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ABSTRACT Energy plays a pivotal role for economic development of a country. A reliable energy source 

is needed to improve the living standards of people. To achieve such a goal, governments and industries are 

trying to install a new energy infrastructure called the “Smart Grid”. This helps to manage the electricity 

generation and distribution in an efficient manner. Buildings and other structures are the biggest consumers 

of electricity. There is a need to reduce the energy consumption so that the resources can be utilized 

efficiently. Therefore, in this paper, we give a comprehensive state-of-the-art on various recent techniques 

and solutions which provide energy savings in smart homes and buildings. This includes statistical models, 

cloud computing based solutions, fog computing and smart metering based architectures, and several other 

IoT (internet of things) inspired solutions. We also present a hypothetical model that treats energy supply 

and usage in buildings as a self-managing energy system (SES). This paper is concluded by highlighting 

several open issues and challenges related to energy management in buildings. 

INDEX TERMS Energy Management, Smart Buildings and Homes.

I. INTRODUCTION 

Effective utilization of energy and usage of cleaner energy 

resources become highly significant due to the scarcity of 

fossil fuel. In this context, smart grid is an energy 

infrastructure used to better manage the processes of energy 

generation, transmission, and distribution. A smart grid 

allows two-way communication between all the stakeholders, 

thus, providing an effective mechanism for production, 

distribution, and consumption of energy. Buildings such as 

offices, shopping malls, and other infrastructures are the 

largest consumers of energy. Studies show that buildings 

consume almost 40% of energy in majority of developed 

countries [1]. This energy consumption is higher than 

industrial and transportation sectors. Furthermore, due to the 

limited industrial and transport sectors, the energy usage of 

buildings in developing countries is very high. Therefore, 

efficient use of energy and utilizing alternate cleaner sources 

of energy in buildings are considered to be the ‘most 

important fuel’ for solving the higher energy usage problem. 

The real-time energy usage information is extremely 

important for achieving the goal of energy conservation. This 

information helps in planning the energy usage in different 

hours of the day. The usage of alternate energy sources such 

as turbines and solar cells in buildings is also extremely 

beneficial for energy conservation and cost reduction. 

On the other hand, the Internet of things (IoT) is 

a paradigm which is getting huge attention in the context of 

modern wireless communications. The basic idea is the 

connectivity of different objects through a network. The 

objects exchange useful information which is utilized to 

optimize the performance of the system. These objects 

include sensors, cell phones, vehicles, RFID (radio 

frequency identification) tags, etc. The coupling of smart 

grid with IoT makes a highly dynamic and efficient system 

for energy distribution and consumption. This system 

shares the information using the sensors and other similar 

objects for optimizing the performance and achieving 

energy efficiency. The network consists of embedded 

computing devices equipped with sensing and 

communication technologies organized together to achieve 

a common objective. The aim of this cooperation is to 
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handle the complexity through collecting information and 

then using that information towards energy efficiency. The 

essential prerequisite here is the ability to interact and 

communicate with other objects. In many cases, this 

collaboration is application specific; however, the 

cooperation among heterogeneous devices can be supported 

by shared abstractions [2]. Moreover, the addition of cloud 

and fog computing architectures with smart metering would 

also facilitate the real-time energy management of IoT 

devices in buildings, thus, setting up a ‘smart building 

infrastructure.’ 

Based on the above arguments, the focus of this paper 

remains on exploring various aspects related to energy 

management in smart buildings. At first, we dig into the 

recent work in the related area in quite detail. This includes 

highlighting various ‘recent’ smart solutions for energy 

management in buildings and houses covering the domains 

of statistical models, cloud and fog computing, smart 

metering, and several other approaches. This part of our 

paper contains most of the important and relevant solutions 

that have been proposed for energy management over the 

past five to six years (till 2020), respectively. It is to be 

noted that the main contribution of our paper is this Section 

(Section 2) where we summarize very important solutions 

for energy management in buildings. This section allows 

readers to compare fog computing based solutions with 

cloud computing and statistical models. It also highlights 

the benefits smart metering brings in conjunction with 

cloud and fog computing. To the best of our knowledge, a 

work covering all these domains together with smart 

metering has not been done in the recent surveys such as 

[3][4][5][6][7][8][9]. Most of these surveys are discussed in 

our forthcoming sections.   

Later, we propose a framework capable of energy 

conservation and usage in buildings. This conservation of 

energy does not necessarily mean obtaining the 

optimization by interfering the normal day-to-day 

operations of a building’s residents, but we hypothesize that 

in order to conserve energy, the energy supply and usage in 

buildings must be treated as a self-managing energy system 

(SES). An SES in buildings will be able to get goals, 

priorities, and constraints from the consumers. Using this 

information and information on the energy supply and 

demand at the grid-level, our SES will optimize energy 

usage. If an alternate source of energy such as a solar cell, 

wind energy or a PHEV (plug-in hybrid electric vehicle) is 

available, then our SES will be able to incorporate it 

seamlessly into the system. To control heavy electric 

devices such as air conditioners, the proposed SES will use 

a home area network (HAN) to communicate with the 

devices and set the usage appropriately. This HAN will be 

designed using the concept of IoT. It is noted that our 

design is at the hypothetical level and its implementation 

and testing will be done as a part of our on-going and future 

work. With our proposed idea of SES, we plan to achieve 

the following key benefits in future:  

• Allow consumers to state goals, priorities, and 

constraints on energy usage in a typical building to 

automatically plan the energy usage through 

controlling devices. 

• Make the consumers aware of their energy and cost 

savings by modifying energy usage patterns. 

TABLE I 

LIST OF ACRONYMS WITH THEIR FULL FORMS 

Acronyms Full Forms 

IoT Internet of Things 

SES Self-managing Energy System 

RFID Radio Frequency Identification 

PHEV Plug-in Hybrid Electric Vehicle 

HAN Home Area Network 

BD Big Data 

CBR Case Based Reasoning 

SCADA Supervisory Control And Data Acquisition 

MAS Multi-Agent Systems 

SAX Symbolic Aggregate Approximation 

EMS Energy Management System/Systems 

RSSI Received Signal Strength Indicator 

LAN Local Area Network 

NAT Network Address Translation 

HVAC Heating, Ventilation, and Air Conditioning 

FWKNN Fingerprint Weighting K-Neighbors Nearest 

SCCC Smart City Cloud Controller 

SSH Smarter Safer Home 

AAU Alborg University 

BEM Building Energy Management 

SM Smart Meter 

PLC Programmable Logic Controller 

HEMS Home Energy Management System 

OSI Open System Interconnection 

HCTSA Highly Comparative Time-Series Analysis 

LED Light-Emitting Diode 

LCD Liquid Crystal Display 

LTE Long Term Evolution  

AI Artificial Intelligence 

GST Geometry Simplification Tool 

CBIP Common Boundary Intersection Projection 

AMI Advanced Metering Infrastructure 

DMS Distribution Management System 

• Design a localized low-cost HAN for controlling 

heavy duty electric appliances for energy 

conservation. 

• Be able to seamlessly integrate alternate sources of 

energy such as solar energy in the overall energy 

systems of buildings. 

In addition to above, we also highlight some open issues 

and challenges related to energy management in buildings 

and smart homes. The rest of the paper is organized as 

follows. In the next section, we provide a detail state-of-

the-art on recent approaches for energy management in 

buildings and homes. In Section III, we present our 

hypothetical solution. Section IV lists the important issues 

and challenges related to energy management in buildings. 

Finally, Section V concludes this paper. In addition, Table 

I shows the list of acronyms and abbreviations used 

throughput the article.   
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II. ENERGY MANAGEMENT IN SMART BUILDINGS AND 
HOMES: RECENT TECHNIQUES AND APPROACHES 

Several approaches have been proposed to minimize the 

energy consumption in smart environments. Often these 

problems are formulated as the optimization problems with 

objectives such as determining the power flow values while 

minimizing the cost of the system. For the sake of 

simplicity and as shown in Fig. 1, we have divided the 

existing architectures related to energy management in 

buildings and homes in four broad categories such as A) 

statistical models with energy usage as the prime parameter, 

B) smart metering and fog computing based architectures, 

C) approaches based on real implementation of IoT 

architectures in buildings, and D) other general solutions 

based on data mining, software-defined buildings and so 

on. Considering the scope of this paper, in this section, our 

focus mostly remains on research works presented from the 

year 2017 onwards, however, we have still cited some 

important references from year 2014-2016, respectively.  

A. STATISTICAL MODELS FOR SMART BUILDINGS 

A famous approach named as ‘dayfilter’ has been proposed 

in [10] which uses symbolic aggregate approximation [11] 

(SAX: a time series data mining technique) to categorize 

energy usage of various buildings into frequent and 

infrequent patterns and later making these patterns humanly 

visible using the VizTree tool. Practically, the energy usage 

patterns from a school building and an office building are 

examined over a period of 407 and 474 days, respectively. 

The extracted patterns reveal several important findings 

such low energy usage during normal office hours, higher 

energy usage during extracurricular activities at the school, 

certain abnormal energy consumption by the air units at 

nighttime, and so on. All these finding and results can help

  

 
FIGURE 1.  Current literature on energy management solutions in smart homes/buildings (mostly till the year 2020). These approaches are mainly 
categorized in statistical models, cloud computing solutions, fog computing and smart metering based designs, and other relevant solutions, 
however, some references may belong to more than one categories (ex. Ref [22] belongs to Sec A. and Sec. C, respectively).

the school and the office administrations for distributing the 

energy (such as daily cooling) according to the actual need. 

The dayfilter approach is quite promising and the authors 

presented numerous results and discussions to prove the 

efficiency of their proposed solution. However, as specified 

in [12], the time series analysis may seem far from 

applicable to smart buildings due to the uncertainties (such 

as nonlinearity) caused by the huge amount of data 

generated by these buildings. Likewise, the authors of [13] 

also provide an interactive interface for users to check a 

building’s energy usage and look for any irregularities in 

overall energy consumption. These usage patterns and 

possible irregularities are communicated to the system 

analyst based on the generalized additive statistical 

modelling [14]. Though the design presented in [13] is 

quite promising, the paper still needs further details on how 

the statistical models were applied to the building. 

Moreover, the work presented in [15] is based on similar 

concepts as [14] but for forecasting a building’s gas usage 

patterns. 
In [16], the authors use the SAX technique to monitor the 

daily energy usage of buildings. Basically, SAX allows the 

building’s data to be categorized in the form of number of 

time windows which shows a simple representation of 

complex big datasets. In its core, the authors propose an 

enhancement to the basic SAX technique where they apply 

regression models to first generate the time series with 

unequal energy values and later, separate the ones with 

abnormal variations. These separations can help experts to 

identify the energy related anomalies at an early stage thus, 

preventing any mishaps/accidents in the buildings. 

Extensive simulation results are presented in terms of 
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TABLE II 

STATISTICAL MODELS FOR SMART BUILDINGS WITH THE RELATED SIMULATION TOOLS AND SHORTCOMINGS. THE TABLE IS 

ARRANGED BASED ON THE ASCENDING ORDER OF YEAR OF PUBLICATION   

Ref # Name (if 

applicable) 

and year 

Statistical model used Simulation tool used Shortcoming(s) of the approach 

[3][13] 2014 Generalized additive 
modeling 

Not specified but 
experiments are performed 

on data collected from 100 

buildings 

More explanation of statistical modeling and its 
application is required.  

[1][10] 2015 Symbolic aggregate 

approximation (SAX) 

VizTree Aggregate approximation is not applicable in 

uncertain conditions.  

[6][19] 2017 Not specified Not specified but data is 

collected from four rooms 
in a 5-floor building  

- Despite such a long discussion in the paper, no other 

point was highlighted.  
- Only a few graphical results were provided which 

are not sufficient for such a widely discussed paper.  

[7][20] 2017 Case based reasoning 
(CBR) with swarm 

intelligence 

SCADA home intelligent 
tool  

The case study is limited only to one home with four 
people.  

[5][15] 2018 Generalized additive 

modeling 

Not specified but the 

implementation is based on 
real datasets 

Experiments were conducted on two different 

buildings, however, building one’s results are limited 
in number.  

[8][16] 2018 SAX Not specified but data is 

collected from two 
different buildings 

Electrical energy demand is the only parameter 

considered for the results.  

[8][17] 2018 Gradual pattern mining 

and SAX 

Not specified but data is 

collected from a large 
building with several 

offices and labs 

Not enough graphical representations to validate the 

efficiency of gradual pattern technique.  

[11][18] 2019 SAX Not specified but thermal 

images are collected from 
nine different rooms 

- Experiments are performed on non-real time images 

making the proposed solution difficult to be 
implemented in real-time environments.  

- Only a few graphical results were provided which 

are not sufficient for such a widely discussed paper. 

[12][21] 2019 CBR with multi-agent 

systems (MAS) 

SCADA home intelligent 

tool and JADE for MAS 

The performance of the system can get slower with 

increasing number of agents.  

[14][23] 2019 Graph theory, IoT 

slicing, and game theory 
for coalitions 

Not specified but data is 

collected from a small 
building for six hours 

Weak results section.  

[13][22] 2020 Swarm intelligence with 

fog computing 

MOA Release 2019.04 Hardly any, however certain other parameters such as 

anomalous patterns and total electrical demand could 
be considered for experimentation.  

energy demand and usage to support authors claims. In 

[17], SAX is used in combination with gradual pattern 

mining (a data mining technique) for symbolic 

representation of buildings data and extract significant 

variations in data, respectively. The experiments are 

performed on a dataset collected from a building in Hong 

Kong with several staff offices and laboratories in it. 

Through tabular representation, the authors claim to 

achieve knowledge efficiency in big data (BD) processing 

however, no graphs were provided nor any comparisons 

with other approaches were performed to support their 

claim. SAX is also being used in [18] to detect energy 

anomalies in buildings by examining the thermal images. 

We summarize the main points of [18] and other mentioned 

approaches in this section in Table II. 

Slightly different from above, the work presented in [19] 

defines a smart building as a collection of many sensors 

which monitors the energy related activities of individuals 

in a building. This sensory data is then collected by the 

actuators which in turn send all the necessary information 

back to the centralized controlling point. Theoretically, the 

paper discusses various important factors that are required 

in statistical decision making such as sampling, 

aggregation, segmentation, time span, imputation, etc. 

Through collected data from various buildings, the authors 

conclude that the sampling time should vary from 60 

seconds up to an hour based on the users comfort in a 

building. Unfortunately, despite such a long discussion in 

the paper, no other point was highlighted. An approach 

inspired by [19] is presented in [20] where case based 

reasoning (CBR) analysis has been applied for building 

management with swarm intelligence. The statistical results 

from the CBR are then passed to a SCADA (supervisory 

control and data acquisition) home intelligent tool which 

adjusts the energy values according to an acceptable 

threshold. Extensive simulations are performed and 

compared with similar approach presented in [19] 

considering a real-life case study of a home with four 

habitants. The results are promising which show the 

significant energy reductions the proposed approach might 

achieve in the future. CBR and SCADA are used in 

conjunction with multi-agent systems (MAS) based 

societies in [21]. The MAS can model the energy usage on 

different parts of a building and share it with other agents to 
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create an energy usage model for the entire building. 

Likewise, in [22], the energy usage of a smart home 

equipped with sensors is considered with swarm 

intelligence embedded in the fog nodes. This model 

continuously monitors the energy consumed by various 

appliances inside a home and generates an alarm to the 

consumer if an abnormality is detected. The authors present 

extensive simulation results to validate the accuracy and 

timeliness of their proposed approach. In [23], the authors 

use graph theory and clustering to characterize a building’s 

various temperature ranges. Famously used Gaussian mean 

model is applied to determine the size, mean, and standard 

deviation of each cluster. Later, an IoT slicing algorithm is 

designed to control the high temperature values. The 

algorithm works by getting the temperature values from a 

building’s control room as an input, determining the state 

on IoT node (ex. functional or failure), and controlling the 

temperature based on the coalitions formed by various IoT 

nodes using game theory. Despite proposing an interesting 

temperature controlling approach, the authors did not 

present the comprehensive experimental results to validate 

the efficacy of their algorithm. 

B. CLOUD COMPUTING FOR ENERGY MANAGEMENT 
IN BUILDINGS/HOMES 

Cloud computing and energy management in buildings go 

together since cloud is an important source for storing and 

managing building related information especially when 

most parameters are real-time. As elaborated in [24], cloud 

computing is the availability of computer resources 

whenever needed by the users. These resources may include 

data storage and computing power; however, all these 

resources are not managed by the user directly, rather they 

are provided by a third party as a service. Cloud computing 

is an indispensable asset when it comes to non-native 

computer support due to which it has gained huge amount 

of attention in the recent years with its integration in energy 

management systems (EMS) for buildings and homes with 

the goal of power conservation. 

Related to above, the authors of [25] implement an IoT 

system to monitor and control the appliances in a 

household. This system is implemented within the confines 

of a local network where a central resource management 

system inside the house is used as a cloud service. The 

paper makes an argument about the wastage of energy in a 

household when appliances are left unsupervised and based 

on this argument, an IoT system is proposed that controls 

and monitors all the appliances in a house. The appliances 

are turned off when there is no human activity inside the 

house, hence, the ‘energy saving’. Moreover, the authors 

utilize the received signal strength indicator (RSSI) to 

localize individuals inside the house without the use of any 

specialized hardware. In contrast to [25], the work 

presented in [26] discusses the limitations of locally hosted 

cloud for energy management in terms of limited 

computational resources, thus, favoring the offsite cloud 

platforms that provide heavy computational power. The 

main contribution of this paper is a gateway design that is 

used to integrate all the sensors within the LAN of a smart 

building to the cloud service with the support of a network 

address translation (NAT) layer. Though, the authors of 

[25] and [26] provide good reasons for using locally 

hosted/offsite cloud servers, we still believe that the usage 

of locally hosted cloud services for small households is not 

a good idea due to the cost and the maintenance issues. 

Moreover, neither of the papers shows any results depicting 

energy conservation of households. 

The authors of [27] implement the famous heating, 

ventilation, and air conditioning (HVAC) system inside a 

house where an Android application is used by the 

consumers to view the energy consumption over time 

allowing them to control the appliances accordingly. The 

Android application fetches its data from ‘Amazon Cloud 

Services’ cloud platform where all the sensory information 

is uploaded from the home network. Likewise, in [28], the 

authors take a real-world approach to designing an IoT 

system that controls the HVAC within a building. This type 

of a control is implemented by dynamically changing the 

network architecture and accommodating new sensors and 

actuators to the IoT system without changing the system 

manually. The main contribution of this work is to develop 

a learning mechanism deployed on a cloud platform that 

learns about the important appliances (along with their 

related features) within the building. This system then turns 

an appliance on or off based on its importance and energy 

usage helping users to conserve energy as can be seen from 

the results presented in the paper. In [29], a method to 

calculate an automatic thermal model of a building is 

proposed based on the temperature data over a period (such 

as the summer season). The proposed model provides the 

users with different thermal zones within a building which 

can be targeted specifically to automate the HVAC system. 

The authors define this method as the “plug and play” 

because smart thermostats monitor the temperature data and 

process it on a cloud platform. Also, the thermal model is 

configured without any human intervention.  

Above, we discussed cloud-based models for a single 

building or a house, however, such cloud integrations are 

not hard to manage. The difficulty arises when we must 

deal with an entire city or a collection of buildings where 

the handling of a large amount of sensory data and 

controlling buildings simultaneously become the major 

challenges [30]. These types of issues have been dealt in 

[31] and [32]. In [31], the authors monitor multiple 

buildings at the Tunghai University through smart meters 

(to be discussed in our forthcoming section) and they use 

the famous Hadoop system to process the large amount of 

real-time data on a cluster computer. Hadoop also stores the 

sensory data on a distributed storage, therefore, improving 

the data capacity. In contrast, the authors of [32] do not 

process the data in real-time, rather, the buildings data is 

used to train an intelligent system that learns patterns and 

makes predictions to control the appliances. The system is 

trained, and it is available from a cloud platform. The 
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TABLE III 

CLOUD USAGE IN BUILDINGS AND HOMES WITH THE TYPE OF BUILDING AND THE ADVANTAGE(S) THE PROPOSED METHODS HAVE 

TO OFFER. THE TABLE IS ARRANGED BASED ON THE ASCENDING ORDER OF YEAR OF PUBLICATION 

Ref Year Building Type Usage of Cloud Advantage(s) of the proposed solution 

[25] 2016 Home A centralized resource management 

system is used as a cloud platform. 

The response time of the control unit is 

very fast. Energy is conserved and the 

result section of the paper shows 
promising results. 

[28] 2016 Not specified Cloud is used to choose between 

different types of features to enable 
and disable certain appliances. 

The optimal number of features in a 

building are allowed while the rest are 
turned off. 

[38] 2016 House Cloud platform is used to store 

power consumption data which is 

then used by the utility company. 

The model switches power from a grid to a 

local storage when the electricity rate 

increases, therefore, achieving the cost 
savings.  

[40] 2018 Not specified A building energy management 

system is hosted on a cloud 
platform. 

A gateway is developed that connects 

sensors on a LAN to a cloud platform 
which has a great computing power. 

[34] 2018 Implemented on a single 

smart meter but the method is 

scalable, therefore, it can be 
used in houses and buildings 

The learning model that controls the 

appliances is implemented on a 

cloud system. 

This method outperforms all the other 

benchmark methods used to control 

appliances on a context-based system. 

[27] 2019 House Amazon Cloud Services are used to 

log the data and allow the users to 
control the appliances. 

The authors made the data readily 

available. The appliances in the house can 
easily be controlled using an Android 

application. 

[35] 2019 Not specified The prediction model is uploaded to 
a cloud that decides whether to turn 

a device on or off based on the 

given parameters. 

This method saves 10% more energy than 
the traditional occupancy sensors. 

[36] 2020 Not specified Cloud is used to analyze the data 
sent from the smart socket. It is also 

consulted by the application to 

make the energy savings.  

A smart socket connected to an application 
and cloud provides real-time energy 

monitoring, 

[31] 2020 Multiple buildings at the 

Tunghai University 

Cloud is accessed via Hadoop 

system.  

Distributed nature of Hadoop improves the 

cloud storage capacity.  

[32] 2020 Library building in the South 

China University 

Cloud platform is used to store, 

process, clean, and analyze the data. 

The system conserved 35% energy over a 

period of 3 years. 

[29] 2020 Office building Cloud platform is used to learn the 

thermal model of a building. 

Reduces the human effort needed to derive 

the thermal model of a building. 

[33] 2020 Generalized model for 

European buildings 

Both indoor and outdoor readings 

are sent to the cloud for analysis 
and energy efficient decisions.  

The authors claim their model is 

generalized and can be applied to most 
buildings in Europe. 

[39] 2020 Datacenters A controller is created to control the 

cloud. 

The controller promotes green computing. 

Renewable energy is used to power the 
datacenters. 

proposed model is implemented on a library building in the 

South China University with an overall energy saving of 

almost 35% compared to previous readings. The authors 

claim that their system can be deployed on multiple 

buildings without any major architectural change. 

Similarly, in [33], another automated cloud-based 

generalized method is introduced where a smart building 

template is created which can be used on multiple different 

buildings, however, no concrete results are presented 

showing that the proposed approach can also result in 

optimizing energy on several buildings.  

Majority of the consumers of electrical energy are houses 

and the literature pays great attention to techniques used to 

conserve energy in these homes. In [34], a technique is 

developed that detects an appliance’s activity through a 

single energy meter. The authors hypothesize that every 

appliance has a unique fingerprint associated with it which 

is appliance and context based, thus, to differentiate 

between different appliances, a novel approach known as 

the fingerprint weighting k-neighbors nearest (FWKNN) is 

introduced. The algorithm is implemented on the cloud, and 

it outperforms other benchmark methods. Similarly, the 

technique discussed in [35] focuses on the household 

appliances and switches them on and off during the hours 

when the electricity is charged at high rates based on the 

information provided by the cloud. The solutions presented 

in [34] and [35] require a great deal of preparation before 

the smart building system is implemented, therefore, the 

authors of [36] take a minimalistic approach in making a 

building ‘smart’ by only automating a single wall socket. 

Different stats of the electrical sockets are then collected 

over time and made readily available to the consumers via 

an Android application that fetches data from a cloud 

service, respectively. 

Most of the above cloud-based solutions focus on energy 

saving at the consumer side, however, the production side 

can also save energy by observing the patterns in the energy 

consumption and making changes in the power generation 
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accordingly [37]. Related to this, in [38], a scheduler is 

used to switch between the power grid and the local energy 

storage facilities to manage the energy load inside a house. 

The scheduler is a bi-level quadratic optimization of a 

convex function. The power usage is uploaded to a cloud 

platform, which is then used by the utility companies to 

shed the electrical load when most houses are operating on 

the local energy storage. Likewise, the method proposed in 

[39] takes the load from the power grid using a smart city 

cloud controller (SCCC) and encourages the use of 

renewable energy, respectively. 

The literature discussed in Section II-B uses cloud 

computing to complement the smart building components 

by adding automation in buildings/homes energy 

consumptions. Though, we briefly highlighted the idea for 

each of the above schemes, we still believe that a clear 

understanding is needed to list the important findings from 

the above-mentioned solutions, which are summarized in 

Table III.  

Above we discussed some important cloud-based 

solutions for energy management in buildings and homes. 

The benefits offered by the cloud can further be enhanced if 

the intelligent metering is introduced in capturing the data 

and additional intermediary ‘fog’ nodes can be added to 

quickly process the information with improved security and 

reliability. Our next subsection is thus based on the 

inclusion of fog computing and smart metering for energy 

management in smart environments.  

C. FOG COMPUTING AND SMART METERING BASED 
ARCHITECTURES 

Before detailing various solutions related to this subsection, 

let us briefly explain the concepts of fog computing and 

smart metering. Basically, fog computing (as shown in Fig. 

2) is an added layer in modern day storage networks having 

its tight coupling with cloud computing and IoT. According 

to the facts mentioned in [41], fog computing is a layered 

extension to the cloud computing environment combining 

the traditional coordination and efficiency features of cloud 

with additional security, reliability, and scalability in 

communication and data storage. As specified in a famous 

blog [42], fog computing solves the problem of what data to 

be processed at the local edge and what data to be sent to 

the cloud for storage. All these prominent features (such as 

convenient storage, fast information retrieval, security of 

information, etc.) make fog computing a suitable candidate 

for building management systems. Smart metering, on the 

other hand, provides accurate and real-time energy or gas 

readings to all the connected parties such as consumers, 

suppliers, regulators, and other concerned authorities. Smart 

meters are highly beneficial for energy management in 

buildings, since the consumers can continuously monitor 

their energy consumptions allowing them to adjust the 

power usage at homes accordingly. This can significantly 

reduce their monthly/annual bills. We show a smart meter 

(SM) with its important features/benefits summarized in 

Fig. 3. The advantages of fog computing can be combined 

with data collected from smart meters to provide consumers 

and suppliers with better energy management in buildings.  

 
FIGURE 2. A Fog computing architecture facilitating a smart building 
(inspired from [41] and [43]). 

Regarding above, several efforts have been made to exploit 

the benefits of fog computing and smart metering 

(separately) for energy management in buildings. The 

authors of [3], presented a comprehensive survey detailing 

all the papers related to fog computing in smart 

homes/buildings from the year 2014 to May 2019. 

Basically, they divide the existing literature in the 

categories of resource management based and service 

management based solutions, respectively. In the former, 

the approaches covering points such as scheduling of tasks, 

provision of energy and cloud/fog based resources, and 

power/energy balancing are considered. In the latter, 

security, energy management, and privacy of information 

are examined. Since this survey already presents many 

important approaches related to fog-based energy 

management in buildings and homes, therefore, in our 

section, we summarize only those important solutions  

which were either missing in [3], are most relevant to the 

current section, or have been published within last couple 

of years, respectively. Likewise, for smart metering, readers 

can refer to the following surveys [4][5][6] especially the 

work presented in [4] highlighting various smart metering 

based solutions till the year 2016.     
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Wireless (ex. 
ZigBee, Wifi) / 

Broadband 

connectivity

Touch screen display with easy-to-

understand buttons and icons 

Real-time 
monitoring of 

energy usage 

Sending alerts to 
consumers (ex. 

peak hour alerts)

More accurate, 
viable, and real-time 

pricing 

Requires no labor for 

energy units reading 

Anomaly detection/
correction by sending 

alerts to energy 
providers 

 
FIGURE 3. A Smart meter [46] with some of its main features.

1)  FOG COMPUTING BASED TECHNIQUES FOR 
ENERGY MANAGEMENT IN BUILDINGS/HOMES 

The authors of [44] believe that correct load prediction is 

very important for managing a building’s energy, therefore, 

they propose a fuzzy logic based load filtering strategy. 

Basically, a combination of fog and cloud is used such that 

the fog layer collects and computes data from smart meters 

and sends this data to cloud for pre-processing and load 

prediction. The cloud data can then be sent to various 

computers running fuzzy logic based algorithms (such as 

the fisher score, the total feature weight, etc.) to exclude 

irrelevant features (ex. time, season, weather, etc.) from the 

data. In the results section, the focus remains on validating 

feature extraction strategies without the depiction of any 

results or betterments caused by the inclusion of cloud-fog 

based architecture. Another fuzzy-fog model is presented in 

[45] where fog layer acts as a middleware between cloud 

and edge layers. The data collected from the sensors using 

edge layer is processed at the fog layer using fuzzy logic 

which is referred as the reactive intelligence throughout the 

paper. Here, the fuzzy logic is applied on different 

temperature readings and light levels, for instance, the 

temperature can either be hot or cold in normal 

circumstances, but fuzzy logic can provide different 

observations about the temperature by categorizing it in 

slightly hot, pretty hot, very hot, and similar other readings. 

The authors further perform extensive simulations 

considering a simulated smart home and a real smart home 

to prove the energy efficiency of their fuzzy-fog 

architecture, however as stated in the paper itself, the idea 

still needs to be tested on more than one homes or an entire 

building which may significantly change the energy 

efficiency values achieved by the proposed approach.  

Unlike above, a totally different game-theoretical-cloud-

fog approach is presented in [47] where several houses in a 

building are game players having pay-offs of energy 

surplus. This work is basically an extension of authors 

previous work in which they considered only the homes-

coalition scenario, in contrary to this work, where the 

homes can communicate with or without forming 

coalitions. Fog is basically used to handle energy related 

issues such as price and maximum generation limit. To 

balance the supply and demand of energy, the houses 

having surplus power form coalitions with those in deficit 

which is shown via extensive experimental results. The 

results also conclude that processing time and memory 

resources augment with increasing number of homes, 

therefore, the fog layer incorporation is a must. 

Nevertheless, the benefits of including fog in the proposed 

game-theoretical model are not shown in the results. In 

addition to [47], the same group of scientists have 

published several other articles on smart homes with fog 

computing (such as job scheduling based solution in [48], 

greedy algorithm based approach in [49], an MAS-based 

genetic algorithm in [50], and many others), therefore, the 

interested readers can refer to these researches if required. 

Likewise, another game-theoretical model is provided in 

[51] where a multi-leader-follower game approach is used 

to model the interactions between energy providers and 

consumers as game players, however, fog computing is not 
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addressed in this paper. The same group of authors used the 

game-theoretical approach combined with fog computing in 

[52]. The idea is to develop a cooperative game where each 

game player (a smart home here) shares its energy usage 

schedule with other players with the goal of decreasing the 

energy cost of all the players. The fog layer is introduced 

for energy scheduling which incurs less delay compared to 

the cloud computing layer as shown in the results section. 

Another similar concept based on swarm intelligence 

combined with fog computing is addressed in [22] which 

has already been discussed in Section A.  

In [53], an interesting novel concept is presented where 

two additional layers such as fog-computing and cloud-

computing layers are included in the traditional TCP/IP 

model. These layers add flexibility to a smart home 

environment by providing lower latency and real-time 

processing of consumer data. The fog computing layer is 

equipped with sensors for data concentration at the edge. 

Likewise, the cloud computing layer handles the huge 

amount of BD that cannot be dealt at the edge. The authors 

test their layered architecture on famous SSH (smarter safer 

home) and AAU (Alborg university) platforms which allow 

them to graphically represent consumers behavior, energy 

consumption of appliances at a home, temperature values, 

and other related factors based on the data collected via 

various temperature, power, and motion sensors, 

respectively. The authors believe their proposed 

architecture can be used in future to provide unlimited 

storage and scalable processing of smart homes BD 

compared to traditional smart home architectures which are 

limited in storage and processing capabilities. Likewise, in 

[54], another cloud-fog combo is presented where the fog 

layer combined with an edge layer collects and processes 

the initial readings (such as the room temperature, hue light 

bulbs with different colors, and gas measurements) 

generated from various sensors in a building. These 

readings are then transferred to the cloud layer for further 

analysis. The authors prove the viability of their design 

using a real-time environment with various deployed 

sensors and the implementation of edge and fog layers at 

Raspberry Pi. Two algorithms are proposed to collect data 

from sensors at the edge/fog layers and later to distribute 

this data to cloud for further analysis. In results section, it is 

evident that the latency remains lower when the cloud-fog 

combination is used compared to the traditional cloud 

model.  

Different from cloud-fog based approach presented in 

[53], a fog-to-fog strategy is delineated in [55]. The name 

fog-to-fog comes from the fact that there are multiple 

horizontal layers of the fog handling most of the sensory 

data processing and storage. Cloud is only accessed to 

report an anomaly in the building reducing the burden (or 

the latency) on clouds. The authors test this multi-layered 

architecture on a real-world environment by deploying 

almost 50 temperature sensors on an office floor. Through 

graphical representation, a heatmap of various sensor 

readings is shown where normal and abnormal temperature 

values are identified with different colors. An abnormal 

condition is considered when the temperature exceeds a 

certain threshold value (ex. the mean value of all sensors). 

Due to multiple fog layers and proper sensor placement, the 

proposed algorithm achieves higher prediction efficiency 

than traditional heuristics approach. The authors of [56] on 

the other hand keep their focus entirely on a fog-based 

building energy management (BEM) system without going 

into the details of cloud computing. The idea in [56] is to 

use the time-series analysis to predict a consumer’s hourly 

energy consumption by making her aware of the energy 

usage and the expected price ranges. The time-series 

analysis enables this energy forecasting based on 

calculating variance, correlation functions, and additive 

forms. The next step is to identify a set of appliances that 

consumes most energy based on discriminant analysis. The 

authors further introduce the concept of a fog router on 

which the discriminant analysis can be performed, and the 

results can be stored, however, this claim seems only 

hypothetical, and no results are shown to highlight the cons 

this fog router can bring to the proposed model. Another 

hypothetical model is proposed in [57] where the fog 

computing is used for energy optimization of a university 

campus. In such an environment, the fog layer can get data 

from several light, air conditioning, and water sensors to 

propose the optimized results.  

Above, we have presented several solutions which 

combine the benefits of fog computing with fuzzy logic, 

edge computing, game-theory, and multiagent systems to 

smartly allocate energy in buildings and homes. These 

benefits can be further fruitful if the fast and efficient 

computing power of the fog is combined with the data 

generated by various smart meters. Several efforts such as 

[58][59] discuss the smart meters in conjunction with fog 

computing however, the emphasis of these papers are not 

really on designing a fog-SM combined architecture. These 

approaches rather focus on privacy and security issues in 

smart environments. Thus, further research efforts are 

required in future to design a fog-SM combined solution.  

2)  SMART METERING AND ENERGY MANAGEMENT IN 
BUILDINGS/HOMES 

Several approaches are available with various SM designs 

and consumption estimation techniques. In [60], separate 

meter designs are proposed for consumers and power 

distributers which are connected to a SCADA monitoring 

system using the PLC (programmable logic controller) 

hardware design. The smart meters (SMs) contain a sensor 

unit for getting the energy readings with a mobile display. 

The authors design has been tested in a real environment 

taking temperature readings from a conference room 

situated in a building, however, the focus of the work 

remains on highlighting the hardware aspects of the SM 

without having a comprehensive discussion on the obtained 

results. In [61], an SM is shown to communicate the energy 

price values with the HEMS (home energy management 

system) using a LAN, however, the focus of the paper 

remains entirely on the energy optimization without 
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highlighting any special architectural or design aspects of 

smart metering. Additionally, a very interesting idea of 

changing consumers perception and understanding of 

energy values is presented in [62] where the consumers 

behaviors are analyzed based on different feedbacks 

displayed on their SMs. These feedbacks range from 

normal energy consumptions (in kWh) plus unit price to 

comprehensive readings with prompt messages such as If 

you reduced the thermostat temperature in your house one 

degree you would save 11 kWh; this is equivalent to £1.43. 

Through comprehensive analyses and feedback from users, 

the authors show that the SM readings with simplified 

feedback result in reduced energy usage. Likewise, a 

similar consumer-based survey-like approach is delineated 

in [63] where the SM data of several homes is analyzed to 

see the impact of the air temperature on consumers energy 

usage. Though, the paper does not contain any novel feature 

or design for SMs, it still presents some interesting sets of 

results showing consumers energy consumptions based on 

the house’s structure, quality of heating/cooling equipment, 

consumers in-house habits, monthly income, and so forth. 

In [64], the SM data collected from over 500 homes has 

been analyzed and classified into different categories (such 

as the average morning consumption, the peak of 

consumption, etc.) using the random forest classifier [68]. 

This extracted data is correlated with the weather data (ex. 

wind speed, and precipitation) to see the impact of certain 

weather conditions on an average user’s electricity 

consumption. Through extensive simulation results, the 

authors prove that a timely extraction of the SM data leads 

to better energy predictions and thus, increases the 

economic viability of household consumers. In [65], again 

the random forest classifying technique is used however, 

the focus mainly remains on developing a flexible SM 

architecture to predict a small building’s energy 

consumption. This work basically focuses on the design of 

an SM therefore, the OSI (open system interconnection) 

layer model has been adjusted to show the link between the 

consumers, the providers, and the cloud service using 

Zigbee. The readings from the designed SM are then used 

to depict consumers energy usage patterns e.g., the high 

energy consumption during office hours.  

Somewhat similar to above, the work proposed by 

researchers from Stanford University in [66] correlates data 

from the SMs with the weather conditions using the 

quantile regression modeling. This type of modeling is 

chosen to better understand the relationship between a 

building’s energy consumption and its explanatory 

variables (such as the average household income). Through 

the SM data analysis of almost a year, the authors are able 

to derive the twelve most frequently used variables (ex. 

standard temperature, average household income, and 

several others) and measure the percentage impact these 

variables have on consumers energy usage. Likewise, the 

work in [69] uses the highly comparative time-series 

analysis (HCTSA) to differentiate the energy consumptions 

and the other factors such as the electricity breakouts and 

the failures between residential and institutional (ex. lab) 

buildings. HCTSA can prove to be an affective technique 

for the SM data categorization which is shown in the paper 

using various model charts and heating/cooling maps. This 

work however only focuses on monitoring the daily energy 

consumptions of users which can further be refined (in 

future) by extracting some more important features from 

the SM data such as the weather conditions as done in [64] 

and [66], respectively.  

Slightly different from above, in [67] an energy anomaly 

detection model has been proposed by collecting the data 

from fifty different SMs. An anomaly here is termed as an 

unexpected condition which is unlikely to happen in 

majority of the meters, but it is reflected in some faulty 

meters (e.g., an increase in energy consumption of certain 

SMs when all others show a decrement pattern) and 

therefore, detected using the heuristics approach. Extensive 

simulation results have been provided to show the energy 

anomalies during different times of the day, month, and 

year and these results are later discussed with building’s 

administration for future rectification.  

Some researchers have also used the clustering methods 

such as the K-means clustering [70][72] to classify and 

arrange data received from the SMs. In [70], the collected 

readings from an SM are grouped into different categories 

e.g., the kitchen lights and the AC in the bedroom. Later, 

the K-means clustering technique is applied to group the 

appliances in their relevant cluster e.g., LED (light-emitting 

diode) lights belong to the least energy consumption 

cluster. Though, the presented idea is interesting and novel, 

it nevertheless does not discuss the SM aspect in more 

detail (SM is only highlighted one to two times throughout 

the paper). In [72], the K-means clustering is used to group 

the buildings according to their power consumption, 

however, the SM is used for the namesake and no real 

discussion/detail is provided for it. To further elaborate on 

grouping and analyzing the SM’s data, in [46], an 

interesting pre-screening approach is presented. In this 

work, the SM is screened through five different methods 

exploring consumers energy usage based on the frequency 

of usage, days, weeks, and outside weather conditions. This 

data is then analyzed through extensive simulation results 

to look for the opportunities of possible energy savings. 

The work presented in [46] is simple, quite comprehensive, 

and easy to understand and thus, can set the benchmark for 

the upcoming SM data analysis strategies in future.  

Different from above, in [71], an SM is designed using 

the fuzzy logic with the objective of minimizing the 

consumers cost of energy provided with an increased 

security. The SM’s design contains the traditional LCD 

(liquid crystal display), buttons, power supply, and serial 

port modules with the WiFi connectivity. This design is 

implemented and tested in a real laboratory with the support 

of a complete equipment such as the switchboards and the 

storage modules. Fuzzy rules are then applied to the 

designed hardware in order to manage the users energy
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TABLE IV 

A BRIEF SUMMARY OF EACH SMART METERING BASED SOLUTION EXPLAINED IN SECTION II-C-2 

Year Ref # Building/Structure 
used for analysis and 

results 

Highlight Software/Platform for testing and 

implementation 

Technology for 

connection 

2015 [60] A conference room Separate meters for 

consumers and distributors. 

WinCC SCADA and MATLAB ZigBee and ModBus 

 

 

 
 

 

2017 
 

[61] A room with fixed 

number of appliances 

Optimal energy usage and 

price control by feeding 

SM readings to HEMS. 

Not specified Any type of LAN 

[62] 43 homes Changing consumers 
understanding of energy 

usage via simplified 

readings. 

iBert (developed by authors), 
ANOVA, and Raspberry Pi 

Broadband and 3G 

[63] 30 homes SM data is analyzed to see 

the impact of air 

temperature on consumers 
energy usage. 

Not specified Any type of LAN 

2018 [64]  Over 500 homes SM data is correlated with 

weather conditions to 

better analyze users energy 
consumptions. 

Not specified Any type of LAN 

Error! 

Reference 

source not 

found.[66]  

Over 500 schools SM data is correlated with 

weather conditions using 
quantile regression 

modeling. 

Not specified Any type of LAN 

2019 [65] A small building A design for SM is 
proposed based on the OSI 

model. 

Modern-era retrospective 
analysis for research and 

applications v2 and global 

forecast system 

LTE, Zigbee, Wi-SUN, 
Wi-Fi, Sigfox, etc. 

[67] A hostel building Different heuristic models 
are proposed to detect 

energy anomalies. 

Not specified Any type of LAN 

[69] 95 labs and 70 
residential buildings  

The usage of highly 
comparative time-series 

analysis which was 

previously proved to be 
quite useful for 

classification in the field of 

medicine and health. 

HCTSA: highly comparative 
time-series analysis 

Any type of LAN or 
broadband network 

 
 

 

 
 

 

 
 

2020 

[70] One home K-means clustering is used 
for energy classification. 

Not specified An aggregation device 
is attached with the SM 

which relays data using 

any type of 
LAN/Broadband  

[72] 81 buildings K-means clustering is used 

for grouping buildings 
based on their energy 

usage. 

Not specified Not specified 

[46] Yearly data from one 

house 

Five pre-screening analyses 

are done to analyze the SM 
data. 

Inverse Modeling Toolkit Any type of LAN 

[71] Several homes but the 

exact number is not 

specified 

Design and real as well as 

simulated implementations 

of a SM for better pricing 

Hardware: ADE7753 chipset 

Software: C++, Java for fuzzy 

logic part 

Wi-Fi 

 

consumption and production. The paper also highlights the 

simulation results showing the difference in the average 

daily load with and without the inclusion of the proposed 

SM, however, these results are not very well-explained and 

thus, need further analysis.  

We summarize the main points of all discussed 

techniques in this section in Table IV. It is to be noted that 

most of the techniques discussed in this section can also be 

included in Section A since they are based on smart 

metering with mathematical and statistical analysis, 

respectively.        

D. OTHER RELEVANT APPROACHES FOR ENERGY 
MANAGEMENT IN BUILDINGS/HOMES 

Several researchers have explored energy management in 

buildings and smart homes considering the domains of big 

data (BD) analysis, data science and artificial intelligence 

(AI), general IoT, and many other areas. Considering the 

scope of this work, we cannot detail all the articles here, 

however, since these domains are quite famous and 

common, therefore, many survey-related works exist in 

literature summarizing the usage of the aforementioned 

domains for energy management in buildings. Thus, in this 
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subsection, we summarize some important survey-related 

works for above mentioned topics. 

Starting with the BD analysis using the IoTs for 

buildings and homes, a promising survey is presented in 

[73]. The authors categorize the BD in four important areas 

such as storage, cleansing, analysis, and visualization and 

examine the impact these four factors have on the IoT 

domains such as the healthcare, building automation, and 

smart cities. In contrary, the survey in [74] explores the 

advantages of BD and AI for energy management in 

buildings. This paper highlights the related work on the 

usage of AI and BD for smart walls, intelligent 

architectures, temperature control and power management, 

advanced energy forecasts, solar energy, and several other 

aspects till the year 2019, respectively.    

In continuation to above, the AI and the data science 

related algorithms have widely been explored for energy 

management in buildings and various important survey-

related papers are available in literature. The work 

presented in [75] discusses the applications of the data 

science for energy management in buildings. The data 

science techniques such as regression, clustering, and 

sequence exploration are examined for energy prediction, 

failure prevention, load balancing, and fault detection in 

buildings till the year 2017. In [76], a comprehensive 

review is presented detailing various approaches for 

modeling the energy usage of buildings from the year 2010 

to 2018, respectively. The paper includes a comprehensive 

discussion on various steps involved in converting a 

building’s geometrical design into an energy related design. 

It also lists certain tools and algorithms which can perform 

the conversions such as the geometry simplification tool 

(GST), EnergyPlus. common boundary intersection 

projection (CBIP) algorithm, and several others. Slightly 

different, the survey presented in [77] highlights numerous 

data science techniques for energy forecasting in buildings 

specifically those related to machine learning till the year 

2019. These include the grey and white box approaches 

(using the laws of physics to forecast the energy 

consumptions), the time-series solutions, and some hybrid 

machine learning techniques. The authors of [77] conclude 

that most of the existing machine learning approaches focus 

on commercial and educational buildings with a smaller 

number of solutions for residential buildings. Thus, more 

research is needed for the residential buildings. Moreover, 

they also highlight certain limitations of the machine 

learning techniques (ex. lack of generality and too much 

data to deal with). The authors further stress to rely on the 

physics-related parameters instead of the time-related ones 

to develop optimized solutions for energy management in 

buildings such as the one presented in [78]. Similarly, the 

work in [79] surveys more than 200 research articles 

considering the usage of renewable energy sources (ex. 

solar, wind, geothermal, etc.). The authors perform a 

thorough analysis of various renewable techniques till the 

year 2020 by dividing these approaches in machine 

learning, artificial neural networks, and ensemble-based 

approaches, respectively. The findings of this survey paper 

can set the benchmarks in renewable energy forecasting and 

usage in buildings and thus, provide researchers with a 

comprehensive viewpoint in choosing the right data science 

model.    

Related to fog computing for energy management in 

buildings, we provided a comprehensive discussion in 

subsection II-C-1, however, only a few survey-related 

papers exist on this topic in the recent literature. The only 

detailed recent survey we found is the one proposed in [80], 

but this paper explains the fog computing related solutions 

for the smart cities. Energy management in buildings is 

considered only as a small part under the “application 

classification” section where the authors highlight two 

related solutions. Thus, our subsection II-C-1 contributes to 

the existing literature on fog computing for energy 

management in buildings by summarizing numerous novel, 

important, and valuable solutions.  

Some very interesting surveys also highlight the general 

IoT-based solutions for energy management in buildings 

and homes such as [81][82], and [83] published in years 

2017, 2018, and 2019, respectively. In [81], the authors 

keep their focus on IoT’s implementation in smart homes 

mainly considering the networking and the interoperability 

issues of smart devices. Different approaches from the year 

2010 to 2016 have been summarized. The energy and 

consumers utility management perspectives have also been 

discussed, but not in detail. The survey in [82] focuses on 

the IoT’s applications in smart grids by exploring the 

research till the year 2017. The paper also elaborates a four-

layered grid model focusing on application, management, 

gateway, and connectivity aspects of energy management in 

IoT-based smart grids. In [83], the importance of IoT and 

its applications for energy management in buildings are 

discussed in greater detail. The authors thoroughly 

elaborate on the essence of the application, network, and 

perception layers for building management. Later, various 

IoT related research efforts in different building types such 

the hospitals, museums, apartments, office buildings, and 

several others are discussed. These works focus on the 

aspects such as energy and facility management, resource 

tracking, and comfort enhancement. The authors 

highlighted open issues related to the IoT security, data 

acquisition, and lack of communication between the 

researchers and the building industry, which we believe are 

equally important for energy management in buildings with 

or without the inclusion of an IoT support. Other than IoT, 

the readers can also refer to the recent surveys presented in 

[84][85] and [86] based on modelling the building 

information and data, energy optimization, cost 

minimization and residents comfort, and key factors 

(climate and users response) for energy optimization in 

buildings.  

III. PROPOSED HYPOTHETICAL SELF-MANAGING 
ENERGY SYSTEM (SES) 

Fig. 4 shows the main components of the proposed self- 

managing energy system for smart buildings. The micro  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3092304, IEEE Access

 Mir et al.: (May 2021) 

13 

 

 
FIGURE 4.  A self-managing energy system architecture.

grid is the central module, which is responsible for taking 

the distribution decisions. It also represents a small-scale 

set of loads, which is localized on a specific feeder of the 

distribution network (or the distribution management 

system) and capable of meeting some or all its demands 

through the small-scale generation sources such as the solar 

cell, wind turbines, photovoltaic panels, micro-turbines, and 

diesel generator, respectively. The micro grid is composed 

of several other energy components such as the distributed 

energy sources and the load controller. By integrating these 

two components in the distribution network, the micro grid 

can operate in different modes. Moreover, it facilitates in 

storing the surplus energy generated through different 

renewable sources, which can later be used during the peak 

timing. The micro grid is designed as an off-grid, a stand-

alone structure, or a single connected grid. Three typical 

issues in a micro grid are security, efficiency, and power 

quality. The energy demand variations in the smart 

buildings make the aforementioned issues even more 

complicated. However, the incorporation of the IoT may 

help in resolving these problems. The real essence of using 

a micro grid in our proposed design is to have a centralized 

module capable of an integrated information flow, a 

simplified flow of day-to-day operations, and an analysis of 

the power distribution system.  

The second component of the architecture is the 

forecasting and optimization. The generation and storage 

along with the energy consumption in the micro grid creates 

a very sophisticated architecture. It is very important to 

predict the supply and demand for maintaining the energy 

balance and providing the required services. Forecasting (or 

energy forecasting) is performed at different intervals and 

the acquired results are provided for optimization module in 

the same block. Due to the dynamic nature of demands in 

smart buildings, the forecasting process becomes rather 

more challenging. Though, as specified in our previous 

sections, there are several models available for forecasting 

based on the historical data to the mathematical models, 

however, in order to analyze and manage large/complex 

networks efficiently, the forecasting should include the 

detailed weather integration and the load profiling. Our 

forecasting module can also predict the micro grid’s 

renewable generation. The incorporation of the IoT 

improves the control over the grid components and can take 

the characteristics of all sources into account for the whole 

energy generation system. This led to the improvement of 

the power system’s performance as well as an effective use 

of the renewable energy resources. Based on the forecasting 

control, the energy related decision making is required to 

optimize the flow by adjusting the power imported from the 

grid. A typical example of optimization decisions includes 

the demand response and the emery/power management. In 

addition, the data from buildings and homes must be 

analyzed properly, providing insights to better understand 

the characteristics of energy activities.  

In case of several connected grids, the security can be 

compromised due to the reciprocal stability. Therefore, an 

IoT-enabled network must be used to collect data from the 

available sensors and process the data to obtain the real-

time state of the critical parameters.  
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Another important element of our proposed model in Fig. 

4 is the integration of the metering infrastructure. This 

component is an integrated system of SMs and 

communication networks, which enables a two-way 

communication between the utilities and the customers. The 

system provides several important functions, such as the 

ability to measure the electricity usage, the connection and 

disconnection services, the detected tampering, the 

identification and isolation of outages, and the monitoring 

of voltage automatically and remotely. This system is 

integrated with several customer technologies such as the 

programmable thermostats and the in-home displays. The 

advance metering infrastructure (AMI) is one of the 

modules in this component. It provides the incentives and 

the programs to the customers for managing their energy 

usage and reduce the peak demands accordingly. 

IV. ENERGY MANAGEMENT IN BUILDINGS: OPEN 
ISSUES AND CHALLENGES 

The common objectives of an EMS in smart buildings are 

to reduce the energy consumption and decrease the 

greenhouse gas emissions. However, the changing weather 

conditions greatly affect the overall efficiency of the EMS 

[87]. The authors in [88] suggested a 34% decrease in the 

heating demands while a 72% increase in the cooling 

demands by at the end of this century. Therefore, it is very 

important that an efficient EMS must be scalable, secure, 

cost effective, and reliable [89].  

A. SCALABILITY 

The concept of scalability in the context of smart buildings 

refers to the ability for extension. This extension includes 

adding new modules and different devices in the building. 

It is extremely important to ensure the power quality of the 

EMS when new services, applications, and devices are 

added [90]. A non-scalable EMS cannot handle the 

expansion and thus, will become unreliable and need a 

replacement in future. Therefore, with the increasing 

number of consumers and demands, the EMS in smart 

buildings must be scalable [91]. 

B. SECURITY AND PRIVACY 

The concept of security and privacy are inter-related. If the 

level of security is poor, the EMS is vulnerable to 

unauthorized manipulation and the consumers privacy will 

be affected. Due to the lack of common standards for the 

IoT security in smart buildings, it is very difficult to 

guarantee a high level of privacy and security [90]. One of 

the essential components of an IoT-based EMS is data 

collection and analysis. This data is mostly collected in the 

form of energy consumption and maintenance over regular 

intervals. After analyzing the collected data, the decisions 

are made regarding the efficient operations in buildings. 

Although an advanced data management system can be 

used to measure a building’s energy performance, the 

presence of a common IoT-based security standard would 

still be mandatory. Furthermore, in [91], the authors suggest 

the most essential security requirements are the information 

integrity, mutual trust, and authentication.  

Apart from security, privacy is also very important to 

ensure the users trust on EMS. Usage of smart devices with 

personal and sensitive information requires strong privacy 

protocols to protect the customers private information [92]. 

Generally, there are three key areas relevant to privacy 

challenges. These are personal privacy, privacy-preserving 

data mining, and underlying privacy of the used 

technologies. Standard regulations must be followed for 

these three aspects. Furthermore, the limitations in the IoT 

sensors’ capability make privacy and security issues much 

more complicated meaning that the sensors cannot handle 

the complicated security protocols. This challenge is 

mentioned in [93] where the authors suggest to design a 

public-private key for the IoT security. 

C. PERFORMANCE MANAGEMENT 

The IoT-based smart buildings consist of billions of internet 

based devices. The management of these devices must be 

done through a system, which ensures proper fault detection 

and tolerance. Thus, it is very important to have a service 

that manages the communication between the IoT devices, 

their configuration, and the accessibility of different user 

levels [94].  

D. COST EFFECTIVENESS 

There are several costs associated with the energy usage in 

smart buildings. These costs include the devices cost, 

operating cost, technological services cost, and 

maintenance cost. Moreover, since different sources of 

energy are integrated in an EMS, thus, there is an 

integration cost as well. On one end, the high cost of an 

EMS has a direct effect on the consumers. On the other 

hand, reducing the cost by using cheaper material might 

degrade the performance of an EMS. It is thus essential to 

maintain a balance between both. Currently, many IoT 

products for smart buildings and other industrial 

applications are expensive which is not affordable for most 

private customers [88].  

 
E. BIG DATA PROCESSING 

The higher volume of data in IoT-based systems demands 

an efficient handling and processing. It is not practical to 

use the traditional methods and tools for data processing. In 

the IoT-based smart buildings, the real-time data is 

collected and processed to facilitate the decision making 

process. Therefore, the modern methods and tools are 

required for processing [96]. Some of these tools use the 

local processing of data. Devices are aware of the state of 

the main server and their neighbors making it possible to 

save more network bandwidth. In addition, by using the 

localized algorithms, it is possible to deal with the huge 

amount of big data, as it is mostly processed locally [96].  

 

F. A Universal Energy Architecture 
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The typical architecture of an IoT-based EMS consists of 

three layers [97]. These layers are application, network, and 

perception, respectively. The application layer receives the 

data from the network layer and processes it to provide the 

desired services. The network layer acts as a 

communication layer between the application and the 

perception layers. The perception layer is responsible for 

collecting the data from various deployed sensors and 

actuators. This type of a structure is commonly used due to 

its simplicity and ease of deployment. However, some new 

architectures have been proposed with some additional 

layers and features. For example, the security is added as an 

important feature in these new architectures [98]. Still, it is 

important to design a general architecture for the EMS 

which can easily trade-off among the system goals, 

components, and scales.  

V. CONCLUSION 

This paper is an effort to familiarize readers with several 

important factors related to energy management in buildings. 

In our work, we have tried to explain the most important 

research related to the energy management in smart 

environments under one umbrella. This includes a detail 

state-of-the-art section on statistical, cloud, fog, smart meter, 

and several other domains related solutions proposed within 

the energy management context. We have also proposed a 

hypothetical solution for smart buildings/homes which can 

set a benchmark for future researchers. In the near future, we 

will be focusing on implementing our proposed design on 

some local buildings and homes and extracting the important 

results which can show the impact of our design on energy 

savings and consumers cost effectiveness.  
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