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The Fourier series expansions are used to obtain the expressions for the components of 

the electromagnetic field at an arbitrary point of observation and for the total energy loss 

of a gyrating charged particle in a non-ionized medium having a uniform magnetic field. 

For a non-relativistic particle, it is shown that the total energy loss is split into the collision 

loss, whose formula is found to be the familiar one for linear motion, and the loss due to 

cyclotron radiations. The relative magnitude of the latter to the former is less than (wo/wp )2, 

where Wo is the cyclotron frequency and wT}=4rrnee~/me where ne and me are the density and 

mass of electrons in the medium. In the relativistic case, we get the explicit formula of 

the polarization loss, depending upon the external magnetic field, and of the losses due to 

the Cerenkov and synchrotron radiations. The spectral and angular distributions of these 

two radiations are discussed. 

§ 1. Introduction 

The theoretical study of the energy loss and radiation of a charged particle 

passing through a medium, especially a plasma, having a magnetic field is important 

with respect to some astrophysical problems. As is well known, a plasma in a 

magnetic field has a tensor dielectric constant and behaves like an optically-active 

anisotropic medium. 1) Therefore, the treatment of a magnetoplasma is much more 

complicated than that of a non-ionized medium. Studies on the energy dissipation 

of a charged particle moving parallel to the magnetic field were made by several 

authors.2) But for the motion perpendicular to the magnetic field tte previous re

search has been limited to the radiation 108s3
) and the calculation of the collision 

loss has not yet been made. This can be said for the non-ionized medium as well 

as for the magnetoactive plasma. Although in this paper we shall confine our

selves to the former case, our present work may be a useful step towards the latter 

investigation. 

A charged particle moving uniformly loses its energy by interacting with the 

medium through which it passes. This loss can be divided into two parts ;4) 

namely, one is due to close collisions, which are binary, and the other due to 

* The main part of this work was carried out at Osaka City University. 
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760 K. Kitao 

distant collisions consists of the polarization loss and the loss due to Cerenkov 

radiation. For a spiralling particle, however, the cyclotron or synchrotron radiations 

become an additional cause of the energy dissipations. 

The motion of a charged particle in the direction of the magnetic field is not 

affected by this field, so that we can use the familiar formula of the energy loss 

for linear motion. Hence it is sufficient to consider only the circular motion per

pendicular to the magnetic field. We may assume the distortion of the orbit to 

be negligible, the velocity of the particle being large. 

First, in § 2, the potentials of the electromagnetic field produced by a gyrating 

charged particle will be derived. The calculation is rather tedious and the prevIOUS 

ones are limited to the value in the wave zone. Here the value at an arbitrary 

point of observation is exactly evaluated. On account of the circular motion, the 

quantities concerning the field are resolved into harmonic components by the 

Fourier series expansion. 5) In § 3 the general formula of the total energy loss, 

including the radiation loss, per unit time is derived from the work of the reaction 

force of the medium on the particle. 6
) This expression is not of a convenient form 

and it is impossible to get numerical values unless adequate approximations are 

used. 

In the non-relativistic case, we can use some approximations with high accuracy 

and it is shown in § 4 that the total energy loss is the sum of the collision loss 

and the loss due to cyclotron radiations. As is expected from the fact that the 

Larmor radius is extremely larger than the adiabatic limit of the impact parameter, 

the value of the collision loss is the same one as for the linear motion. 

For the relativistic case, applying the asymptotic formulas of the Bessel functions 

with large order and large argument, it is found that the polarization loss depends 

on the magnitude of the external magnetic field and the emission of the Cerenkov 

radiation may be possible in addition to the synchrotron radiation (§ 5). And the 

spectral and angular distributions of these two radiations will be discussed. In 

the Appendix, another treatment of the same problem by the method of the Poynting 

vector is presented. 

§ 2. The electromagnetic field of a gyrating charged particle 

If only the radiation emitted by the particle is considered, it is sufficient to 

know the electromagnetic field in the wave zone and it can be done easily. How

ever, as we shall deal with collisions, we must find the value of the field near 

the orbit of the particle. 

Let us consider a charged particle with mass mo, charge q and velocity Vo 

gyrating in a uniform magnetic field HelJ which is directed along the z axis. The 

angular velocity (/)0 (i.e. the Larmor frequency) of the particle is (qH_jmoc) 

X V 1 -vo2/c2 and the radius of the orbit, ro=vo/wo. The components of the radius 

vector ro and of the velocity Vo of the particle are in the cylindrical coordinate 

(r, <jJ, z) 
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Energy Loss and Radiation of a Gyrating Charged Particle 761 

ro= (ro, lfo=(t)ot, 0), Vo= (0, Vo, 0). 

The field quantities, such as the scalar and vector potentials, ~ and A, are 

analysed into the Fourier series respectively 

n=-oo n=-oo 

The charge and current densities of the particle are 

p=qSCr -:,) = }Jfne-inw", I 
j=pvo= ~ jne-·nwot, 

n=-oo 

where the (J function may be expressed by the cylindrical coordinate as 

(J (r-.,-o) = (J(r- ro) (J«({! - wot) (J(z) / r. 

From the Maxwell equations ~n and An obey the next equations: 

224 
A). + n (00 En ). = _ ~ 

t.I'Pn 'Pn pn, 
C

2 
En 

2 2 E 4 
AA + n Wo n A _ _ 'It. 

1.J n 2 n- -jn, 
C C 

(2,1) 

(2-2) 

(2·3) 

(2· 4) 

(2·5) 

where En is the dielectric constant of the medium and a function of frequency nwo. 

pn and jn are easily obtained as 

The solutions of (2·4) and (2·5) are expressed as follows, 

~n (r) = J exp [in (va v'E:d/ cJ .on (r') dr', 
End 

where d= \T-T'\. 
Integrations of (2·8) and (2· 9) with respect to r' and z' give us 

, ___ qei
"" IT, expi[knVR2+r02--2roR sinO cosX+nX] d 

(/)" - . /R2 2 2 R . t} X, 
2'ItEn " V + ro - ro sm cosX 

--n; 

(2·6) 

(2·7) 

(2·8) 

(2·9) 

(2 -10) 

(2,11) 
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x 

Fig, 1. 

]{, Kitao 
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Geometry of the source and field points 

(2 ·12) 

Anz= 0, (2 ·13) 

where X=cp-cp', R2=r2+z2, r=R sin d and kn=n(VovF~Jc is the wave number. 

If we consider only the wave zone, namely R~ ro, the above integrands are 

easily approximated (see the Appendix) .5),7) But as we need to consider the case 

of R"'-ro, it is necessary to use the Expansion: 

exp [ikn V R2 + r02 - 2ro R sind co-si] 

V R2+ r02- 2roR sind cosX . 

00 if im(kn ro)h~) (knR) R> ro 
=ikn 2J (2m+l)Pm(sint}cosX). q (2·14) 

m=O Jm (kn R) h';} (kn ro) R < ro, 

where jm and h<;;') are respectively the spherical Bessel function and the spherical 

Hankel function of the first kind and of order 7n. 

Substituting (2 ·14) in (2 ·10), (2 ·11) and (2 ·12), and integrating over the 

angle X, we obtain 

4 'k in,? 00 () jJ' (k r )h(l)(k R) R> ro 
,J.. = ~qe~ "Y (8 0) Y ~ ° m n 0 Tn n 

'/'n L.J mn, 7ftn 2' . (k R) h(l) (k ) R 
En m=lnl Jm n m nro < ro, 

_ 2nqv o k
n 

ein'P 
An?' - ± --"--=--=-

c 

(2·15) 
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Energy Loss and Radiation of a Gyrating Charged Particle 763 

2 · kin'!' 

A - 7rzqv o n e 
n,!, 

C 

r f: y {j 0 Y (~O) (jm(knro)h~)(knR) R>ro 
L-J m,lnl-

1
(,) m,lnl-l 2' 1. (k R)h(l)(k ) R 

X Lrn=lnl-l tIm n m nro <ro (2·17) 

00 (7r 0) (frn(knro)h;~)(knR) R>ro] 
+ :8 Ym,lnl+l(B, 0) Ym,lnl+l ~2' 1 1 ' 

rn=lnl+l ~jm(knR)h;,,)(knro) R<ro 

for Inl > 1. 

From ¢n (r) and An (r) just obtained above, the electromagnetic field E (r) 

and H(r), at an arbitrary point of observation r, may be easily calculated. 

§ 3. General formula of energy loss 

There are some ways to estimate the energy loss arising from distant 

collisions. Among these methods, the use of the Poynting vector is not 

convenient but intricate especially in our case, because we must evaluate the energy 

flux out of the toroidal surface having the circular orbit of the particle as axis. The 

simplest way to calculate the energy loss is, as usual, to get the work done by 

the reaction force of the medium on the particle.6
) This method gives us the 

energy loss per unit time as follows, 

dW 
---= -q(voE)~'=vot= -qvoE", (ro, wot, 0). 

dt 
(3·1) 

Really this formula represents the total energy loss per unit time, including 

the contribution of close collisions. However, it must be noticed that whether 

Eq. (3 ·1) includes the close collision loss or not depends on the choice of the 

upper limit of order m, which corresponds to the minimum impact parameter (see 

the next section). 

It is obvious from (3 ·1) that we have only to know Eq> whose harmonic 

component is given by 

1 a¢" + ikn A 
R sin () acp V En n", • 

(3·2) 

Substituting (2 ·15) and (2 ·17) into (3·2), we have 
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764 K. Kitao 

00 (77: 0) If7f,(knro)h;r~)(knR) R> rOJ. + 2J Ym,lnl+1(tJ, 0) Ym,lnl+l -, 
m=lnl+l 2 jm(knR)h~~)(knro) R<ro 

Evidently Ecp IS written as 

00 

E = ~ (E e-inwot+E einwot) 
<p ~ n<p -n<p' 

n=l 

(3·3) 

(3·4) 

where E-ncp is the complex conjugate of Encp and easily obtained from (3·3). 

Using the above relations, finally we get the energy loss of the particle moving 

in a circle as follows, 

dW 

dt 

1 Q 2 R {- /- f, y2 (77: 
--/,,0 e V En L..J m,n-1-, 

2 rn=n-l 2 

(3·5) 

where Po=vo/ ~ and a relation kn 1'0= 11po V En is used. 

The spherical harmonics Ymn(77:/2, 0) is zero at m-n=odd, and when m-11=2l 

is even its square IS 

(2l)! (211 + 2l)! 211+4l+1 

477: 22n
+

4l l 12 (11 + l) !2 

Further, there IS the following relation, 

h;;,) (z) = jm(z) +i11m(Z), 

, (l: integer). 

in which 11m (z) is the spherical Neumann function of order m. 

In Eq. (3·5), the contributions from the terms with jr! and 11mjm correspond 

to the radiation and collision losses respectively, where the collision loss means the 

polarization loss plus the binary collision loss. Thus we shall divide the total loss 

as follows, 

_ dW =(_ dW) +(_ dW) 
dt dt colt dt r-ad' 

(3·6) 

From Eq. (3·5) one cannot say anything about .further details about the energy 

loss Thus, in the following sections we shall derive the explicit formulas, applying 

the asymptotic formulas for the Bessel functions. 

§ 4. Non-relativistic case 

For the non-relativistic velocity of the particle (Po ~ 1), the next asymptotic 

formula for the Bessel functions may be used. 8) ,9) That is, for 11{30 I vE":l ~ 2m -1 and 

Polv Enl ~2e-\ we have 
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Energy Loss and Radiation of a Gyrating Charged Particle 765 

. (""Z(.) - /~E ) ~ (npoV~)m n (,1(.) , /-E ),-...., 
Jm "/-,oV n -- (2' 1)'" m /-,oV n = 

771+ .. 

(2m-I)!! 
(4·1) 

(nf9o V En) m+l . 

I) Collision loss 

Using Eq. (4 ·1), the senes of terms containing Jmnm III Eq. (3·5) are 

reduced to 

1 ~ (2l)! (2n + 2l) ! 1 
47Z'npo V En t;'6 221l+41 l!2 (n + 1)!2 ' 

1 ~-, (2l)! (2n+21-2)! 

-4-n:-n-p-o-vl 
En't;;"d 22n+4l-2n~\ II + 1-1)12 ') 

__ l~,,_ ~ (2l)! (2n+2l+2)! 

4mzpo V En f":,,rj22n+4l+2l!2(n + 1+ 1)!2' 

(4·2) 

The Stirling formula may be applied to the right-hand side of (4·2) and then we 

have, for example, 

~ (21)! (2n + 21)! '""..1_ f: . 1 
t;;rl 22n

+4Il!2 (n + I) 12 7r t;d V I (n + I) . (4·3) 

The summation may be further replaced by an integral. Although these infinite 

series or integrals diverge, actually there exists an upper limit of order 11'l or of 

the integral variable. This fact is based on the following reason. 

Ymn ((j, cp) is the eigenfunction of the angular momentum operator, and m and 

Ji are the azimuthal and magnetic quantum numbers, respectively, of a spherical 

wave. The virtual photon accompanying by the particle whose angular dependence 

will be given by Y,.,m ((), cp) has an angular momentum nn along the z axis/D) and 

has a frequency nwo as a result of the circular motion of the particle with an 

angular velocity (vo On the other hand, a maximum frequency of the virtual photon 

exists and is given by vol Pm;,n, where Pmin is the lower limit of the impact para~ 

meter. * Accordingly, the maxium value of m, which is designated by M, IS gIven 

by 

(4· 4) 

with 

(qe/771evo2 if qelflvo>l 

Pmin= tnv1-f902/meVo if qe/flv o<l, 

where - e and me are the charge and mass of the electron. 

Finally, we obtain 

* If we take as Ptnin""",atomic radius in (4·4), (3·5) represents only the loss due to distant 

collisions. 
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766 K. Kitao 

each expression of (4.2) = __ 1~ 1 In ( M ) . 
4n

2 
n{3o V En n 

Then the formula of the collision loss may be shown to be reduced to 

~ n In (~) 1m (~_(302) = 
n=I n En 

..:; E2n 1 (M) L1--n n --
n=l IEnl 2 n' 

(4·5) 

where E2n is the imaginary part of En and En= Eln +iE2n • The summation over n 

in Eq. (4·5) has poles at the resonant frequencies (t)j of nE2n/1 En 12 and the con

tributions of terms with small n's are completely negligible. In order to compare 

with the case of the linear motion, we shall replace the sum by the integral over 

frequency (I) as follows, 

where Wj and f.i are respectively the frequency and the strength of the j-th oscil

lator of the atomic electrons, and where lZe is the electron density of the medium. 

When we substitute the value of lvl defined by (4·4) in the energy loss formu

la (4·6), it agrees with the well-known one for the linear motion. After all, in 

the non-relativistic case it can be said that the collision loss for the circular motion 

may be approximated by the one for the linear motion with sufficient accuracy 

This should be expected from the fact that the Larmor radius ro is extremely 

larger than the adiabatic limit of the impact parameter Pma.c=vo/Wj, because (Vo<!.{ Wj, 

however strong the magnetic field may be. 

II) Radiation loss 

Using the asymptotic form (4 ·1») the summation over m of the terms con· 

taining j;, is reduced, for instance, to 

00 ( n)' I' 1 00 (2n + 4l + 1) (2l)! (2n + 2l)! (n{3o V En) 2n+41 
~ Y.!n -, 0 j.!(n{3oV En) =-~ ~ , 
rn=n 2 4n 1=0 22n+ 4l l!2(n+l)!2 (2n+4l+1)!!2 

where the right series decreases very rapidly with l, and by retaining only the 

first term we have 

Similarly, we get 

00 ( n ) 1 (n{3oV En) 2n-2 
~ Y.!,n-1 -, 0 j.!(npoV En) =- --'--'-------'---

m=n-l 2 4n (2n-1)! 

and 
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Energy Loss and Radiation of a Gyrating Charged Particle 767 

in which the last one will be omitted, because it is negligibly small compared with 

the other two. 

Thus the contribution from the terms of j;" III (3· 5) gIVe us 

2 2 00 +1 q va >: n (n(,) )2n+ I
En-l/2 (4 7) 

r02 ~ (2n+1)! tJO In, • 

where the effect of E2n has been neglected. If we put E1n = 1 in (4·7), we obtain 

the well-known formula for the cyclotron radiation in vacuum. 

III) Partition of energy loss 

It is readily shown from (4·6) and (4·7) that the radiation loss is less than 

a fraction «(Vol (Up) 2 of the collision loss, where (Vp2 = 4n:nee
21 me. In a dense medium, 

(WO/WrJ2 is ordinarily much less than unity and the contribution from radiations 

to the stopping power may be negligible, As «(Vol W p) 2' is proportional to He2j ne, 

however, the radiation loss in a rarefied gas having a strong magnetic field is not 

always negligible compared with the collision loss. 

The ratio of the collision loss to the radiation loss, designated by it, is as 

follows: 

6 2 2 1 (,)2 I 2(.12 1 12- rrnemo C _~~ In . ___ me C -'Jo~r 

me Z2 H;,; (303 I. nW7 vl- (302) , 
(4·8) 

where q=Ze and w.)= 2~.f; In Wj. For the radiation loss, there has been used the 

next familiar value in vacuum, 

6 t log" 11,. (gauss) 

4 

,2 

-2 

-4 

10 15 20 
~ lOglO ne (cm-3) 

-6~--------------------------------------------------------~ 
Fig. 2. The lines of ::12 = 1 for an electron gyrating in a hydrogen gas, drawn for some 

values of ~o. The regions under the lines correspond to ::12>1.. 
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768 K. Kitao 

(4·9) 

Fig. 2 shows the region of 1t> 1 in the ne-Hec plane for an electron gyrating 

III a hydrogen gas. Eq. (4·8) is not valid for the ultra-relativistic case, because 

of the Hec dependence of the collision loss (see the next section). 

§ 5. Relativistic case 

In the relativistic case, we must use the following asymptotic formulas for 

the spherical Bessel functions with large order and large argument.S) ,9) 

Case 1) If :m+~>nI90Iv Enl, we have 

. «(.) , ~ ) "-' exp [ (m + ~) (tanh am - am) ] 

Jm n/"oV t.r! - V2n;9oVEnl/(2m+1)t~nham' 
(5 ·1) 

where 

Case 2) If m +~ < n;9ol VEnI, we have 

jm(n;9ovE:)~ 1 cos[(J7'l+~) (ta~rm-~m)-n/4J 
V n;9oV En V (m +:z) tan, In 

(5·2) 

where 

I-

t 2 = ( n;9oV En )2_1 an I'm . 
m+~ 

I) Collision loss 

Substituting (5 ·1) in the cross term j",llm of (3·5), we obtain the polarization 

loss, including the close collision loss, in the following way. 

dW I 2q2 C;902 00 i I~r\c 1 
- -- = --"'-----"----'--- 2J n Re- 2-J - , 

dt call nro2 n=l En 1=0 vl(l+n) j1- ( n/]oV~En_r 
n+2l+~ 

(5·3) 

where we have used (5 ·1) even for small 11 because the contributions from the 

terms with small n's are completely negligible. The summation over Z is limited 

to a certain upper limit lmcl" given by (4·4) and its imaginary part is negligibly 

small. If Poh/ Enl ~ 1, we get (4·5) from (5·3) again. 
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Ene rgy Loss and Radiation of a Gyrating Charged Particle 769 

Considering that /10 1 viE: 1 is nearly equal to unity in the ultra-relativistic case, 

and replacing the sum by the integral, the sum over l is reduced to 

(V ) 

4wo ' 

where (4·4) has been used. Then the collision loss per unit time in the ultra

relativistic case is found to be 

(U,i ) 1/2 

4wo . 
(5·4) 

The second term in the logarithmic factor is negligible compared with the first 

term. Here it should be noted that (5·4) depends on the external magnetic field, 

in contrast with the case of motion parallel to the magnetic field, and that it is 

not applicable to the limiting case Ho;---70. 

II) Synchrotron radiation 

When m+1/2>n;'10Iv/E:l, the contributions of the square terms j11:(n/30v/E:) 

in (3·5) give us the energy loss by synchrotron radiations. First, we must apply 

the recurrence formula and then use the asymptotic one for (3·5).* Here it should 

be noticed that if m ';j> n, viz. am';j> 1, j11: (nFiov En) is nearly equal to zero; and thus 

we have only to consider the case of am < l. Therefore we have 

t h - ~ __ 1 3~ __ ~ {1- ( n/3ovE:)2}3/2 an am ant ant . 
3 3 m+~ 

Approximately we get the following 

1 P 2 1-[ "">' y2 (IT 0)'2 ( /~ .. /-) "'-~ y2 (IT 
---/"0 V En -,--I rn,n-l -, Jm n/"ov En + 2..J m,n+1-, 

2 m=n-l 2 m=n+1 2 
0) j;, (n/3o V En) J 

1 "')--, y2 (' IT 0) .?( :0 /_.) 1 (3 _ /-y2 ( IT 
- /--- L-I. mn -? J7;' ni>o V En ~ - 0 V Er~ n-1,n-l -, 

V En m=n 2 2 2 

,-...- (don- 3
/
2 exp[-(2n/3) (1-/.10

2
En)3/2] 

- 16IT1/ IT . 1/1- /302 
En 

(5·5) 

where the remaining terms are found to be almost cancelled, using the recurrence 

formula and adequate approximations 

As we can neglect the imaginary part of En in (5·5), we obtain the loss due 

to the synchrotron radiation as follows, 

dW\ _ qc/30
3 

~ vn [2n (1 (32 )3/2J --- LJ exp --- - 0 EI • 

dt syn 2VIT r02 n=lV1-(302 E1n 3 n 
(5·6) 

For small n, the spectrum represented by (5·6) is not a good approximation. If 

* If we directly apply (5·1) for the jm2 term in (3-5), we are misled to the wrong result 

(energy gain) on account of incorrectness of (5-1). 
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770 K. Kitao 

we neglect the dispersion and replace E1n by a certain average E, we have 

(5·6) 

where nc IS defined by 

If we put y=n/nc and approximate the sum by the integral, we obtain 

dW 

dt 
(5·7) 

Putting E equal to unity, the above expressions are a little different from the 

ordinary ones in vacuum given by the method of the Poynting vector (see the 

Appendix or reference 7». One of the reasons is due to the poor approximations 

to the lower harmonics. 

III) Cerenkov radiation 

When the condition /1olvE:1 > 1 IS satisfied, it is also possible for a gyrating 

charged particle to emit the Cerenkov radiation, provided the wavelength is much 

smaller than the radius of the orbit. 

As it is sufficient to consider only the case of r m < 1, we can write as 

and thus from (5 ·1) 

Therefore we have 

, ,,,,, 1 ,,3 
tan r Tn - r Tn - 3 I Tn 

2 { 2m + 1 ,,3 _ IT } 
cos --6-""" 4 

n!9o Vi En tan r m 

2J Y';',n-l (~, 0) j,;/,(npoV En) ~ __ 1_ /=f(n-1), 
m=n-l 2 2nn/io V En 

~ y2 (n 
.L.: m,n+l-, 

m=n+l 2 

where the function fen) IS 

(5 -8) 
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and 

f(n) "-/f(n-1) "-/f(n+1) (for large n), 

where the upper limit of l is determined by the condition n~oh/E:I > n+ 2l+ 1/2. 

Thus the energy loss due to the Cerenkov radiation is expressed as 

(5· 9) 

where the sum over n is limited to the case of PolvE:1 > 1 and the imaginary part 

of fen) is small enough to be omitted. If we put cos2 
(- •• ) equal to unity inf(n), 

and considering f90
21v Enl<:l, fen) is reduced to 

fen) ~J:_ >: (1+ l+~ ) ___ 1 . ",-,_I_ 
. n [-I n+l V2l(n(3oVEn-n-2l-~) 4' 

where the second term in brackets is neglected and the sum is replaced by the 

integral. 

After all, we get the following expression, 

- dW \v = q
2v

o 2J n (p02_~) (l-g(n», 
dt Ger r02 "'- IEnl2 

Bol YEn 1>1 

(5 -10) 

where g(n) represents the effect of interference and is given by 

Replacing the sum over n by the integral, we have 

- dW\v =~ r ((do2_~) (l-g((v/oJo»wdw, 
dt De,- Vo J IE",I . 

(5 -II) 

Gel'. 

where g(w/wo) is much less than unity for high frequencies. On account of the 

poor approximation, however, the low frequency part of the spectrum given by 

(5 ·10) or (5 -II) is not valid. As is mentioned before, the Cerenkov radiation 

with rather low frequency will be weak or impossible, because of the destructive 

effect of interference (see the Appendix). 

IV) Angular distribution of radiation 

As will be shown in the Appendix, most of the synchrotron radiation is con

centrated within an angle 61~±Vl-(302E, where 61=n/2-f}. On the other hand, 

the angular distribution of the Cerenkov radiation is almost like a a function at 

f) = cos-1 (1/ (3oVE ) Fig. 3 and Fig. 4 schematically represent the angular distri

butions of these two radiations. 
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-a o a 

Fig. 3. The angular distribution of the 

synchrotron radiation. a = V 1- {302 E . 

Fig. 4. The angular distribution of the 

Cerenkov radiation. b = cos-1 (1/ (30 V€). 

In a dense medium, the two angular distributions may rather be of great dif

ference; in a rarefied gas, however, they may practically be indistinguishable. 
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Appendix 

The next treatment follows the method of reference 7). The fields of a gy

rating charged particle in the wave zone are given from (2·2) as 

where 

.02 co 

-D<p=Ho= q{JRo ~ nv Ene-in"! Jnl(npoV~ sinO), 
ro n=-oo 

D =H = - iqpo cotO ~ ne-;fL'Y J, (n·o • /E sinO) e <p R ..::...J n {JO v n , 
ro n=-oo 

7r 
r=wot+--cp 

2 
wovE: R. 

c 

If we neglect the absorption, namely En is real, we get 

2 (32 co - -

-D<p=Ho=~ ~ nv EnJn'(n(3oV En sinO) cosnr, 
. roR n=l 

Do =H<p = - 2qpo cotO £ nJIl (n(3oV~ sinH) sinnr. 
roR n=l 

(A-I) 

(A ·1)' 
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Energy Loss and Radiation 0/ a Gyrating Charged Particle 773 

Thus the energy flow per unit time in a solid angle dJ2 is reduced to 

where the time average over a perioc of motion has been taken. Therefore the 

radiation energy of a frequency n(l)o per unit time is 

2n~oV~ 

Wn q2_I~Ocn [2P02EnJ2:J21lPoVEn) + (Po2En- 1) J J 2n (x)dx]. 
'lo En- 0 

(A·3) 

1. Synchrotron radiation (P02E n < 1) 

Neglecting the dispersion, and replacing En by a certain average E, the fol

lowing spectrum is obtained: 

if (I) < We, 

if tv> We, 

where We=ncOJO, y=n/nc and l1c=3/2· (1_Po2)-3/2. 

2. Cerenkov radiation (fJ02En> 1) 

U sing the recurrence formula, and considering the relation 

00 

(. 

j J"(x)dx=l, 
o 

(A·3) may be rewritten as follows, 

q2 cpon (p02 E
n
-1)[1- r J

2n
(x) dx+ 2PovE;: {J2n (2npoV En) 

ro2 En J _ 1302 En-1 
2n~o Vfn 

-PovE;:J2n +1(2n/9oV En)} 1 
For large n, being approximately 

J 2n (2n/9o V En) ~ J 2n+1 (2n{30 V En), 

we have 

00 

Wn q:~~o: (po
2

En -l)[1- J _J2n(x)dx-PoVEnJ2n(2nfJoVEn)], 

2n~o V'n 

(A·4) 

(A·5) 
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774 K. Kitao 

where we have used an approximation 

2(1-PoVE:-)~1-P02 En_ 

The second and third terms in brackets represent the destructive effect of interference 

.and may be neglected in the case of n ~ 1. Hence, when the wavelength is much 

smaller than the radius of the orbit, the same spectrum as for the linear motion 

IS obtained. 

3. Angular distribution 

Neglecting the dispersion, and putting En equal to E, the radiation energy 

emitted in a solid angle dQ per unit time is given by 

dW- Po2E [1+cos28- (3°4
2E 

(1+3p02
E) sin40]dQ. (A.6) 

4 (1- (30
2 

E sin2 tJr/2 

Thus it is necessary that 

a) Cerenkov radiation 

If we put f) = 7r /2+ e, we get the condition 

cose < ~ 
- f9

0 
E 

The maXImum intensity IS evidently lying at an angle given by 

1 
cos e=---=, 

(301/ E 
(A'7) 

which is nothing but the Cerenkov relation. As IS easily seen from (A· 6), the 

angular distribution is almost like a (J function. 

b) Synchrotron radiation 

The most part of the radiation is emitted within an angle 

(A-B) 

Thus the angular distributions of these two radiations may be schematically shown 

by Fig. 3 and Fig. 4. 
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