psychological, and economic insights.   

Given increasingly dire climate change predictions, understanding human energy 

behavior is an important and necessary step to designing effective technologies and policies to 

curb energy use.  The problem of reducing energy use is not merely an academic one.  We all 

have skin in the game to slow climate change and to better understand why humans use energy 

as we do.  The need for further energy behavior research, improvements in experimental energy 

research designs, and more consistent reporting are echoed in the literature (Frondel & Schmidt, 

2005; Greening et al., 2000; Sanders & Phillipson, 2006; Sorrell, 2009; Sorrell et al., 2009).  

Researchers have also vocalized the need for more multidisciplinary efforts spanning social 

science, economics, natural sciences, engineering, and planning to successfully address global 

goals regarding reductions in fossil fuel use (Stern, Janda, Brown, Steg, Vine, & Lutzenhiser, 

2016).  Still, many of these issues remain.  Perhaps others beyond energy research also should 

understand the urgency and importance of these issues.  

Improved coordination amongst energy researchers and mobilization of consumers may 

help rapidly increase the knowledge and data available to address residential energy issues.  In 

response to the alarming Zika public health crisis, a multi-disciplinary team of researchers 

organized to rapidly create a full DNA map of the Aedes aegypti mosquito (Harmon, 2016).  

Climate change presents a series of challenges to humanity that may dwarf the Zika public health 

crisis.  A similar coordination of research efforts in the energy field could accelerate actionable 

results to inform real world energy practices.  Smart grid success not only depends on 

technological, regulatory, and legislative innovations, but also heavily hinges on consumer 
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engagement and acceptance (Colak, Fulli, Sagiroglu, Yesilbudak, & Covrig, 2015; Gangale et 

al., 2013; Sintov & Schultz, 2015; Xenias et al., 2015).  Consumer engagement is vital to the 

success of smart grid information feedback programs.  If consumers do not use the information 

provided, smart grid programs will be unsuccessful in impacting residential energy use.  

Engagement of the broader public in energy issues may help consumer engagement and 

acceptance of smart grid technologies. 

5.6 Outreach Opportunities to Engage Consumers  

Outreach to K-12 students may present opportunities to educate consumers about smart 

grid technologies and energy while providing opportunities to gather data.  Past researchers have 

utilized K-12 outreach programs in Michigan to combat purple loosestrife.  Purple loosestrife is 

an invasive aquatic plant that, once established, forms thick stands that reduce biodiversity and 

habitat quality (Landis & Klepinger, n.d.).  By raising beetles that consume only purple 

loosestrife and releasing them in wetlands, classrooms helped to successfully control the invasive 

population in Michigan while also learning about aquatic systems (Landis & Klepinger, n.d.; 

Smith, 2012).  It is possible to design community outreach programs where teachers are supplied 

educational materials, trained to teach students about residential energy issues, and engage 

students in small behavioral studies or investigations.  If these school projects are conglomerated 

on a national or global scale, given the diverse populations reached by effective outreach 

programs, it is possible to gather behavioral data with larger geographical spread and greater 

speed than currently possible.  Coordination by energy researchers would help ensure 

consistency in outreach education and design of suggested studies.  Designing programs to teach 

and empower the youth to understand and help solve our current problems, ones that may imperil 
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their futures, may be an effective way to engage consumers in energy issues and increase 

acceptance of smart grid technologies. 

5.7 Summary 

Our energy policies promote not only the current energy efficiency environment.  They 

also help craft the energy culture we pass down to our children.  “[B]ehavior develops in relation 

to technologies possessed, and it soon turn[s] into habits and technology-specific acquaintance” 

(Bladh, 2011, p. 237).  This dissertation examines residential energy behavior through three 

lenses: a meta-analysis of residential rebound effect, an analysis of current residential smart grid, 

and projections of national residential smart grid programs.  Energy efficiency and smart grid 

both help reduce residential energy use, but residential energy behavior is complex and much 

still needs to be understood.  Decisions at home impact not only the residential sector, but also 

the whole economy.  More and better reported research is required to fully grasp residential 

energy behavior.  The importance of understanding consumer energy decisions cannot be 

overstated.   Understanding how consumers use energy is essential in developing effective 

energy policies and fully utilizing smart grid technologies.  Effective energy policies will not 

only change our current world, but also impact the energy culture and world future generations 

inherit.   
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APPENDIX A. Rebound Effect Meta-Analysis of Existing Literature 

Appendix A.1 Rebound Effect Meta-Analysis Sampling Frame & Search Criteria 

The following literature areas were sampled for studies pertaining to residential rebound 

effect: 

o Published peer reviewed literature 

o Published non-peer reviewed literature 

o Conference proceedings 

o White papers 

o Utility studies on rebound effect 

o Utility studies on energy efficiency studies 

o Unpublished literature 

Academic databases were used to gather pertinent rebound effect studies from the 

published academic literature.  The following academic databases were used: 

o Academic Search Complete 

o EconLit 

o Google Scholar 

o JSTOR 

o Web of Knowledge 

Non-academic literature was not located through the use of the academic databases.  

Thus, search engines were used to gather studies from the utility sector and to locate other 

studies, such as conference presentations and other unpublished works. 

o Google 

o Yahoo 
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o Duck Duck Go 

A.1.1 Inclusion Criteria 

The following inclusion criteria were used to obtain the sample of studies for this meta-

analysis.  Studies were included if they pertain to: 

 Residential rebound effect for all utility usages (electricity, natural gas, and water). 

 Residential energy efficiency where enough information is included to calculate the 

rebound effect 

 Calculation of residential rebound effect from empirical results 

A.1.2 Exclusion Criteria 

Studies were excluded from the sample of rebound effect studies if they pertain only to 

residential rebound effect in the transportation sector. 

A.1.3 Search Terms and Times 

The following databases and search engines were used to obtain the preliminary list of 

pertinent studies.  Each is followed by the date on which the search occurred.   

 
1. Web of Knowledge (searched on 6/11/2013) 

 Residential electricity rebound effect NOT modeling 

 Takeback effect  

 rebound effect residential NOT transportation 

 Jevon’s paradox 

 Effects of energy efficient technology 

 energy efficiency effect* residential 

 Residential rebound effect NOT transportation 

 Jevons paradox 
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 Khazoom Brookes 

 Utility energy efficiency studies (Searched on 6/12/2013) 

 

2.   Academic Search Complete (Searched on 6/12/2013) 

 Residential rebound effect NOT transport*  

 Residential rebound effect NOT transport* AND energy 

 

3.  JSTOR (Searched on 6/12/2013) 

 Jevons effect residential energy efficiency  

 rebound effect residential energy efficiency 

 

4. Google (Searched on 6/13/2013) 

 rebound effect residential sector 
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Appendix A.2 Residential Rebound Effect Meta-Analysis Coding Protocol 

The following coding protocol was used to code the pertinent studies for the meta-

analysis of residential rebound effect.   

A.2.1 Coding for Source Descriptors 

1. Publication Year 

2. Publication Type 

a. 1 = peer reviewed 

b. 2 =  non peer reviewed 

c. 3 = conference  

d. 4 = utility paper 

e. 5 = working paper 

f. 6 = government paper 

g. 7 = other unpublished  

3. Discipline of lead researcher 

a. Determined from description of contact information 

4. Academic (based on lead researcher) 

a. 1 = academia 

b. 2 = non profit 

c. 3 = utility 

5. Impact Factor of Journal  

a. 0 =NA 

b. Actual impact factor written down. 

6. Conducted Year (Start year of research) 

7. Study Duration 
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a. Duration of study with unit noted 

8. Data Type 

a. 1 = Primary 

b. 2 = Secondary / source 

A.2.2 Coding for Sample Characteristics  

1. Size of study – size of study in households 

2. Country – actual country 

a. Rural (Note:  Using U.S. Census Bureau definition of urban areas as having 

population of 50,000 or more people (2015)) 

b. 0 not noted 

c. 1 if rural  

d. 2 if urban  

e. Make notes of location if not initially located 

3. House type – type of dwelling / % if available 

a. 0 = not noted 

b. 1 = single family  

i. 2 = duplex 

c. 3 = apartment 

4. Income/ % if available 

a. 0 = not noted 

b. 1 = low income 

c. 2 = middle income 

d. 3 = high income 

5. Age – if mentioned presence of individual of this age 
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a. 0 = none noted 

b. 1 = elderly / % if available 

c. 2 = children / % if available 

6. Rent 

a. 0 = own / % if available 

b. 1 = rent / % if available 

7. control group 

a. 0 = no control group 

b. 1 = control group 

8. Random sample 

a. 0 = not random sampling 

b. 1 = random sampling 

9. Monitor 

a. 1 = Metered continuously 

b. 2 = Metered or checked at intervals  

c. 3 = self-report 

10. Notes on monitor situation 

11. Price  

a. 1 = pricing scheme implemented 

b. 0 = no pricing scheme implemented 

12. Price Notes  

a. Notes on pricing scheme 

13. Survey 
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a. 0 = no survey or assessment of house made 

b. 1 = house surveyed for energy efficiency 

14. Survey Notes 

a. Text on survey description 

15. Missing Data Notes 

16. RE preferred (percentage) 

a. Value preferred/mentioned as rebound effect by author 

b. Rebound effect defined as decimal less than engineering estimate.  So if 15% 

rebound effect, then realized energy savings only 85% of engineering estimate 

and rebound effect reported as 0.15. 

17. RE low  

a. Lower bound of RE 

18. RE high 

a. Higher bound of RE 

19. RE Page 

a. Note page where RE estimates come from  

20. Standard Error 
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A.2.3 Coding for Variables 

1. Month  

a. Notes month for which estimates take place. 

2. End Use 

a. End use examined for rebound effect 

i. 1 = heating 

ii. 2 = cooling 

iii. 3=water heating 

iv. 4= lighting 

v. 5 = appliances 

vi. 6= other 

3. Type of efficiency implemented / % if available 

a. 1 = Heating 

b. 2 = Cooling 

c. 3= Water Heating (new water heater) 

d. 4 = Insulation (all types of insulation measures, regardless of location) 

e. 5 = Weatherization (caulking, air proofing) 

f. 6 = Appliances (other than water heaters) 

g. 7 = Thermostat 

h. 8 = Windows 

i. 9 = Lighting 
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4. Fuel use / % if available 

a. 1= electricity 

b. 2 = natural gas 

c. 3 = other 

d. 4 = both electricity and natural gas 

5. Weather 

a. 0 = no consideration 

b. 1 = HDD considered 

c. 2 = other considered 

6. Capital 

a. 0 = no consideration/mention 

b. 1 = consideration of capital 
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Appendix A.3 Final Studies in Rebound Effect Meta-Analysis  

The following studies were collected and coded for the rebound effect meta-analysis.  

The list includes 21 studies since Scheer (1996) is cited within Haas and Biermayr (2000). 

 

A.3.1 List of Collected Studies 

Bell, M., & Lowe, R. (2000). Energy efficient modernisation of housing: a UK case study. 
Energy and Buildings, 32(3), 267-280.    

 
Bennear, L. S., Lee, J. M., & Taylor, L. O. (2013). Municipal rebate programs for environmental 

retrofits: An evaluation of additionality and cost‐effectiveness. Journal of Policy Analysis 

and Management, 32(2), 350-372. 
 
Bladh, M. (2011). Energy efficient lighting meets real home life. Energy Efficiency, 4(2), 235-

245. 
 

Davis, L. W. (2008). Durable goods and residential demand for energy and water: evidence from 
a field trial. The RAND Journal of Economics, 39(2), 530-546. 

 
Davis, L. W., Fuchs, A., & Gertler, P. (2014). Cash for coolers: evaluating a large-scale 

appliance replacement program in Mexico. American Economic Journal: Economic 

Policy, 6(4), 207-238. 
 
Elmroth, A., Forslund, J., & Rolén, C. (1984). Measured energy savings in Swedish homes. 

Energy and Buildings, 6(1), 39-54. 
 
Gram-Hanssen, K., Christensen, T. H., & Petersen, P. E. (2012). Air-to-air heat pumps in real-

life use: Are potential savings achieved or are they transformed into increased comfort?. 
Energy and Buildings, 53, 64-73. 

 
Haas, R., & Biermayr, P. (2000). The rebound effect for space heating empirical evidence from 

Austria. Energy Policy, 28(6), 403-410. 
 
Henderson, G., Staniaszek, D., Anderson, B., & Phillipson, M. (2003). Energy savings from 

insulation improvements in electrically heated dwellings in the UK. In Proceedings, 

European Council for an Energy-Efficient Economy. 
 
Hewett, M. J., Dunsworth, T. S., Miller, T. A., & Koehler, M. J. (1986). Measured versus 

predicted savings from single retofits: a sample study. Energy and Buildings, 9(1), 65-73. 
 
Hirst, E., White, D., Goeltz, R., & Mckinstry, M. (1985). Actual electricity savings and audit 

predictions for residential retrofit in the Pacific northwest. Energy and Buildings, 8(2), 
83-91. 
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Hirst, E. (1986). Actual energy savings after retrofit: electrically heated homes in the Pacific 
northwest. Energy, 11(3), 299-308. 

 
Hirst, E., Goeltz, R., & Trumble, D. (1989). Effects of the Hood River Conservation Project on 

electricity use. Energy and Buildings, 13(1), 19-30. 
 
Hong, S. H., Oreszczyn, T., Ridley, I., & Warm Front Study Group. (2006). The impact of 

energy efficient refurbishment on the space heating fuel consumption in English 
dwellings. Energy and Buildings, 38(10), 1171-1181. 

 
Martin, C., & Watson, M. (2006). Measurement of energy savings and comfort levels in houses 

receiving insulation upgrades. Energy Saving Trust. 
 
Meier, A., Nordman, B., Miller, N. E., & Hadley, D. (1989). The data behind the Hood River 

analyses. Energy and Buildings, 13(1), 11-18. 
 
Roy, J. (2000). The rebound effect: some empirical evidence from India. Energy Policy, 28(6), 

433-438. 
 
Sanders, C., & Phillipson, M. (2006). Review of differences between measured and theoretical 

energy savings for insulation measures. Energy Saving Trust Report. 
 
Scheer, P. (1996). Energieeinsparung durch thermische Gebäudesanierung. Institut für 

Energiewirtschaft. Vienna University of Technology: Vienna. 
 
Scheer, J., Clancy, M., & Hógáin, S. N. (2013). Quantification of energy savings from Ireland’s 

home energy saving scheme: an ex post billing analysis. Energy Efficiency, 6(1), 35-48. 
 
Sebold, F. D., & Fox, E. W. (1985). Realized savings from residential conservation activity. The 

Energy Journal, 6(2), 73-88.  
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APPENDIX B. Derivation of Rebound Effect Standard Deviation Relationship 

 

The equation for sample standard deviation is: 

𝑠 =  √∑ (𝑥𝑖 − �̅�)2𝑁𝑖=1𝑁 − 1  

Given the equation for rebound effect is: 

𝑅𝐸 = 𝐶 − 𝐴𝐶 =  1 −  𝐴𝐶 

where C is the calculated or theoretical savings and A is the actual savings. 

 

Then, the sample standard deviation for the rebound effect is: 

𝑠𝑅𝐸 =   √((1 − 𝐴1𝐶 ) − (1 − 𝐴𝐴𝑣𝑒𝐶 ))2 + ⋯ + ((1 − 𝐴𝑁𝐶 ) − (1 − 𝐴𝐴𝑣𝑒𝐶 ))2
𝑁 − 1  

= √(− 𝐴1𝐶 + 𝐴𝐴𝑣𝑒𝐶 )2 + ⋯ + (− 𝐴𝑁𝐶 + 𝐴𝐴𝑣𝑒𝐶 )2𝑁 − 1 = √(𝐴𝐴𝑣𝑒 − 𝐴1𝐶 )2 + ⋯ + (𝐴𝐴𝑣𝑒 − 𝐴𝑁𝐶 )2𝑁 − 1  

= √(𝐴𝐴𝑣𝑒 − 𝐴1)2 + ⋯ + (𝐴𝐴𝑣𝑒 − 𝐴𝑁)𝐶2 2
𝑁 − 1 = √(𝐴𝐴𝑣𝑒 − 𝐴1)2 + ⋯ + (𝐴𝐴𝑣𝑒 − 𝐴𝑁)2(𝑁 − 1)𝐶2  

= 𝑠𝐴𝑆𝐶  

where 𝑠𝑅𝐸 is the sample deviation for the rebound effect, 𝐴1 is the actual or realized savings for 

the ith household, 𝐴𝐴𝑣𝑒 is the average savings for the sample, C is the calculated savings, N is the 

sample size, and 𝑠𝐴𝑆 is the sample deviation for the actual or realized savings.  
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APPENDIX C. Meta-Analysis Results 

The forest plot for the fixed effects model from the metaan command is presented below.  

The overall estimated effect size is 0.88. 

 
Figure C-1. Fixed Effects Model Forest Plot using Study Level Estimates 
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APPENDIX D. Results NEMS Scenarios with High Assumed Rebound Effects 

 

This sections provides some of the graphics for the scenarios with high assumed rebound 

effects for residential heating and cooling end uses.  

 

  

Figure D-1. Total Energy Savings by Sector, High Rebound Effects & Price Elasticity -0.31 
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Figure D-2. Total Energy Savings by Sector, High Rebound Effects & Price Elasticity -0.46 

 

Table D-1. Percentage Savings of Total Sector Energy Use in 2040* 

Sector REF15 PE31 PE31RE90 PE31RE65 PE46 PE46PE90 PE46PE65 

Residential 1.46% 1.41% 1.37% 1.41% 2.55% 2.64% 2.20% 

Commercial -0.15% -0.11% -0.18% -0.18% -0.34% -0.27% -0.80% 

Industrial -0.07% -0.07% -0.09% -0.10% -0.19% -0.16% -0.53% 

Transportation -0.01% -0.01% -0.01% -0.02% -0.03% -0.03% -0.11% 

Elec. Power 0.35% 0.33% 0.32% 0.35% 0.63% 0.62% 0.54% 

TOTAL 0.23% 0.20% 0.20% 0.22% 0.05% 0.39% 0.35% 

*If the percentages are negative, then total energy use increases and no energy is saved within 
that sector. 
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APPENDIX E. Details on Emissions and Other Impacts of NEMS Scenarios 

This section provides details on emissions and other impacts from the all examined 

scenarios. 

Appendix E.1 Cumulative Changes in Energy Use by Sector by Fuel Type, 2016-2040 

The following charts detail cumulative changes in energy use by energy type and 

scenario from 2016-2040.  Energy savings in the residential sector largely arise from reductions 

in electricity and electricity related losses.  See Table E-1 and E-2 for low and high rebound 

effect scenarios, respectively. 

 

Table E-1. Cumulative Changes by Energy Type from 2016-2040 for Low Rebound Effect 

Scenarios, Residential Sector (Trillion Btu) 

  PE31 PE31RE90 PE31RE65 PE46 PE46RE90 PE46RE65 

Petroleum and 
Other Liquids  

-5.586 -11.46 -26.64 -9.91 -16.10 -31.76 

Natural Gas 75.74 38.37 -80.64 88.76 48.06 -29.56 

Renewable 
Energy 

0.405 0.472 0.835 0.733 0.665 1.297 

Electricity -1,537 -1,565 -1,675 -2,984 -3,013 -3,069 

Delivered 

Energy 
-1,466 -1,537 -1,781 -2,905 -2,981 -3,129 

Electricity 
Related Losses 

-2,600 -2,789 -2,931 -5,161 -5,282 -5,347 

Total -4,066 -4,326 -4,712 -8,066 -8,263 -8,476 
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Table E-2. Cumulative Changes by Energy Type from 2016-2040 for High Rebound Effect 

Scenarios, Residential Sector (Trillion Btu) 

  PE31 PE31RE90 PE31RE65 PE46 PE46RE90 PE46RE65 

Petroleum and 
Other Liquids  

-4.681 -7.42 -13.33 -8.98 -12.09 -7.73 

Natural Gas 24.83 -4.03 -41.19 20.29 -10.46 195.74 

Renewable 
Energy 

-0.265 -0.667 -0.341 -0.328 -0.273 -180.772 

Electricity -1,556 -1,587 -1,619 -3,025 -3,056 -3,211 

Delivered 

Energy 
-1,537 -1,599 -1,674 -3,014 -3,078 -3,204 

Electricity 
Related Losses 

-2,727 -2,792 -2,829 -5,285 -5,338 -3,949 

Total -4,263 -4,391 -4,503 -8,299 -8,417 -7,153 

 
 
In the commercial sector, cumulative electricity and natural gas use both increase across 

low rebound effect scenarios from 2016 to 2040 (See Table E-8).  However, in the high rebound 

effect scenarios, natural gas use in the commercial sector is largely projected to decrease over the 

period (See Table E-9).  Projected changes in other fuel use are dwarfed by the changes in 

natural gas and electricity use.  The bulk of the increased energy use in the commercial sector is 

from electricity and electricity related losses.  All main energy types are shown, with the 

exception of renewable energy for the commercial sector where no changes occurred.  

 
 

Table E-3. Cumulative Changes by Energy Type from 2016-2040 for Low Rebound Effect 

Scenarios, Commercial Sector (Trillion Btu) 

 PE31 PE31RE90 PE31RE65 PE46 PE46RE90 PE46RE65 

Petroleum and 
Other Liquids 

0.353 0.152 0.151 0.180 0.303 0.391 

Natural Gas 86.71 88.04 62.00 47.97 57.60 93.30 

Coal 0.002 0.053 0.017 0.043 0.044 0.058 

Electricity 114.7 127.7 106.3 181.8 194.9 227.8 

Delivered Energy 201.7 216.0 168.5 229.9 252.9 321.5 

Electricity 
Related Losses 

630.7 518.8 550.6 1,039 997.7 1,109 

Total Energy 832.4 734.7 719.1 1,269 1,251 1,430 
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Table E-4. Cumulative Changes by Energy Type from 2016-2040 for High Rebound Effect 

Scenarios, Commercial Sector (Trillion Btu) 

 PE31 PE31RE90 PE31RE65 PE46 PE46RE90 PE46RE65 

Petroleum and 
Other Liquids 

0.347 0.245 0.030 0.351 0.283 336.877 

Natural Gas -24.59 -27.08 -20.87 -80.59 -95.87 267.65 

Coal -0.008 -0.010 -0.004 0.011 0.002 0.304 

Electricity 110.2 89.2 94.8 158.3 142.6 -22.8 

Delivered Energy 86.0 62.4 74.0 78.1 47.0 582.0 

Electricity 
Related Losses 

530.3 482.6 520.7 947 922.3 2,363 

Total Energy 616.3 545.0 594.7 1,025 969 2,945 

 
 

 
In the industrial sector, petroleum, natural gas, coal, electricity, and renewable energy use 

are projected to increase when compared to the revised reference case for all scenarios.  The bulk 

of the projected consumption increase is from more natural gas and electricity use for low 

rebound effect scenarios (See Table E-5).  Projected electricity use increases more than other 

fuels  in the industrial sector for high rebound effect scenarios (See Table E-6).   

 
 

Table E-5. Cumulative Changes by Energy Type from 2016-2040 for Low Rebound Effect 

Scenarios, Industrial Sector (Trillion Btu) 

  PE31 PE31RE90 PE31RE65 PE46 PE46RE90 PE46RE65 

Petroleum and 
Other Liquids  

38.90 46.46 49.09 100.5 97.04 107.4 

Natural Gas  189.7 212.3 192.0 256.9 193.0 299.5 

Coal  38.26 38.94 41.41 82.09 81.13 92.39 

Biofuels Heat 
and Coproducts 

2.592 0.283 2.493 3.935 -8.267 2.655 

Renewable 
Energy 

22.09 22.74 24.55 51.92 49.87 57.39 

Electricity 105.9 116.7 111.3 201.5 199.8 236.0 

Delivered Energy 397.5 437.3 420.8 696.8 612.6 795.4 

Electricity 
Related Losses 

518.4 434.4 481.3 918.6 864.0 971.0 

Total 915.8 871.8 902.1 1,615 1,477 1,766 
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Table E-6. Cumulative Changes by Energy Type from 2016-2040 for High Rebound Effect 

Scenarios, Industrial Sector (Trillion Btu) 

  PE31 PE31RE90 PE31RE65 PE46 PE46RE90 PE46RE65 

Petroleum and 
Other Liquids  

44.52 43.25 37.41 101.4 90.68 691.2 

Natural Gas  65.8 67.8 56.7 66.3 52.8 521.8 

Coal  50.00 47.82 42.52 85.62 83.21 97.12 

Biofuels Heat 
and Coproducts 

3.587 2.735 1.260 0.546 0.352 -10.947 

Renewable 
Energy 

29.08 29.72 25.08 52.30 50.58 109.26 

Electricity 109.4 111.5 98.1 193.3 180.7 3.2 

Delivered Energy 302.4 302.9 261.0 499.4 458.3 1,411.7 

Electricity 
Related Losses 

455.8 454.7 449.1 866.2 848.3 1,849.1 

Total 758.2 757.6 710.1 1,366 1,307 3,261 

 
 

Appendix E.2 Electricity Generation  

The scenarios also impact the projected fuel mix for electricity generation.  The scenarios 

induce small but variable changes to the electric generation fuel mix.  See Figure E-1 and E-2 for 

an example of select fuel mix changes for the PE31RE65 scenario for low and high rebound 

effect assumptions, respectively.  In this scenario, fuel switching within the electric power sector 

occurs.  Coal use increases and natural gas use mostly decreases throughout the projection 

period.  Nuclear energy increases for the majority of the projection period, while renewable 

energy largely decreases during the projection period.  This suggests that coal and nuclear energy 

generated electricity supplant a portion of natural gas and renewable energy generated electricity 

in this scenario.  If smart grid policies are accompanied by additional policies that reduce 

incentives to use coal for electricity generation, more environmental benefits may accrue.    
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Figure E-1. Select Electric Generation Fuel Mix Changes for PE31RE65 Scenario 

 

 

Figure E-2. Select Electric Generation Fuel Mix Changes for PE31RE65REHI Scenario 
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As seen in Figure E-1, the changes in fuel mix fluctuate for different years within the 

projection.  In 2020, all scenarios project increased steam coal, nuclear, and renewable energy 

use and decreased natural gas use.  In 2040, however, all scenarios project decreased nuclear and 

renewable energy generation with the exception of PE46RE65 for high rebound effect 

assumption scenarios.  Coal use increases, as does the use of distillate and residual fuel oils.  

Non-biogenic municipal waste and electricity imports also increase.  The impact on natural gas is 

more mixed, with some scenarios projected to increase its use and others projected to decrease its 

use for electric generation in 2040.  See Figure E-3 and E-4 for bar charts of the projected fuel 

mix changes by scenario in 2020 for low and high rebound effect assumption scenarios, 

respectively.  See Figure E-5 and E-6 for bar charts of the projected fuel mix changes by scenario 

in 2040 for low and high rebound effect assumption scenarios, respectively. 

 

 

 
Figure E-3. Electric Generation Fuel Mix Changes in 2020, Low Rebound Effect Scenarios 
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Figure E-4. Electric Generation Fuel Mix Changes in 2020, High Rebound Effect Scenarios 

 

 
Figure E-5. Electric Generation Fuel Mix Changes in 2040, Low Rebound Effect Scenarios 
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Figure E-6. Electric Generation Fuel Mix Changes in 2040, High Rebound Effect Scenarios 

 

Appendix E.3 Energy and Carbon Intensity 

The following charts show energy and carbon intensity for all scenarios over time as a 

percent difference from the pertinent revised reference case scenario.  In general, the decline in 

energy intensity is greater than the decline in carbon intensity, suggesting that there is a projected 

switch to more carbon intensive fuels with these scenarios. 
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Figure E-7. Percentage Difference in Carbon Intensity from Revised Reference, Low 

Rebound Effect Scenarios 

 

 

 

Figure E-8. Percentage Difference in Carbon Intensity from Revised Reference, High 

Rebound Effect Scenarios 
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Figure E-9. Percentage Difference in Energy Intensity from Revised Reference, Low 

Rebound Effect Scenarios 

 

 
Figure E-10. Percentage Difference in Energy Intensity from Revised Reference, High 

Rebound Effect Scenarios 


