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Energy Management of Grid Interconnected
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Exchange: A Data Driven Approach
Kannan Thirugnanam , Member, IEEE, Mohamed Shawky El Moursi , Senior Member, IEEE,
Vinod Khadkikar , Senior Member, IEEE, Hatem H. Zeineldin , Senior Member, IEEE, and

Mohamed Al Hosani , Senior Member, IEEE

Abstract—Grid interconnected multi-microgrids provides po-
tential benefits to the consumers, where the microgrids (MGs)
equipped with distributed generators (DGs), energy storage sys-
tems (ESSs), and diesel generators. However, intermittency of DGs,
high cost of ESSs, and depleting fossil fuels are the major challenges
for the economic operation of interconnected multi-microgrids.
One potential way to address these challenges is to develop an
energy management strategy (EMS) for the grid interconnected
multi-microgrids. This paper proposes an EMS to reduce consumer
energy consumption cost (ECC) using fuzzy-based peer-to-peer
(P2P) energy exchange algorithm with dynamic pricing. In this
context, the MGs consumers load power demand (LPD) and DGs
output behaviors are modeled using random vector functional link
network approach to predict future time slot values. Then, a fuzzy-
based P2P energy exchange algorithm is developed to enable the
surplus energy transfer to grid and/or MGs with dynamic pricing.
Furthermore, an ESS charging/discharging energy control and
diesel generator turn ON strategies are developed based on the MGs
deficit power. Then, the MGs consumer LPD reduction strategy
is implemented based on the consumer ECC margin and energy
consumption index. Finally, an EMS is proposed that includes on
demand-supply strategy and consumer energy consumption cost
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reduction strategy based on the future time slot values. The novelty
of the proposed work lies within the energy management of grid
interconnected multi-microgrids and the reduction of consumers
ECC through surplus energy transfer to grid and/or MGs using
fuzzy-based P2P energy exchange algorithm with dynamic pricing.
Historical data are used to demonstrate the effectiveness of the
proposed EMS for grid interconnected multi-microgrids.

Index Terms—Deep neural network, distributed generators,
energy management, energy storage, fuzzy logic, microgrids, and
peer-to-peer energy exchange.

NOMENCLATURE

h,m,H Present time slot, future time slot, and total num-
ber of time slots (minutes).

i, I Microgrids and total number of microgrids.

Coefficients

ai, bi, ci Regression coefficients.
ae,i, be,i Charge rate coefficients of ith MG.
ce,i, de,i Discharge rate coefficients of ith MG.

Constants

At, Ap Air temperature and pressure (◦C, J/m3).
I0ec,i Initial value of consumer energy consumption

index of ith MG.
SOCin

e,i Initial state-of-charge of ith MG (%).
Se,i Energy storage system size of ith MG (kWh).
∆h, � Time slot difference and sum of present and future

time slot, i.e � = h+m (minutes).
ηc,i, ηe,i Converter and ESS efficiency of ith MG (%).
ηd,i Diesel generator efficiency of ith MG (%).
wz

j Weight of jth enhancement node.

Limits

bzj Threshold limits for consumer LPD, solar PV
power, and wind turbine power.

Cmax
e,i Maximum charge rate limit of ith MG (1/hour).

Dmax
e,i Maximum discharge rate limit of ith MG (1/hour).

Dmax
d,i Diesel generator maximum turned ON duration of

ith MG (hour).
Imax
ec,i Maximum consumer energy consumption index

of ith MG.
Pmax
l,i Maximum consumer LPD of ith MG (kW).
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Pmax
sr,i Maximum surplus power of ith MG at time slot �

(kW).
Emax
con,i Maximum electricity consumption of ith MG

(kWh).
E

max,�
cost,i Maximum threshold limit for consumer ECC of

ith MG at time slot � (S$/kWh).
E

min,�
cost,i Minimum threshold limit for consumer ECC of

ith MG at time slot � (S$/kWh).
Imin
ec,i Minimum threshold limit for consumer energy

consumption index of ith MG.

Power and Energy Cost

Ph
e,i Charging and discharging power of ith MG at time

slot h (kW).
Ph
e,i{c} Charging power of ith MG at time slot h (kW).

Ph
e,i{d} Discharging power of ith MG at time slot h (kW).

P r
d,i, P

h
d,i Diesel generator rated power and output power of

ith MG at time slot h (kW).
P �

df,i, P
�

sr,i Deficit and surplus power of ith MG at time slot
� (kW).

P �

dg,i Sum of solar PV and wind turbine output power
of ith MG at time slot � (kW).

P �

ld,i Sum of predicted consumer load power demand
and power loss of ith MG at time slot � (kW).

P �

loss,i Power loss of ith MG at time slot � (kW).
P r
pv,i, P

r
wt,i Solar PV and wind turbine rated power of ith MG

(kW).
P�,∗
b,g ,P

�,∗
s,g Buying and selling power reference signal of grid

at time slot � (kW).
P�,∗
b,i ,P

�,∗
s,i Buying and selling power reference signal of ith

MG at time slot � (kW).
Eh

e,i{c} Charging energy of ith MG at time slot h (kWh).
Eh

e,i{d} Discharging energy of ith MG at time slot h
(kWh).

Eh
d,i, E

h,∗
d,i Diesel generator energy and reference signal of

ith MG at time slot h (kWh).
E�

con,i Total electricity consumption of ith MG at time
slot � (kWh).

E�

df,i, E
�

sr,i Deficit and surplus energy of ith MG at time slot
� (kWh).

E�,∗
p2p Peer-to-peer energy exchange reference signal at

time slot � (kWh).
E�,∗
p2p,i Peer-to-peer energy exchange reference signal of

ith MG at time slot � (kWh).
E�,∗
p2p,g Peer-to-peer energy exchange reference signal of

grid at time slot � (kWh).
B
�

cost,i Energy buying cost of ith MG at time slot �

(S$/kWh).
C

�,∗
b,i ,C

�,∗
s,i Buying and selling energy cost reference signal

of ith MG at time slot � (S$/kWh).
C

�,∗
b,g ,C

�,∗
s,g Buying and selling energy cost reference signal

of grid at time slot � (S$/kWh).
C

h
d,i,C

in
d,i Diesel generator power generation and initial cost

of ith MG at time slot h (S$/kWh).

C
�

i ,C
h
dp Electricity price of ith MG at time slot � and

dynamic electricity price at time slot h (S$/kWh).
C

h
e,i,Cfc ESS energy cost of ith MG at time sloth and diesel

generator fuel cost (S$/kWh).
C

�

pv,i,C
�

wt,i Solar PV and wind turbine power generation cost
of ith MG at time slot � (S$/kWh).

C
�,∗
p2p Peer-to-peer energy exchange cost reference sig-

nal at time slot � (S$/kWh).
C

�,∗
p2p,i Peer-to-peer energy exchange cost reference sig-

nal of ith MG at time slot � (S$/kWh).
C

�,∗
p2p,g Peer-to-peer energy exchange cost reference sig-

nal of grid at time slot � (S$/kWh).
Csav,i Consumer energy consumption cost savings over

the ODSS and CCRS (%).
Ctot,i Total energy consumption cost of ith MG (S$).
C

ODSS
tot,i Consumer energy consumption cost savings over

the ODSS (S$).
C

CCRS
tot,i Consumer energy consumption cost savings over

the CCRS (S$).
E

�

cost,i Total energy consumption cost of ith MG at time
slot � (S$/kWh).

S
�

cost,i Energy selling cost of ith MG at time slot �

(S$/kWh).

Variables

C�

br,g,C
�

br,i Grid circuit breaker at time slot � and ith MG
circuit breaker at time slot �.

Fcon,i Diesel generator fuel consumption per kWh
(Liter/kWh).

hin, hfi Initial and final time slot values (minutes).
SOCh

e,i State-of-charge of ith MG at time slot h (%).
Tod, Hr Outdoor temperature and humidity (◦C, %).
xz
in Inputs for consumer LPD, solar PV power, and

wind turbine power prediction model.
βz
j , Dw RVFLN weights and wind direction.

Control Parameters

Ch
e,i, D

h
e,i Charge and discharge rate of ith MG at time slot

h (1/hour).
I�ec,i Consumer energy consumption index of ith MG

at time slot �.
M�

ecc,i Consumer energy consumption cost margin of ith

MG at time slot �.
UIN�

i ,R
�

i Unique identity number and reliability index of
ith MG at time slot �.

Dh,∗
d,i Diesel generator turned ON duration reference

signal of ith MG at time slot h (hour).
Kh,∗

d,i Diesel generator output power control variable
reference signal of ith MG at time slot h.

α, δec,i Objective balancing variable and error tolerance
for energy consumption index of ith MG.

Prediction Parameters

P �

l,i Predicted consumer load power demand of ith MG
at time slot � (kW).



1548 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 2, MARCH 2021

P �

pv,i, P
�

wt,i Predicted solar PV and wind turbine output power
of ith MG at time slot � (kW).

Forecasted/historical Parameters

If,hs , V f,h
w Forecasted solar irradiance and wind velocity at

time slot h (kWh/m2, m/sec)
T f,h
pv,i Forecasted solar PV panel temperature of ith MG

at time slot h (◦C).
P f,h
pv,i, P

f,h
wt,i Forecasted solar PV and wind turbine output

power of ith MG at time slot h (kW).
Pm,h
l,i Measured consumer load power demand of ith

MG at time slot � (kW).

I. INTRODUCTION

W
ITH the increased penetration of distributed generators
(DGs) into the grid, interconnected multi-microgrids

(IMMGs) represent one of the promising solutions for system
operations [1], [2]. Also, the IMMGs received great attention for
grid integration with DGs and to overcome the grid weaknesses
[3]. In general, DGs, i.e., solar photovoltaic (PV) and wind
turbine, with energy storage systems (ESSs) are the most feasible
configuration for the IMMGs operations due to shifting the
peak load demand, storing the surplus energy, mitigating the
intermittency, and improving the system stability [4]. Never-
theless, frequent and inappropriate charging/discharging rate
significantly reduce the ESS lifetime [5]. In addition, the con-
sumer load power demand (LPD) is always stochastic in nature
with respect to time [6]. Thus, to supply the required LPD, the
IMMGs operator can utilize diesel generators to ensure higher
operational flexibility [5]. In this regard, the ESS and diesel
generator can be a proper combination for surplus energy storage
and better operation of IMMGs [5]–[8]. However, the enhanced
operation of IMMGs with diesel generator may not be a suitable
solution to reduce consumer energy consumption cost (ECC)
due to the major drawbacks such as high fossil fuel cost, high
maintenance and operating cost, and increased environmental
concerns [8]. Therefore, DGs with ESS and diesel generator
may not be straightforward solutions for the cost reduction
problem. Given this context, one potential way to address the
consumer ECC reduction through the development of an energy
management strategy (EMS), which enables the surplus energy
transfer to grid and/or microgrids (MGs) through fuzzy-based
peer-to-peer (P2P) energy exchange algorithm with dynamic
pricing and MGs future information.

The EMS for interconnected multi-microgrids is receiving
significant research interest over the past few years [1], [2].
In particular, existing work determine the total energy cost
of the conventional energy drawn from the grid over a finite
horizon by jointly optimizing the ESS energy subject to prac-
tical load and storage constraints [6], [7]. In [9], power/energy
management schemes and an energy scheduling algorithm have
been developed for a hybrid ac/dc, stand-alone, and small-scale
MGs. Moreover, an EMS has been developed for the robust
MGs operation based on the robust MGs operation based on
the forecasting future information [10]. To maintain system
robustness at minimum operational cost, a two-layer predictive
EMS has been developed for MGs with hybrid ESS [11]. To

manage frequency trips due to load and renewable fluctua-
tions, a robust EMS has been implemented for islanded MGs
[12]. A general framework has been developed for reliability
assessment of multi-microgrid [13]. In [14], a comprehensive
control, power management system, and reinforcement learning
framework has been introduced for both grid-connected and
MGs operations. In addition, an energy storage dispatch and
sharing methodology have been developed to reduce electricity
costs for grid-connected MGs [15]. An adaptive voltage and
frequency control have been developed for inverter-based DGs in
a multi-microgrid structure [16]. To improve the local balance of
energy generation and consumption, a hierarchical architecture
has been developed and validated to identify the key elements
involved in P2P energy trading [17]. Also, Paudel et al. imple-
mented a novel game-theoretic model for P2P energy trading
among the prosumers in a community [18]. A control strategy
has been developed in [19] to match the source and load changes
using P2P energy transfer. The impact of P2P energy trading
among the smart [20], [21]. A two-stage aggregated control has
been developed in [22], which realizes P2P energy sharing in
community MGs. An optimal voltage regulation method has
been developed for multi-MGs based on the multi-agent systems
[23]. A P2P energy sharing mechanism has been implemented
for increasing the connection of distributed energy resources
based on the multi-agent framework [20].

From the literature survey, none of the previous works have
considered the P2P energy exchange algorithm with dynamic
pricing for consumer ECC reduction using MGs prediction
models. The existing studies assume simple models without
considering many important MGs and/or grid parameters. with-
out considering many important MGs and/or grid parameters.
Furthermore, the existing works in the weather conditions, fu-
ture time slot power generation, energy consumption profiles,
dynamic pricing, and other system factors. In this paper, an EMS
is developed to reduce consumer ECC while enabling surplus
energy transfer to grid and/or MGs through fuzzy-based P2P
energy exchange algorithm with dynamic pricing. The novelty
of the proposed EMS and the contributions of this paper are
summarized as follows:

1) Modeling MG consumer load power demand, solar PV
power, and wind turbine power behaviors using random
vector functional link network (RVFLN) approach to pre-
dict future time slot values.

2) Developing a fuzzy-based P2P energy exchange algorithm
to enable surplus energy transfer to grid and/or MGs with
dynamic pricing.

3) Implementing ESS charging/discharging control and
diesel generator turn ON strategy based on the MGs deficit
power and consumer LPD reduction strategy based on the
consumer ECC margin and energy consumption index.

4) Finally, implementing an EMS that includes both on
demand supply strategy (ODSS) and consumer energy
consumption cost reduction strategy (CCRS). The ODSS
is a baseline strategy and the CCRS is the cost reduction
strategy based on the MGs prediction models.

The rest of this paper is organized as follows. The description
of the MGs and prediction models are presented in Section II.
The fuzzy-based P2P energy exchange algorithm with dynamic
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Fig. 1. Schematic representation of grid interconnected multi-microgrids.

pricing and the consumer ECC models are presented in
Section III. The proposed ODSS and CCRS are presented in
Section IV. Section V presents the results with the historical
data followed by the conclusion in Section VI.

II. SYSTEM LEVEL MATHEMATICAL MODELING

This section presents the description of grid interconnected
multi-microgrids and the system level mathematical models of
MGs consumer load power demand, DGs, i.e., solar PV and
wind turbine, ESSs, diesel generator, and MGs constraints. The
purpose of this section is to model the grid interconnected multi-
microgrids consumer LPD and energy sources. The outcomes
of this section: a) future time slot values of MGs consumer LPD
and DGs output power; b) ESSs energy, power, charge/discharge
rate, state-of-charge (SOC), and energy cost; and c) diesel gen-
erator energy, power, and power generation cost. In addition, in
this section, the MGs constraints are presented.

A. Interconnected Multi-Microgrid Model

Fig. 1 shows the schematic representation of grid intercon-
nected multi-microgrids. Here, the number of MG is denoted
as i ∈ {1, 2, 3, ..., I}. The ith MG consists of energy sources
(i.e., solar PV, wind turbine, ESS, and diesel generator) and
different types of consumer loads. Each MG is connected to

grid through the point of common coupling (PCC). Here, the
MG models, i.e., DGs, ESSs, diesel generator, and consumer
LPD, are developed at the system level. Also, the grid and MG
circuit breakers, i.e., C�

b,g and C�

b,i, are developed at system
level. Moreover, the grid and MG circuit breakers are considered
as an ON and OFF switch, i.e., C�

b,g ∈ {0, 1} and C�

b,i ∈ {0, 1}.
Thus, in this work, dynamic stability issues due to switching and
synchronization are not considered. However, these issues have
been extensively reported in literature and the successful control
strategies can be deployed to enable the seamless integration
of multi-microgrids [24], [25]. Here, � is defined as the sum
of present (h ∈ {1, 2, ..., H − 1}) and future (m) time slot
(� = h+m). From Fig. 1, the power balance at PCC of ith

MG can be expressed as:

P �

ld,i + P�,∗
s,g + P�,∗

s,i = P �

dg,i + Ph
e,i + Ph

d,i + P�,∗
b,g + P�,∗

b,i .
(1)

B. System Level Models

In this section, system level mathematical models are pre-
sented according to the above-mentioned description.

1) Consumer LPD, Solar PV, and Wind Turbine Model: The
stochastic nature of consumer LPD and DGs output powers are
modeled using RVFLN approach, which predict future time slot
values. This approach reduces iterative tuning of the weights
during dataset training, ensure faster convergence, ease of com-
putation, and less training error as compared to conventional
neural network techniques [26]. In general, the dynamics and/or
behaviors of MGs consumer load power demand, solar PV
power, and wind turbine power are non-linear in nature with
respect time [5]. Hence, deep neural network approach based
on RVFLN is used in this paper as it is suitable for modeling
the non-linear dynamics and/or behaviors as compared to the
other linear models [26], [27]. The RVFLN transforms the inputs
into a non-linear space through the use of non-linear activation
functions during the predictions. The future time slot values of
consumer LPD and DGs, i.e., solar PV and wind turbine, power
of ith MG at time slot � can be expressed as:

P �

z,i =

hl
∑

j=1

βz
j g

(

wz
jx

z
in + bzj

)

+

hl+n
∑

j=hl+1

βz
j x

z
in. (2)

In (2), the consumer LPD, solar PV power, and wind turbine
power can be derived by replacing z with l, pv, and wt, re-
spectively. Consumer LPD inputs: weekdays, weekends, month,
Pm,h
l,i , Tod, Hr, and Pmax

l,i . Solar PV inputs: If,hs , At, T
f,h
pv,i,

V f,h
w , Dw, P f,h

pv,i, Tod, Hr, and P r
pv,i. Wind turbine inputs: Ap,

V f,h
w , Dw, P f,h

wt,i, Tod, Hr, and P r
wt,i. The solar PV power

generation cost (C�

pv,i) and wind turbine power generation cost
(C�

wt,i) of ith MG at time slot � can be calculated from [28],
[29]. The mean absolute percentage error (MAPE) is used to
measure the consumer LPD and DGs output power prediction
error, which can be expressed as:

MAPE (%) =
100

H

H
∑

h=1

∣

∣

∣

∣

(

Pm,h
z,i − P �

z,i

)

×
(

Pm,h
z,i

)−1
∣

∣

∣

∣

. (3)
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2) ESS Model: Better performance of the MG can be
achieved by means of ESS, which is the key technology for
EMS [5]. The ESS charging energy (Eh

e,i{c}) and discharging
energy (Eh

e,i{d}) of ith MG at time slot h can be expressed as:

Eh
e,i {c} = Se,iSOCh

e,i + ηe,i

∫ hfi

hin

(

P �

sr,i + Ph
d,i + P�,∗

b,i

)

dh,

(4a)

Eh
e,i {d} = Se,iSOCh

e,i −
1

ηe,i

∫ hfi

hin

(

P �

ld,i − P �

dg,i

)

dh. (4b)

If the ESS state-of-charge (SOC) is low, then the proposed
EMS will charge the ESS with the surplus power (P �

sr,i) of ith

MG at time slot�. The ESS capacity degradation mainly depends
on the SOC limits, charge rate (Ch

e,i), discharge rate (Dh
e,i), and

temperature [30]. Hence, the ESS state-of-charge, Ch
e,i, and Ch

e,i

should be maintained within the limits. In this paper, a regression
approach is used to estimate the ESS Ch

e,i and Ch
e,i of ith MG at

time sloth. In addition, the ESS power can be controlled through
Ch

e,i and Dh
e,i of ith MG at time slot h, which can be expressed

as:

Ch
e,i = ae,i

Eh,∗
e,i {c}

(

SOCh
e,i × Se,i ×∆h× 0.01667

) + be,i, (5a)

Dh
e,i = ce,i

Eh,∗
e,i {d}

(

SOCh
e,i × Se,i ×∆h× 0.01667

) + de,i. (5b)

The unit of ESS discharging energies is kWh, the unit of
discharge rate is 1/hour, and the unit of the MG consumer load
power demand is kW. Therefore, the ESS discharge energy
(kWh) should be converted into power (kW). Hence, the ESS
discharging power (Ph

e,i{d}) is formulated. Similarly, the ESS
charging power (Ph

e,i{c}) is formulated. The ESS charging
power of ith MG at time slot h can be defined as the product
of Eh

e,i{c}, Ch
e,i, and ηc,i. Similarly, the ESS discharging power

of ith MG at time slot h can be calculated. To avoid the ESS
over charging or discharging, the ESS state-of-charge limits
are necessary for charging and discharging scenarios. Hence,
the ESS state-of-charge (SOCh

e,i) of ith MG at time slot h is
formulated, which can be expressed as:

SOCh
e,i =

⎧

⎨

⎩

SOCin
e,i +

|Eh−1,∗
e,i

{c}−E
h,∗
e,i

{c}|
Se,i

, if Ph,∗
e,i {c} < 0,

SOC in
e,i −

|Eh−1,∗
e,i

{d}−E
h,∗
e,i

{d}|
Se,i

, Ph,∗
e,i {d} ≥ 0.

(6)
where, Eh−1,∗

e,i {c} and Eh−1,∗
e,i {d} denote the ESS charging and

discharging energy reference signal of ith MG at time slot h− 1
and Ph,∗

e,i {c}, Ph,∗
e,i {d} denote the ESS charging and discharging

power reference signal of ith MG at time slot h. If Ph,∗
e,i {c} is

negative, then the ESS needs to charge and ifPh,∗
e,i {d} is positive,

then the ESS needs to discharge. The ESS energy cost (Ch
e,i) of

ith MG at time slot h is calculated from [28], [29].
3) Diesel Generator Model: The diesel generator output en-

ergy (Eh
d,i) of ith MG at time slot h can be expressed as:

Eh
d,i = P r

d,i × ηd,i ×Kh,∗
d,i ×Dh,∗

d,i . (7)

The diesel generator power generation cost (Ch
d,i) of ith MG

at time slot h can be expressed as:

C
h
d,i =

{

C
in
d,i/365 +

(

Eh,∗
d,i Fcon,iCfc

)

, if Dh,∗
d,i > 0,

0, otherwise.
(8)

4) MGs Constraints: Due to intermittency, the P �

dg,i cannot
meet the consumer LPD. Hence, it is necessary to identify the
P �

sr,i and deficit power (P �

df,i) of ith MG at time slot �, which
can be expressed as:

P �

sr,i =

{

0, if P �

dg,i ≤ P �

ld,i,

C�

br,i ×
{

P �

dg,i − P �

ld,i

}

, otherwise.
(9)

If P �

sr,i is equal to zero, then the deficit power would be
supplied from ESS or diesel generator or grid and/or MGs. The
P �

df,i of ith MG at time slot � can be expressed as:

P �

df,i =

{

C�

br,i ×
{

P �

ld,i − P �

dg,i

}

, if P �

dg,i < P �

ld,i,

0, otherwise.
(10)

Thus, the power penetration constraint of ith MG can be
expressed as:

(

P �

pv,i + P �

wt,i + Ph
d,i + Ph

e,i

)

≤ Pmax
ld,i . (11)

Pirbazari et al. developed a house energy consumption pre-
diction model [31]. Different types of approaches are used to
predict the house energy consumption such as support vector
regression approach, gradient boosting regression trees-driven
approach, feedforward neural network approach, and long short-
term memory network approach. The obtained mean absolute
percentage error approximately ranges from 1% to 3%. Hence,
in this work, 3% error has been considered for the proposed
EMS for grid interconnected multi-microgrids. To improve the
prediction accuracy, the below constraint is used:

1

1 + {MAPE (%)× 0.01}
> 0.97. (12)

If prediction accuracy is less than 0.97, then the strategy
adjusts the RVFLN network hidden layer and network weight.
Then it retrains the model and tests the model with the updated
values. The ESS constraints, i.e., SOCh

e,i, C
h
e,i, D

h
e,i, P

h
e,i{c},

and Ph
e,i{d}, are given below:

SOCmin
e,i ≤ SOCh

e,i ≤ SOCmax
e,i , (13a)

−Cmax
e,i ≤ −Ch

e,i ≤ 0, (13b)

0 ≤ Dh
e,i ≤ Dmax

e,i , (13c)

−Pmax
e,i {c} ≤ −Ph

e,i{c} ≤ 0, (13d)

0 ≤ Ph
e,i{d} ≤ Pmax

e,i {d}. (13e)

where, SOCmax
e,i , SOCmin

e,i denote the maximum and minimum
ESS state-of-charge limit of ith MG and Pmax

e,i {c}, Pmax
e,i {d}

denote the maximum ESS charging and discharging power limit
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of ith MG. The diesel generator constraints are given below:

0 ≤ Ph
d,i ≤ Pmax

d,i &

H−1
∑

h=1

Dh,∗
d,i ≤ Dmax

d,i . (14)

where, Pmax
d,i is the diesel generator maximum power of ith MG.

III. P2P ENERGY EXCHANGE ALGORITHM AND COST

This section presents a fuzzy-based P2P energy exchange
algorithm with dynamic pricing, MGs consumer energy con-
sumption cost, and MGs consumer ECC margin with energy
consumption index. The purpose of this section is to generate the
reference signal of MG consumer ECC using fuzzy-based P2P
energy exchange algorithm with dynamic pricing. The outcomes
of this section are reference signal of P2P energy exchange,
buying/selling cost of deficit/surplus energy, total electricity
consumption, consumer ECC margin, and MGs consumer en-
ergy consumption index.

A. Fuzzy-Based P2P Energy Exchange Algorithm

The fuzzy-based P2P energy exchange algorithm with dy-
namic pricing decides the reference signal of P2P energy ex-
change and the buying/selling cost of deficit/surplus energy
based on the surplus energy of ith MG at time slot �, deficit
energy of ith MG at time slot �, unique identity number of ith

MG at time slot �, and dynamic per unit electricity price. The
solution steps are follows:

Step 1: Initialize the system parameter specifications and
update the required information of each MG.

Step 2: The ith MG is assigned as a seller or a buyer based
on the P �

sr,i or P �

df,i. If P �

sr,i is greater than zero, then the P2P
energy exchange strategy sets the corresponding MG as a seller.
Furthermore, if P �

df,i is greater than zero, then the P2P energy
exchange strategy sets the corresponding MG as a buyer. After
identification of MG as a seller or a buyer, a unique identity
number (UIN�

i ) is assigned to each buyer and seller, which
retains the unrecognizability of seller and buyer. The unique
identity for buyer and seller can be expressed as:

UIN�

i =

⎧

⎨

⎩

1, if (9) > 0& (10) = 0,
0, if (9)& (10) = 0,

−1, if (9) = 0& (10) > 0.
(15)

where, 1,−1, and 0 denote that the corresponding MG is a seller,
buyer or is not contributing as a buyer or seller, respectively.
The UIN�

i gives the buyer and seller identities to all sellers and
buyers.

Steps 3 and 4: The fuzzy logic receives the information and
decide the selling and buying cost of the grid and the MG based
on the E�

sr,i, E
�

df,i, E
�,∗
p2p, UIN�

i , and dynamic per unit electricity
price (Ch

dp). Here, the E�

sr,i of ith MG at time slot � can be
defined as the product of P �

sr,i of ith MG at time slot � and
the time slot difference (∆�), the E�

df,i of ith MG at time slot
� can be defined as the product of P �

df,i of ith MG at time slot
� and the time slot difference, and the developed fuzzy-based
P2P energy exchange algorithm with dynamic pricing decide
the P2P energy exchange reference signal. The values of E�

sr,i

Fig. 2. Schematic representation of fuzzy-based P2P energy exchange algo-
rithm with dynamic pricing. Here, the numbers in the brackets indicate the
implementation of corresponding equation, i.e., in Step 1 to Step 2, it shows the
implementation of (9) and (10), which indicate the implementation of surplus
and deficit power of ith MG at time slot �.

and E�

df,i of ith MG at time slot � depends on P �

sr,i and P �

df,i,

respectively. The value ofE�,∗
p2p depends onE�

sr,i,E
�

df,i, andUIN�

i .
To eliminate the complex mathematical model and/or control
strategy, the fuzzy logic is the most appropriate control logic
for handling multiple information [32]. Hence, in this paper, the
fuzzy logic strategy is considered, which decides the reference
signal of P2P surplus energy exchange and buying/selling cost
of deficit/surplus energy by modeling the MG information with
simple IF-THEN rules. Here, the center of gravity method is
used for defuzzification and Mamdani type inference engine is
used for the implication of fuzzy logic rule base. Moreover,
triangular membership function is used for both fuzzy logic
input and output, which is shown in Fig. 2. A total of 686 rules,
i.e., 343 rules in Step 3 and 343 rules in Step 4, are developed
and hence the fuzzy logic rules are not shown. In Step 3, seven
fuzzy subsets are chosen for the inputs, i.e., E�

sr,i, E
�

df,i, UIN�

i ,

and output, i.e., E�,∗
p2p. Fuzzy subsets for E�

sr,i: zero (Z), very
small (VS), small (S), medium (M), big (B), very big (VB),
and bigger (BR); fuzzy subsets for E�

df,i: Null (NU), very low
(VL), low (L), neutral (N), high (H), very high (VH), and higher
(HR); and fuzzy subsets for UIN�

i : negative high (NH), negative
medium (NM), negative low (NL), zero (Z), positive low (PL),
positive medium (PM), and positive high (PH). In Step 4, seven
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fuzzy subsets are chosen for the inputs, i.e., C
h
dp, E�,∗

p2p, UIN�

i ,

and output, i.e., C
�,∗
p2p. Fuzzy subsets for C

h
dp: Nil (NI), very

short (VT), short (ST), moderate (MO), tall (TA), very tall (VT),
and tallest (TT); and fuzzy subsets for E�,∗

p2p: negative big (NB),
negative medium (NM), negative small (NS), zero (Z), positive
small (PS), positive medium (PM), and positive big (PB). The
strategy decides E�,∗

p2p based on the E�

sr,i, E
�

df,i, and UIN�

i in Step

3. In addition, it decides C
�,∗
p2p based on the C

h
dp, E�,∗

p2p and UIN�

i

in Step 4. The net energy exchange to grid and/or ith MG must
satisfy the below condition:

±E�,∗
p2p ≤ I−1

I
∑

i=1

(

Pmax
sr,i + Pmax

df,i

)

∆h. (16)

where,Pmax
sr,i andPmax

df,i denote the maximum surplus and deficit
power of ith MG at time slot �.

Step 5: The P2P energy exchange aggregator receives infor-
mation of E�,∗

p2p, C
�,∗
p2p, C

h
dp, P �

df,i, and P �

sr,i. Then, it allocates
the reference signal to grid and/or MGs, which is described in
Section IV-B7.

B. Consumer ECC Model

The total electricity consumption (E�

con,i) of ith MG at time
slot � can be defined as the sum of ith MG consumer load power
demand, ith MG power losses, and ESS charging power, which
can be expressed as:

E�

con,i =
(

P �

l,i + P �

loss,i +
∣

∣Ph
e,i{c}

∣

∣

)

×∆h. (17)

The total ECC (E�

cost,i) of ith MG at time slot � can be defined
as the function of total electricity consumption of ith MG at time
slot �, electricity price (C�

i ) of ith MG at time slot �, selling cost
(S�

cost,i) of ith MG at time slot �, and buying cost (B�

cost,i) of
ith MG at time slot �. The E

�

cost,i of ith MG at time slot � can
be expressed as:

E
�

cost,i =
(

C
�

i × E�

con,i −
{

S
�

cost,i − B
�

cost,i

})

. (18)

If P �

dg,i > 0, then the C
�

i can be calculated from (19). Other-
wise, C

�

i is equal to C
h
dp.

C
�

i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C�

pv,i+C�

wt,i

E�

con,i

, if P �

sr,i < 0,

C�

pv,i+C�

wt,i+Ch
e,i+Ch

d,i
±C

�,∗
p2p,i

E�

con,i

, if P �

sr,i = 0,

C�

pv,i+C�

wt,i+Ch
e,i+Ch

d,i
±C

�,∗
p2p,i

±C
�,∗
p2p,g

E�

con,i

, otherwise.

(19)
The S

�

cost,i and B
�

cost,i of ith MG at time slot � can be
expressed as:

S
�

cost,i =
{(

C
�,∗
s,i P

�,∗
s,i

)

+
(

C
�,∗
s,gP

�,∗
s,g

)

}

∆h,

B
�

cost,i =
{∣

∣

∣
C

�,∗
b,i P

�,∗
b,i

∣

∣

∣
+
∣

∣

∣
C

�,∗
b,gP

�,∗
b,g

∣

∣

∣

}

∆h. (20)

C. Consumer ECC Margin and Energy Consumption Index

The consumer ECC margin (M�

ecc,i) of ith MG at time slot �
is hard to estimate. The regression approach has been developed

to predict and/or estimate the supermarket, building, and resi-
dential unit energy consumption [33]–[35]. Hence, in this paper,
a regression approach is used to estimate the consumer energy
consumption index (I�ec,i) of ith MG at time slot �. In (21), the
total energy consumption of ith MG at time slot � is converted
into per unit value, i.e., E�

con,i × Emax
con,i

−1. Also, the M�

ecc,i is
decided based on the I�ec,i, which can be expressed as:

I�ec,i =
(

aie
−biR

�

i + ci

)

×
E�

con,i

Emax
con,i

. (21)

The reliability of the network or energy index of reliability
has been developed in [28]. In this paper, the reliability index
(R�

i ) of ith MG at time slot � is formulated based on the [28].
The R�

i of ith MG at time slot � can be defined as the ratio
of difference in the consumer load power demand of ith MG at
time slot � and power supplied from the ith MG energy sources
at time slot � and the consumer load power demand of ith MG
at time slot �, which is given in (22). Here, R�

i < 1 denotes the
expected power not supplied to the ith MG at time slot � and
R�

i = 1 denotes the expected power supplied to the ith MG at
time slot �. In this paper, threshold limits are considered for the
reliability index, i.e., maximum and minimum threshold limits.
The proposed EMS maintains the reliability index of ith MG at
time slot � within the threshold limits. The R�

i of ith MG at time
slot � can be expressed as:

R�

i = 1−

{

P �

dg,i + Ph
e,i + Ph

d,i ± P�,∗
p2p,i ± P�,∗

p2p,g

}

P �

ld,i

. (22)

Set of rules are developed to decide M�

ecc,i of ith MG at
time slot �. The rules are defined as IF-THEN structure and
its formulated based on the (10), (18), (21), and (22).

1) If 0.97 ≤ R�

i ≤ 1 & I�ec,i ≤ Imin
ec,i & E

�

cost,i ≤ E
min,�
cost,i &

P �

df,i = 0, then M�

ecc,i = very small (VS).

2) If 0.97 ≤ R�

i ≤ 1 & Imin
ec,i < I�ec,i < (Imin

ec,i +
∆I�ec,i

4
)

& E
min,�
cost,i < E

�

cost,i < (Emin,�
cost,i +

∆E�

cost,i

4
) & Pmin

df,i <

P �

df,i < (Pmin
df,i +

∆P�

df,i

4
), then M�

ecc,i = small (S).

3) If 0.97 ≤ R�

i ≤ 1 & (Imin
ec,i +

∆I�ec,i

4
) < I�ec,i <

(Imin
ec,i +

∆I�ec,i

2
) & (Emin,�

cost,i +
∆E�

cost,i

4
) < E

�

cost,i <

(Emin,�
cost,i +

∆E�

cost,i

2
) & (Pmin

df,i +
∆P�

df,i

4
) < P �

df,i <

(Pmin
df,i +

∆P�

df,i

2
), then M�

ecc,i = low (L).

4) If 0.97 ≤ R�

i ≤ 1 & I�ec,i = (Imin
ec,i +

∆I�ec,i

2
) & E

�

cost,i =

(Emin,�
cost,i +

∆E�

cost,i

2
) & P �

df,i = (Pmin
df,i +

∆P�

df,i

2
), then

M�

ecc,i = medium (M).

5) If 0.97 ≤ R�

i ≤ 1 & (Imin
ec,i +

∆I�ec,i

2
) < I�ec,i <

(Imin
ec,i +

3∆I�ec,i

4
) & (Emin,�

cost,i +
∆E�

cost,i

2
) < E

�

cost,i <

(Emin,�
cost,i +

3∆E�

cost,i

4
) & (Pmin

df,i +
∆P�

df,i

2
) < P �

df,i <

(Pmin
df,i +

3∆P�

df,i

4
), then M�

ecc,i = high (H).

6) If 0.97 ≤ R�

i ≤ 1 & (Imin
ec,i +

3∆I�ec,i

4
) < I�ec,i <

(Imin
ec,i +∆I�ec,i) & (Emin,�

cost,i +
3∆E�

cost,i

4
) < E

�

cost,i <
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(Emin,�
cost,i +∆E

�

cost,i) & (Pmin
df,i +

3∆P�

df,i

4
) < P �

df,i <

(Pmin
df,i +∆P �

df,i), then M�

ecc,i = big (B).
7) If 0.97 ≤ R�

i ≤ 1 & I�ec,i > (Imin
ec,i +∆I�ec,i) & E

�

cost,i >

E
max,�
cost,i & P �

df,i > (Pmin
df,i +∆P �

df,i), then M�

ecc,i = very
big (VB).

The next section presents the proposed EMS for grid intercon-
nected MGs to achieve the ECC reduction based on the predicted
values and MGs information. The developed EMS includes
ODSS and CCRS. The ODSS is the baseline strategy, which aims
to sell/buy the surplus/deficit energy to/from grid. The CCRS is
the MGs consumer ECC reduction strategy using fuzzy-based
P2P energy exchange algorithm with dynamic pricing. The
outcomes of this section are MGs consumer ECC, total electric-
ity consumption, consumer ECC margin, and MGs consumer
energy consumption index for ODSS and CCRS approach.

IV. PROPOSED ENERGY MANAGEMENT STRATEGY

The main objective is to reduce the multi-microgrid (MG)
consumer energy consumption cost (ECC) using fuzzy-based
peer-to-peer (P2P) energy exchange algorithm with dynamic
pricing. Here, the cost reduction problem can be expressed in
terms of MG power balance equation and MG consumer ECC,
which are given in (1) and (18), respectively. These equations
clearly show that the objective is to increase surplus energy
exchange to grid and/or MGs, decrease deficit energy buying
from grid, utilize ESS energy, and decrease diesel generator
operating hours. To solve the consumer ECC reduction problem,
two strategies, i.e., on demand supply strategy and consumer
energy consumption cost reduction strategy, are proposed. The
strategies rely on the MG power generation/demand prediction
models, MG information, and historical data.

A. On Demand Supply Strategy

The ODSS is the baseline strategy, which aims to sell/buy the
surplus/deficit energy to/from grid. The ODSS provides better
energy consumption cost saving by considering the surplus
energy selling to grid or turn ON diesel generator with respect to
cost. The ODSS problem (J1) can be formulated with respect
to reference signals such as Eh,∗

e,i and Eh,∗
d,i at time slot h, which

can be expressed as:

J1 = min
[Eh,∗

e,i
,E

h,∗
d,i ]

H−1
∑

h=1

(

α
E�

cost,i[E
h,∗
e,i

,E
h,∗
d,i ]

Emax
cost,i

+ {1− α}
Mh

ecc,i

Mmax
ecc,i

)

s.t. Models :(2)−(10), (17)−(20), ∀�

Constraints:(1), (11), (12), (13a), (14), ∀�

Reliability index :R�

i = 1, ∀�

Cost limits :S�

cost,i &B�

cost,i ∈ {0, 1, 2, ...,∞}, ∀�

P2P limits :E�,∗
p2p,i = 0,C�

br,g ∈ {0, 1}, ∀�. (23)

Here, α is the objective balancing variable, i.e., 0 ≤ α ≤ 1.
Fig. 3 shows the functional flow chart of ODSS approach, which
is divided into five modes such as surplus mode (SM), storing Fig. 3. Functional flowchart of on demand supply strategy (ODSS).
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mode (STM), deficit mode (DFM), isolated mode (IM), and grid
mode (GM). In SM, the surplus energy of ith MG is sold to the
grid based on the cost. In STM, the surplus energy would be
stored into the ESS while selling cost is less than the generation
cost and the ESS state-of-charge is less than the maximum value.
In DFM, if (10) is greater than zero, then the ODSS decides to
buy energy from grid or turn ON diesel generator to supply the
deficit energy. In IM, the corresponding MG is disconnected
from the grid, when (9) is greater than zero and (10) is equal to
zero. In GM, the ODSS decides to buy the deficit energy from
grid. Satisfied

B. Consumer Energy Consumption Cost Reduction Strategy

The ODSS supplies the required LPD to consumer or buys the
deficit power from grid while the demand exceeds generation or
sell surplus power to grid while generation exceeds demand.
However, the base line strategy is challenged, if generation
exceeds the demand during off-peak hours and energy storage
system SOC level is less than maximum limits, then the strategy
does not need to sell energy to grid. It can be stored into the ESS
and sell or use during peak hours. If MGs upcoming information
is available/predicted, then the strategy provides better ECC
savings for MG consumer. The proposed CCRS decides E�,∗

p2p,i,

E�,∗
p2p,g , C

�,∗
p2p,i, and C

�,∗
p2p,g using fuzzy-based P2P energy ex-

change algorithm with dynamic pricing, upcoming information
of MGs, and historical data. The upcoming information of MGs,
and historical data. The consumer ECC reduction problem (J2)
can be expressed as:

J2 = min
[E�,∗

p2p,E
h,∗
e,i

,E
h,∗
d,i ]

H−1
∑

h=1

⎛

⎝α
E

�

cost,i

[

E�,∗
p2p, E

h,∗
e,i , E

h,∗
d,i

]

Emax
cost,i

+ {1− α}
Mh

ecc,i

Mmax
ecc,i

⎞

⎠

s.t. Models :(2)−(10), (15), (17)−(22), ∀�

Constraints :(1), (11)−(14), (16), ∀�

Reliability index :Rmin
i ≤ R�

i ≤ Rmax
i , ∀�

Energy index :Imin
ec,i ≤ I�ec,i ≤ Imax

ec,i , ∀�

Cost margin :L ≤ Mh
ecc,i ≤ VB, ∀�

Cost limit :
0 ≤ S

�

cost,i ≤ S
max
cost,i

−B
max
cost,i ≤ −B

�

cost,i ≤ 0
, ∀�

P2P limit :0 ≤ ±E�,∗
p2p ≤ ±Emax

p2p , ∀�

C�

br,i ∈ {0, 1},C�

br,g ∈ {0, 1}, ∀�. (24)

The proposed CCRS aims to reduce E
�

cost,i, maintaining the
MG consumer ECC margin within the threshold limits, i.e.,
VS ≤ M�

ecc,i ≤ M, and maintaining the reliability index within
the limits, i.e., 0.97 ≤ Rh

i ≤ 1. It is observed from (24), that the
consumer ECC of each MG at time slot � may increase/decrease

by deciding E�,∗
p2p,i, E

�,∗
p2p,g , C

�,∗
p2p,i, and C

�,∗
p2p,g . The characteris-

tics of the objective function or optimization model, i.e., J1 and
J2, depends on the objective balancing variable, i.e., 0 ≤ α ≤ 1.
Lower values, i.e., 0 ≤ α < 0.5, for the objective balancing
variable denote the lower consumer energy consumption cost
reduction and higher consumer ECC margin while higher values,
i.e., 0.5 < α ≤ 1, denote the higher consumer energy consump-
tion cost reduction and lower consumer ECC margin. In this
paper, the ODSS and CCRS approach objective functions are
given in (23), and (24), respectively. The developed models, i.e.,
consumer LPD and DGs output power, are non-linear and hence,
the proposed problem formulation is a non-linear programming
problem. The detailed solution steps are given below:

1) Data Preprocessing and Preparation for Simulation

Study: The historical raw data collected from typical MGs and
weather condition data may contain lost and/or missing data
points. Due to missing data points, the prediction models give
inaccurate results. Hence, the collected historical raw data to be
preprocessed to improve prediction accuracy. Here, the missing
data points in the historical raw data is cleaned and replaced by
data imputation.

2) Consumer LPD and DGs Power Prediction Using RVFLN

Approach: The proposed CCRS predicts the ith MG consumer
LPD and DGs power using RVFLN approach for the future time
slot. Then, it estimates MAPE using (3) and checks the error
limit constraints using (12). If (12) is satisfied, then the pro-
posed CCRS uses the predicted values. Otherwise, the proposed
CCRS tunes the network parameters to reduce the error between
predicted and measured values.

3) Estimation of Surplus and Deficit Power: The proposed
CCRS estimates the surplus and deficit power based on the
prediction model results by using (9) and (10), respectively. If
(9) is greater than zero and (10) is equal to zero, then the CCRS
decides to estimate the E�,∗

p2p and C
�,∗
p2p. If (9) is equal to zero

and (10) is greater than zero, then the CCRS decides to utilize
ESS and/or diesel generator energy. Otherwise, the proposed
CCRS decides to buy energy from grid and/or MGs based on
the dynamic pricing.

4) Threshold Limits for Consumer ECC: The threshold lim-
its play a major role to reduce the consumer ECC based on
the dynamic pricing of DGs energy selling/buying cost. The
minimum (Emin,�

cost,i ) and maximum (Emax,�
cost,i ) threshold limits

for consumer ECC of ith MG at time slot � can be expressed as:

E
min,�
cost,i = min

(

1

n

n
∑

k=1

E
h−k
cost,i,E

�

cost,i,
∣

∣S
�

cost,i

∣

∣ ,

B
�

cost,i,C
h
dp

)

.

E
max,�
cost,i = max

(

1

n

n
∑

k=1

E
h−k
cost,i,E

�

cost,i,
∣

∣S
�

cost,i

∣

∣ ,

B
�

cost,i,C
h
dp

)

. (25)

5) Estimation of ECC Margin: The proposed CCRS esti-
mates the MGs consumer I�ec,i and R�

i using (21) and (22),
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Fig. 4. Functional flowchart for energy storage systems charging and discharg-
ing energy control.

respectively. Then the MGs consumer ECC margin is estimated
using the set of rules developed in Section III-C.

6) ESS Charging/Discharging Energy Control: The ESS
lifetime depends on the charge/discharge rate, SOC limits, and
operating temperature [5]. Therefore, a control strategy is essen-
tial to control the ESS charge/discharge rate with proper SOC
limits, which is illustrated in Fig. 4. The ESS reference signal
of ith MG at time slot h can be expressed as:

∣

∣

∣E
h,∗
e,i {c}

∣

∣

∣× Ch
e,i =

⎧

⎪

⎨

⎪

⎩

P �

sr,i, if P �

sr,i > 0&Dh,∗
d,i = 0,

Ph
d,i, if P �

sr,i = 0||Dh,∗
d,i > 0,

0, otherwise.

(26a)

Eh,∗
e,i {d} ×Dh

e,i =

{

P �

df,i, if (13a),
0, otherwise.

(26b)

7) Decide P2P Energy Exchange to Grid and/or MGs: The
fuzzy-based P2P energy exchange algorithm decides E�,∗

p2p and

C
�,∗
p2p, which can be distributed among the grid and/or MGs

through P2P energy exchange aggregator. If E�,∗
p2p ≥ 0, then it

estimates P�,∗
s,i and C

�,∗
s,i . Otherwise, it estimates P�,∗

b,i and C
�,∗
b,i ,

which can be expressed as:

P�,∗
s,i =

P �

sr,i ×UIN�

i × E�,∗
p2p

∑I
i=1 P

�

sr,i ×∆h
;C�,∗

s,i =
1

I
× P�,∗

s,i ×∆h× C
�,∗
p2p.

(27)

P�,∗
b,i =

P �

df,i ×UIN�

i × E�,∗
p2p

∑I
i=1 P

�

df,i ×∆h
;C�,∗

b,i =
1

I
× P�,∗

b,i ×∆h× C
�,∗
p2p.

(28)

Similarly, the P2P energy exchange aggregator estimates the
reference signal for grid selling power and buying power.

8) Consumer LPD Reduction Strategy: The consumer LPD
of ith MG at time slot � is reduced based on the Mh

ecc,i and R�

i .
Here, the objective is to generate consumer LPD reference signal
(P �,∗

ld,i) and maintain the Rh
i and M�

ecc,i within the threshold
limits of ith MG at time slot �. The reference signal of reduced
consumer LPD is given below:

P �,∗
ld,i =

⎧

⎨

⎩

P �

ld,iR
�

i , if
Rmin

i ≤ R�

i ≤ Rmax
i ,

L ≤ Mh
ecc,i ≤ H,

P �

ld,i, otherwise.
(29)

9) Decide Diesel Generator Turned ON Duration: The
diesel generator reference power signal of ith MG at time slot h
can be expressed as:

Eh,∗
d,i ×

(

∆Dh,∗
d,i

)−1

=
(

P �

ld,i ± P �,∗
p2p,i

)

−
(

P �

dg,i + Ph,∗
e,i

)

.

(30)
If Eh,∗

d,i is less than or equal to zero, then set Dh,∗
d,i =Kh,∗

d,i= 0.

Else, the Kh,∗
d,i and Dh,∗

d,i are decided based on the P �

df,i and E�,∗
p2p,

which can be expressed as:

Kh,∗
d,i =

(

P �,∗
ld,i +

E
h,∗
e,i

{c}

∆h

)

−
(

P �

dg,i + Ph,∗
e,i {d}+ P �

b,i

)

ηd,iP r
d,i

.

(31a)

Dh,∗
d,i =

[

(

SOCmax
e,i − SOCh

e,i

)

Se,i + Ph,∗
d,i ∆h

]

ηd,iP r
d,i

. (31b)

10) Evaluation of Objective Function With Error Tolerance:

The (24) is evaluated by varying α with constraints. Here,
α = 0.25 denote that the proposed CCRS give less preference
for MG consumer energy consumption cost reduction and higher
preference for MG consumer ECC margin. The MGs consumer
ECC reduction problem might still be infeasible because some-
times, the specific constraints, i.e., I�ec,i, could not be satisfied
using proposed CCRS based on the predicted values and histori-
cal information. Therefore, we adjust the unsatisfied constraints
in order to overcome such problem, for example, we relax the
constraint, if not be satisfied at time slot �. Here, the I�ec,i is
modified with an error tolerance, which can be expressed as:
{

Imin
ec,i +

(

δec,iI
0
ec,i

)}

≤ I�ec,i ≤
{

Imax
ec,i +

(

δec,iI
0
ec,i

)}

. (32)

11) Performance Metrics for Consumer ECC Reduction:

The total energy consumption cost (Ctot,i) is defined as the
sum of total supplied energy to consumer LPD over a period
and energy consumption cost/kWh, which can be expressed as:

Ctot,i =

H−1
∑

h=1

(

C
�

i E
�

con,i

)

−
{

S
�

cost,i − B
�

cost,i

}

. (33)
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Fig. 5. Considered data for the simulation study (a) and (b) MG data of If,hs , T f,h
pv,i

, and V
f,h
wt,i

and MG data of consumer Pm,h

ld,i
and Ch

dp
.

The performance metrics for consumer ECC savings (Csav,i)
over the ODSS and CCRS can be expressed as:

Csav,i =
(

C
ODSS
tot,i − C

CCRS
tot,i

) (

C
ODSS
tot,i

)−1
× 100. (34)

The main advantages of the proposed EMS for the grid
interconnected multi-microgrids are as follows: a) multiple MG
operations; b) higher reliability of power supply rate; c) higher
savings of energy consumption cost; d) lower diesel generator
usage hours; and e) reduced consumer energy consumption
cost while enabling surplus energy transfer to the grid and/or
MGs through fuzzy-based P2P energy exchange algorithm with
dynamic pricing. In this paper, we consider only the MG system
operators, i.e., residential house operators. Inclusion of other
stakeholders, for example, investors, could be an interesting
aspect that can be explored in the future. The practical outcome
of the proposed EMS for grid interconnected multi-microgrids
is to reduce consumer energy consumption cost while enabling
surplus energy exchange to grid and/or MGs through fuzzy-
based P2P energy exchange algorithm with dynamic pricing.
For example, the MG can be considered as a residential house. If
multiple residential houses are interconnected with the grid, then
the proposed EMS is capable to reduce the energy consumption
cost of each residential house. If multiple residential houses
are interconnected with the grid, then the proposed EMS is
capable to reduce the energy consumption cost of each resi-
dential house. The J1 and J2 are the general version of ODSS
and CCRS approach with an objective. Here, J1 can be any
objective, if the system constraints, reliability index, and cost
limits, are satisfied. Also, J2 can be any objective, if the system
constraints, reliability index, energy index, cost margin, cost

limit, and P2P limits are satisfied. That is, if the MG operator
needs to minimize the consumer energy consumption cost,Jcost

would be substituted for J1 in (24) and J2 in (24), respectively.
The objective functions, i.e., (23) and (24), are formulated as
a nonlinear programming problem, and there are many popular
solvers that can be applied to solve this problem.

V. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed EMS is demonstrated through
the simulation study with real data of MG consumer LPD and
weather data [5], [36]. The grid interconnected multi-microgrid
models are implemented in the MATLAB environment and
the cost reduction problem is solved with built-in tool. Many
parameters affect MG consumer energy consumption cost re-
duction problem, which causes higher energy consumption cost
of each MG at time slot �. Mainly, the weather conditions play
major role for the MG consumer LPD requirements. Hence,
different types of weather conditions are considered to examine
the proposed EMS, i.e., sunny weather (SW), cloudy weather
(CLW), sunny and cloudy weather (SCW), worst weather (WW),
constant weather (CW), to validate the MG consumer energy
consumption cost reduction. To demonstrate the effectiveness
of proposed CCRS, WW and CW conditions are considered. In
CW, If,hs , T f,h

pv,i, and V f,h
wt,i are assumed to have three ranges:

low, normal, and high, which is shown in Fig. 5. From 96 hrs
to 104 hrs, If,hs = 0.25 kW/m2, T f,h

pv,i = 22 ◦C, and V f,h
wt,i = 5

m/sec, from 104 hrs to 112 hrs, If,hs = 0.45 kW/m2, T f,h
pv,i =

25 ◦C, and V f,h
wt,i = 8 m/sec, and from 112 hrs to 120 hrs, If,hs

= 0.75 kW/m2, T f,h
pv,i = 28 ◦C, and V f,h

wt,i = 10 m/sec.
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TABLE I
ENERGY BUYING AND SELLING COST RANGE IN S$/KWH

TABLE II
SIMULATION STUDY SPECIFICATIONS AND PARAMETER SETTINGS

The uncertainty in the weather condition is reflected in the ob-
jective function, i.e., both ODSS (J1) and CCRS (J2) approach.
For example, the reliability indexR�

i constraint of ith MG at time
slot � has been used in both J1 and J2. Equality constraint,
i.e., R�

i = 1, has been used in J1 and inequality constraint,
i.e., Rmin

i ≤ R�

i ≤ Rmax
i , has been used in J2. Due to the

uncertainty in the weather condition, the equality and inequality
constraints might still be infeasible, which results in turning ON

the ith MG diesel generator and/or buying energy from grid. The
ith MG diesel generator energy cost, i.e., from 0.09 S$/kWh to
0.16 S$/kWh, and grid energy cost, i.e., from 0.09 S$/kWh to
0.13 S$/kWh, are given in Table I. The diesel generator and grid
energy cost vary with respect to weather condition. Hence, the
uncertainties in the weather condition would reflect consumer
energy consumption cost of ith MG at time slot �.

A. System Setup and Parameter Specifications of MGs

Fig. 5 shows the real data of MGs considered for the simula-
tion study with different weather conditions. Here, the consumer
LPD inputs, solar PV inputs, and wind turbine inputs are not
shown, i.e., xz

in. Also, dynamic pricing is used for the selling
and buying cost of electricity generation and consumption. The
selling and and buying cost minimum (Min.) and maximum
(Max.) values are shown in Table I. The cost values are given in
Singapore dollar per kWh, i.e., S$/kWh. The specifications and
parameter settings are given in Table II.

Fig. 6 compares the RVFLN approach output with the training,
validation, test, and target data. In the regression plot, the solid
and dotted line indicates the best fit for the RVFLN output and
the training data output. Here, the best fit in the training, testing,
and validations overlap with the solid line. Also, the RVFLN
approach is capable of fitting the relationship between inputs
and outputs of the training data. Moreover, the predicted MG

Fig. 6. Comparison of the network outputs with the training, validation,
testing, and all data outputs.

consumer load power demand tracks the target with the training
data, testing data, and validation data. The MAPE is 2.96%
with respect to the training, testing, and validation data. The
accuracy of the RVFLN approach can be increased by adding
more training information and by tuning the hidden layers and
the learning rate within the network structure.

Fig. 7 compares the first MG predicted consumer LPD, solar
PV output power, and wind turbine output power using RVFLN
approach with measured values. Here, the scope of the paper is
to predict the consumer LPD, solar PV output power, and wind
turbine output power using RVFLN approach for future time
slot. Hence, the output of the RVFLN approach is compared with
the measured data of grid interconnected multi-microgrids. The
predicted MG consumer load power demand MAPE for first
MG is 2.91%, second MG is 2.79%, and third MG is 3.00%.
The accuracy of the predicted consumer LPD depends on total
number of layers for training and testing dataset. The training
and testing dataset total number of layers are 123 and 21 for first
MG, 120 and 20 for second MG, and 123 and 34 for third MG.
In addition, the training and testing dataset mean absolute error
is 2.76% and 3.41% for first MG, 3.67% and 4.38% for second
MG, and 4.04% and 5.25% for third MG.

Fig. 8 shows the simulation results of ODSS approach such
as selling power, DGs power, ESS charging/discharging power,
diesel generator power, and buying power of grid and/or each
MG. Here, the deficit power, solar PV power, wind turbine
power, and the consumer LPD of each MG are not shown.
If deficit power is greater than MG consumer LPD and ESS
state-of-charge is lower, then the ODSS approach should decide
to turn ON the diesel generator or buy energy from grid. In Fig. 8,
the Ph

d,2 is greater than zero and P �

b,2 is equal to zero, which
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Fig. 7. Compares the predicted consumer LPD, solar PV output power, wind turbine output power of MG-1 with measured values.

Fig. 8. ODSS simulation results for α = 0.75 of MG-2: P �

s,2, P �

dg,2
, Ph

e,2{c}, Ph
e,2{d}, Ph

d,2
, and P

�

b,2
.

Fig. 9. CCRS simulation results for α = 0.75 of MG-1: compare the P
m,h

ld,1
, P �,∗

ld,1
, P �

ld,1
, and R�

1
.

indicates that the diesel generator power generation cost is lower
than the energy buying cost from grid.

Fig. 9 shows the simulation results for the proposed CCRS
with α = 0.75, which compare the MG consumers actual LPD,
predicted consumer LPD, reference consumer LPD, and relia-
bility index of MG-3. The proposed CCRS maintains the MG
consumer energy consumption cost within the threshold limits
and the amount of LPD requirements are reduced based on the
consumer energy consumption cost margin. The proposed CCRS
predicts and checks the MG consumer LPD and the constraints.
If constraints are satisfied, then the proposed CCRS reduces the
MG consumer energy consumption cost using the fuzzy-based
P2P energy exchange algorithm with dynamic pricing, which

maintain the consumer energy consumption cost margin within
the limits.

Fig. 10 shows the simulation results of the MG consumer
energy consumption cost for ODSS, CCRS, and the conven-
tional approach, i.e., non-linear programming, with different
objective balancing variable (α = 0.25 and α = 0.75). In the
ODSS approach (α = 0.25 and i = 1), the total energy con-
sumption cost considering SW, CLW, SCW, WW, and CW are
92.5S$, 89.13S$, 90.83S$, 97.81S$, and 91.81S$, respectively.
In the CCRS approach (α = 0.25 and i = 1), the total energy
consumption cost for SW, CLW, SCW, WW, and CW are
87.11S$, 94.01S$, 95.35S$, 103.91S$, and 79.7S$, respectively.
In the conventional approach (α = 0.25 and i = 1), the total
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TABLE III
SUMMARY OF THE SIMULATION STUDY FOR THE MG CONSUMER ENERGY CONSUMPTION COST REDUCTION

Fig. 10. Simulation results of the MG consumer energy consumption cost
for ODSS (base line strategy), CCRS (proposed strategy), and conventional
approach (non-linear programming) with α = 0.25 (left) and α = 0.75 (right).

energy consumption cost for SW, CLW, SCW, WW, and CW
are 92.5S$, 93.4S$, 95.88S$, 103.89S$, and 89.19S$, respec-
tively. Here, the lower values of objective balancing variable
provide higher preference to consumer energy consumption
cost margin and lower preference to MG consumer energy con-
sumption cost reduction. Hence, the proposed CCRS approach
gives higher preference to ECC margin and lower preference to

MG consumer energy consumption cost reduction, i.e., CLW
are 89.13S$, 94.01S$, 93.4S$ for (α = 0.25 and i = 1), re-
spectively. In the ODSS approach (α = 0.25 and i = 3), the
total energy consumption cost for SW, CLW, SCW, WW, and
CW are 101.28S$, 77.61S$, 98.28S$, 94.0S$, and 83.97S$,
respectively. In the CCRS approach (α = 0.25 and i = 3), the
total energy consumption cost for SW, CLW, SCW, WW, and
CW are 106.9S$, 71.21S$, 94.22S$, 99.36S$, and 79.88S$,
respectively. In the conventional approach (α = 0.25 and i = 3),
the total energy consumption cost for SW, CLW, SCW,WW, and
CW are 104.09S$, 76.64S$, 98.18S$, 94.75S$, and 83.56S$,
respectively. Hence, the proposed CCRS approach gives higher
preference to MG consumer energy consumption cost reduction
and lower preference to energy consumption cost margin, i.e.,
SCW are 98.28S$, 94.22S$, and 98.18S$ for (α = 0.75 and
i = 3), respectively. Similarly, the MG consumer energy con-
sumption cost for ODSS, CCRS, and the conventional approach
with α = {0.25, 0.75} and i = {1, 2, 3} are given in Table III.
The proposed CCRS approach lowers the MG consumer ECC
while maintaining the energy consumption margin within the
threshold limit. As observed from Fig. 10, the proposed CCRS
approach reduces energy consumption cost of the MG consumer,
which is lower than both the ODSS and conventional approach.

Fig. 11 shows the simulation results of the MG consumer
energy consumption cost based on the day-ahead prediction for
the ODSS, CCRS, and conventional approach with α = 0.25
and α = 0.75. Here, the MG consumer energy consumption
cost is shown based on the day-ahead prediction. The pro-
posed EMS, i.e., both ODSS and CCRS, are illustrated with
the conventional approach as shown in Fig. 11. In the ODSS
approach, the total energy consumption cost for SW, CLW, SCW,
WW, and CW are 113.36S$, 86.86S$, 109.99S$, 105.21S$,
and 93.98S$, respectively (α = 0.75 and i = 3). In the CCRS
approach, the total energy consumption cost for SW, CLW, SCW,
WW, and CW are 119.85S$, 74.71S$, 96.91S$, 101.69S$, and
82.16S$, respectively (α = 0.75 and i = 3). In the conventional
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Fig. 11. Simulation results of the MG consumer energy consumption cost
based on the day-ahead prediction for ODSS (base line strategy), CCRS (pro-
posed strategy), and conventional approach (non-linear programming) with
α = 0.25 (left) and α = 0.75 (right).

approach, the total energy consumption cost for SW, CLW, SCW,
WW, and CW are 117.77S$, 85.63S$, 110.69S$, 106.55S$, and
93.35S$, respectively (α = 0.75 and i = 3). As observed from
Fig. 11, the CCRS approach energy consumption cost is lower
than the ODSS and conventional approach. From Fig. 10 and
Fig. 11, the CCRS approach lowers the MG consumer energy
consumption cost while maintaining the energy consumption
cost margin within the threshold limit.

The summary of the simulation study is shown in Table III.
To validate the proposed EMS, the simulation study is carried
out with α = {0, 0.25, 0.5, 0.75, 1}. Here, the summary of the
simulation study is shown with α = 0.25 and α = 0.75. In the
ODSS approach, the total energy consumption of the first MG on
SW, CLW, SCW, WW, and CW are 990.42 kWh, 1107.48 kWh,
982.09 kWh, 1194.1 kWh, and 1001.19 kWh with α = 0.25,
respectively. The first MG consumer ECC margin varies from
H to VB for ODSS with α = 0.25. In the CCRS approach,
the total energy consumption of first MG on SW, CLW, SCW,
WW, and CW are 959.87 kWh, 1123.11 kWh, 978.41 kWh,
1154.69 kWh, and 920.23 kWh with α = 0.25, respectively. In
the conventional approach, the total energy consumption of the
first MG on SW, CLW, SCW, WW, and CW are 1004.4 kWh
1137.6 kWh 1009.66 kWh 1209.63 kWh, and 999.14 kWh
with α = 0.25, respectively. In the CCRS approach, the total
energy consumption of the first MG is lower than the ODSS
and conventional approach with α = 0.25. Here, the proposed
CCRS approach reduces the consumer ECC while maintaining

the cost margin within threshold limits. Similarly, the second
and third MG total energy consumption on different weather
conditions are shown in Table III. At α = 0.75 for the SW
condition, the MG total energy consumptions are 884.92 kWh,
880.11 kWh, and 1008.2 kWh for the ODSS approach. Also,
each MG consumer ECC margin for ODSS, CCRS, conventional
approach on different weather conditions are shown in Table III.
The first MG consumer ECC margin varies from L to B for
the ODSS approach with α = 0.75, where the lower values
denote higher ECC margin and higher values denote lower ECC
margin. In Table III, the negative sign indicates that the proposed
CCRS supplied extra energy to maintain the MG consumer
ECC margin, which is compared with the ODSS approach. In
first MG, the total energy savings with α = 0.25 on SW, CLW,
SCW, WW, and CW are 5.83%, −5.48%, −4.98%, −6.24%,
and 13.19%, respectively. The first MG consumer ECC margin
for the proposed CCRS lies from S to B with α = 0.75, which
indicates that the proposed CCRS maintains the MG consumer
ECC margin within the threshold limits. The total energy savings
of the first MG with α = 0.75 on SW, CLW, SCW, WW, and
CW are 13.45% −1.74% 3.52% 10.34% 13.12%, respectively.
The proposed CCRS is capable of lowering MG consumer
ECC up to 14.13% while maintaining the MG consumer energy
consumption margin within the threshold limits.

VI. CONCLUSION

This paper designs and develops an EMS to reduce con-
sumer ECC while maintaining consumers ECC margin within
the threshold limits by deciding the surplus energy exchange
to grid and/or interconnected multi-microgrids. The proposed
EMS relies on fuzzy-based P2P energy exchange algorithm
with dynamic pricing. In this context, RVFLN approach has
been used to predict the consumer LPD and DGs behaviors
for future time slot. Furthermore, ESS charging/discharging
energy control and diesel generator turned ON strategies has been
developed based on the MGs deficit power. Also, consumer LPD
reduction strategy has been developed based on the consumer
ECC margin and energy consumption index. Then, an EMS
has been implemented that includes both ODSS, which was
the baseline strategy, and CCRS, which was the MG consumer
energy consumption cost reduction strategy based on the future
time slot values. The developed ODSS supplies the required LPD
and saves consumer ECC based on the actual information. The
proposed CCRS is capable of lowering MG consumer ECC up to
14.13% with MGs prediction models and surplus energy transfer
to grid and/or MGs through fuzzy-based P2P energy exchange
algorithm with dynamic pricing and concurrently controlling
ESS energy as well as reducing diesel generator operating
hours.
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