
  

  

Abstract — Intelligent consumer energy management systems 

will become important elements at the delivery points of the 

smart grid inside homes, buildings, and industrial plants. The 

end users will be able to better monitor and manage their 

energy consumption, while utilities will gain more flexible 

mechanisms for management of peak demands that will extend 

beyond demand response initiatives as they are implemented 

today. With a broader use of distributed generation many 

buildings and campuses will become microgrids interconnecting 

multiple generation, storage, and consumption devices of one or 

several end users. We discuss how energy management and 

control for such facilities can be viewed as a large-scale 

optimization problem. Specific supply-side and demand-side 

aspects include on-site renewable generation, storage 

technologies, electric cars, dynamic pricing, and load 

management. Technical challenges related to the optimization 

formulation are noted – in general, mixed-integer, nonlinear, 

constrained optimization is needed. We also describe an 

implementation of optimization-based energy management 

solution for a hospital in the Netherlands, providing economic 

details and an analysis of the savings achieved. 

I. INTRODUCTION 

ITH the increased focus on energy efficiency, 

deployment of renewable energy sources, and smart 

grid technologies, a growing number of buildings and multi-

building facilities will become more active participants in the 

electricity market. From the system point of view, such next-

generation facilities will be autonomous microgrids with 

capabilities to sell or buy electricity from the power network 

and flexibly shift or reduce electrical loads when needed. 

Modern building systems organized in microgrids will 

enable improved efficiency of overall energy consumption, 

reduction of emissions, and integration of green power from 

renewables. In the context of smart grid initiatives, 

microgrids are usually considered as small-scale versions of 

the centralized electricity system [1]. However, in its 

essence, a microgrid system of a building or campus can 

include any type of local energy generation, distribution, 

consumption, and storage elements. Frequently, a central 

combined heat and power (CHP) plant represents a key 

generation element of the microgrid and this means that a 

heat distribution network – and possibly also thermal storage 

– must be considered in addition to the electricity network 
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[2]. Microgrid management can be seen as an optimization 

problem, as shown in Fig. 1, which illustrates an electricity 

network interconnecting various energy generation elements 

(supply side) with energy consumption elements (demand 

side) and storage devices.  

A. Supply Side 

The supply side feeds the microgrid with electricity that is 

generated locally by a variety of distributed generation 

elements. These can range from complex cogeneration 

(CHP) units to stand-alone generation units (wind turbines, 

photovoltaics, etc.) that utilize conventional or renewable 

sources of energy. Supply to the microgrid also still comes 

from the electricity distribution network, which is operated 

by the respective system operator. This connection can also 

serve for selling locally generated excess or green energy 

back to the main electricity network.  

B.  Demand Side 

The demand side aggregates all energy-consuming 

devices. These aggregated loads represent various building 

systems such as lighting or heating, ventilation, and air 

conditioning (HVAC). From the demand management 

perspective the loads can be categorized as follows: 

1) Critical loads must be met at all times. These are 

typically power supplies to essential processes. 

2) Curtailable loads can be temporarily lowered. Air 

conditioning systems are a classical example.  

3) Reschedulable loads can be flexibly shifted in time to 

avoid penalties associated with peak demand or overloading 

of the grid. Rescheduling means that some energy-intensive 

activities can be moved forwards or backwards in time. For 

instance, pre-cooling of a building can be done in the early 

morning – before actual cooling demand. 

C. Energy storage and electric cars 

Energy storage is an important element that adds more 

flexibility to the microgrid, but it also increases the grid’s 

operational complexity. Energy storage elements can bring 

significant advantages particularly when the microgrid 

includes intermittent renewable generation sources. In the 

future, when electric cars are widely used, their storage 

capacity could be exploited in a similar way to smoothen 

energy consumption profiles. 

D. Supervisory control and optimization for the 

microgrid 

The safe, reliable, and cost-effective operation of the 

microgrid requires coordinating and dispatching these 

Energy Management for Buildings and Microgrids 

Petr Stluka, Datta Godbole, and Tariq Samad 

W

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5150



  

multiple generation, consumption, and storage devices 

connected to the grid. The associated optimization problem 

is a difficult one for several reasons. First, the optimizer 

needs to collect and process information from individual 

components about their past, current, and predicted future 

states. Second, a significant portion of the optimized 

variables are symbolic, indicating operational modes for 

equipment (including binary variables indicating whether a 

specific piece of equipment should be running or not). Third, 

the optimization task has to span a reasonably long future 

time interval (e.g., 24 hours) to assure consistency of 

operation [3]. Finally, the context within which the microgrid 

operates is uncertain because of the limited predictability of 

renewable generation, future energy demands, and dynamic 

prices. The optimization objective is to minimize the total 

energy bill within the operational, safety, reliability, and 

environmental constraints of the microgrid. 

We note that microgrid operation also involves fast 

electrical control of the phase, frequency, and voltage of 

individual elements. A special functionality that integrates 

both electrical control and system coordination relates to 

management of emergency situations in the grid [4]. There 

can be a need to isolate feeder faults and enable healthy 

sections of the microgrid to continue operating during a 

fault, or transition to an islanding mode where the microgrid 

can operate independently of the main grid.  In this paper we 

assume that these high-speed controllers are available and we 

focus on system-level optimization of the microgrid.   

In the rest of this paper, we first discuss a number of 

aspects of microgrid energy management, highlighting the 

several complexities that must be considered in optimization 

and control schemes.  Next, in Sections III and IV, we 

present optimization formulations for supply-side and 

demand-side problems respectively.  Section V discusses a 

microgrid optimization solution and its application to a 

hospital facility in the Netherlands.  We conclude by noting 

some areas for future work. 

II. ASPECTS OF MICROGRID ENERGY MANAGEMENT 

Depending on the types of devices connected to the 

microgrid, the energy management problem can cover 

optimization of the microgrid’s supply side or demand side, 

or optimization of the whole system. 

Supply side optimization. The basic supply side 

configuration includes CHP and other conventional 

generation devices. The system is connected to a public 

electricity grid with two-way energy flows. All demand side 

loads are considered critical and must always be met. The 

energy management decisions then consist in the dispatching 

of individual energy supplies, switching among various types 

of fuel, and optimizing the time for purchasing electricity or 

selling excess electricity back to the grid. 

Integration of renewable generation sources. Adding 

renewable generation sources makes the energy management 

tasks more complicated. Renewable sources bring more 

uncertainty as their operation depends on hardly predictable 

environmental conditions such as wind speed or sun 

irradiation. Then the objective is to balance different forms 

  
 
Fig. 1.  Schematic representation of the microgrid 
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of supplies: renewables, conventional sources and direct 

imports from the main grid. 

Optimal use of energy storage. Energy storage devices are 

used to improve the generation – consumption balance of the 

microgrid by temporarily storing the surplus energy. This 

may be particularly advantageous for systems with renewable 

energy sources, which are highly intermittent. To optimally 

use the storage capacity it is necessary to determine optimal 

charging and discharging schemes for each device that will 

take into account the dynamic environment. 

Demand-side optimization. When all loads are considered 

to be critical, there is no opportunity to optimize the demand 

side of the microgrid. Otherwise, the optimization will 

include lowering or rescheduling some of the loads. In 

current practice, the optimal control of building systems, 

such as HVAC, is frequently addressed as a stand-alone 

problem, not necessarily connected to load management. 

Model predictive control (MPC) techniques have been 

recently studied in this context [5],[6].  

The optimal operation of the microgrid as a whole can be 

achieved when both supply and demand sides are optimized 

simultaneously, which however also increases complexity of 

the energy management problem in mathematical terms. 

Before starting any system optimization task, specific input 

data needs to be collected and several pre-processing steps 

executed as illustrated in the workflow in Fig. 2. For 

reaching the optimum or near-optimum solution over a given 

horizon of interest (e.g., 1 day) it is important to consider 

forecasts of future electricity production from renewable 

sources on the supply side [7],[8], as well as forecasts of 

future energy consumption on the demand side. Both 

forecasts are primarily influenced by future environmental 

conditions that can be available in the form of weather 

forecast. Energy load forecasts also strongly depend on 

behavioral patterns, which are tightly linked to calendar data. 

The other inputs to the system optimization algorithm 

include pricing data, equipment models, and characteristics 

of the curtailable or reschedulable loads. 

Load forecasting. Modeling and forecasting of the energy 

consumed on the demand side of the microgrid usually leads 

to implementation of forecasting models for commercial or 

residential buildings and other types of facilities. Each 

building has a specific energy consumption pattern that is 

composed from daily, weekly, and seasonal cycles [9]. 

Models are run to predict future demand for the interval of 

interest, typically one day ahead.  

Renewable generation forecasting. Forecasting of 

renewable power production is a significantly more difficult 

task than energy load forecasting due to the immediate 

impact of fluctuating primary factors – wind or cloudiness.  

a) Wind power forecasting techniques range from quite 

simple ones to rather complex [10]. The simplest methods 

are based on climatology or averages of past production 

values. The advanced approaches for short-term (4-6 hours) 

wind power forecasting require predictions of wind speed, 

which allows prediction of the produced electricity through 

the so-called power curve, provided by the manufacturer or 

inferred from historical production data.  

b) Solar power forecasting is mostly based on short-term 

forecasting of cloudiness [11]. While motion patterns for 

“stable” clouds are relatively predictable, a major challenge 

is with convective events of “unstable” clouds. The 

forecasting methods work with digitized cloud masks whose 

motion vectors are identified and projected to the future. 

In both cases the forecast accuracy is inevitably limited 

and prediction errors achieved by the best forecasting 

solutions are usually in the range of 5-15%. 

Equipment models should be reasonably simple but 

realistic to assure the optimization results are meaningful. 

Typically, each piece of energy generation equipment can be 

characterized by an efficiency curve, which can be obtained 

from the equipment manufacturer or estimated from 

historical data. Other characteristics can include ramp-up and 

ramp-down rates, start-up costs, normal running costs, or 

minimal/maximal required up and down times. Energy 

storage devices are usually characterized by maximum 

storage capacity and by charging and discharging rates. 

Pricing data is needed to allow comparison between 

energy costs from self-generation and utility purchase. In 

addition to electricity, cost details of natural gas, heating oil, 

and other fuels must be known as well. Electricity prices can 

follow either the traditional static tariffs, or dynamic pricing 

mechanisms such as real-time pricing (RTP).  

Load characteristics come into play in cases of demand 

 
 
Fig. 2.  Input data and preparation steps for microgrid optimization 
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side optimization, known also as load management. 

Curtailment characteristics can include the percentage of 

load that can be curtailed, the cost of curtailment, the length 

of time for which the load can be curtailed, and the 

maximum frequency of curtailments. Reschedulable loads 

can be characterized by maximum acceptable time to 

reschedule, cost of rescheduling, lead time needed before 

rescheduling can take effect, etc.  

III. FORMULATING THE SUPPLY-SIDE PROBLEM 

Microgrid supply side optimization problems are quite 

similar to the traditional problems known from the domain of 

bulk power generation. This is true primarily for the 

problems of unit commitment and economic dispatch – two 

short-term optimization tasks that need to be solved to 

minimize the total fuel cost or to maximize the total profit. 

These problems are typically considered from a utility 

perspective but they apply also to microgrid configurations.  

In either case, the responsible party must ensure that the total 

generation must equal the forecasted demand. Unit 

commitment is the process of deciding when and which 

generating assets to start-up and shut-down. Economic 

dispatch is the process of deciding what the individual power 

outputs of the scheduled generating assets should be at each 

time-point. Both unit commitment and economic dispatch 

problems are interdependent and should be solved 

simultaneously, although a possible solution strategy may of 

course apply decomposition ideas [12][13]. Note that 

renewable generation sources are not considered in the 

following problem formulations because, in principle, the 

renewable power production cannot be scheduled. 

A. Economic Dispatch 

The basic problem of economic dispatch of the simplest 

configuration of N parallel energy generation units can be 

described mathematically as a cost minimization problem: 

Minimize ∑
=

=
N

i

ii PfF
1

)(            (1) 

The minimization is over the energy generated in the units,  

P1 ... PN.  F is the total cost and )( ii Pf  is the cost function of 

the i-th unit. The function characterizes the dependence of 

operation costs ($) on the generated energy P (kW or MW) 

and includes energy conversion efficiency. The minimization 

is subject to the following constraints: 

   DP
N

i

i =∑
=1

              (2) 

   
max,min, iii PPP ≤≤            (3) 

Where D is the energy demand that must be met. As we 

are focused on local generation and microgrids, transmission 

losses are not considered in equation (2). The optimization 

problem is formulated for one instant of time. For many 

applications it is reasonable to assume that the cost functions 

are convex.  In this case, the objective function F is also 

convex. Since all constraints are linear and the feasible 

region is closed, bounded and convex, the problem has a 

global minimum (possibly non-unique) solution and can be 

solved using a suitable numerical method of convex 

mathematical programming.  

B. Unit Commitment 

The economic dispatch problem presented above for one 

instant of time is based on the assumption that all parallel 

generation units i = 1, ..., N are running. Let us assume that 

the system consists of N generating units working in a 

parallel configuration. Decisions on which of them to run are 

the outcomes of the unit commitment problem, which 

introduces binary decision variables 
itX ,
 for each unit i. 

1, =itX  if unit i is ON at time t, and 0, =itX  if unit i is 

OFF. Then a combined formulation of both the economic 

dispatch and the unit commitment problems is as follows: 

 Minimize                 (4) 
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1

,
           (5) 

   
itiititi XPPXP ,max,,,min, ≤≤         (6) 

   
tutu DPP ≤≤ ,min,
            (7) 

   { }1,0, ∈itX               (8)  

   ii XX ,0,0 =               (9)  

 The problem is now formulated over multiple periods of 
time t = 1,…,T. The objective is to determine for each time 
interval t optimum values of Xi, Pi, and Pu that will minimize 
the function (4) over the entire time interval 1,…,T. Note 
that solving the optimization problem requires forecasting of 
future load demands D1, …, DT. 

The objective function (4) consists of, term by term: the 

operating costs (we have included fixed running costs fixed

iC  

here), start-up costs   start

itC ,
, and also costs  associated with 

purchasing electricity Pt,u from the utility at the sell 

price sell

tR  in interval t. Equation (5) represents the demand 

constraints – i.e. the demand D must be met by a 

combination of locally produced energy Pi and energy 

supplied from the main electricity grid Pu. Inequalities (6) 

and (7) correspond to restrictions on production limits and 

the amount of purchased electricity that must not exceed the 

respective demand Dt. Expression (9) specifies initial states 

of generation units, which can be 0 (unit is OFF) or 1 (unit is 

ON) as defined in (8). The formulation can be further 

extended by adding constraints for minimal up and down 

times, detailing the start-up costs, or including ramp rates. 

Differences between optimization of microgrids and bulk 

power generation. Microgrids are more complex and more 

flexible in configuration than a simple parallel ordering, 

which is typical for large power plants. The microgrid 

frequently requires joint optimization of both electrical and 
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thermal energy. A significant difference between power 

plants and microgrids is also in how the demand side is 

handled. While the meeting of demand requirements is a 

strong constraint for electricity generating plants, in 

microgrids the demand is more flexible and may represent 

another degree of freedom for optimization. In the following 

section, we will formulate the demand side optimization 

problem including integration of distributed renewable 

generation sources and storage devices. 

IV. DEMAND-SIDE FORMULATION 

Active participation of buildings, campuses and other 

facilities in the smart grid environment assumes a scenario in 

which the utility provides dynamic prices to these consumers 

who can then decide how to adapt their usage to minimize 

their consumption cost. We can start to formulate this 

decision problem as follows: 

Minimize ∑
=

T

t

t

sell

t LR
1

            (10) 

subject to  
ctrl

t

base

tt LLL +=             (11) 

0≥ctrl

tL                (12) 

∑
=

=
T

t

ctrlctrl

t LL
1

             (13) 

Here sell

tR  is the electricity price charged for time interval t 

and Lt is the consumer’s load at t. This load is composed of a 

fixed base amount for each time unit, base

tL , and a non-

negative controllable (reschedulable) – amount ctrl

tL  (11). 

The total controllable amount ctrl
L over the day is fixed (13). 

In this case, the optimization problem is to decide how to 

spread and/or reduce the load over a planning horizon (e.g. 1 

day) so as to minimize the total cost. This requires 

determining optimal values ctrl

tL  over the entire time interval 

1,...,T. The formulation above is simplified as each of the 

base and controllable loads is actually composed of multiple 

individual device loads. Also it is important to note some of 

the other neglected aspects. Firstly, certainty in the load 

profile is assumed. The controllable part of the load is 

assumed to be completely fragmentable (over the time 

horizon), and no part of the load is discretionary. The 

formulation also assumes a “planning” approach when the 

prices are communicated in advance and the consumer 

determines the load profile over a future time window. 

Distributed renewable sources. With the ability to 

generate power locally and to sell any excess production 

from renewables to the utility, consumers have additional 

decisions to make. In the absence of storage capability, on-

site generation at any time must either be used to power 

existing loads or sold back to the utility. The updated 

formulation is as follows. 

Minimize ( )∑
=

−
T

t

excess

LGt
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tut

sell

t PRPR
1

,,
      (10a) 

subject to  
ctrl

t

base

tt LLL +=             (11) 

∑
=

=
T

t

ctrlctrl
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1

             (13) 

t

cons

LGtut LPP =+ ,,
            (14) 

excess

LGt

cons

LGtLGt PPP ,,, +=           (15) 

  0,, ,, ≥excess

LGt

cons

LGt

ctrl

t PPL          (16) 

Here we distinguish between the electricity price charged 

by the utility sell

tR and the utility’s payment for consumer-

supplied power buy

tR . The load demand
tL is now covered by 

a combination of utility-supplied power Pt,u and locally 

 

  
 
Fig. 3.  Model parameters of a boiler 
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generated and consumed power cons

LGtP ,
 (14). In addition to 

load management decisions on ctrl

tL  (11), other decisions 

must be made about what proportion cons

LGtP ,
 of the on-site 

generation 
LGtP ,

 should be consumed and what proportion 

excess

LGtP ,
 should be sold to the grid (15). 

Integration of storage. Another important enhancement is 

the integration of storage devices. This extends the demand-

side problem formulation in a way that the load 

demand
tL can be now covered by a combination of utility-

supplied power Pt,u, locally generated power cons

LGtP ,
, and 

power provided by the storage device cons

stP ,
 (17). We model 

a storage device as a state of charge St (18) that can be 

affected positively by some amount stored

LGtP ,
of the locally 

generated power and some amount of utility supplied 

power stored

utP ,
and negatively by discharging the storage 

device to service loads cons

stP ,
and to provide grid power grid

stP ,
. 

This leads to the following problem formulation. 

Minimize ( )∑
=

−−
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t
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st
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LGt
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LGt

cons

LGt

ctrl

t PPPPPL  (21) 

Respective charging and discharging efficiencies ηc and ηd 

are considered in (18). The state of charge St must always be 

within its lower and upper bounds (19), while constraint (20) 

ensures that the storage device is not simultaneously being 

charged and discharged. Additional decision variables are 

introduced: the amount of local generation stored

LGtP ,
 that should 

be used to charge storage and the amount of stored power 
cons

stP ,
 that should be used to service loads. Simplifications 

here include omission of constraints related to maximum and 

minimum charging and discharging rates and cycling 

between charging to discharging modes. 

 

V. VERSATILE ENERGY RESOURCE ALLOCATION 

Versatile Energy Resource Allocation (VERA) is an 

energy management software solution that is focused on the 

optimization of microgrids with renewable generation and 

storage. It is also applicable to other integrated systems that 

combine various forms of cooling, heating, and power 

generation, such as CHP plants.  Target markets include 

 
 
Fig. 4.  Building’s microgrid system configured in VERA 
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campuses, military bases, hospitals, office buildings and 

residential neighborhoods.  

VERA can solve a combination of problems including unit 

commitment, economic dispatch, fuel switching, balancing 

of local generation with utility purchases, and optimal 

utilization of the capacity of storage devices. The underlying 

optimization task is currently formulated as the supply-side 

problem (Section III) with integrated aspects of renewable 

generation and storage. VERA finds the most cost-effective 

setpoint schedules for generation equipment, while 

attempting to achieve the lowest operation costs. The 

resulting solution complies with constraints such as meeting 

all energy demands, equipment capacities, influence of 

changing weather on equipment efficiency, variable 

availability of units, and maintenance schedules. VERA also 

takes into account principal economic aspects: time 

dependent costs of purchased energy and fuels, penalties for 

emissions, earnings from selling energy, start-up and shut-

down costs of equipment, and fixed costs of operation. Fig. 3 

provides an illustration of such parameters for a boiler. 

A. Solution elements 

Two advanced modules – load forecasting and optimal 

resource allocation – represent the core of VERA. 

Load forecasting. VERA uses methodology known from 

non-parametric statistics (as locally weighted regression) and 

machine learning (as memory-based learning). The 

differentiating feature is that the forecasting algorithm runs 

on top of a history database, and the local regression models 

are built on the fly using only a fraction of the most relevant 

past data points. The regression model y = f (x1, x2, …, xM) 

represents the correlation between energy consumption y and 

a number of independent influencing factors x1, …, xM – 

mainly weather conditions, calendar-based variables, and 

seasonal effects. Ambient temperature usually has the key 

impact, while the other environmental factors like humidity, 

wind speed, cloud cover, or sun irradiation can be used for 

better interpretation and finer modeling of the demand data. 

Calendar-based variables can help with capturing behavioral 

patterns. These variables include time of day, which is 

defined on the closed interval <0h;24h>, and also categorical 

variables like the day of week and holiday and special day 

indicators, which enable clustering of similar days into 

coherent groups.  Details of the data-centric forecasting 

approach used in VERA can be found in [15]. 

Optimal resource allocation. VERA uses a Sequential 

Quadratic Programming (SQP) solver for finding a solution 

of the nonlinear optimization task. The nonlinearity is given 

by the cost functions fi of individual units, which usually 

correspond to the nonlinear efficiency curves (as in Fig. 3). 

The optimization problem is defined as a dynamic 

programming problem over the time interval of 24 hours and 

solved with a solution step ranging typically from 15 to 60 

minutes. Obviously, the accuracy and reliability of the 

optimal solution relies on the accuracy and reliability of the 

load forecast. This can be partially overcome by running 

more model scenarios. 

B. Application – hospital utility optimization 

The optimization technology of VERA was implemented 

in a project for the Atrium Hospital in Heerlen, the 

Netherlands. It is a 850-bed hospital, which, at the time of 

project implementation, had an average annual energy 

consumption of approximately 3.7 million m3 of natural gas 

and imported 2.5 GWh of electrical energy from the public 

grid. This represented a variable energy cost of 

approximately €1,200,000 per year. 

This hospital built a modern and state-of-the-art 

trigeneration utility system in the late 1990s to feed steam, 

heat, electricity, and cooling to the hospital’s utility 

networks. The energy generating equipment consists of a hot 

water boiler, two steam boilers, an electrical and absorption 

chiller, and two gas engine CHP units. A schematic layout of 

the hospital utility is shown in Fig. 4. Electricity can be 

generated using own electricity generators or imported from 

the public grid, absorption or electrical chillers can be used 

for cooling purposes, and finally, heat can be generated in 

the CHP gas turbines or using the steam or hot water boilers. 

The operating strategy in the past was based on the fact 

that fuel prices were low and electricity prices were high. 

However, later due to various reasons, economical energy 

management has turned out to be a very difficult task. These 

reasons include the liberalization and liquidity of the gas and 

electricity market, environmental taxes, CHP subsidies, the 

flexibility of configuration of the hospital utility, economic 

pressures, and the continuously varying energy demands.  

To improve the quality of energy management decisions, 

first generations of load forecasting and optimal resource 

allocation technologies were installed and configured to 

optimize the operation within a two-days-ahead period. 

Evaluation of the new energy management concept was done 

primarily in years 2003 and 2004 (see [14] for details). The 

application is operating for eight years and the results are 

 

 
 
Fig. 5. The relation between monthly savings and outdoor 
temperature 
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very encouraging. In short, the total gas consumption has 

decreased and the operation of the cogeneration units and the 

absorption chiller has become more economical. The 

electrical import and the use of the electrical chillers have 

increased as well as the use of the emergency cooler, which 

was sometimes active during low heat and cooling demand at 

a high electricity price.  

The correlation between monthly savings and average 

outdoor temperature (Fig. 5) shows that the greatest savings 

were achieved during summer months when the operation 

can be improved by optimal coordination of absorption and 

compressor chillers and gas engines. As prices of electricity 

and fuels are growing, the savings are more and more 

significant. The annual savings achieved every year until 

2010 varied between 6% and 12% of utility costs. The 

achieved return of investment was shorter than 1 year. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, an optimization approach is presented to 

support energy management decisions on both supply and 

demand sides of building microgrid systems. The 

documented results of the optimization-based application for 

the hospital in the Netherlands indicate the promise of this 

approach. For our future work we are considering the 

following main directions. 

1. Full integration of the supply side and demand side 

formulations. This is the natural next step, which however 

may bring new challenges related to the overall solution 

complexity and dealing with the inherent uncertainty. 

a) Need for a cost-effective approach. The microgrid 

optimization is a complex mathematical problem whose 

formal description belongs to the category of MINLP 

problems. For real applications it is necessary to determine 

the right balance between the level of detail of the 

mathematical model, time and resources available for 

calculation, and the complexity of optimization method. At 

any rate, the total cost of the solution (configuration effort, 

cost of commercial software and its maintenance, upgrades 

of communication infrastructure and hardware) must be in 

relation to its potential benefits (cost savings).  

b) Dealing with uncertainty. Uncertainty relates to several 

operational aspects, including uncertainty of future energy 

demands, renewable generation, and dynamic prices. To 

correctly address the uncertainty may require adoption of 

stochastic optimization methods, such as stochastic SQP, as 

well as higher-level probabilistic decision-making concepts, 

such as those based on Bayesian theory.  

2. Synchronization of system-level energy management 

with building controls. The formulations presented in this 

paper are primarily addressing the problem of optimal 

dispatching of all building devices. There is a natural 

opportunity for synchronization between this dispatching 

problem and the operation of building controls, including 

thermostats and unitary and plant-level controllers that 

ensure smooth operation of the respective building systems.  

3. Interactions between system-level energy management 

and power flow control. The objective of power flow control 

units is to transform the raw quality power generated by each 

local source to grid quality power. This is essential for 

ensuring smooth transitions among different modes of 

operation. Although power flow control is a different type of 

problem than presented in this paper, it makes sense to study 

possible interactions between both. 
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