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Abstract. Time dependent variation perturbation calculations have been performed for estimating the transition energies, os-
cillator strengths and transition probability values for a few dipole allowed states of compressed hydrogen atom confined in a
weakly coupled plasma. The compression is obtained by embedding the atom at the centre of an impenetrable spherical box.
The dipole polarizability of the atom is evaluated at each confinement radius with respect to different plasma screening param-
eters. The effect of pressure due to spatial confinement on the dipole polarizability and other atomic properties is analyzed.
Results obtained are useful for the diagnostic determination of astrophysical and laboratory plasmas and for the calculation of
collision rate coefficients needed for computing opacity of stellar envelopes – a quantity of importance in the context of stellar
structure and pulsations.
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1. Introduction

In recent years the analysis of the spectral properties of con-
fined atomic systems such as those of atoms embedded in liq-
uid helium has gained considerable momentum (Tabbert 1997)
firstly, because of the availability of current implantation tech-
nique like ion beam method (Gordon 1974, 1983, 1993), laser
sputtering and ablation technique (Bauer 1990; Yabuzaki 1992;
Arndt 1993; Tabbert 1994; Beijersbergen 1993; Kinoshita
1995) and secondly due to accurate methods available for es-
timating the spectral line shifts (Günther 1995; Tabbert 1995;
Kanorski 1994). Although a host of experimental data for dif-
ferent atoms are currently available, very few methods exist for
theoretical estimation of the spectral line shifts and other prop-
erties under such confinement. In the so called standard bub-
ble method (SBM), the total Hamiltonian is expressed as the
sum of pair interaction between helium atoms, between impu-
rity atom and each of the helium atoms and the Hamiltonian
of the free atom itself. The total impurity helium interaction
is derived from individual impurity-helium interaction term.
First order perturbation theory is being utilized to calculate
the energy shift. The method has been applied in a number of
cases (Hiroike 1965; Hikman 1975; Bauer 1990; Beau 1996).
Basically the problem is similar to that of studying the spectra
of compressed atoms like that trapped in zeolite, fullerenes or
under high pressure (Jaskolski 1996; Connerade 2000; Gupta
1982). As ab-initio calculations for atoms in such an environ-
ment is very complicated, the problem of the impurity atom
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embedded in liquid helium may alternatively be looked upon
using a suitable model in the following manner. Experimental
observations indicate that (i) electrons in superfluid helium are
highly mobile and (ii) because of the inert nature of helium the
atomic charge density has extremely low penetration probabil-
ity beyond the surrounding liquid helium cage due to strong
Pauli repulsion. Hence one can tentatively assume the foreign
atom to be embedded in a charge neutral environment which
mimics a plasma with a finite cage boundary. With this view-
point we propose a model of studying atoms inside such an
environment which, on one hand assumes screening of the po-
tential due to plasma, and secondly uses an altered bound-
ary condition which suits the physical description. We con-
sider at present the surrounding plasma to be sufficiently weak
so as to produce screened coulomb interaction between point
charges.The effect of this so called Debye plasma on atomic
energy levels and other properties has been analyzed earlier
in a limited manner (Winkler 1996; Ray 1998a, 1998b). The
overall effect of this screened Coulomb potential is to reduce
the binding energy and to push the system towards gradual in-
stability with increase of screening. The screening constant is
a function of temperature and number density of the plasma
and different plasma conditions can be simulated by chang-
ing suitably the screening parameters. Study of laser produced
and Tokamak plasmas requires an understanding of the elec-
tronic spectrum of an ion as a function of electron density and
temperature of the plasma. The screening is important in inter-
preting the disappearance of spectral lines near the series limit
in astrophysical observations, in laboratory and astrophysi-
cal plasma diagnostics, in calculating partition functions in
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thermodynamics, in the calculation of collision rate coeffi-
cients, all of which require the shifted energy levels and con-
nected properties. Such calculations have also applications in
astrophysical phenomena like the mass radius relation in the
theory of white dwarfs and in the determination of the rate
of escape of stars from galactic and globular clusters, under-
standing the interior of giant planets (Varshni 1997, 1998)
and in estimating stellar opacities (Seaton 1987). The study of
the properties of a confined atom in an impenetrable spheri-
cal box has, however, a long history. Such studies originated
with a model due to Michels et al. (1937) who studied the
effect of pressure by enclosing an atom in a spherical box.
Sommerfeld & Welker (1938) carried out investigations on the
energy levels of hydrogen in a spherical box. Subsequently, a
number of calculations (Ley-Koo 1979; Ludena 1977, 1978;
Marin & Cruz 1991a, 1991b, 1992; Zicovich-Wilson 1994;
Fowler 1984; Aquino 1995; Dineykhan 1999; Singh 1984;
Montgomery 2002; Laughlin 2002) have been performed for
studying the energy levels of compressed atoms. In the cur-
rent communication we have performed a systematic analysis
of the effect of a plasma screening and that of a finite con-
fining radius on the dipole polarizabilities and 2p, 3p and 4p
energy levels for the hydrogen atom, their oscillator strengths
and transition probabilities with a view to estimate the order of
magnitude of the spectral line shifts under such confinements.
Hydrogen atom is chosen as a prototype as it is free from cor-
relation effects and admits of accurate results in a first hand
analysis and calculations have already been performed for the
hydrogen donor states in spherical quantum dots (Zhu 1990).
While studies on the energy levels and other properties of hy-
drogen using a cutoff radius have been performed by a num-
ber of authors (Sommerfeld 1938; Ley-Koo 1979; Zicovich-
Wilson 1994; Fowler 1984; Aquino 1995; Varshni 1997, 1998;
Dineykhan 1999), only a single limited calculation by Singh &
Varshni (1984) was performed for the bound states of static
screened Coulomb and cut-off Coulomb potentials. Very re-
cently the dynamic dipole polarizability of compressed hydro-
gen was calculated by Montgomery (2002) for different radii
of compression and 1s→2p transition energy was determined.
The recent calculation of Laughlin et al. (2002) on compressed
hydrogen atom using a variety of analytical and algebraic meth-
ods yields accurate estimate of the ground and excited state en-
ergies and wave functions. A brief description of the current
method is described in Sect. 2 followed by a discussion of re-
sults in Sect. 3.

2. Method

The hydrogen atom subjected to a weakly coupled plasma
which admits of a Debye type of screening (Akhiezer 1975) in
the nuclear potential. In addition the charge cloud is assumed
confined in spherical box of radius R which produces an al-
tered boundary condition such that wave function vanishes at
the boundary. We assume that the potential energy function
(atomic unit is used)

V(r) = −Ze−µr

r
for r ≤ R

= ∞ for r > R (1)

where µ is a screening parameter due to the surrounding plasma
and the quantity D = 1

µ
is usually called the Debye radius for

a weakly coupled plasma. To get the ground state energy under
such a potential one has to solve the Schrodinger eqn.[
−1

2
∇2 + V(r)

]
ψ(r) = E0ψ(r) (2)

subject to proper normalization condition. To incorporate the
finite boundary condition we assume the radial part of the wave
function ψ(r) to be of the form

ψ(r) = (R − r)χ(r). (3)

Here χ(r) is a radial basis set obtained from a linear combina-
tion of Slater type orbitals (STO).

χ(r) =
∑

i

Cirni e−ρir (4)

where the exponents ni, ρi are preassigned and Ci are linear
variational parameters to be determined from solution of the
eigenvalue equation. A structurally simpler but similar basis
set was applied by Marin & Cruz (1992) and also by Varshni
(1998). The ground state energy and wave function of the con-
fined hydrogen atom is determined from the iterative solution
of the generalized eigenvalue equation

H0 C = E0S C (5)

where H0 is the matrix element of the Hamiltonian with re-

spect to the basis set used and S is the overlap matrix. The
solutions have been obtained with respect to different sets of
screening parameters µ and different values of the truncation
radii R. All the integrals have been evaluated within a domain
consistent with the boundary condition. To get excitation prop-
erties, a time dependent harmonic perturbation is applied on the
system.

H′(r, t) = g(r)e−iωt + g†(r)e+iωt (6)

where g(r) is an one particle perturbation. The angular part of
g(r) may be chosen to simulate a specific type of excitation.
Currently we use a dipolar form of the perturbation. The ex-
ternal perturbation changes the ground state wave function and
the correction to first order is given by

δψ(r, t) = δψ−(r)e−iωt + δψ+(r)e+iωt. (7)

The radial part of the perturbed admixtures δψ±(r) is expanded
in terms of STO basis sets similar to that given by Eq. (3)

δψ±(r) =
∑

i

d±i (R − r)ηi(r) (8)

where ηi(r) is given by

ηi = rn′
i e−ρ

′
ir (9)

with preassigned sets n′i and ρ′i. The linear variational param-
eters di

± are determined from a variational functional (Lowdin
1972)

J(φ) =
1
T

∫
0

T 〈φ|H − i ∂
∂t |φ〉dt

〈φ|φ〉dt
(10)
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subject to optimization condition

δJ(φ) = 0 (11)

with respect to variational parameters. Here |φ〉 is the total wave
function in presence of perturbation and is given by

φ(r, t) = N[ψ(r) + δψ−e−iωt + δψ+e+iωt]e−iE0 t (12)

N being a normalisation constant and H is the total
Hamiltonian

H = H0 + H′. (13)

For hydrogen like systems the functional J(φ) is given by (up
to second order)

J(φ) = I(δ1s−, δ1s−) + (E0 + ω)S (δ1s−, δ1s−)

+2〈1s|g(r)|δ1s−〉 (14)

+similar terms involving δ1s+ and − ω in place of ω

where the quantities have their usual significance (Mukherjee
1969). The optimization condition (11) yields sets of decou-
pled linear equations in d± which can be solved by standard
techniques. The frequency dependent polarizability value α(ω)
is obtained from the ratio of the expectation value of the time
dependent dipole moment to the oscillatory electric field. The
static polarizability is given by α(ω)ω→0. The polarizability
α(ω) passes through poles for certain values of ω correspond-
ing to the transition energies to various dipole allowed excited
states of the system. For a given value of truncation radius R,
the first three pole positions have been sought for a range of
screening parameters µ from zero to a value for which the en-
ergy becomes positive. The procedure is repeated for a number
of values of R, the range being from R = ∞ to a value R0

for which the atom becomes unbound given by positive energy
solutions. The oscillator strengths and transition probabilities
are obtained from standard expressions for the cases for bound
transitions (Bethe 1954). The next section deals with the dis-
cussion of results.

3. Result and discussion

We have chosen confined hydrogen atom to make a detailed
analysis on the ground and excited state energy levels, polar-
izabilities, oscillator strength and transition probabilities. The
confinement effect due to (i) Debye screening (ii) finite bound-
ary conditions by using a cut off potential, is analyzed. The en-
ergy levels and other properties are calculated systematically
first by choosing R = ∞ and µ = 0 which correspond to
free atom case. Then we decreased R step by step to get the
effect of reduced cut off parameter and for each R, we have
chosen different sets of screening parameter µ, always start-
ing with µ = 0. In each case the ground state energy under
confined condition has been evaluated with a two parameter
Slater type representation, the coefficients are obtained from
diagonalisation of the Hamiltonian matrix in an iterative man-
ner described earlier. For confined hydrogen atom a two pa-
rameter representation is expected to be sufficient for energy
convergence. The polarizabilities and transition properties in
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Fig. 1. Plot of polarizability (αd) against a) confinement radius (R),
b) log10P for different Debye screening (µ).

each case are obtained from a time dependent perturbative cal-
culation. An eight parameter representation of the perturbed
wave function is consistently chosen to estimate the transition
properties. The length of the basis set and exponents are so
chosen as to reproduce the static limit of dynamic polarizabil-
ity, ground state energy, transition energies to different dipole
allowed excited states, oscillator strengths and the transition
probabilities for the free hydrogen atom. Results are listed in
Table 1. For R = ∞ and µ = 0 corresponding to the free atom
case, our table shows α = 4.4997(a.u.) corresponding to the ex-
act value 4.5 a.u. (Miller 1977), Egr = −0.5, 	E(2p) = 0.375,
	E(3p) = 0.44444, 	E(4p) = 0.46875 a.u. respectively which
are exact up to the places shown (Moore 1949). The oscillator
strengths and transition probabilities for 2p, 3p and 4p excita-
tions are also the same as listed by Wiese et al. (1966). Several
features of the different transition properties can be noted from
a close look at the Table 1. The dipole polarizability value in-
creases continuously with increase of screening parameter µ
for a given value of the truncation radius R, whereas for a
given µ, the polarizability value decreases with decrease of R
which simulates stronger confinement. Figure 1a shows plots
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Table 1. Dipole polarizability, Ground state energy (−E0), Transition energy, Oscillator strength and Transition probability for compressed
hydrogen atom under Debye screening (µ).

R µ Dipole −E0 Transition Transition Oscillator Transition

(a.u.) (a.u.) polarizability (a.u.) (a.u.) energy (a.u.) strength probability (s−1)

∞ 0.00 4.4997 0.50000 1s→ 2p 0.37500 0.4160 1.87(+9)

4.5a 0.5b 0.37500b 0.4162c 1.88(+9)c

→ 3p 0.44444 0.0790 0.50(+9)

0.44444b 0.0791c 0.50(+9)c

→ 4p 0.46875 0.0290 0.20(+9)

0.46875b 0.0290c 0.20(+9)c

0.01 4.5014 0.49008 → 2p 0.37482 0.4150 1.86(+9)

→ 3p 0.44392 0.0780 0.49(+9)

→ 4p 0.46776 0.0280 0.20(+9)

0.05 4.5412 0.45182 → 2p 0.37107 0.4000 1.76(+9)

→ 3p 0.43325 0.0660 0.39(+9)

→ 4p 0.44922 0.0150 0.94(+8)

0.08 4.6026 0.42457 → 2p 0.36545 0.3766 1.61(+9)

→ 3p 0.41823 0.0470 0.26(+9)

→ 4p 0.42581 0.0062 0.38(+8)

0.10 4.6577 0.40705 → 2p 0.36051 0.3561 1.48(+9)

→ 3p 0.40546 0.0298 0.16(+9)

0.15 4.8423 0.36544 → 2p 0.34433 0.2854 1.08(+9)

0.20 5.0936 0.32674 → 2p 0.32263 0.1773 0.59(+9)

0.25 5.41 0.29076 → 2p 0.29479 0.0383 0.11(+9)

1.00 8.23 −0.16598 → 2p 0.01907 0.0034 0.397(+5)

20 0.00 4.4628 0.50000 1s→ 2p 0.37500 0.4091 1.84(+9)

→ 3p 0.44838 0.1068 0.69(+9)

0.05 4.5005 0.45181 → 2p 0.37107 0.3925 1.73(+9)

→ 3p 0.43908 0.1059 0.65(+9)

0.1 4.6059 0.40703 → 2p 0.36053 0.3487 1.45(+9)

→ 3p 0.41746 0.1095 0.61(+9)

0.15 4.7724 0.36540 → 2p 0.34448 0.2825 1.07(+9)

0.20 4.9975 0.32666 → 2p 0.32360 0.2025 0.68(+9)

0.25 5.2815 0.29063 → 2p 0.29890 0.1287 0.37(+9)

1.00 49.3300 −0.0213

10 0.00 4.2343 0.499810 → 2p 0.38094 0.4382 2.03(+9)

3.977 f 0.499999d 0.38114e

0.05 4.2652 0.45160 → 2p 0.37769 0.4299 1.96(+9)

0.10 4.3516 0.40676 → 2p 0.36906 0.4091 1.78(+9)

0.15 4.4875 0.36303 → 2p 0.35636 0.3890 1.55(+9)

0.20 4.6702 0.32627 → 2p 0.34062 0.3488 1.29(+9)

1.00 18.9700 −0.029178

of α against R for three different values of µ. With decrease of
R, the system becomes more compressed and hence the polar-
izability decreases. For a given R, with increase of µ, both the
kinetic energy and potential energy diminish resulting in an in-
crease of α value. When µ increases for a given R or when R
diminishes for a given µ, the total energy monotonically tends
towards positive value from bound negative value indicating
instability in the system. The cause is entirely different. For ex-
ample for the free atom case (R = ∞)when µ increases from

zero value, the kinetic energy as well as the absolute value of
potential energy diminishes but the potential energy diminishes
faster than the kinetic energy resulting in eventual zero energy
configuration. As µ increases further the total energy becomes
positive and the system becomes unbound. The polarizability
looses its precise meaning. On the other hand for a given µ
(say µ = 0), with decrease of confinement radius R, the atom
gets more compressed and the absolute value of the kinetic and
potential energy increases but the increase of kinetic energy
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Table 1. continued.

R µ Dipole −E0 Transition Transition Oscillator Transition

(a.u.) (a.u.) polarizability (a.u.) (a.u.) energy (a.u.) strength probability (s−1)

7 0.00 3.8079 0.49871 → 2p 0.41122 0.5438 2.94(+9)

0.05 3.8304 0.45046 → 2p 0.40889 0.5399 2.88(+9)

0.10 3.8935 0.40551 → 2p 0.40261 0.5300 2.75(+9)

0.15 3.9923 0.36361 → 2p 0.39329 0.5158 2.55(+9)

1.00 11.26 −0.04309

6 0.00 3.4652 0.49707 → 2p 0.44151 0.6063 3.78(+9)

0.05 3.4825 0.44878 → 2p 0.43957 0.6036 3.73(+9)

0.10 3.5312 0.40375 → 2p 0.43433 0.5966 3.60(+9)

0.15 3.6074 0.36170 → 2p 0.42648 0.5865 3.41(+9)

1.00 8.4200 −0.04907

5.50 0.00 3.2176 0.49536 1s→ 2p 0.46581 0.6438 4.46(+9)

0.05 3.2319 0.44706 → 2p 0.46409 0.6416 4.42(+9)

1.00 7.0000 −0.05586

5.00 0.00 2.9051 0.49240 → 2p 0.49999 0.6855 5.48(+9)

0.50401e

0.80 4.7600 −0.00304

2.00 0.00 0.3344 0.12210 → 2p 1.69812 0.9643 8.88(+9)

0.338 f 0.125g 1.70102e

0.20 3.3600 −0.06197

1.00 0.00 0.0291 −2.38187 → 2p 5.84138 0.9920 1.08(+12)

5.85915e

a Ref. Miller; b Ref. Moore; c Ref. Wiese; d Ref. Laughlin; e Ref. Montgomery; f Ref. Aquino; g Ref. Ley-Koo.
Note: the data for comparison have been truncated in appropriate cases.

is more than the increase of potential energy. Eventually at a
given value of R, the total energy becomes zero resulting in
pressure ionization. Further decrease of R results in unbound
states, for which polarizability again looses its meaning. With
decrease of truncation radius R the charge cloud gets pressur-
ized. We have calculated the pressure on the atom due to trun-
cation of the wave function at finite radius R by using the rela-
tion (Hirschfelder 1954)

P =
1

4πR3
[2E0 − 〈V〉]. (15)

The value of P has been calculated from the estimated values of
E0 and 〈V〉. In Fig. 1b a plot of the polarizability values against
logarithm of pressure is given for different values of screening
parameters µ. The features show that for a given pressure, the
polarizability value α is greater for larger screening parame-
ters µ. The curves, however tend to converge towards the ion-
ization pressure for which E0 = 0, for each Debye parameter.
Our estimate shows that the ionization pressure corresponding
to µ = 0, 0.1 and 0.2 (a.u.) are respectively 6.09×106, 4.49×106

and 3.20×106 in atmos corresponding to the confinement radii
as 1.8373, 1.9604 and 2.1068 a.u. The ionization pressure cal-
culated by us in conformity with the estimate due to Ley-Koo
& Rubinstein (1979) with whom we have checked our calcu-
lated pressure for R = 2 a.u. In Fig. 2 we plotted the change
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Fig. 2. Variation of change in kinetic energy (	K in a.u.) with loga-
rithm of pressure at different screening.
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Fig. 4. Transition wave length for 2p state of compressed hydrogen
atom under different confinement radii and Debye shielding (µ).

in kinetic energy 	K = K(R) − K(R = ∞) with respect to log-
arithm of pressure for two different screening parameters. The
behavior of kinetic energy with respect to R is similar for differ-
ent Debye screening. The behavior for µ = 0 is similar to that
plotted by Ludena (1977, 1978) for helium like ions. To have
a feeling for the pressure generated due to the confinement, a
plot of log10 P against R is shown in Fig. 3 for three different
values of µ. It is noted that the effect of Debye shielding on the
calculated pressure is less sensitive at lower values of R while
that is much more prominent for higher values of R.

For a given µ, the transition energy to different excited
states increases with decrease of R, i.e., with more and more
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Fig. 5. Variation of transition probability (scaled) with a) µ at different
radii (R) of the spherical box, b) the radius of the spherical box at
different µ.

compression. However, for given R, the transition energy di-
minishes with increase of µ value. The wavelength in Å for the
2p transition is schematically shown in Fig. 4 for different R
and µ. The general trend in the change of wave length is clearly
observed. A typical example for R = 10 a.u. and µ = 0.1 a.u.
the shift 	λ ∼ 1.96 nm. Experiments performed for different
atoms in liquid helium show shifts of this order (Tabbert 1995).
The oscillator strength and transition probability for dipole al-
lowed transitions have been evaluated using standard formula
(Bethe 1954). The oscillator strength and transition probability
values diminish along increasing µ for a given truncation ra-
dius R, while they gradually increase with decrease of R values
for a given µ. Figure 5a shows the plot of transition probability
for the excitation 1s → 2p against µ for three different con-
finement radii R, while in Fig. 5b, the same is plotted against R
for three different values of screening parameters µ. Different
trend is observed for the two cases. As the energy becomes
less negative either when µ is increased for a given R or when
R is decreased for a given µ the ionization potential gets low-
ered and the number of excited states becomes finite. To have
an idea about the behavior of the excited state wave functions
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Fig. 6. Plot of charge density for 2p state a) under different Debye
screening (µ in a.u.) with no pressure, i.e., R = Infinite and b) under
different compression with no Debye shielding, i.e., µ = 0.

under confinement, we plotted in Fig. 6a the charge density
for the 2p wave function calculated by our method against r
for sets of Debye parameters for R = ∞ while in Fig. 6b the
plots for different confinement radii for the Debye parameter
µ = 0 are given. An overall flattening of the charge density is
noted for increase of µ value for R = ∞ while the charge den-
sity is squeezed for decrease of truncation radius R for µ = 0.
Similar plots are given in Figs. 7, 8a and 8b for finite R and µ
values. The figures show interesting feature of the charge den-
sities. The trend is similar for charge densities of the excited 3p
and 4p states.
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Fig. 8. Plot of charge density at different screening with confinement
radii a) R = 30 and b) R = 10 a.u. respectively.
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