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The Dirac equation is solved for triangular and hexagonal graphene quantum dots for different boundary

conditions in the presence of a perpendicular magnetic field. We analyze the influence of the dot size and its

geometry on their energy spectrum. A comparison between the results obtained for graphene dots with zigzag

and armchair edges, as well as for infinite-mass boundary condition, is presented and our results show that

the type of graphene dot edge and the choice of the appropriate boundary conditions have a very important

influence on the energy spectrum. The single-particle energy levels are calculated as a function of an external

perpendicular magnetic field that lifts degeneracies. Comparing the energy spectra obtained from the tight-binding

approximation to those obtained from the continuum Dirac equation approach, we verify that the behavior of the

energies as a function of the dot size or the applied magnetic field are qualitatively similar, but in some cases

quantitative differences can exist.

DOI: 10.1103/PhysRevB.84.245403 PACS number(s): 71.10.Pm, 73.21.−b, 81.05.ue

I. INTRODUCTION

Since its recent discovery,1 graphene (a single layer of

carbon atoms) has been attracting a lot of interest, due to

its unique band structure, which is gapless and exhibits an

approximately linear dispersion relation at two inequivalent

points of the reciprocal space (labeled as K and K ′) in the

vicinity of the Fermi energy. The linearity of the band structure

allows one to describe the carriers close to the K and K ′ points

in a continuum model, using the Dirac equation with massless

particles.2 Because of the well-known Klein tunneling effect in

graphene, which prevents electrical confinement of electrons,

the lateral confinement of Dirac carriers is a big challenge in

manufacturing graphene-based electronic devices.3–5 Differ-

ent suggestions have been made to realize lateral confinement

of electrons in graphene, e.g., by means of gap engineering,

provided by a space-dependent mass term,6,7 or, alternatively,

by combining an external magnetic field8 or a finite mass

term9 with an electrostatic potential. On the other hand,

recent improvements of different fabrication techniques made

possible cutting and manufacturing of single layer graphene

flakes with different shapes and sizes,10–13 where such a

lateral confinement naturally occurs. Using the tight-binding

model (TBM), remarkable effects have been reported as a

consequence of the type of the edges and the geometry of these

flakes:14–20 (i) zero-energy states are predicted for triangular

graphene flakes with zigzag boundaries, (ii) for very small

flakes, a gap opens (the energy gap of different graphene flakes

was recently investigated experimentally21) and the density of

states (DOS) strongly depends on the type of the edges for any

dot geometry, and (iii) the energy levels of graphene quantum

dots in the presence of a magnetic field approach the Landau

levels with increasing magnetic field.

Recently, analytical results were reported for infinite-mass

boundary conditions for circular disks,22 for triangular flakes

with armchair23 and zigzag edges,15 and for square graphene

quantum dots.24 However, it is not always clear how the

complicated boundary conditions describing the zigzag and

armchair edges can be invoked in the continuum model.

Furthermore, the geometry of the triangular and hexagonal

graphene flakes, make such systems harder to be studied by

analytical means. One has to rely on, either a tight-binding

model or a numerical solution of coupled differential equations

in case of the continuum model.

The continuum model describes very well the low-energy

states in an infinite graphene sheet, but it is not clear if this

is still the case for small graphene flakes. Therefore it is

important to learn if there is a minimum size beyond which

the continuum model no longer gives reliable predictions.

Furthermore, because of the large influence of the type of

edges on the energy spectrum, and since it is not always

clear which boundary conditions should be invoked in the

Dirac equation for each possible geometry of the flake, a

comparison between the results obtained with the different

possible boundary conditions and a link with the TBM is an

interesting issue, which requires a detailed study.

In this paper, by solving the Dirac equation numerically, we

present a theoretical study of the energy spectra of triangular

and hexagonal graphene quantum dots, where three types of

boundary conditions are invoked, namely, zigzag, armchair,

and infinite-mass boundary conditions. The influence of

an external magnetic field, perpendicular to the graphene

layer, on the energy spectrum of the quantum dots is also

analyzed. A comparison between the results obtained with the

continuum model and those obtained from the tight-binding

approach will be made.

This paper is organized as follows. In Sec. II, we present

a brief outline of the tight-binding model (TBM). The model

based on the Dirac-Weyl equation is presented in Sec. III and

the different boundary conditions are separately analyzed in

this section. Our numerical results are reported in Sec. IV. The

summary and conclusions of this work are presented in Sec. V.

II. TIGHT-BINDING MODEL

The tight-binding Hamiltonian within the nearest-neighbor

approximation is
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FIG. 1. (Color online) The lattice structure of triangular (upper

panels) and hexagonal (lower panels) graphene quantum dots with [(a)

and (c)] armchair edges and [(b) and (d)] zigzag edges. a = 0.142 nm

is the C-C distance, and the primitive lattice vectors are denoted by

a and b. The atoms of the two sublattices are represented by blue

circles and red dots. The yellow region indicates the area of one

carbon hexagon. Ns is the number of C atoms in each side of the dot.

H =
∑

n

Encnc
†
n +

∑

〈n,m〉

(tn,mc†ncm + H.c.), (1)

where En is the energy of the nth site, tn,m is the hopping

energy and c
†
n (cn) is the creation (annihilation) operator

of the π electron at site n. Note that, for each site n, the

summation is taken over all nearest neighboring sites m. In

the presence of a magnetic field, the transfer energy becomes

t → tei2π�n,m , where �n,m = (1/�0)
∫ rm

rn
A · dl is the Peierls

phase, with �0 = h/e the magnetic quantum flux and A the

vector potential.

Triangular and hexagonal quantum dots with zigzag and

armchair edges are illustrated in Fig. 1, where the vectors a =
a(3/2,

√
3/2) and b = a(3/2,−

√
3/2), with a = 0.142 nm

the lattice parameter (or the C-C distance), are introduced as

primitive lattice vectors. In the present work, we will consider

only the interaction between each atom n and its three first

nearest neighbors. In the case of graphene, this interaction has

the hopping energy t = 2.7 eV. The vector potential corre-

sponding to the external magnetic field B = Bẑ perpendicular

to the layer is chosen as the Landau gauge A = (0,Bx,0).

With this choice of gauge, the Peierls phase for a transition

between two sites n and m is �n,m = 0 in the x direction

and �n,m = ±(x/3a)�c/�0 along the ±y direction, where

�c = 3
√

3a2B/2 is the magnetic flux threading one carbon

hexagon (the area of one carbon hexagon is shown in Fig. 1(a)

by the yellow region). An external potential is represented

by a variation in the on-site energies En, and a vacancy or

defect can be represented by setting the energy of the vacant

site to a larger value and the hopping terms to these atoms

as zero.25 The Hamiltonian H in Eq. (1) can be represented

in matrix form and the eigenvalues and eigenfunctions of

a graphene flake can be obtained by diagonalization of the

matrix.

Notice that the hexagonal lattice presented in Fig. 1 is not

a Bravais lattice, but a combination of two triangular lattices

composed by atoms labeled as type A (blue) and type B (red).

Accordingly, the tight-binding Hamiltonian of Eq. (1) can be

rewritten as

H =
∑

n

EA
n a†

nan +
∑

n

EB
n b†

nbn +
∑

〈n,m〉

(tn,ma†
nbm + H.c.),

(2)

where the operators a
†
n (an) and b

†
n (bn) create (annihilate) an

electron in site n of lattice A and B, respectively.

III. CONTINUUM MODEL: DIRAC-WEYL EQUATION

Considering an infinite (periodic) graphene sheet and after,

performing a Fourier transform on the operators in Eq. (1) and

diagonalizing the resulting Hamiltonian leads to an energy

dispersion:2

E(k)

= ±t

√

3 + 2 cos(
√

3kya) + 4 cos

(

√
3a

2
ky

)

cos

(

3a

2
kx

)

.

(3)

The first Brillouin zone in reciprocal space is a hexagon with

six Dirac points, where only two of them are inequivalent.

From the primitive vectors, we can find the position of these as

K = (2π/3a,2π/3
√

3a) and K ′ = (2π/3a,−2π/3
√

3a). The

states near these points have approximately a linear dispersion

and can be described as massless Dirac fermions by the

Hamiltonian

H =
(

HK 0

0 HK ′

)

, (4)

where HK (HK ′) is the Hamiltonian in the K (K ′) point, which

are given by

HK = vF σ · p, (5a)

HK ′ = vF σ
∗ · p, (5b)

where σ = (σx,σy) are Pauli matrices and σ
∗ = (σx,−σy)

denotes the complex conjugate of the matrix σ . In the presence

of a magnetic field B perpendicular to the graphene layer and

using the Landau gauge, one can simply rewrite Eq. (4) in the

following form:

H =

⎛

⎜

⎝

0 �− 0 0

�+ 0 0 0

0 0 0 �+
0 0 �− 0

⎞

⎟

⎠
, (6)

where,

�± = −ih̄vF

[

∂

∂x
± i

∂

∂y
∓

2πB

�0

x

]

. (7)
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The wave function in real space for the sublattice A is

ψA(r) = eiK·rϕA(r) + eiK′·rϕA′(r), (8a)

and for sublattice B it is given by

ψB(r) = eiK·rϕB(r) + eiK′·rϕB ′ (r). (8b)

The Hamiltonian of Eq. (6) acts on the four-component

wave function 	 = [ϕA,ϕB ,ϕA′ ,ϕB ′]T , which leads to the four

coupled first-order differential equations:

−i

(

∂

∂x ′ − i
∂

∂y ′ + βx ′
)

ϕB = ǫϕA, (9a)

−i

(

∂

∂x ′ + i
∂

∂y ′ − βx ′
)

ϕA = ǫϕB, (9b)

−i

(

∂

∂x ′ + i
∂

∂y ′ − βx ′
)

ϕB ′ = ǫϕA′, (9c)

−i

(

∂

∂x ′ − i
∂

∂y ′ + βx ′
)

ϕA′ = ǫϕB ′ . (9d)

In the above equations, we used the following dimen-

sionless units: x ′ = x/
√

S, y ′ = y/
√

S, β = 2πBS/�0 =
2π�/�0, ǫ = E/E0, with E0 = h̄vF /

√
S, where S ∝ L2 is

the area of the dot with L being the length of the side of

the dot. In this paper, we solve Eq. (9) numerically, using

the finite-elements method, for the triangular and hexagonal

graphene flakes shown in Fig. 1, considering zigzag, arm-

chair, and infinite-mass boundary conditions. The numerical

calculations are performed by using the standard finite-

element package COMSOL MULTIPHYSICS,26 which discretizes

the two-dimensional flake in a finite-sized mesh and allows

the implementation of the appropriate boundary conditions.

The way the boundary conditions are implemented in the

continuum model is the subject of the following three sections.

A. Zigzag boundary conditions

The geometry of the hexagonal and triangular graphene

quantum dots with zigzag edges are illustrated in Figs. 1(b)

and 1(d). The length of one side of the hexagonal and triangular

dots, respectively, are given by L =
√

3(Ns − 1/3)a and L =√
3(Ns + 1)a, with Ns being the number of atoms in each

side of the dot and a = 0.142 nm is the C-C distance. The

total number of C atoms in the triangular dot is N = [(Ns +
2)2 − 3] and N = 6N2

s for the hexagonal dot. The zigzag-

type boundary condition was previously studied by Akhmerov

et al.,27 who presented a model that is generically applicable

to any honeycomb lattice. For a graphene dot with zigzag

edges and if the last atoms at the boundary are from sublattice

A (blue circles in Fig. 1), the boundary conditions are given

by ϕA = ϕA′ = 0, whereas ϕB and ϕB ′ are not determined, and

similarly, when the zigzag edges are terminated by the B atoms

(red dots in Fig. 1), ϕB = ϕB ′ = 0, while ϕA and ϕA′ are not

determined.

B. Armchair boundary conditions

The geometry of a hexagonal and triangular graphene

quantum dot with armchair edges is illustrated in Figs. 1(a) and

1(c). Here, the length of one of the edges of the hexagon dot is

L = (3Ns − 4)a/2 and for the triangular dot is L = 3Nsa/2.

For an armchair hexagonal graphene dot, the total number of

C atoms is N = [9Ns(Ns/2 − 1) + 6] and for the triangular

dot is given by N = (Ns + 2)3Ns/4. Note that in the case of

armchair boundaries the number of C-atoms in each side is an

even number [see Figs. 1(a) and 1(c)].

From Figs. 1(a) and 1(c), we notice that the edge atoms

consist of a line of A-B dimers, where the wave function should

be zero. From Eqs. (8a) and (8b), these boundary conditions

become28

ϕA(r) = −ei(K
′−K )·rϕA′ (r), (10a)

ϕB(r) = −ei(K
′−K )·rϕB ′ (r), (10b)

where r is taken at the position of the edge. Notice that these

armchair boundary conditions mix the wave functions of the

K and K ′ points.

C. Infinite-mass boundary condition

A mass-related potential energy V (x,y) can be coupled to

the Hamiltonian via the σz Pauli matrix,

H = vF σ · p + τσzV (x,y), (11)

where the parameter τ = ±1 distinguishes the two K and K ′

valleys. It is straightforwardly verified that the presence of

a mass term in the Hamiltonian of Eq. (11) induces a gap

in the energy spectrum of graphene. However, if the mass-

related potential V (x,y) is defined as zero inside the dot and

infinity at its edge, the Klein tunneling effect at the interface

between the internal and external regions of the dot can be

avoided and, consequently, the charge carriers will be confined.

This infinite-mass boundary condition can be introduced in

the Dirac equation by defining ϕB(x,y)/ϕA(x,y) = ieiφ and

ϕB ′(x,y)/ϕA′ (x,y) = −ieiφ (which, respectively, correspond

to the K point and the K ′ point wave spinors) at the

boundary, where φ is the angle between the outward unit

vector at the edges and the x axis.29 Due to its simplicity,

this type of boundary condition has been used in the study

of circular graphene dots22 and rings30,31 in the presence of

a perpendicularly magnetic field, where analytical solutions

can be found. For the hexagonal and triangular geometries,

the angle φ has a fixed value at each side of the dot that

simplifies the boundary conditions to ϕB = αϕA (for the K

valley) and ϕB ′ = −αϕA′ (for the K ′ valley) where α = ieiφ

is a complex number. The infinite-mass boundary conditions

are shown explicitly in Fig. 2 for a triangular dot.

FIG. 2. (Color online) The infinite-mass boundary conditions

implemented on the edges of a triangular dot. n̂1,n̂2,n̂3 are the outward

unit vectors at each edge of the dot.
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IV. NUMERICAL RESULTS

A. Zero magnetic field

The energy levels of hexagonal (upper panels) and trian-

gular (lower panels) graphene flakes, as calculated within the

continuum model, are shown in Fig. 3 as a function of the

square root of the dot area. The results are shown for zigzag [(a)

and (b)], armchair [(c) and (d)], and infinite-mass [(e) and (f)]

boundary conditions and are qualitatively and quantitatively

very different. As the dot area increases, the energy levels tend

to a gapless spectrum, which is expected, since the energy

spectrum of an infinite graphene sheet does not exhibit a gap.

A peculiar spectrum is observed for zigzag triangular dots [see

Fig. 3(b)]: zero-energy states are found for all sizes of such a

dot. These zero-energy states are separated from the remaining

positive and negative energy states by an energy gap, which

decreases as the dot becomes larger. The presence of such

zero-energy states in triangular and trapezoidal graphene flakes

have been previously reported in the literature,15–17 where the

TBM was applied. In the case of zigzag triangular dots, it

has been shown analytically15 that the equation H	 = 0 for

the TBM Hamiltonian in Eq. (2) leads to Ns − 1 linearly

independent states, namely, Ns − 1 degenerate states with

E = 0, for any number Ns of C atoms in one of the edges

of the flake. Thus Fig. 3(b) demonstrates that the existence

of zero-energy states, which is observed in the TBM, is

qualitatively captured by the approximations of the continuum

model as well. The results in Fig. 3 also show that the energy

levels for a dot with armchair and infinite-mass boundary

conditions are qualitatively more similar to each other than

the spectra for zigzag edges, where carriers are predominantly

confined at the edge of the dot. In fact, for the triangular

geometry, the infinite-mass boundary condition describes very

well the armchair states, specially for lower energy states.

However, for the hexagonal geometry, the results for armchair

and infinite-mass boundary conditions are only qualitatively

similar where the hexagonal dots with infinite-mass boundary

eV
eV

FIG. 3. (Color online) Energy levels of hexagonal [(a), (c), and

(e)] and triangular [(b), (d), and (f)] graphene quantum dots with

zigzag [(a) and (b)], armchair [(c) and (d)] edges and infinite-mass

boundary condition [(e) and (f)] as a function of the square root of

the dot area S in the absence of a magnetic field.

condition exhibit more energy states in comparison with the

armchair case.

Notice that the energy spectra shown in Fig. 3 exhibits

degenerate states. These degeneracies, which will be evidenced

in the following figures where we plot the energy spectra as a

function of the eigenvalue index, are related to the symmetries

of the triangular and hexagonal dots, as we will explain in

further detail later on, when we discuss about the electron

probability densities.

A comparison between the energy spectra obtained by

means of the TBM (a) and the Dirac equation (b) for zigzag

hexagonal dots is shown in Fig. 4, for three sizes of the

dot, defined by the number of C atoms in each side of the

hexagon Ns . The energies Ei are plotted as a function of

the eigenvalue index i. Although the results are quantitatively

different, they are qualitatively similar, e.g., as the size of

the dot increases, they start to exhibit an almost flat energy

spectrum as a function of the eigenvalue index around the

Dirac point. Such a flat spectrum leads to a peak in the DOS

close to the Dirac point, which was recently reported in the

literature18 for graphene dots with zigzag edges within the

TBM. The curves for Ns = 30 obtained by the TBM and

continuum models are very similar, except for the fact that

many more states are found in the latter, whereas the discrete

character of the spectrum in the former is much more clear.

For smaller dots, the agreement between these two models

becomes clearly worse. For instance, an energy gap Eg is found

0 10 20 30 40 50 60 70
−0.5

−0.25

0

0.25

0.5

E
(e

V

eV

)

0 50 100 150 200 250 300
−0.5

−0.25

0

0.25

0.5

eigenvalue index

E
(e

V
)

5 10 15 20 25 30

0

0.4

0.8

1.2

Ns

E
g

(
)

Continuum model

Ns = 20

TBM

(b)

(a)

Eg

TBM

Ns = 30

Ns = 10

Ns = 20

Ns = 10

Ns = 30

FIG. 4. (Color online) Energy levels of a zigzag hexagonal

graphene dot as a function of the eigenvalue index obtained by (a)

the TBM and (b) the continuum model, for three different sizes of the

dot with Ns = 10, 20, 30, having respectively surface area S = 14.68,

60.78, 138.32 nm2. The inset in panel (a) shows the energy gap Eg

as a function of Ns obtained by the TBM.
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for very small hexagons (i.e., Ns � 10) within TBM, whereas

in the case of the continuum model such a gap is extremely

small. As a consequence, the continuum model overestimates

the DOS at E = 0 as the dot size decreases, since it exhibits a

plateau in the energy as a function of the eigenstate index in

the vicinity of E = 0 even for smaller Ns , where TBM results

show a gap in the energy spectrum. Notice that the E = 0

states in zigzag dots are edge states, so that the number of

zero-energy states depends on the number of edge atoms in

the TBM and, similarly, to the number of mesh elements at

the edge in the continuum model. Therefore, in the continuum

model for E = 0, the finite elements problem is ill defined,

where the constructed matrix of the finite-mesh elements in this

case is singular (zero inverse), leading to spurious solutions

around E = 0. As the size of the dot increases, the gap in the

TBM results quickly reduces to zero and a zero-energy level

for the hexagonal flakes with zigzag edges appears.32 In the

inset of Fig. 4(a), the energy gap values obtained by TBM

are shown as a function of Ns . These results can be fitted to

Eg = α(1/Ns)
γ [blue solid curve in the inset of Fig. 4(a)],

where α = 94.6 eV and γ = 3.23 are fitting parameters.

The energy states of armchair hexagonal dots are shown as

a function of the eigenvalue index in Fig. 5 within the TBM

approach [see Fig. 5(a)] and the Dirac-Weyl equations [see

0 10 20 30 40 50 60 70
−0.5

0

0.5

−0.25

0.25

eigenvalue index

E
(e

V
)

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.25

0

0.25

0.5

E
(e

V
)

0 20 40 60 80
0

0.2

0.4

Ns

E
(e

V
)
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0

0.2

0.4

0.6

0.8

1

1.2
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E
g

(e
V

)

 

 

Eg

Ns = 20

Ns = 40

TBM

Ns = 60

Ns = 60

(b)

Continuum model

TBM

Ns = 20
Ns = 40

TBM

Continuum

Continuum

(a)

FIG. 5. (Color online) Energy levels of an armchair hexagonal

graphene dot as a function of the eigenvalue index obtained by (a)

the TBM and (b) the continuum model for three different sizes of

the dot with Ns = 20, 40, 60 having respectively surface area S =
41.07, 176.23, 405.68 nm2. The inset in panel (a) shows the energy

gap obtained from both TBM (black squares) and continuum model

(green circles). The inset in panel (b) shows the lowest electron energy

levels as a function of Ns for both TBM (blue solid curves) and

continuum model (red dashed curves).

Fig. 5(b)], for three different sizes of the dot. The energy

spectrum in both cases approaches the prolonged S-shape

curve predicted by Ezawa14 as the size of the dot increases and

the spectrum exhibits an energy gap Eg at the Dirac point. The

energy gap as a function of Ns is shown in the inset of Fig. 5(a),

which decreases rapidly as the size of the dot increases.

Our numerical results can be fitted to Eg = α/Ns with α =
8.5 eV for the TBM (blue solid curve) and α = 13 eV for the

continuum model (red dashed curve) results. Notice that Eg

obtained from the continuum model is larger than the one from

the TBM results in particular for small Ns and both curves can

not be made to coincide by a simple shift in Ns . This is clearly

a consequence of the increased importance of corrections to

the linear spectrum used in the continuum model for small

sizes of the system. The inset of Fig. 5(b) shows the five

lowest electron states for both TBM (blue solid curves) and

the continuum model (dashed red curves). Our results show

that the continuum model overestimates the energy values also

for the upper energy levels in comparison with the TBM energy

levels. In fact, the energy dispersion in the continuum model is

given by a linear curve, which coincides with the TBM energy

spectrum for low energies, but as the energy goes further away

from E = 0, this linear dispersion overestimates the energy as

compared to the real band structure of graphene, which starts

to bend down from the linear spectrum as the energy increases.

This emphasizes once again the importance of the higher-order

corrections to the linear dispersion, especially for high-energy

states and smaller dot sizes.

Figure 6 shows the probability density (using the contin-

uum model) corresponding to the first two energy levels of

hexagonal flakes. The probability density for the zigzag case

with Ns = 20 is presented in panels (a) and (b), respectively,

for E = 0 and 0.01 eV. The results clearly demonstrate that

eV

eVeV

FIG. 6. (Color online) Electron probability densities correspond-

ing to the two lowest energy levels of hexagonal graphene flakes,

obtained by the continuum model, for [(a) and (b)] zigzag (Ns = 20)

and [(c) and (d)] armchair (Ns = 40) edges.
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FIG. 7. (Color online) Energy levels of a zigzag triangular

graphene dot as a function of the eigenvalue index obtained by (a)

the TBM and (b) the continuum model for three different sizes of

the dot with Ns = 12, 24, 40 having respectively surface area S =
4.42, 16.37, 44.03 nm2. The inset in panel (a) shows the energy gap

obtained from both TBM (black squares) and continuum model (green

circles).

the zero-energy states in the zigzag case are due to edge effects

and, accordingly, are confined at the edges while the carriers

confine toward the center of the flake with increasing energy

[see Fig. 6(b)]. The probability densities of the armchair-edged

graphene flake with Ns = 40 are very different as seen in

Figs. 6(c) and 6(d) for the lowest degenerate states with

E = 0.16 eV. The electron wave function is spread out over the

whole sample, but different from the usual quantum dots with

parabolic energy-momentum spectrum, it has a local minimum

in the center of the dot. Note that Fig. 6(c) has only two-fold

symmetry while Fig. 6(d) is sixfold symmetric. Both densities

are zero in the center, while Fig. 6(c) has two extra zeros at the

sides along y = 0. These results are comparable to the TBM

results obtained in Ref. 18.

The energy spectrum for triangular dots with zigzag edges,

obtained by the TBM and the Dirac-Weyl equation are shown

as a function of the eigenvalue index in Figs. 7(a) and

7(b), respectively. Notice that both energy spectra exhibit

zero-energy states. As we mentioned before, the number of

degenerate states with zero energy is a well defined quantity in

the tight-binding approach, namely, Ns − 1, where Ns is the

number of C atoms in one side of the triangle.15 On the other

hand, the result in Fig. 7(b) for the continuum model exhibits

many more zero-energy states. Therefore, while the continuum

model captures qualitatively the existence of zero-energy

states, it does not provide the appropriate number of degenerate

states as calculated by the TBM. These zero-energy levels are
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Continuum
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FIG. 8. (Color online) Energy levels of an armchair triangular

graphene dot as a function of the eigenvalue index obtained by (a) the

TBM and (b) the continuum model for three different sizes of the dot

with Ns = 20, 40, 60 having respectively surface area S = 7.85, 31.43,

70.72 nm2. The inset in panel (a) shows the energy gap obtained from

both TBM (black squares) and continuum model (green circles). The

inset in panel (b) shows the lowest electron energy levels as a function

of Ns for both TBM (blue solid curves) and continuum model (red

dashed curves).

related to the edge states of zigzag graphene flakes.15,18 The

energy gap (between the zero-energy level and the first nonzero

eigenvalue) is shown in the inset of Fig. 7(a) as a function of

the size of the dot, where Eg obtained by both models are

comparable and the difference between the TBM (red dashed

curve) and continuum (blue solid curve) results tend to zero for

large graphene flakes. These results can be fitted to Eg = α/Ns

with α = 15.75 eV for the TBM gap and α = 18.9 eV for the

continuum model.

The energy spectra of triangular dots with armchair edges

obtained by the TBM and the continuum model are shown in

Fig. 8. No zero-energy states are found and the energy gap at

the Dirac point for both models is comparable. The gap can be

fitted to Eg = α/Ns (α = 21.9 eV for TBM and α = 25.9 eV

for the continuum model) as shown respectively by the blue

solid and dashed red curves in the inset of Fig. 8(a). The lowest

electron energy levels, obtained by the TBM (blue solid curves)

and the continuum model (red dashed curves), are shown in the

inset of Fig. 8(b) as a function of Ns . The results show a larger

difference between the TBM and continuum energy values for

the upper energy levels (e.g., |ET
1 − EC

1 | < |ET
2 − EC

2 |).
Notice that the energy gaps found for all the systems that we

investigated were fitted to Eg = α/Ns for different values of α,

except for the case of zigzag hexagonal dots, where the gap is

fitted to Eg = α/N
γ
s , with γ = 3.23. This is a consequence of
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(d)

armchairzigzag
max

0

eV

eVeV

FIG. 9. (Color online) Electron probability densities correspond-

ing to the lowest energy levels of the triangular graphene flakes,

obtained by the continuum model, for [(a) and (b)] zigzag (Ns = 20)

and [(c) and (d)] armchair (Ns = 40) edges.

the fact that the corners of the zigzag hexagonal dot structure

are not terminated by a single atom, as in the case of zigzag

triangular dots, but by a pair of C atoms corresponding to two

different sublattices, forming an A-B dimer (see Fig. 1). These

A-B dimers are responsible for a vanishing wave function in

the corners of the zigzag hexagonal dots, as observed in Fig. 6.

As explained in Sec. III A, the zigzag boundary condition

for each side of the dot is implemented in the Dirac-Weyl

equations by setting to zero the component of the pseudospinor

corresponding to the sublattice that forms that side. As the

sublattice types of adjacent sides of a zigzag hexagonal dot

are different, connected by the A-B dimers in the corners,

the whole wave function must vanish at these corners, since

these points are composed of both A and B sublattices. The

vanishing wave function at the corners reduces the effective

confinement area and, consequently, increases the energy gap,

especially for smaller dots, where the influence of the corners

is more significant. As the size of the dot increases, the role

of the corners in the energy gap becomes less important and

is eventually suppressed by the influence of the zigzag edges,

leading to the zero-energy states that form the plateau in Fig. 4,

explaining the faster decay of the energy gap (γ = 3.23)

in zigzag hexagonal dots, as compared to the other cases

(γ = 1).

The probability density corresponding to the first two

energy levels of triangular graphene flakes obtained by the

continuum model is shown in Fig. 9. The probability density

for the zigzag-edged dot with Ns = 20 is presented in panels

(a) and (b), respectively, for E = 0 and for the first nonzero

eigenvalue (i.e., E = 0.92 eV). For the degenerate zero

energy states, the carriers are confined at the edges of the

triangular flake, which is typical for zigzag boundaries. States

corresponding to large energy values are confined in the center

of the triangle [see Fig. 9(b)]. For armchair triangular flakes,

as in the hexagonal case, the electron state is spread out over

the whole flake [see Figs. 9(c) and 9(d), which display the

different probability densities for Ns = 40 corresponding to

eV

eV

FIG. 10. (Color online) Electron densities for the first energy

level of the triangular and hexagonal graphene flakes (using TBM)

with Ns = 10 and zigzag edges. Left panels show the total electron

density |	|2 and the right panels present the electron densities

associated with A and B sublattices. The gray dots are the positions of

C atoms.

the first degenerate eigenvalues with E = 0.32 eV]. Both wave

functions have three-fold symmetry and the inner part is even

six-fold symmetric. Note that the electron density in Fig. 9(d)

is zero at the three corners and in the center of the triangle,

which is different from Fig. 9(c) where zero’s are found at the

corners of the inner hexagon and at the center of the sides of

this hexagon.

The TBM electron densities of the zigzag graphene dots

with Ns = 10 is shown in Fig. 10 for the first energy level

of the triangular and hexagonal graphene flake. Left panels

present the total electron density |	2| and the electron densities

associated with A and B sublattices (|ρA,B |2) are shown in the

right panels. We found that the wave functions of the two-fold

degenerate states are related to each other by a 60◦ rotation.

The sum of the densities of the degenerate states results in a

sixfold (threefold) symmetric wave function for the hexagonal

(triangular) flakes. As seen in Fig. 10, the total electron density

is related to the densities of A and B sublattices by |	|2 =
|ρA|2 + |ρB |2. Figure 11 describes the density distributions of

the lowest energy levels for armchair graphene flakes. For the

armchair hexagonal dots, the electron densities corresponding

to the A and B sublattices (right panels) can be transformed

into each other by a 180◦ rotation, whereas the densities of the
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eV

eV

FIG. 11. (Color online) The same as Fig. 10 but for the dots with

armchair boundaries and Ns = 20.

triangular wave spinors can not be linked to each other by a

rotational transformation.

B. Magnetic field dependence

The dependence of the energy levels of triangular (a) and

hexagonal (b) graphene flakes on the magnetic flux through

one carbon hexagon �c = BSc is shown in Figs. 12 and 13,

for flakes with armchair and zigzag edges, respectively. The

results in panels (a) and (b) are obtained using the continuum

model and the results in panels (c) and (d) show the TBM

energy spectrum. Sc = (3
√

3/2)a2 is the area of a carbon

hexagon, which is indicated by the yellow region in Fig. 1(a).

The results are obtained for dots with an area of S = 100

nm2 and S = 25 nm2, respectively, for armchair and zigzag

edges. The continuum and TBM results are qualitatively

similar to each other in the sense that as the magnetic flux

increases, the energy levels converge to the Landau levels

of a graphene sheet En (see red solid curves), which are

given by

En = sgn(n)
3at

2lB

√

2|n|, (12)

where, lB =
√

h̄/eB is the magnetic length and n is an integer.

The interplay between the quantum dot and magnetic field

confinements is responsible for the appearance of a series of

(anti)crossings in the energy spectrum. As explained earlier,

armchair graphene dots do not exhibit zero-energy states for

B = 0. However, as the magnetic field increases, some of the
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(d)(c)

Triangular Hexagonal

FIG. 12. (Color online) Energy levels of [(a) and (c)] triangular

and [(b) and (d)] hexagonal graphene dots with an armchair boundary

as a function of the magnetic flux threading one carbon hexagon �c.

The results in panels (a) and (b) are obtained using the continuum

model while panels (c) and (d) display the TBM results. The quantum

dots have an area S such that
√

S = 10 nm.

excited energy levels approach the zero-energy Landau level

n = 0 in both armchair and zigzag graphene flakes, which

naturally produces (anti)crossings between the excited states.

Lifting the degeneracy of the energy levels by the magnetic

field results in a closing of the energy gap with increasing

magnetic field. Notice that the zero-energy states of zigzag

triangular dots [see Fig. 13(a)] are not affected by the magnetic

field because they are strongly confined at the edges of the dot.

All these features are qualitatively similar to those obtained

by the TBM (see the lower panels in Figs. 12 and 13). In

the case of hexagonal zigzag graphene dots [see Fig. 13(b)],

the continuum model exhibits a plethora of additional lines as

compared to the well-known energy spectrum obtained by the

TBM [compare Figs. 13(b) and 13(c)].

For the infinite-mass boundary condition, the energy spec-

trum of triangular (a) and hexagonal (b) dots as a function of

the magnetic field is shown in Fig. 14 for the dot with area

S = 25 nm2. The energy spectrum in this case differs from

both obtained for zigzag and armchair boundary conditions.

The spectra exhibit no zero-energy state at B = 0 and show

crossings and anticrossings between the higher-energy levels

that resemble the TBM results [see Figs. 14(c) and 14(d),

respectively, for triangular and hexagonal dots]. In the TBM

model, the infinite-mass boundary conditions can be realized

as a graphene dot structure surrounded by an infinite-mass me-

dia, where we applied a staggered potential [i.e., +10(−10) eV

on-site potential for sublattice A(B)] around the dot

geometry.
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FIG. 13. (Color online) The same as Fig. 12 but for dots with

zigzag boundaries and the dots have an area S such that
√

S = 5 nm.

eV
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FIG. 14. (Color online) The same as Fig. 12, but for dots with

infinite-mass boundary conditions. The dots have an area S such

that
√

S = 5 nm. In panels (c) and (d), the infinite-mass boundary

condition is applied within the TBM model, where we imposed a

+10(−10) eV on-site potential for sublattice A(B) around the dot

geometry.
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FIG. 15. (Color online) The same as Fig. 3 but in the presence of

an external magnetic field of B = 50 T. The inset shows the energy

gap as a function of the magnetic flux obtained by the TBM for two

values of Ns . The triangle and circle symbols display Eq. (13), which

is fitted to the numerical results.

The energy levels obtained by the TBM (a) and the

continuum models (b) for hexagonal graphene flakes under

a B = 50 T external magnetic field are shown in Figs. 15 and

16 for zigzag and armchair edges, respectively, as a function of

the eigenvalue index. The energy spectra of such systems in the

absence of magnetic field, which are shown in Figs. 4 and 5,

are composed of a series of degenerate states for |E| > 0. The

magnetic field lifts the degeneracy of such states and reduces

the gap between the states. The energy gap as a function of the

magnetic flux through a single carbon hexagon �c is shown

in the insets of Figs. 15(a) and 16(a), respectively, for zigzag

(with Ns = 10,20) and armchair (with Ns = 20,40) hexagonal

dots. These results can be fitted to

Eg(�c/�0) = E0
g + E1

g(�c/�0) + E2
g(�c/�0)2, (13)

where E0,1,2
g (eV) are the fitting parameters. In the inset

of Figs. 15(a) and 16(a), the fitted results are shown by

symbols. The fitting parameters for the TBM results of a zigzag

hexagonal dot with Ns = 10 (for the range of 0 � �c/�0 �

0.17) are E0,1,2
g = (0.12,−0.91,1.36) eV [see triangles in

the inset of Fig. 15(a)] and E0,1,2
g = (0.86,−26,210) eV,

E0,1,2
g = (0.88,−12.5,46.5) eV are the fitting parameters of an

armchair hexagonal dot with Ns = 20 respectively for TBM

and continuum results [triangles in the inset of Fig. 16(a)].

The fittings are done for the range of 0 � �c/�0 � 0.06

and 0 � �c/�0 � 0.13 respectively for TBM and continuum

results.
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FIG. 16. (Color online) The same as Fig. 4 but in the presence of

an external magnetic field of B = 50 T. The inset shows the energy

gap as a function of the magnetic flux obtained by the TBM (solid

curves) and continuum model (dashed curves) for two values of Ns .

The triangle and circle symbols display Eq. (13), which is fitted to

the numerical results.
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FIG. 17. (Color online) The same as Fig. 5 but in the presence of

an external magnetic field of B = 50 T. The inset shows the energy

gap as a function of the magnetic flux obtained by the TBM (solid

curves) and continuum models (dashed curves) for two values of Ns .

The triangle and circle symbols display Eq. (13), which is fitted to

the numerical results.
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FIG. 18. (Color online) The same as Fig. 6 but in the presence of

an external magnetic field B = 50 T. The inset in panel (a) shows the

energy gap Eg , obtained by the TBM (solid curves) and continuum

model (dashed curves), as a function of the magnetic flux through

one carbon ring �c for Ns = 20 and Ns = 40. The triangle and circle

symbols display Eq. (13), which is fitted to the numerical results. In

the inset of panel (b), Eg is shown as a function of Ns for both TBM

(black squares) and continuum models (green circles) in the presence

of an external magnetic field B = 50 T.

For the zigzag case and for Ns = 20, the energy gap is

already negligible, whereas for Ns = 10, the Eg ≈ 0.12 eV

gap at B = 0 decays as the magnetic flux increases and

approach zero in the limit of large magnetic flux (i.e., �c/�0 >

0.2). Due to the lifting of the degeneracies, the energy spectrum

of an armchair hexagonal dot exhibits an almost linear behavior

around E = 0 as a function of eigenvalue index where, both

TBM and continuum models approximately display the same

slope for the linear regime.

For triangular graphene flakes under a B = 50 T (i.e.,

�c/�0 = 0.0063) magnetic field, the energy spectra obtained

by the TBM (a) and the continuum model (b) are shown in

Fig. 17, considering zigzag edges, and Fig. 18, considering

armchair edges. As mentioned earlier, the presence of a

magnetic field does not affect the E = 0 edge states in the

triangular zigzag flakes, but lifts the degeneracy of the E �= 0

states. The energy gap Eg around E = 0 of triangular flakes

is shown as a function of magnetic flux �c in the insets

of Fig. 17(a) and Fig. 18(a) respectively for zigzag (with

Ns = 12,24) and armchair (with Ns = 20,40) edges (circle

and triangle symbols present the fitted results). E0,1,2
g =

(1.12,−1.32,−0.028) and E0,1,2
g = (1.5,−1.77,0.4) are the

fitting parameters of a zigzag triangular dot with Ns = 12

respectively for TBM and continuum results [see inset of

Fig. 17(a)]. The fitting parameters for an armchair dot with
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Ns = 20 [see inset of Fig. 18(a)] obtained by TBM and contin-

uum models are respectively E0,1,2
g = (1.02,−3.87,3.83) and

E0,1,2
g = (1.12,−2.41,1.2). In both zigzag (with Ns = 12 and

armchair (Ns = 20) triangular dots, the fittings are done for the

range of 0 � �c/�0 � 0.2). In contrast with hexagonal dots,

the energy gap of the triangular dots reduces smoothly (i.e.,

almost linearly) with increasing the magnetic flux. Therefore

the energy gap is weakly affected by a low magnetic field in

triangular graphene dots. In the inset of Fig. 18(b), the energy

gap is shown as a function of Ns . As in the case of zero

magnetic field, Eg can be fitted to Eg = α/Ns as a function

of Ns [see blue solid and red dashed curves in Fig. 18(b)].

The fitting parameters for B = 50 T are α ≈ 21.87 eV for

TBM and α ≈ 25.9 eV for the continuum model, which is

almost the same as for zero magnetic field (see Fig. 8), i.e.,

because of the linear magnetic field dependence of the energy

gap for low magnetic field, it does not affect significantly the

dependence of the energy gap on the size of the armchair

triangular graphene dot.

As a matter of fact, tuning the energy gap by adjusting

the external magnetic field is more useful for smaller sizes

of the dot, since the energy gap decays to zero as the size of

the dot increases. On the other hand, due to the small size of

the dots considered in Figs. 15–18, we need large magnetic

field values (e.g., B = 50 T) in order to see its effect on

the energy spectrum. Nevertheless, as the influence of the

magnetic field scales with the magnetic flux through the dot

area, similar results will be obtained for lower magnetic fields

in case of a larger graphene dot.

V. SUMMARY AND CONCLUDING REMARKS

We have presented a theoretical study of triangular and

hexagonal graphene quantum dots, using the two well-

known models of graphene: the tight-binding model and

the continuum model. For the continuum model, the Dirac-

Weyl equations are solved numerically, considering armchair,

zigzag, and infinite-mass boundary conditions. A comparison

between the results obtained from the TBM and the Dirac-

Weyl equations show the importance of boundary conditions

in finite-size graphene systems, which affects their energy

spectra. The results obtained by the TBM for graphene flakes

are only qualitatively similar to the results from the Dirac-Weyl

equation for such systems considering zigzag and armchair

boundary conditions, which shows that energy values obtained

from the continuum model for small graphene dots may not

always be quantitatively reliable.

More specifically, for zigzag hexagonal and triangular

dots, the DOS at E = 0 in the absence of a magnetic field

is overestimated in the continuum approach. Similarly, the

continuum model also overestimates the energy gap around

E = 0 in the armchair case for both geometries. A good

agreement between both models is only observed for very

large dots, as expected, and such agreement is always better

for the triangular case, as compared to the hexagonal case.

The energy spectrum obtained using the continuum model

with infinite-mass boundary condition for hexagonal graphene

flakes do not exhibit the same properties as the results

obtained with the armchair or zigzag boundaries (in both

TBM and continuum models), which shows that this type

of boundary condition may not give a good description of

finite-size hexagonal graphene flakes. On the other hand, for

the triangular case, the results from the continuum model with

infinite-mass boundary conditions describe very well the case

of triangular dots with armchair edges.

In the presence of an external magnetic field, the energy

levels obtained by the continuum model with zigzag and

armchair boundary conditions converge to the Landau levels

of graphene as the magnetic field increases, as observed in the

TBM. However, many additional artifact states appear in the

continuum model, which do not match with any TBM result

and do not approach any Landau level. Besides, the influence

of an external magnetic field on the gap in the energy spectra

of graphene flakes is particulary different for triangular and

hexagonal dots. The energy gap of the hexagonal flakes (with

Ns � 10) reduces quickly with increasing the magnetic flux,

whereas the gap of the triangular flakes decreases smoothly as

the magnetic flux increases. This feature is observed in both

TBM and continuum models, and suggests that the energy

gaps of hexagonal flakes are more easily controllable by an

applied external field, as compared to the triangular graphene

dots.
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