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Abstract: Mobile machinery manufacturers must face and deal with reducing fuel consumption,
rising prices, and environmental pollution. The development of methods to evaluate the efficiency
and effectiveness of the energy performance of hydraulically actuated systems has become a priority
for researchers and OEMs, Original Equipment Manufacturers. In this paper, a new methodology
that is based on Key Performance Indicators, KPI, is proposed with different goals: (i) to evaluate
the energy performance and the monitoring of its evolution in the different stages of its life cycle
(design, commissioning, optimization, retrofit, etc.); (ii) compare the energy levels between machines
of different sizes and different brands in a benchmarking process; and (iii) establish a database that
is state of the art, which facilitates setting achievable goals or limits for improvement. These KPI
values can be deduced simply from the energy balances that were made from the experimental study
of various machines over a relatively long period. This methodology has been applied to typical
hydraulic systems for lifting and lowering loads that are used in a wide variety of mobile machines
of different mechanical designs and sizes. Still, it can be included in the generic name of “loaders”. A
KPI’s values for the three machines are presented in a dashboard as a decision-making tool.

Keywords: KPI; energy index; average energy index; energy balance; hydraulic systems; mobile
machinery; dashboard; decision-making tool

1. Introduction

Mobile working machines (MWM) are often diesel-operated and they are essential
nowadays in industry, for example mining, construction, forest harvesting, agriculture, and
process and goods manufacturing machinery. In recent years, most MWM development
projects are required to comply with restrictions on emission reductions due to stricter rules
and needs to improve energy utilization energy losses. There is a general commitment,
especially in the European Community (EC), on reducing energy consumption with a clear
objective: 15% CO2 reduction in 2025 and 30% CO2 reduction in 2030 [1] compared with
2019 (before COVID period). This limits the energy consumption of off-road vehicles since
fuel consumption is directly related to CO2 emissions. The ongoing debates about air
quality in European cities are very likely going to lead to further reductions in emissions
that are allowed by law. Possible scenarios include emission-free protection zones in and
around urban and work areas. These measures will eventually also affect the applicability
of mobile machinery. A main challenge for project managers is the trend towards hybrid
diesel/electric units and even all-electric work machines.

In recent years, many technical papers have been published that propose different
energy-saving systems, denominated R3 strategies (reducing, recovering, and regenerat-
ing) [2–5]. Various schemes of hydraulic systems, such as load-sensing system, independent
metering, common pressure rail system, and system hybridization have been developed.
Karpenko et al. [2], Ying Xiao Yu et al. [3], and Mahato et al. [6] provided an excellent and
detailed review of a summary of the different energy saving strategies of a power hydraulic
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system with respect to energy saving potential. From these works the following outcomes
were collected:

1- Process optimization strategies can allow an energy recovery of the order of 53% and
a diesel savings potential of approximately 20–40%,

2- controlled displacement systems (on an excavator) can reach levels of around 40% in
diesel saving capacity,

3- constant pressure system (in braking systems) can reach levels of 8% waste energy
recovery, and

4- the applicability of a soft switch concept can facilitate a throttling energy saving
potential which can reach levels as high as 56–66%

In general, project managers develop methodologies and templates that are specific
to the manufacturing industry that they are dealing with. This allows project plans to
become very comprehensive and highly repeatable, with the clear intent of increasing
quality, reducing delivery costs, and reducing the time to deliver project results. In the
last half of the past century, the Management by Objectives (MBO) approach dominated
management. Drucked (1954) [7] first mentioned the MBO. This management philosophy
became very popular in the 70s. Deming (1994) [8] criticized the perversion of viewing
the “objective” as a priority item [8]. A new concept was born in the second half of 20th
century, denominated project management (PM), where key performance indicators (KPI’s)
play a fundamental role [9,10]. KPI is a measure of achievement that is attributed to an
individual, team, department, equipment, and plants. KPIs should be constructed using
objectives by setting SMART (SMART: Specific, Measurable, Achievable, Relevant, Timely)
principles and were generally developed as part of a performance management system.

High-level KPIs can be set on overall business performance while low-level KPIs
can focus on sales, human resources, and other marketing processes. Equipment, plants,
and construction industry KPI’s are mainly used for benchmarking. This is a method of
identifying poor performance and estimating improvement potential [11].

Normally, KPIs are used in the design process of components and machines, for
example: monitoring design, cost, delivery time, etc. There are few cases where these
indices are used to track the technical parameters, such as: mechanical or hydraulic losses,
frictions forces, energy consumption, etc. This was signaled by May and Barletta when,
in 2015, stated that “Developing of energy related KPI’s at machine level “ . . . is the first
gap of industrial needs [12–14]. There is no doubt that KPIs have enormous potential as
a comparative method of machine performance and, consequently, a tool in monitoring
continuous improvement [15].

This article attempts to focus on evaluating opportunities for improved energy effi-
ciency using KPI’s. We introduce the concept of energy design KPI as a measurable value
that evaluates the success of component and machine design in meeting objectives for
energetic efficiency. In that context, proposed methods to reduce losses and increase the
energy efficiency of such machines are welcome. In another area, the consideration of
these indices can help the adoption by operators of electric/hybrid technologies in mobile
machinery and can facilitate the validation of prospective technological developments.

This paper is organized as follows. Section 1 presents the introduction of the work that
is discussed in this paper. Section 2 is dedicated to defining the energy index and average
energy index. Section 3 presents energy balance analysis. Sections 4 and 5 show examples
about the use of average of the energy index as a key performance indicator including
a summary dashboard. Finally, in Section 6, the conclusions about the KPI analysis are
discussed.

2. Definitions

When we try to analyze or compare different machines that can perform the same or
similar functions, it is interesting to investigate how energy is distributed in the different
work cycles. A performance index, denominated “efficiency” has been used in most cases.
Efficiency as a function of time η(t) is normally defined as a ratio between the output (Pout)
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and input (Pin) power. In our case, we are interested in the ratio between the total energy
output and input, but, for a specific part of a cycle or for the full cycle (for example, along
the cylinder stroke). For these reasons, in this paper two indexes have been defined: the
energy index and the average energy index.

2.1. Energy Index

The energy index Wx is a dimensionless parameter that is defined as the energy that is
involved in the movement of a actuator from a position se1 to a position se2 = se1 + ∆se
divided by Q0∆t0Pre f , where Q0 is a constant flow that is supplied (for example, by a
pump), ∆t0 is a time spends to go from se1 to se2, and Pre f is a reference pressure (we chose
Pre f = 1 bar for simplicity).

Referring to Figure 1 (left), the energies that are involved in the upward movement of
the boom cylinder moving from position se1 to position se2 can be defined as:

se2 = se1 + ∆se (1)

W1b =
Energy o f f lowentering o f base chamber 1b

Q0t0Pre f
=

P1b
Pre f

(2)

W1t =
Energy o f f low out o f base chamber 1t

Q0t0Pre f
=

P1t t0Q1t
Q0 t0Pre f

=
Q1tP1t
Q0Pre f

(3)

W1t =
P1t A1t st

A1b sb Pre f
=

P1t
Pre f

k (4)

k =
A1t st

A1b sb
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( ) ( )upwardsA
Δt

Δse
=Q b

up
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0

0  (10) 

( ) ( )downwardsA
Δt

Δse
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down
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0
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Figure 1. Scheme of a typical loader. (Left): upwards movement. (Right): downwards movement.

Analogously, referring to Figure 1 (right), for downwards movement, the energies that
are involved in the downward movement from se1 = se2 + ∆se, are

W1b =
Energy o f f low Q1b out o f chamber1b

Q0 t0Pre f
=

P1b Q1b tdown
Pre f Q0 t0

(5)

where, ∆tdown = r ∆t0 and r = A1b/A2b is area ratio of elevation actuator.

W1b =
P1b r Q0 tdown
Q0 r tdown Pre f

=
P1b
Pre f

(6)

W2b =
Energy o f f low entering o f chamber2b

Q0∆t0Pre f
=

P2bQ0∆tdown
Pre f Q0∆t0

=
P2b

rPre f
(7)
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W2t =
P2t Q10 tdown

Q0 t0 Pre f
=

P2t A2t

(
st

tdown

)
tdown

A2b

(
sb

tdown

)(
tdown

r

) (8)

On the other hand, the energy that is transferred to the load is equal to its potential
energy raising. The mass that is involved is composed of the equivalent proper mass
(bucket, arm, tilt cylinder, etc.), and the nominal mass (load). Mpp is the symbol that is
related to the whole mechanism mass, and MN points to the nominal mass.

WMN =
Increase o f potential energy o f nominal mass

Q0 ∆t0 Pre f
=

MN g ∆h
Q0 ∆t0 Pre f

(9)

Note that ∆h sign modifies the incoming or outcoming potential energy.

Q0
(up) =

∆se
∆t0

A1b ⇒ (upwards) (10)

Q0
(down) =

∆se
∆t0

A2b ⇒ (downwards) (11)

Substituting b for its value and Q0 for any of the two values corresponding to the up
or down movement:

WMN =
MN g b
A1bPre f

(12)

WMN =
MN g b
A2bPre f

(13)

where
b =

∆h
∆se

(14)

2.2. Average Energy Index

The average energy index IWx(sei) represents the average value of the energy index of
a load movement with a stroke.

IWx(sei) =
1

sei

sei∫
0

Wxds (15)

As an example, to explain and develop the concepts that are proposed in this paper,
the activity of raising and lowering a load has been taken as an object of study. We have
considered different machines (e.g., frontal loader, telehandler, and steer skid loader) that
could generically be included under the common name of loaders; all have a self-leveling
bucket system.

Of all the available ones, this study examined those that present a greater didactic
value and cover a wider range of possibilities. This work is based on the data that were
collected over the last few years in the experimental study of machines, components, and
systems. Most of them are the result of laboratory appliances and prototypes that allow
the incorporation of atypical components and hydraulic circuit architectures that were
specifically chosen for research purposes [16]. It should be noted that no results came
from one specific experiment with the purpose of validating the proposed KPIs. On the
contrary, they are the basis for their development and, therefore, sometimes a dispersion of
results may appear that would not occur in more controlled experimental conditions. We
understand that this does not detract from the experimental validation, but rather adds
value to its practical use in a real environment.

Figure 2 shows two topological schemes (A and B) that characterize the three machines
that are considered. Of these, two machines are of type A and one machine of type B. For
identification purposes, we named the three machines M1A, M2A, and M3B. All of them
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are of different sizes, even though they synchronize the bucket movement by the “slave
actuator system.” In the M1A and M2A units, the boom actuator retracts when raising, and
in the M3B unit, the tilt actuator extends when raising.
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Figure 2. Schemes of the proposed machines (different topologies).

Customed hydraulic machines were instrumented at the experimental rigs that are
owned at the CATMech-UPC labs. Dedicated sensors and transmitters were adapted to
record the standard working cycle. Data were collected on the pressures, linear and angular
positions, fluid temperatures at relevant points, and pump outflow. All were sampled at a
rate of 1 kHz.

The data were collected by the RMC200 multi-axis motion controller from Delta
Computer Systems, Inc. Figure 3 shows the typical graphs of the variables that were
recorded as a function of time.
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Figure 4 presents examples of the plots corresponding to the energy index, Wx, for
different types of machines. This information is kinematically given by the evolution of the
parameter “b”, and hydraulically by the evolution of the energy index, W1b, and may be
condensed into a single parameter such as the slope of the adjusted trend line.
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Figure 4. Graphs corresponding to the energy index, Wx, versus the boom actuator stroke for different
types of machine.

M1A: the slope of energy index W1b is “zero”, so the load capacity remains constant with
the height of the load and power consumption is stable both up and down. (Figure 4-upper).

M2A: the slope of energy index W1b is “negative”, so the load capacity increases with
the height of the load and power consumption is higher down than up. (Figure 4-midle).

M3B: the slope of energy index W1b is “positive”, so the load capacity decreases with
the height of the load. And power consumption is higher up than down. (Figure 4-bottom).

The type of slope is due to the kinematics of the machine, even those that are corrected
by the behaviour of pressures in the slave cylinder. This information is kinematically given
by the evolution of the parameter “b”, and hydraulically by the evolution of the energy
index W1b, and may be condensed into a single parameter such as the slope of the adjusted
trend line.

The slope W1b curve type is important for the load capacity and power balance of the
machine. It is possible to achieve energy balances with all this information.
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3. Energy Balance

In Figure 5, some diagrams are shown that intend to visualize the energy that flows
through the different elements that make up the lifting system (up and down movements)
according the following equations:

1- Energy balance for lift cylinder

W1b = W2b + WFb + Wlb ⇒ (upwards) (16)

W2b + WFb = W1b + Wlb ⇒ (downwards) (17)

2- Energy balance for tilt cylinder

WFt + W2t = W1t + W1t ⇒ (upwards) (18)

W1t = W2t + WFt + W1t ⇒ (downwards) (19)

3- Energy balance for slave cylinder

WFs + W1s = W2s + Wls ⇒ (upwards) (20)

W2s + WFs = W1s + Wls ⇒ (downwards) (21)

4- Conditions to be met as a result of the connections (tilt/slave actuators and over-
center/check valves)

W2t = W2s (22)

W1t = W1s + WOCV ⇒ (upwards) (23)

W1s = W1t + WCV ⇒ (downwards) (24)

5- Energy balance through mechanical structure (boom)

WFb = WFs + WFt + WM ⇒ (upwards) (25)

WM = WMN + WPP + Wlm ⇒ (upwards) (26)

WFb + WFs = WFt + WM ⇒ (downwards) (27)

WPP + WMN = WM + Wlm ⇒ (downwards) (28)

These diagrams can be adapted to the M3B machine by simply removing the Wocv/Wcv
arrow that represents the energy flow through the overcenter/check valves between the tilt
and slave actuators. In relation to the equations of the energy balances, it is only necessary
to cancel the same terms of the expressions (23) and (24).

Figure 6 shows a representation of the energy balance corresponding to the upward
and downward movements of the three proposed machines. This graph allows a compari-
son between them and visualization of how the different energy terms were used for the
two values of the load.
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4. Use of Average Energy Index as KPI

As mentioned in the previous section, the average energy index IWx(sei) represents
the average value of the energy index of a load movement with a stroke from se1 to se2.
To compare machines (from the same manufacturer or from the competition), discover
weak points, and make decisions about new designs or improvements, in this paper it is
proposed to use the average energy indices as key performance indicators (KPI).

For simplicity, let’s make this exercise only for the machines that are presented in this
paper. At this stage is important to highlight:

a. All data herein that were used comes from many research activities that were carried
out along huge service that was offered to customer services from CATMech infras-
tructures. The data corresponds to (lab and “on-field”) appliances and prototypes
(research, development, and optimization activities). Each example corresponds to a
complete up and down cycle, with a load constant throughout the cycle.

b. The analyzed data were chosen to expose the power of the average energy index and
aid in the optimization of the design parameters.
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c. The KPI index also allows for the analyzing of innovation factors in different techno-
logical fields, such as mechanical, hydraulic, control techniques, and others.

Table 1 contains the definitions of the proposed KPIs and the calculated values for
each of the three mentioned machines.

Table 1. List of the proposed key performance indicators (KPI).

N◦

KPI Definition Symbol M1A M2A M3B

1
Permits the monitoring of the oil flow that directly flows out
of the rod chamber of the boom cylinder to tank through
the valves.

IW2b (up) max 2 8 12

2 Performs the energy required to lower a load. IW2b (down) max 30.5 74 n.a.

3 Represents the percentage of energy transferred from tilt
cylinder to slave cylinder. IW1s/IW1t Avrg 0 45% -

4 Related to the incoming energy in the rod chamber of the
tilt cylinder. IW2t max 12 28 -

5 Related to the maximum load the machine can lift. ∆W1b/IW1b 41% 0% −44%

6 Information about that energy that is used in raising the total
masses (load and self-weight of the mechanism). IWMN max 106 80 124

7 Points the energy used in raising the boom weight, excluding
the fork or bucket mass. IWMpb 18 17 8

8 Related to the energy lost by sliding friction of the mechanism. IWlm Avrg 2.5 6.5 6.25

9 A measure of the cylinder’s friction losses (seals friction and
those due to misalignments). IWli Avrg 5 1.5 3.2

10 The most popular dimensionless indicator of performance of a
machine, independently of type and size. η 55% 62% 79%

4.1. Comments
4.1.1. KPI N◦ 1—Comments about IW2b (Up)

The results that are presented in Figure 7 (left), allow us to make the following
considerations: M1A presents excellent values of the KPI, so the question is to consider if
the cost reduction that is involved in downsizing is worth it, and how it can affect the value
of this KPI, M2A and M3B present erratic values. These values correspond to different
situations where the most significant variable had directional control valve metering or
alternative regulation controls.
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It is an indication of the return circuit impedance. In some cases, a reduced low value
can be the result of a correctly designed metering spool or the result of a “standard” spool
of an oversized directional control valve. As such, this indicator must be analyzed inside
its context, and must be the lowest value possible with the control valve that is specifically
chosen (and if it is too low, perhaps it is the occasion to reconsider if a lower valve cost
is preferable).

4.1.2. KPI N◦ 2—Comments about IW2b (Down)

In Figure 7 (right), is clear that the machine M1A takes advantage over M2A due to
the technology that is employed. This is related to the energy that is required to lower a
load, explained by the imperative requirement of using a load holding valves for safety
reasons (European Directive 98/37/CE and amendments).

4.1.3. KPI N◦ 3—Comments about IW1s/IW1t

IW1s/IW1t represents the percentage of energy that is transferred from the tilt cylinder
to the slave cylinder, and this is primarily due to bucket self-levelling system design
(hydraulic/mechanism). If the ratio, kup, is less than 1, any transfer is not possible.

Q2t = Q2s (29)

kup =
Q1t
Q1s

=
rt

rs
(30)

rs =
A1s
A2s

(31)

rt =
A1t
A2t

(32)

This is the case of M1A, where the energy that is transferred tends to be (practically)
zero, Figure 8 (left). A ratio kup < 1 means that the flow out from the base chamber of the
tilt cylinder (Q1t) can’t fill the base chamber of the slave cylinder with the needed flow Q1s.
M2A has an average value of the KPI of approximately 45% that may be enhanced. The
KPI3 must be considered together with IW2t. which is related to the energy that is required
to pilot the overcenter valve of the tilt cylinder.
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4.1.4. KPI N◦ 4—Comments about IW2t

IW2t represents the energy that is supplied to the rod chamber of the tilt cylinder and
is due to the pressure that is required to pilot the overcenter valve of the tilt cylinder. A
different behavior of each curve means basic differences between machines. A ratio kup for
M1A is <1 and for M2A is >1, Figure 8 (right).
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4.1.5. KPI N◦ 5—Comments about ∆W1b/IW1b

This index allows us to assess how ∆W1b/IW1b varies W1b along the actuator stroke,
as mentioned in a previous paragraph and in Figure 5. A positive value of this indicator
indicates that the machine loses lifting capacity as the boom rises. Figure 9 shows the
relationship between the maximum energy index IW1b, and IWMN (load to lift). The
maximum energy index for M2A corresponds to the lowest position of the stroke, and for
M3B, corresponds to the highest. For M1A, the energy index W1b, is nearly constant and
coinciding with the average energy index IW1b. M2A did not utilize all its load capacity
due to the kinematic design of the mechanism. Also, M3B, with a lower level of losses, had
a higher load capacity because it has a best kinematic design, a lighter mechanical structure,
and does not incorporate overcenter valves.

Energies 2022, 15, x FOR PEER REVIEW 12 of 17 
 

 

higher load capacity because it has a best kinematic design, a lighter mechanical structure, 

and does not incorporate overcenter valves. 

 

Figure 9. Graph of the values of IW1b corresponding to the machines whose data were analyzed. 

4.1.6. KPI N° 6—Comments about IWM 

Figure 10 shows the IWM that is related with the energy that is used in raising its own 

weight. Its value remains constant in the energy balance of each machine, both for the rise 

and the descent and regardless of the nominal load that is raised. 

4.1.7. KPI N° 7—Comments about IWpb 

As can be seem in the Figure 6, machine M3B, has a lower index value as it corre-

sponds to a lighter structure, and M1A and M2A have similar values, as they correspond 

to two machines that were designed under similar topologic designs, even if the size is 

different. If, eventually, the study would include other machines with a lower index value, 

it would mean that the manufacture technology could result in a lighter structure and 

could be the object of consideration and study. The utility of using dimensionless indica-

tors is that the design technologies can be compared between different machine sizes. 

4.1.8. KPI N° 8—Comments about IWlm 

Figure 10 shows the evolution of IWM (load), corresponding to the up and down 

movement, respectively. The difference between them is mainly due to the structural fric-

tion between the parts of the machinery that are associated with the movement. 

 

Figure 10. Graph of the values of IWM corresponding to the machines whose data were analyzed. 

  

Figure 9. Graph of the values of IW1b corresponding to the machines whose data were analyzed.

4.1.6. KPI N◦ 6—Comments about IWM

Figure 10 shows the IWM that is related with the energy that is used in raising its own
weight. Its value remains constant in the energy balance of each machine, both for the rise
and the descent and regardless of the nominal load that is raised.
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4.1.7. KPI N◦ 7—Comments about IWpb

As can be seem in the Figure 6, machine M3B, has a lower index value as it corresponds
to a lighter structure, and M1A and M2A have similar values, as they correspond to two
machines that were designed under similar topologic designs, even if the size is different.
If, eventually, the study would include other machines with a lower index value, it would
mean that the manufacture technology could result in a lighter structure and could be the
object of consideration and study. The utility of using dimensionless indicators is that the
design technologies can be compared between different machine sizes.
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4.1.8. KPI N◦ 8—Comments about IWlm

Figure 10 shows the evolution of IWM (load), corresponding to the up and down
movement, respectively. The difference between them is mainly due to the structural
friction between the parts of the machinery that are associated with the movement.

4.1.9. KPI N◦ 9—Comments about IWli

Higher losses of M1A, are due to friction due a misalignment of the tilt cylinder
(modified to incorporate an internal pressure sensor) during its assembly process in the lab,
carried out by university personnel. Even though this misalignment was corrected when
it was verified, it has been considered appropriate to choose these data for their didactic
value, see Figure 11.
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4.1.10. KPI N◦ 10—Comments about Efficiency

Complementing the proposed dimensionless KPI’s with the classic overall efficiency,
it is possible to have a framework that allows for monitoring and decision-making in the
process of an energy improvement of the machine, see Figure 12.
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Figure 12. Graph of the values of KPI N◦ 10 (efficiency) corresponding to the machines whose data
were analyzed.

Clearly, the machine M3B, has better efficiency, due to its lighter structure and simpler
hydraulic circuit without the losses that are inherent to the overcenter valves. Even when
there is a certain space by improving its KPI’s: IW2b and IWlm. Also, M1A and M2A, as
expected, had lower efficiencies, with an improvement path through proposed KPI’s.
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5. KPI’s Analysis (DASHBOARD)

Presenting KPIs on a dashboard has become the most popular way to display and
use them as a decision-making tool. Any provision is good if it serves this purpose. As an
example, Figure 13 presents a simple dashboard which includes the values of the indicators
with the objectives and the improvement actions.
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A first look at the efficiency graph (Figure 12) would lead us to an obvious first
conclusion: the machine M3B is the most efficient of the three. This machine does not have
some of the losses that are inherent in the M1A and M2A designs, such as those that are
associated with overcenter valves as well as a lighter structural design.

On the other hand, comparing the efficiency of the M1A and M2A machines, we may
be tempted to consider M2A slightly better (slightly higher efficiency). However, a detailed
analysis of Figure 13, the values of the proposed KPIs that are shown indicate that the M2A
has a high potential for improvement.

The simple principle that “if the M1A design has better indicators, the M2A design
should also be able to achieve them”. We refer to, for example, KPIs 1, 2, 4, and 5. That
is to say, the energy indices IW2b (up), IW2b (down), IW1t, and the ratio ∆W1b/IW1b are
candidates for improvement.

Obviously, meeting these challenges may not be that simple, but it clearly indicates
that these key points require the attention of designers, either to improve this machine
design or for a future new prototype.
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6. Conclusions

This article reports a comprehensive explanation of a new methodology that is based
on a set of KPI indicators to evaluate the opportunities for improvements in mobile ma-
chines. These indicators can be deduced quickly from simple energy balances using
dimensionless parameters (energy index and average energy index). The example has been
carried simulating the tasks of raising and lowering different loads to develop the concepts
that are proposed herein.

A list of key performance indicators (KPIs) is proposed. These indicators are subcate-
gorized according to the design and manufacture of the mechanical and hydraulic system,
the control strategies, and others. All KPIs and their corollaries are reviewed concisely. The
findings that were obtained from experimental results that were relevant to this study are
given as a simple KPI’s and OKR dashboard (Benchmarking), which includes the values of
the indicators with the objectives and improvement actions.

This methodology can apply to a wide range of similar machinery independent
of nominal size (of the same brand or competitors) as dimensionless parameters. The
systematic application of this methodology should generate a “KPI’s database” from which
the following milestones can be determined:

1- Acquire a table of reference values (statistically significant and achievable). These
values highlight the current state of the art technology concerning energy efficiency
and the level of maturity of the technologies that are involved.

2- Expand and prioritize the list of indicators that highlight the evolution of improvement
and innovation and the technologies that make it possible

3- Define the design criteria and recommendations that allow estimating the mechanical
and hydraulic friction into others, and then what can we expect (or extrapolate) from
a new prototype.

Addressing these milestones will be the subject of future research.
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Nomenclature

A Area, A = π/4DP
2(for piston side) or A = π

4
(

D2
P − D2

r
)

(for rod side)
CV Check valve
∆h Specific potential energy change
∆t Time interval
F Load at the actuator, e.g.,: Fs slave actuator load
g Gravity acceleration
IW Average energy index
M Mass
Mpp Own mass, including bucket or fork
Mpb Own mass, excluding bucket or fork
MN Load mass
OCV Overcenter valve
P Pressure
Q Flow rate
SMART Specific, Measurable, Achievable, Relevant, Timely
se Rod position
W Energy index, e.g., W1b energy index related with piston side chamber of the boom actuator

The subscripts refer to the object, location, or situation under consideration
1 Piston side chamber of cylinder
2 Rod side chamber of cylinder
b Boom actuator
i Internal hydraulic losses
l Losses, e.g.: lm, frictional mechanical losses; li, internal hydraulic losses
m Mechanical
s Slave actuator
t Tilt actuator
x Generic reference
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