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Abstract. An approach is presented for generating energy-like functionals for
linear elastic dynamic systems on a Hilbert space. The objective is to obtain a family
of functionals which may be used for stability analysis of the equilibrium; i.e., Liapunov
functionals. Although the energy functional, when one exists, is always a member of
this family, the family is shown to exist even when an energy functional does not. Several
discrete and distributed-parameter examples are presented, as are certain specific
techniques for utilizing this approach.

1. General problem. The physical problems which led to the present work are in
the area of stability of equilibria of linear elastic nonconservative systems. Such problems
may be placed in the following general framework. Consider a real Hilbert space X,
independent of time, possessing a suitable inner product ( , ), and a dynamical system
which is assumed well-defined by the evolution equation

My(t) + Cy{t) + Ky{t) = 0, (1.1)
under the condition that at every fixed t £ [0, ) the state (?/(t), y(r)) £ 'y X % where

(i) (•) denotes d/dt and the time t £ [0, °o);
(ii) "y is a linear manifold dense in 3C and independent of time,

(iii) the real linear operators M, C, K are independent of time, £>.© = 6{& = = 3C,,
30<? = SDa-^= % (R<? C 3C,

(iv) M~l and K'1 exist.

Here the symbols 23 x and CiiA denote the domain and range, respectively, of an operator A.
This description of the system to be discussed is purposely not too specific. The

approach to be presented here is applicable to a large class of elastic systems which cuts
across the usual mathematical classifications, such as ordinary differential equations or
partial differential equations, and is instead limited by linearity, being autonomous,
being second-order in time, and allowing arbitrary initial conditions (y(0), 2/(0)) in
the state space "JJ X U with an isolated equilibrium at (y, y) = (0, 0). The objects
represented by the symbols y, M, C, K, y, X will vary from one physical problem to
another. The approach to be presented is intended for stability analysis of a broad class
of elastic systems which share the above properties (linearity, etc.) but vary considerably
in their mathematical description. Normally y represents displacement (vector, function,
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etc.) and y represents velocity. The real Hilbert space 3C is to be defined only after the
system (1.1) has been mathematically classified, so as to specify an inner product and
natural norm as well as the general class of elements for which this inner product has
meaning. A desirable norm is one which has physical meaning, keeping in mind that
the meaning of stability is often dependent upon the norm being used.

For an n-degree-of-freedom mechanical system, y is a real n-vector of displacement,
the operators M, C, K are n X n matrices, and 'y = 3C = S„ where S„ is the real n-dimen-
sional Euclidean space having the inner product (iii , u2) = u\u2 , «i £ £, , tt2 G .
A problem of vibration of a mass continuously distributed over a bounded region ft in
gm(m = 1, 2 or 3) is often described by a partial differential equation. In this case y
is usually the displacement of a point in ft, 3C is the space of real functions which are
Lebesgue square-integrable over ft, is the subset of such functions which also satisfy
given linear, time-independent, homogeneous boundary conditions on the boundary of
ft as well as "appropriate smoothness conditions", and M describes the spatial distribu-
tion of mass while C and K are linear spatial differential operators. None of this, however,
is meant to imply that these are the only meanings which may be assigned to y, M,
C, K, % SC.

The question of interest is the stability of the equilibrium (y, y) = (0, 0) for a general
system of the form (1.1) satisfying (i) through (iv). Since the actual solutions of (1.1)
are theoretically obtainable for arbitrary initial conditions by the methods of linear
analysis, the stability question is readily answered—in theory. However, there is good
reason for approaching the stability question from a Liapunov standpoint rather than
that of direct solution.

Using eigenvalue analysis one is faced with the problem of examining 2n eigenvalues
even for a discrete n-degree-of-freedom system. Since this must normally be done numeri-
cally, the effects on stability of individual parameter changes become quite difficult
to determine. In practice the operator C is usually ignored, effectively reducing the
number of eigenvalues to n. In this case one finds that either all eigenvalues have zero
real part or at least one has positive real part, implying that the equilibrium of (1.1) is
either critically stable or unstable but never asymptotically stable. As is well known in
stability theory [1], a prediction of critical stability on the part of the system model (1.1)
implies nothing about the modeled system; it implies only that the model is a failure
for the purpose of stability analysis.

This tendency to neglect the C operator when doing stability analysis via eigenvalue
analysis has led to some seemingly odd results for "circulatory" systems [2, 3, 4], On
the other hand, the eigenvalue problem is several times more difficult if C is not neglected.
It would seem considerably more useful to utilize a method of stability analysis which
is capable of detecting and predicting the effect of parameter changes, both small and
large. The direct method of Liapunov is just such a method.

In the majority of physical problems in which (1.1) describes the motions of a me-
chanical system, M is found to be a symmetric operator: (ui , Mu2) = (Mux , u2) for
all Mi , u2 £ SC. If K is also symmetric, (1.1) is termed a noncirculatory system, which
implies the existence of an energy functional E defined as

2E = (y, My) + (y, ily), (y, y) E y X ^ (1.2)
having the time derivative according to (1.1)

2E = -2(2/, Cy). (1.3)
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If the energy functional exists and if C is a semidefinite operator, 2E often serves admir-
ably as a Liapunov functional and so may easily be used to determine stability. Further,
the effect on stability of qualitative and quantitative changes in the M, C, K operators
can be easily and directly determined from this particular form of Liapunov functional.
In addition, 2E becomes an integral if C = 0.

Unfortunately, for mechanical systems of recent interest (see Ref. [2]) the operator
K is not symmetric and an energy functional does not exist, which is to say that the
functional (1.2) does not have the derivative (1.3) and is not an integral for € = 0.
Such systems are termed circulatory. Even for noncirculatory systems, the energy
functional fails when C is indefinite. Our objective here is to devise a means of generating
Liapunov functionals for both circulatory and noncirculatory systems and, in particular,
Liapunov functionals which share some of the very desirable structural properties of
the energy functional.

2. Construction of a Liapunov functional. Since M was assumed invertible, let us
simplify our notation by defining C = M~1C, K = M'K, and consider (1.1) in the form

y(t) + Cy{t) + Ky(t) = 0 (2.1)

where at any fixed r£[0, oo) the state (?/(r), y(r)) G 'i( X 1j. Note that this new problem
satisfies the same conditions, (i) through (iv), as (1.1) when M, C, K are replaced by
I, C, K, and I is the identity operator.

In order to generate candidates for Liapunov functionals with the simple structure
of (1.2), even when K is not symmetric, let us consider the functional

V = (y, Gy) + (y, GKy), (y, j) G U X U, (2.2)
which has as its time derivative according to (2.1) the functional

V = -2(2/, GCy), i/Ey (2.3)
provided the real linear operator G satisfies the conditions

i) G is symmetric, 50o = 3C,
ii) GK is symmetric on 2D0K = "y. (2.4)

We note that V and V are similar to 2E and 2E (when K is symmetric) in their
dependence on y, y, and the operators C and K. In fact, for noncirculatory problems
we may choose G = M and produce V = 2E. However, the above formulation is also
valid for circulatory systems provided a G satisfying (2.4) exists. If for such a G, V is
semidefinite in y, V is generally useful as a Liapunov functional to determine stability
of the equilibrium (y, y) - (0, 0) of (2.1) [5].

It is also of interest to note that the functional

U = (y + Cy, Gy + GCy) + (y, GKy), (y, y) E 'y X <y (2.5)

has the time derivative for (2.1)

U = -2 (GKy, Cy), yEV (2.6)

provided G satisfies (2.4). Thus U is generally useful as a Liapunov functional provided
a G can be found such that U is semidefinite in y. We note that U is a functional of y
whereas V is a functional of y, and U = V iff C = 0.
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Therefore, Liapunov funetionals of the form V, or U, or some linear combination
of V and U, appear to be feasible for (2.1) provided operators G exist satisfying (2.4).
In particular, when (1.1) is noncirculatory we may choose G = M and so produce
V = 2E (U 5^ 2E unless C = 0), although we generally need not do so. That is, a set
of V (or U) funetionals seems to be derivable; and the energy functional, when it exists,
will be one and only one of them. For circulatory systems, of course, an energy functional
does not exist. However, we still expect to produce a set of V (or U) funetionals. Before
considering the general questions of existence and properties of G, we will illustrate what
this approach is designed to do by applying it to lumped-parameter systems.

3. Lumped-parameter systems. In the case of lumped-parameter systems, y is an
w-vector, the operators C and K are n X n matrices, and y — 3C = £,. . G is also an
n X n matrix and conditions (2.4) require that both G and GK be symmetric. This
results in no more than n-n linear equations in the n elements of G. Thus there normally
are at least n linearly independent matrices G of the required form. A portion of the
following is more fully discussed in [6], along with several examples, but several new
results are presented here.

Utilizing the functional V of (2.2),

V = yTGy + yTGKy, V = -2 y'GCy,

the following theorems can be proved [6]:

Theorem 1: If there exists a matrix G such that GC is positive definite, while G and GK
are symmetric and positive definite, the equilibrium is asymptotically stable.

Theorem 2: If there exists a matrix G such that GC is non-negative, while G and GK
are symmetric and positive definite, the equilibrium is stable.

Theorem 3: If there exists a matrix G such that GC is positive definite, while G and GK
are symmetric but not both non-negative, the equilibrium is unstable.

Theorem If.: If there exists a matrix G such that GC is skew-symmetric, while G and GK
are symmetric and definite of the same sign, the equilibrium is stable but not asymptotically
stable.

Theorem 5: If there exists a matrix G such that GC is skew-symmetric, while G and GK
are symmetric, the functional V = (y, Gy) + (y, GKy) is an integral of the motion.

Using the functional U, as well as V, the above theorems may be extended by replacing
"GC" with "GC or GKC" in the statement of each theorem.

To illustrate the application of this method to lumped-parameter systems, consider
a system of the form (1.1) where

M = m, 0

m2
C = Ci c2

c3 c4_

K =
k o ko.

(3.1)

and y is a real 2-vector. This represents a circulatory two-degree-of-freedom system,
and an energy functional does not exist. In the form (2.1) we have

Hit) + Cy{t) + Ky(t) = 0, (y, y) E S2 X S2 , (3.2)
where 'y = 3C = S2 and

C = 1
771x7712

77l2Ci m2^2

jnxcz mxc^
K =

mlm2

m2ki — m2k3

_mjcs m1k2_
(3.3)



ENERGY-LIKE LIAPUNOY FUNCTIONS 469

As pointed out in [6], it often appears to be advantageous to choose diag [G] =
diag [M] when M is a diagonal matrix. By (2.4) G and GK are to be symmetric, which
implies

G = m1 g

L 9 m2

2k3m1m2 ^ ^
m1k3 — kim2

If C = 0 we can utilize Theorem 4. Conditions which are necessary and sufficient
for G and GK to be positive definite are found as

— g2 > 0,

m2/c1 + mxk2 > 0, (3.5)

{k\ + k^im^ — g) > 0,

assuming > 0, m2 > 0. In the space of parameters mt, m2, kL, k2, ka , these conditions
define the exact region for which the equilibrium (y, y) = (0, 0) is stable for C = 0.
The above G matrix may also be used with various nonzero forms for the operator C
to prove asymptotic stability, stability, or instability via Theorems 1, 2, and 3. For
example, since (3.5) implies G and GK are both positive definite, "proportional damping"
of the form C = cj + c2K results in asymptotic stability by Theorem 1 if {cxc2 > 0,
Ci + c2 > 0) and instability by Theorem 3 if (cxc2 > 0, cx + c2 < 0), provided conditions
(3.5) are satisfied.

Other forms for C are easily considered by direct computation of GC. If the above
theorems should happen to not apply for some given C and the above G, one simply
seeks a new G such that G and GK are symmetric and GC is non-negative. Usually
one or more of the above theorems will then apply. For example, consider the general
C of (3.3) which may be both "nonproportional" and indefinite. The general form for G
such that both G and GK are symmetric is

G = (x2i7i\k^ ] (X\iyi2k^
m,fc 2 —

GK

GC = 1
mxm2

9

-9 «2-

giving

a1m2kl + gmjk3 — a1m2/c3 + gmxk2

_gm2k1 + a^m^a —gm2k3 + a2mlk2_

QfjWaCj + gyn-fia + gm-fi^

_gm2c1 + a2mxcz gm2c2 + a2m,1ci_

The parameters «i and a2 are still completely free. If we choose them such that GC
is non-negative,

1

(3.6)

(3.7)

(3.8)

m1m2

1

(ajTWaCj + gmiC3) > 0, (3.9)

[4(ajmsCi + gm1c3)(gm2c2 + a2m!C4) — (axm2c2 + gmxc4 + gm2ct + a2m1c3)2] > 0,
mlm2

(3.10)



470 J. A. WALKER

then Theorems 1, 2, or 3 may be used to predict asymptotic stability, stability, or
instability, depending upon the definiteness or indefiniteness of G and GK for this
choice of ai and a2 . It should be emphasized that if ai and a2 are chosen to strictly
satisfy (3.9), (3.10), we definitely have an answer since either Theorem 1 or Theorem 3
must then apply. This illustrates the fact that, in direct contrast to eigenvalue analysis,
it is critical stability which is most difficult to determine when using a Liapunov approach.

4. Existence and properties of G. We can prove the existence of a family of operators
G having at least as many linearly-independent members as there are distinct eigenvalues
of K. In order to do this we first construct a complex Hilbert space SCc, (u + iv) £ 3GC
iff 11, # G 3C, having the inner product (Ui + ivi , u2 + iv2)c = (mi , u2) + i(vi , u2) —
i(ui , v2) + (v! , v2) for all ux , vl , u2 , v2 £ 3C. We also temporarily extend the real
operator K to the complex domain 'y", (yl + iy2) £ "y" iff yx , y2 £ 'y, and denote its
adjoint by K* with complex domain of definition dc. (Later we will also make use of the
real linear manifold d = dc 3C.)

We now consider the associated eigenvalue problem

K*g = Xfir, gE 3* (4-1)

and note that the eigenvalues X,- and eigenvectors g{ either are real or occur in complex
conjugate pairs since K* is a real operator. Define the operation

G,U = , u)c + CiCjiiu, gi)c , u £ 3C, (4.2)

where (•) denotes the complex conjugate of (•) and c, is an arbitrary complex constant.
Since (ii: , u2)c = (u2 , ut)c we see that G, is a real symmetric operator defined on 3C.
In addition,

GiKy = Cig^Qi , Ky)c + c.g^Ky, g,)c

= Cigi{K*gi , y)c + c^^y, K*gi)c (4.3)

= cXgi{gi , y)c + hcifjiiy, g,)c, y G'y.

Since G{K is also symmetric, G{ satisfies (2.4).
Since c,- is an arbitrary complex constant, each Gt defined above actually involves

two independent operators when X,- is complex. Therefore we have demonstrated the
existence of at least as many linearly-independent operators Gt satisfying (2.4) as there
are distinct eigenvalues of K. This is clearly not a desirable way to find a family of
operators G satisfying (2.4), since eigenvalue analysis is what we are trying to avoid,
and also the family (4.2) is parameterized in a way which is inconvenient for practical
usage. Therefore we will consider some additional ways in which a family of operators
satisfying (2.4) can be obtained, provided at least one member of the family is known.

Suppose some known operator G0 satisfies (2.4). Then, since G0 is symmetric,

(«! , G0K~lu2) = (G'0Wi , K'lu2)

= (GoKK-'ui , K-\2), uy. , w2 £ X, (4.4)

and since 2DK = *y implies (RK-. = %

(«, , G0K~'u2) = (K lux , GoKK-'u2>

= {G0K~lui , u2), Mi , tt2 £ 3C (4.5)
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by the symmetry of G0K. Therefore G0K~l also satisfies (2.4). Since this process can be
continued we see that we can generate an entire family of operators satisfying (2.4) by

G = Gq,G0K~\ GJC\ ■■■ . (4.6)
It can be similarly shown that families could be developed as

G = G0, K*-'G0 , K*'2G0 , ■■■ (4.7)

G = G0(K - X/)"\ (4.8)

G = (K* — \iy1G0 , (4.9)

where X is a real number not in the spectrum of K or K*.
The last two forms are parameterized by X in a way which is very useful in applying

the Liapunov approach, in that X can often be chosen such that GC is definite on *y,
or at least semidefinite on % for the operator C which is of interest. Note that C is not
involved in determining any of the above families, but does determine whether or not any
particular operator G will generate a useful Liapunov functional via (2.2) or (2.5).

At present the most general method found for generating families which satisfy (2.4),
given one G0 which does satisfy (2.4), is via

G = GolP^K)]'1, G0[P2(K)]~1, (4.10)

G = [Pi(/£*)]"'Go , [P2(K*)]-'G„ , • • • (4.11)
where the P, are arbitrary real polynomials for which the inverses exist.

5. Distributed-parameter systems. In the following sections we will consider dis-
tributed-parameter examples involving a mass continuously distributed over a bounded
region 0 = (0, 1), where K is a differential operator of order 2n and C is also a differential
operator of order <2n. A natural choice for 3C is the space £2(0, 1), and consequently cy
is chosen as the set of functions in the Sobolev space SC!/"' (0, 1) which satisfy n linear
homogeneous boundary conditions at each boundary point of 3C(22n> (0, 1) is the linear
space of all summable functions u(x) having on the open set (0, 1) all generalized deriva-
tives of order <2n summable to the power 2. Thus 3C22n)(0, 1) C 3C20)(Oj 1) = <C2(0, 1)
and y is a linear manifold in SC. The adjoint operator K* and its domain 3 are similarly
defined. Our objective will be to determine operators G satisfying (2.4) such that V
of (2.2), or U of (2.5), or some linear combination of V and U, is a useful Liapunov
functional for the system considered.

From (2.4) we see that G is to be symmetric and defined on 3C = <£2(0, 1), and this
implies that G cannot be a differential operator of order larger than zero. This is not very
informative and we must have a clear idea of the form of G before we can use (2.4) to
devise a specific technique for finding G. For this purpose we will make an assumption
on the form of G, based on what we prefer rather than what we require. Noting that we

t The boundary conditions will involve y and its first 2n — 1 derivatives, and the Sobolev embedding
theorem implies that y £ e(2n-1'(0, 1) if y £ 3C2(2n)(0, 1).
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plan to use and manipulate G in the functional (2.2), (2.3), (2.5), (2.6), we will here
make the assumption that G has an inverse which is an ordinary differential operator
of order <2n. This assumption is not necessary, but under it we can present a simple
technique that works for all symmetric K and at least some nonsymmetric K.

Suppose the differential operator (K — X/), where X is a real constant not in the
spectrum of K, may be factored into two real linear differential operators

K - X7 = BA (5.1)

such that

(i) A is symmetric, SJA = %
(ii) B is symmetric, = 01 ̂ , (5.2)

(iii) B~l exists, SDb-i — •

If this can be done, note that = (RK = 3C and define

G = B-1 (5.3)

which is an integral operator with a symmetric kernel or an ordinary function. Also

GKy = B~\BA + \I)y = Ay + X5"1?/ (5.4)

which is symmetric on "y. This implies G = B~1 satisfies (2.4).
We note that the above factorization is always possible when K is symmetric. Choos-

ing A = K — \I, B = I, we get G = I and so produce the energy functional for V
by (2.2). We can also choose A = I, B = K — XI, and so produce G = (K — X/)-1
which is actually a family parameterized by X. This latter family may produce stability
results for forms of the operator C with which the energy functional fails. Other simple
choices are also sometimes possible.

For nonsymmetric K, the above factorization is more difficult since A and B must
generally be variable-parameter, even for a constant-parameter K. Whether or not the
above factorization is always possible is still an open question, but we will show by
example that it is sometimes possible.

Let us now consider the forms V and V:

V = (y, Gy) + (y, GKy) (5.5)
V = -2(y, GCy), (y, y) G <y X % (5.6)

The operator G = B~l may be either a simple multiplying function or an integral operator.
If it is an integral operator we may have some practical difficulties when trying to
determine the definiteness properties of V and F. We therefore suggest the following
change. Define a domain W = G(y), note that G = B~l provides a one-to-one mapping
of onto W, and consider the functionals V and V in the form

V = (w, Bw) + (w, KBw), (5.7)

V = -2(ib, CBw), (w, w) G W X W. (5.8)
These functionals involve only the differential operators B, C, K, and are therefore
amenable to a variety of techniques for determining definiteness properties, such as
variational calculus. In addition these functionals do not require the evaluation of the
operator B~l.
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In application it will be convenient to note that

■W = (?('y) = {u \ u E d, Bu E ■y}, (5.9)

where d is the domain of the adjoint operator K*. This can be shown by noting that

G(H) = {u\uE , BuE y} (5.10)
while (2.4) implies GKy = K*G*y = K*Gy for all y E "y and therefore G(*y) C %■
Consequently (5.10) implies

G(y) C {u | u E i, Bu E <y}. (5.11)

On the other hand, B* = B and £>B» = 3DB , since B is symmetric and (S(B = 3C by (5.2).
Noting that the adjoint of (5.1), K* — X/ = A*B*, is defined on d, we see that 1)B =
Dr. D S. By again using (5.10) we now have

G(y) D {u\uE d, BuE y}, (5.12)
and (5.9) follows from (5.11) and (5.12).

At this point something should be said about the meaning of stability. The general
definitions of stability, instability, and asymptotic stability are completely analogous
for general and lumped-parameter systems, the only distinction being the norm-depen-
dence of these concepts for distributed-parameter systems [7], For the sake of simplifying
and unifying the stability conclusions reached for the examples of the following section,
no mention will be made in these examples of the norm or norms being used to draw
these conclusions. In fact we will proceed almost as though Theorems 1-4 of Sec. 3
carried over directly to distributed-parameter systems. In a sense they do, provided the
proper norms are used.

Consider, for example, Theorem 2 of Sec. 3. Suppose the technique of the present
section has produced a G = B'1, where B satisfies (5.2), and the conditions of Theorem 2
hold in the sense that B and KB are positive on W = B~*(y) with respect to the £2(0, 1)
norm of 3C, and CB is non-negative on *W. We have by (5.7) and (5.8)

V(w, w) = (w, Bib) + (w, KBw), (5.13)

V{w, w) < 0, (w, w) £ -W X "W, (5.14)

where if is a differential operator of order 2n and B is a differential operator of order
2m < 2n. Stability can be concluded relative to any norm j (w, w)||s which is equivalent
to (V(w, w))l/1] i.e., there exist two positive constants cx , c2 , such that

Ci ||(«>, w\\s > V(w, w) > c2 ||(w, u>)||J (5.15)

for all (w, w) E W X W. The value of \\(B~1y, B'^y)^ , along any solution of (2.1),
is then bounded above in terms of its initial value. In many cases an appropriate stability
norm is the norm of 3C(2n+"" (0, 1) X 3C^m)(0, 1).

Now suppose that Theorem 1 is satisfied in the sense that, in addition to the above,
CB is positive on W with respect to the <£2(0, 1) norm of 3C. Clearly the equilibrium is
stable in the above sense, but in what way is the stability asymptotic as concluded by
Theorem 1? LaSalle's invariance principle [9] was employed in the proof of Theorem 1
using only the functional V of (2.2) [6]. However, the various versions of this principle
for general systems are quite complicated [7, 10,11], so let us avoid its use by the following
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device. Substitute GK~l for G in U and U of (2.5) and (2.6), add the results to V and F
of (2.2) and (2.3), and substitute Bw and Bw for y and y, thereby forming new functionals

V(w, w) = (w, Bw) + (w, KBw)

+ (K'1(Bu> + CBiv), B'1(Bw + CBiv)) + (w, Bw), (5.16)

V(iv, w) = —2(CBw, w) — 2(CBw, w), (w, w) G "W X W. (5.17)

Quasi-asymptotic stability can be concluded relative to any norm ||(w, w) 11 cms which
bounds (— V(w, w))1/2 from below; i.e., there exists a positive constant c3 such that

-V(w, w) > c3 11 (Wj w)||20AS (5.18)

for all (w, w) G W X W. The norm of £2(0, 1) is certainly a possible choice for |[(w, w)||0^s
since CB was assumed positive with respect to this norm, but a stronger choice can
often be made. The value of ||(B~*y, B~1y)\\QAS , along any solution of (2.1), approaches
zero as t —> <», In at least this restricted sense of stability with respect to ||(u>, w)||s
and quasi-asymptotic stability with respect to ||(w, m>)||<ms > the equilibrium (y, y) =
(0, 0) is asymptotically stable.

There are many other approaches that may be used in particular cases. For example,
if C is a constant we may directly add V to U, V to U, substitute Bw for y and Bw for y,
and form the functionals

V(w, w) = (w, Bw) + {(Bw + CBiv), B~\Bw + CBw)) + 2(w, KBw), (5.19)

V(w, w) = —2(CBw, w) — 2(KBw, Cw), (w, w) G W X "W. (5.20)

If B and KB are positive with respect to the £2(0, 1) norm and (F(w, w))1/2 is equivalent

to 11(w, w)||g , then (—V(w, w))1/2 is also usually equivalent to ||(m>, m))||s for C > 0.

Therefore we may conclude true asymptotic stability relative to this norm, which applies
to both boundedness and limit behavior. If the constant C = 0 (C < 0) stability (in-
stability) is proved relative to this same norm.

Generally each problem and each Liapunov functional should be investigated on its
own merits to determine the precise meaning of the stability conclusions drawn. At
present there appear to be few simple rules of practical value, and the reader is referred
to more basic work along these lines [8, 10, 11, 12]. Here we are concerned with generating
Liapunov functionals rather than demonstrating rigorous methods of usage, and so
stability results for the following examples will be stated imprecisely.

There is another and much more subtle question which may occur to the reader:
do the defining equations of the following examples actually define dynamical systems
on 'Jj X ry = 3C22n>(0, 1) X 3C""1 (0, 1), as was assumed for (1.1)? This is a question
which it is neither necessary nor possible to answer here, given our present objective,
and again more basic work should be consulted [7, 10, 11]. Here we shall simply be
optimistic and assume that in each of the following examples there exists a general
solution having the semigroup property and providing a continuous mapping of [<0, ro ) X
<y x <y into x %
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6. Example: pin-ended Euler column. The pin-ended Euler column is dynamically
described by

p(z)iK0 + Gy{t) + (d4 + pd2)y(t) = 0 (6.1)

with boundary conditions y = d2y = 0 at x = 0, 1, where p(x) > 0 for all x E [0, 1],
the constant p ^ m2ir2, m = 1, 2, • • • , and C is a differential operator of order <4.

This system is seen to be given in the form (1.1) and both M and K are symmetric.
Therefore there exists an energy functional

2E = f ptf dx + [ y-(d4 + pd2)y dx (6.2)
Jo J 0

having the time derivative

21E = -2 [ y-Cydx. (6.3)
Jo

The functional 2E is useful as a Liapunov functional if C is definite on <y, and may be
useful if C is only semidefinite on % It will not be useful if C is indefinite on <y. In any
case, we may wish to have some other candidates for Liapunov functionals and so we
place the system in the form (2.1) where

y(t) + Cy(l) + Kyit) = 0, (y, y) E 'DXD,

K = -p (d4 + pd2), <y = \u e 3C24>(0, l)

K* = + pd2)(~) , 3 = u E 3Cj (0, 1)

u = d2u = 0 @ x = 0|

u = d2u = 0 @ x = lj

u = 32Q = 0 @ x = 0
(6.4)

u = = 0 @ x = 1

C = (1 /p)C, («! ,u2)= / M1(x)w2(a;) dx, ux , u2 E 3C = JS3(0, 1).
Jo

Now we consider

(K - XI)(■) = (i/p)(a4 + pd2 - Xp) (6.5)

and note there are several ways to perform the factorization (5.1) while satisfying (5.2):

i) A. = (d4 + pd2 — Xp), B — 1/p,
ii) A = p, B(-) = (1/p)(a4 + pd2 — Xp)(-/p)» (6.6)

hi) A = (a2 + p - 0), B = (1/p)(a2 + 0), - p0 = pX,

where (i) and (ii) are valid for all p(x) (p(z) > 0 for all x E [0, 1]) and (iii) is valid only
for constant p > 0.

First consider (i), for which G = B'1 = p(x), "Wi = G(*y) = d. Then by (5.7) and (5.8)

V> ' J! + + **>($*:, (6.7)
v1 = -2 ^ p'^(p) dx> (w> w) E % X d, (6.8)
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or, equivalently, by (5.5) and (5.6),

Vi = f py2 dx + f y-(d4 + pd2)y dx, (6.9)
Jo J 0

Vi = -2 f y-Cy dx, (y, y) Ey X y. (6.10)
Jo

In the latter form it is apparent that Fi is just the energy functional 2E for the
system (6.1). It is not the energy functional for the system (6.4) from which it was
derived, however. In fact, (6.4) has no energy functional since K is not symmetric.
We see that Vl is (may be) a Liapunov functional for all definite (semidefinite) operators
C. If 6 is a positive operator and p < ir2(p > ir2) the equilibrium (y, y) = (0, 0) is
asymptotically stable (unstable). If C is a negative operator the equilibrium is unstable
for all p. If C is non-negative, and p < ir2, the equilibrium is at least stable. If C is
indefinite, no result is obtained from F, .

In contrast to the preceding, case (ii) provides a family of operators G = p(d4 +
pd2 — Xp)_1p> and

*W2 = G(y) = {U IU G 3, (i/p)(a4 + pd2 - \p)(u/p) E *y}, (6 u)

v2 = f1 --(a4 + pd2 - Xp)(-) dx + f --(a4 + pd2) - (a4 + pd2 - xP)(-) dx,
Jo p \p/ Jo p P \ P'

V2 = -2 f--C- (d4 + pd2 - Xp)(-J dx, (w, w) G w2 X W2 . (6.12)
Jo p p \p/

Given any operator C, we may here attempt to choose X in such a way that (1/p)
■C(l/p)(di + pd2 — Xp)(- /p) is a definite or semidefinite operator on %V2. For example,
suppose G = (d* + pd2 + cp) and choose X = — c. V2 is then a Liapunov functional
for any p and any p(x), regardless of whether C is definite or indefinite. This form for
C is seen to be "proportional", but this is not meant to exclude any other form for C
such that (l/p)C'(l/p)((94 + pd2 — Xp)(-/p) is at least semidefinite on \V2 for some
choice of X.

We now consider case (iii) where G = p(d2 + /3)"1 and p and /3 are constants:

= |w|wG3, (d2 + 0)(u/ p) G 'y}, ^2^

F, = fo w-{d2 + /3)Q dx + £ y(d4 + pd2){d2 + /S)Q dx,

Fa = -2 jl yC{d2 + P){~j dx, (w, w) G w3 x w3 • (6.14)

The functional V3 may be used in the same manner as V2, and has a certain practical
advantage since only operators of up to sixth (rather than eighth) order are involved.
We choose /3 such that (l/p)(?(d2 + /3)(-/p) is definite or semidefinite on W3 . As an
obvious example, consider C = (d2 + a), and choose /3 = a. Note that this C is neither
"proportional" nor, in general, definite.

We note that we have not had actually to evaluate the operator G. This is an attribute
of j;he technique described in Sec. 5. We must, of course, be sure that G exists. It was
assumed in the preceding that X was such that G = B~l did indeed exist.
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7. Example: circulatory string. Consider the motion of a string of variable density,
subjected to a circulatory loading proportional to the slope and another loading de-
pendent upon velocity. The system is described by

p(x)y(f) + Cyit) - (d2 + pd)y(t) = 0 (7.1)
with boundary conditions y = 0 at x — 0, 1 where p(x) > 0 for all x £ [0, 1] and p is
a constant. C is a differential operator of order < 2. In the notation of Sec. 2,

K= (~l/P)(d2 + pd), K* = -(d2 - pd)(-/p), C = {l/p)C, 3C = £2(0, 1),

Tj = 3 = {u £ 3C22)(0, 1)|w = 0@x = 0, u = 0 @ x = 1}, (7.2)

and
K - X7 = (-1 /p)(d2 + pd) - X = (-1 /p)de~rx devx - X. (7.3)

We may therefore let

(i) A = pe~, B(-) = (_i/p)(de-~d + Xe"M)(-/p)
(ii) A(-) = -(e°x de~"x de" + XpO(-), 5 = (e^/p), (7.4)

and find for case (i) via (5.7), (5.8),

•w. = [tt I u £ 3, ((—1/p) a - \e-VI){u/p) ey), (7 5)

F, - -( *■(! a.- a + ^)(2) & + £ i(a- + Pa)(\ a«f» a +

F, = 2 f1 -.<?(- de""1 a + —V <fc, (u>, w) £ W, X W, . (7.6)
Jo p \p p /

Again we have a parameterized family of F functionals, the constant X to be chosen,
upon specification of C, so as to make (l/p)C((l/p)de~BI d + (\e~"x/p)) at least semi-
definite onWi.

For case (ii), we obtain only one functional V2 by using G — B~l = pevx in (5.5):

Va = f pe"y2 dx - f yevx-{d2 + pd)y dx (7.7)
J 0 •'O

and

V2 = -2 [ yept-Cy dx, (y, y) E y X y. (7.8)
Jo

V2 is also a Liapunov functional for certain forms of C. For constant C = 2£, V3
and Vt imply asymptotic stability for all £ > 0, critical stability for ij = 0, and instability
for £ < 0, these results being completely independent of p and p(x) (p(x) > 0 for all
x £ [0, 1]). This simple case is mentioned because Plaut and Infante [13] have considered
this problem with constant p and a p(t) which is a stationary ergodic stochastic process
and obtained a much more restrictive result. Their result is not improved for deterministic
p, which by stationarity must be constant. The sharpness of the results obtained here
is due to the fact that functionals of the form (2.2) and (2.5) are "perfect" Liapunov
functionals, in the sense that they become integrals of the motion for C = 0.

8. Example: column with circulatory loading. Consider a uniform column which
is pinned at one end, restricted to zero slope at the other, and subjected to a uniform.
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(8.2)
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tangential compressive loading p > 0 which remains tangential regardless of the deforma-
tion. The system is described by

y(t) + Cy(t) + Ky(t) =0, (y, y) G y X *y (8.1)

where C is a differential operator of order < 4 and

K = (d4 + pxd2), K* = (a4 + pd*x), 3C = £2(0, 1),

u = d2u = 0 @ a; = oj

du = 53m = 0 @ a: = lj

w = d2u = 0 @ x = 0

3m = (d3 + p)w = 0 @ x = lj

The operator (K — \I) may be factored for X = 0 as

IC = BA, A = -a2, B = -(a2 + px) (8.3)

and (5.7) and (5.8) become

F = — [ w-(d2 + px)w! dx — [ w-(d2 + px)(d2)(d2 + pa;)w eta, (8.4)
•/o *^0

V = 2 f w-C(d2 + px)w dx, (w, w) G W X (8.5)
•'0

where

W = {m |u G Z,Bu e -y),
u = d2u = (d* + 2pd)u = 0 @ x — 0

du = (33 + p)w = (a5 + pd3w + 3pd2)u = 0 @ x = lj

Integrating (8.4) by parts, we see that

V = [ w-Bw dx + f y-Ay dx, w E W, ?/ G "i(- (8.7)
•/o Jq

A is a positive operator on 'y and B is positive (indefinite) on W for p < pcr.(p > Per.),
where pcr. is the lowest value of p such that Bw = 0 has a nonzero solution w G "W.
Therefore we conclude stability (asymptotic stability) of the equilibrium for any operator
C such that CB is non-negative (positive) on V? and p < p„. .We conclude instability
for any operator C such that CB is definite on W and p > pcr. . For example, suppose
the term Cy in (8.1) is due to viscous damping, C = 2£ > 0. Then (8.5) becomes

= \u G rcno, 1) (8.6)

V = — 4£ / w-Bw dx,
Jo

(8.8)

and asymptotic stability results for any p < per. and instability occurs for p > pcr. .
If C should be such that CB is indefinite on W, many other functionals V can be

constructed by deriving new operators G from G0 = B~l, using the method explained
in Sec. 4, until a G is found such that GC is not indefinite on <y. The functional V of (8.4)
is believed to be the first Liapunov functional ever found for this problem.
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9. Comments. An approach has been described for the generation of a set (or sets)
of functionals suitable as simple candidates for a Liapunov functional for linear elastic
dynamic systems. Basically the approach is to search for a family (or families) of linear
operators G satisfying (2.4). In Sec. 4 such operators were shown to exist for the general
problem. The determination of these operators is sometimes nearly trivial as in Sec. 3
for lumped-parameter systems, and also for partial differential equations when K is
symmetric, using the technique described in Sec. 5. For many circulatory partial dif-
ferential equations, however, the technique of Sec. 5 is far from trivial and in fact
may not be workable. Certainly more work is needed on means of systematically satis-
fying (2.4) for distributed-parameter systems.

The present objective, however, was not the development of specific Liapunov
functionals for specific problems, but rather the presentation of a general approach for
general linear elastic dynamic systems defined on a Hilbert space which provides a
desirable alternative to eigenvalue analysis. Such an approach has not only been devel-
oped but, through specific examples, it has been shown to be both feasible and desirable
to use such an approach. Even for discrete systems we note that we search only for
n X n matrices G, not for 2n X 2n matrices as the general Liapunov equation requires [1].
We note also that at no point do we lose sight of the original operators, C and K, involved
in the problem and can detect throughout the effect of any changes or inaccuracies in
these operators.

It should also be noted that when using the functional V of (2.2), the operator C
need not actually be linear or time-independent. The conditions on G in no way involve C,
and the functional V (but not U of (2.5)) is also independent of C. That is, even for a
nonlinear or time-dependent operator C, V of (2.3) is still the derivative of V and the
family of operators G is still found in the same way. Of course, C plays a decisive role in
determining which member of this family one should use.

One general advantage of any Liapunov approach over eigenvalue analysis should
also be emphasized. A Liapunov functional obtained on the basis of a given system model
is not limited in usefulness to that particular model; it can be used with any system and,
in particular, with more accurate descriptions of the modeled system. This allows not
only the determination of a domain of permissible variations in some parameter space
but also, in the case of nonlinearity in the modeled system, the determination of a
"domain of attraction" in the initial state space. Therefore, despite the mathematical
difficulties which we only touched upon here, it seems highly desirable to extend the
simple usage of the Liapunov approach from discrete to distributed-parameter systems.

Acknowledgement. I wish to thank E. F. Infante of Brown University and A. Wouk
of Northwestern University for their interest and comments during the course of this
work.
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