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Abstract Recently, Microgrids (MGs) have received great 

attention for solving power system problems, due to their low 

environmental effects and their economic benefits. This paper 

proposes a new application of an effective metaheuristic 

optimization method, namely, Honey Badger Algorithm (HBA), 

to solve energy management for optimal dispatch of the grid-

connected MG incorporating Demand Response programs 

(DRP). Honey badger algorithm is used to solve an incentive 

DRP, with the aim of minimizing the total cost, which includes 

conventional generators fuel cost and the cost of power 

transaction with the main grid considering the load demand. In 

this paper, two case studies are conducted using HBA and 

simulation results are compared with those obtained by other 

algorithms (particle swarm optimization and JAYA algorithm). 

First case consists of three diesel generators, a PV generator and 

a wind generator. To prove the scalability of the HBA, the second 

case, which is much larger, is tested. Simulation results for both 

case studies obtained by PSO, JAYA, and HBA are deeply 

discussed. The results show the HBA's effectiveness in solving 

the energy management with DR problem for MG compared with 

other well-known optimization techniques.  

Key words: Demand Response, Energy Management, 

Microgrid, Incentive, optimization, Honey badger 

algorithm) 
 

1. Introduction 

 
Microgrids (MGs) consist of different types of Distributed 

Generation (DG), controllable loads, and Energy Storage 

Systems (ESS) sited near the places of consumption [1]. 

The generation units in MGs can be either renewable 

energy sources (RES) such as wind power and solar PV 

power; or conventional generation sources as diesel 

generation or thermal generation. 

 Nowadays, generation from RES has become preferable 

in MGs due to cost and environmental benefits over the 

generation from conventional sources [2]. Microgrid 

Energy Management (EM) has received great attention in 

research for optimal operation of MGs. EM involves 

maximization or minimization of one or more objective 

functions such as maximization of the profit or 

minimization of the total cost. 

However, the peak load hours are only a couple of hours 

daily, the peak to average ratio (PAR) of demand in 

electric power systems is high[3]; in order to supply the 

peak loads, a high increase in the investment should be 

made, which results in an increase in the electricity cost. 

To solve this challenge, demand-side management 

(DSM) should be considered [4].  

DR  can be further classified mainly into two types: first 

price-based DR (PDR), the consumers where the 

electricity prices are changed at different times; for 

example, high prices at peak, medium for off-peaks, and 

low prices for low-peak periods; and second incentive-

based DR (IDR) get an incentive awards for the change 

in their consumption [5]. 

In [6],  DR and Optimal power flow in combined heat 

and power (CHP) system have been introduced in 

Microgrid with energy storage system, using a 

combination of hybrid augmented weighted ε-constraint 

technique and lexicographic optimization. In [7], a PDR 

has been discussed to maximize the MG profit for fixed 

and dynamic pricing strategies, while the optimization 

problem has been solved using PSO. An IDR program 

has been proposed to solve a multi-objective problem to 

reduce the cost and environmental effect using an 

advanced interactive multi-dimensional modelling 

method in [8]. 

In [9], a multi-agent algorithm with Distributed 

Constraint Optimization Problems has been introduced to 

solve the economic dispatch and demand response to 

maximize the customer benefits and minimize generation 

cost. In addition, an IDR program has been used to 

minimize energy cost and ensure customer benefits using 

the technique of weighted sum and the fuzzy satisfying 

method. In [10], the dynamic economic dispatch using 

Model Predictive control, considering the DR and 

environmental emission, has been addressed. In [11] PSO 

technique has been applied to manage the MG resources 

and DR to minimize the operation cost for the MG 

operator. 

The objective of this paper is to solve energy 

management problem for Microgrid with an incentive 

Demand response program using a recently developed 

optimization algorithm, called Honey badger algorithm. 

To show the robustness of the proposed energy 

management algorithm, HBA results are compared with 

those obtained by other well-known algorithms; PSO and 

JAYA. 

2.  Mathematical Model for Grid-connected    

Microgrid 
The structure of grid-connected MG in this paper is 

shown in Fig. 1. It consists of renewable sources such as 
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Solar PV Power generators and Wind Turbine (WT) 

generators, conventional generators, and customers with 

DR. 

A. Modelling of WT  

Wind turbine output power depends on the wind speed, air 
density,  rotor swept area and converter efficiency, where 
the wind speed for a specific height of tower is calculated 
as[12] : 

vhubt
= vreft

(
hhub

href

)
β

 (1) 

Where, vhubt
 is the hourly speed of the wind at the desired 

height hhub; vreft
 is the wind speed (hourly) at the 

reference height href and β is the power law 

exponent ,which usually is in the range between  
1

4
  and  

  
1

7
 . In this work it is used as 

1

7
 . 

The hourly wind power is calculated as : 

Pwt
= 0.5nwpairCpAvhubt

                                 (2) 

where, nw is the wind generator efficiency,  pair air 
density, Cp is the power coefficient of the turbine, A  swept 

area by the rotor. 

B.  Solar power modeling 

For a given area, the hourly output power from the solar 
PV generator is given as: 

Pst
= ηpvAcIPvt

                                 (3) 

where, ηpv is the efficiency of the solar PV generator, 

which is a function of the incident solar irradiation on the 
PV array IPvt

  (kW h/m2), and the ambient temperature 

and Ac  is the PV array area [13]. 

C. Grid-connected Microgrid 

In this work, it is assumed that there is a power transaction 

between the MG and the main grid; hence power can either 

be sold from the main grid or transferred to it. Let power  

transferred at any time between MG and main grid as 𝐏𝐫𝐭
, 

Locational Marginal Prices (LMP's) (given as 𝛄𝐭)[14] are 

used for purchasing the power between MG and the main 

grid. Hence, the cost for power transaction (𝐂𝐫(𝐏𝐫𝐭
 )) is 

expressed as in Eq. (4). 

 

 
Fig. 1 Microgrid Structure with demand response model 

 

Cr(Prt
 ) = {

γt × Prt
                           Prt

> 0

0                                     Prt
= 0

−γt × Prt
                       Prt

< 0
} ( 4) 

 

D. Demand response model: 

If we donate the cost that customer incurred as 𝐶(θ, x); 

where θ is customer type and x is the reduction of 

customer consumption (MW), the customer benefit can 

be expressed as: 

F1(θ, y, x) = y − C(θ, x) (5) 

Where y is the incentive that customers receive for their 

reduction. Hence, the customer will participate in DR 

program only in the case of F1 ≥ 0. Also, the benefit of 

the MG is given as: 

F2(θ, λ) = λx − y               (6) 

Where λ is the cost of power interruption from a 

particular customer, it is known as power interruptibility, 

and it can be calculated from optimal power flow 

analysis [15]. 

 

E. Customer cost function: 

The mathematical formulation for the cost function 

(C(θ, x)) for the customer who participated in DRP can be 

calculated as: 

C(θ, x) = k1x2 + k2x − k2xθ ( (7) 

where: 

 θ  is customer type; its value varies between 0 and  1 

that the customer with a lower willing has this value 

as 0 and the higher willing customer has a value of  

1. 

 k1 , and k2 are cost coefficients. 

Contract formulation for all customers is given in [15]: 

thus, if we donate the customer (j) payment as yj so that 

customer benefit can be expressed as:  

Uj = yj − (k1xj
2 + k2xj − k2xjθ),for j 

=1,2,…J   

(8) 

 

Moreover, MG benefit is calculated as: 

U0 = ∑ λjxj − yj                 

J

j=1

 
(9) 

 

F. Objective function: 

1. First objective function  

First objective function in the studied optimization 

procedure for energy management in MG connected to 

the main grid is the minimization of conventional 

generators’ fuel cost and the reduction of the cost for 

power transaction between MG and the main grid and is 

given as: 

min f1(x) = min ∑ ∑ Ci(Pit
 )

I

i=1

T

t=1

+ ∑ Cr(Prt
 )

T

t=1

                   

(10) 

 

 

2. Second objective function  

As aforementioned, the MG benefit is calculated by (9). 

The objective is the maximizing the expected MG 

benefits as follows: 

max f2(x) = max ∑ ∑ λjxj − yj 

I

i=1

T

t=1

                   
(11) 

 

 

Therefore, the MG operator can get a profit in the case of 

selecting not to supply power to certain customers or 

paying incentive payments for the customer as in (11). 
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Constraints: 

∑ Pit
+ Pwt

+ Pst

I

i=1

+ Prt
= Dt − ∑ xj,t.

J

j=1

                   
(12) 

 

Pimin
≤ Pit

≤ Pimax
                   (13) 

−DRi ≤ Pit+1
− Pit

≤ URi (14) 

0 ≤ Pst
≤ Pstmax

 (15) 

0 ≤ Pwt
≤ Pwtmax

 (16) 

−Prmax
≤ Pit

≤ Prmax
                  

(17) 

where: 

Dt  (MW) is the total demand at any time t. 

xj,t is the value of power curtailed for customer j at time t. 

Pimin
 and Pimax

 are the minimum and maximum power 

generated from ant generator I, respectively. 

Pstmax
 is the forecasted maximum power from Solar PV 

generator at any time t 

Pwtmax
 is the maximum forecasted wind generator power at 

any time t. 

Prmax
 is the maximum permissible power to be transferred 

between main grid and MG. 

URi  and DRi are the maximum ramp up and ramp down 

rates for generator I. 

T and I are the dispatch interval and the number of 

conventional generators, respectively. 

Eq. (12) describes the power balance constraint to ensure 

that the total production and power transferred from or to 

the main grid at any time t will equal the total demand. 

 Constraint (13) is the limits of any conventional generator 

I to ensure the generation limits are not exceeded, while 

constraint (14) is ramping up and down rate limits to 

ensure not to violate those rates. 

Eqs. (15) and (16) represent the constraints of the 

maximum and minimum generation limits of  WT 

generator and solar  PV generation, respectively. Eq.(17) 

represents the transacted  power constraint, which limits 

the power transacted between the MG and the utility  grid 

not to exceed the maximum limit Prmax
. 

The fuel cost for conventional generators (Ci(Pit
 ))is 

represented by quadratic Model as follows: 

Ci(Pit
 ) = aip

2
it

+ biPit
 (18) 

 

Where ai and bi are the cost coefficients of fuel for 

conventional generator i. 

Demand response constraints: 

∑ yj,t − (k1xj,t
2 + k2xj.t − k2xj,tθ)

T

t=1

≥ 0 
(19) 

 

∑ yj,t − (k1xj,t
2 + k2xj,t − k2xj,tθ

T

t=1

)

≥ ∑ yj−1,t − (k1xj−1,t
2

T

t=1

+ k2xj−1,t − k2xj−1,tθ)  

For j=2,3,…., J 

(20) 

 

∑ ∑ yj,t ≤ UB

J

j=1

T

t=1

 (21) 

∑ xj,t ≤ CMj

J

t=1

 ( 22) 

Where UB is the upper limit for MG budget limit and 

CMj  is the maximum permissible daily power 

curtailment for customer j. 

The demand management contract formulations in (8) are 

extended for the whole interval 24 hours (one day) 

instead of only one hour, which means more practical 

economical. Constraint in (19) is to ensure that the 

customer gets a total incentive for all power curtailed to 

exceed the cost of interruption. Also, the customer should 

get a greater incentive if he/she increases his/her 

curtailment (constraint in (20)). The total MG budget 

limit constraint is described in (21) to ensure the daily 

budget is lower than the limit. Eq ( 22) is to ensure the 

total curtailment of any customer j is within the 

permissible limits.  

The mathematical model of the objective function is 

given as:  

min w [∑ ∑ Ci(Pit
 )

I

i=1

T

t=1

+ ∑ Cr(Prt
 )

T

t=1

    ] + (1

− w)  [∑ ∑ λjxj − yj 

I

i=1

T

t=1

]      

( 23) 

 

where w is the weighting factor and the following 

equation must be satisfied: 

w + (1 − w) = 1 ( 24) 

3. Honey Badger Algorithm 

 
This algorithm is one of the recent population-based 

metaheuristic optimization techniques that have better 

ability in exploration and exploitation for global optima 

in search space[16]. HBA  is proposed in  2021 in [17]. It 

is inspired by the foraging behaviour of honey badger. 

Honey badger either uses smelling to approximate prey 

location and then start the digging or follows a guide bird 

to directly locate their food sources. 

In the first step, like several recent optimization 

algorithms, the optimization process of HBA is started by 

generating a random population in the dimensional of 

search space for the optimization problem; according to 

the number of variables and population size random 

initialization for solutions, they are described as: 

Xi = lbi + r1(ubi − lbi)  (25) 

Where,  Xi is the ith  position (or candidate solution) for a 

honey badger in a population N; ubi and lbi are the upper 

and lower bands for the variables in the search domain; 

and  r1 is a random number between 0 and 1. 

The second step includes defining the intensity (I), and it 

is related to the concentration and the distance between 

ith solution (prey) and the honey badger; the motion will 

be fast if  Ii smell intensity is high; the intensity (I) is 

defined by (26) based on the inverse square low. 

Ii = r2 ×
Si

4πdi
2  

Si = (xi − xi+1)2 

di = (xprey − xi) 

(26) 
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where, r2is a random generated number in a range of [0,1]; 

S is the concentration strength(location of prey); d is the 

distance between i
th 

badger and prey. 

For each iteration, the density factor (α ) is updated, and its 

value is decreased with iterations to decrease the 

randomization. Eq.( 27) describes the updating of α. 

α = C × exp (
−t

T
)  

( 27) 

 

Where C is a constant ≥ 1; t is the current iteration 

number; T is the maximum number of iterations. This is 

followed by updating the agent's position, which consists 

of two parts named digging phase or honey phase, as 

described in the following steps:  

 Digging phase: in this phase, for each iteration, the 

position is updated similar to the motion of 

Cardioid shape as : 

Xi_new(k) = Xprey + F × β × I × Xprey  + F × r3

× α × di(k)
× |cos(2πr4)
× [1 − cos (2πr5)]|  

(28) 

 

where, Xprey is the pest position (global best) founded over 

the search process; β is constant ≥ 1, which describe the 

ability for a badger to get its prey; r3, r4,  and  r5are three 

randomly generated numbers in the range [0, 1]. F is a flag 

to control the direction of the search and it is determined 

as in 

( 29). 

F = {
1                             if r6 ≤ 0.5

−1                                         else
  

And r6 is a random generated number between 0 

and 1. 

( 29) 

 

 Honey phase: in this phase, the badger follows a 

bird as a guide to reach his food source; this is 

simulated as in ( 30). 

Xi_new(k) = Xprey + F × r7 × α × di ( 30) 

It is obvious that the honey badger starts to search near the 

prey Xprey  or the best solution founded so far and based 

on the distance between the prey and the badger. 

4.  Results and discussion 
Two different cases are used to validate the effectiveness 

of the HBA for solving DR problem in grid-connected 

MG. The first case study (Case study 1) consists of one 

wind generator, one Solar PV generator, three 

conventional generation units (diesel), and three residential 

customers with DRP and to validate the scalability of the 

algorithm, it is tested for larger MG; case study 2 which 

consists of aggregated Model for solar PV and wind and 

generators This study is considered for one day (24 h). 

Conventional generators parameters (cost-coefficients, 

maximum and minimum generation limits, ramp up and 

down rates) are given in Table I and Table II for the two 

cases. values of power interruptibility for each hour (λi,t ) 

and hourly total initial MG demand for case 1 are used in 

[8]; while initial load data and values of power 

interruptibility for case 2 have been used in [8]. It is 

assumed that all customers have the same hourly power 

interruptibility. The solar PV, wind hourly data for two 

cases are given in Table III,   

Table IV detailes Customer data (customer type, cost 

function coefficients, and daily power curtailment 

maximum limit). The MG daily budget (UB) equals to 

$ 500 and $ 15000 for the first and second case 

respectively.Initial load data and values of power 

interruptibility  for case 2 have been used in [8]. 

The results of the studied two cases obtained by different 

optimization techniques, PSO, JAYA and HBA, are 

explained in the following section. 

 
Table I  Conventional generators data (Case study 1). 

i ai($/kW2h) 
bi($/kW 
h) 

Pi,min 
(kW) 

Pi,max(KW) 
DRi 
(KW/h) 

URi 
(KW/h) 

1 0.06 0.5 0 4 3 3 

2 0.03 0.25 0 6 5 5 

3 0.04 0.3 0 9 8 8 

 

Table II seven conventional generators units data  (Case study 

2). 

i ai 

($/MW2h) 

bi 

($/MWh) 

Pi,min 

(MW) 

Pi,max 

(MW) 

DRi 

(MW/h) 

URi 

(MW/h) 

1 0.00043 21.6 30 370 200 200 

2 0.00063 21.05 35 360 200 200 

3 0.000394 20.81 33 240 150 150 

4 0.0007 23.9 30 200 100 100 

5 0.00079 21.62 33 143 80 80 

6 0.00056 17.87 37 60 30 30 

7 0.00211 16.51 20 30 30 30 

8 0.0048 23.23 27 120 60 60 

9 0.10908 19.58 20 80 40 40 

10 0.00951 22.54 25 55 30 30 

 
Table III  Solar and wind power data (case study 1 and 2) 

Time (h) Solar  

(Case1) 
(KW) 

Wind 

(case1) 
(KW) 

Solar  
(Case1) 
(KW) 

Wind 
(Case2) 
(MW) 

t=1 0 7.56 113.44 0 

t=2 0 7.5 112.55 0 

t=3 0 8.25 123.76 0 

t=4 0 8.48 127.21 0 

t=5 0 8.48 127.33 0 

t=6 0 9.42 141.44 0 

t=7 0 9.82 147.39 0 

t=8 7.99 10.35 155.38 79.94 

t=9 10.56 10.88 168.33 105.69 

t=10 13.61 11.01 165.28 136.18 

t=11 14.97 10.94 164.23 149.75 

t=12 15 10.68 160.32 150 

t=13 14.78 10.42 156.31 147.89 

t=14 14.59 10.15 152.3 145.92 

t=15 13.56 9.67 145.05 135.65 

t=16 11.83 8.98 134.8 118.36 

t=17 10.17 8.37 125.64 101.71 

t=18 7.66 7.61 114.2 77.68 

t=19 0 6.7 100.63 0 

t=20 0 5.72 85.95 0 

t=21 0 7.21 108.26 0 

t=22 0 7.75 116.38 0 

t=23 0 7.88 118.33 0 

t=24 0 7.69 115.38 0 

 
Table IV customer type coefficient, Customers' cost 
function coefficients,  and daily curtailment  limit 

Case 1 

j θ K1,j K2,j CMj(KW) 

1 0 1.079 1.32 30 

2 0.45 1.378 1.36 35 

3 0.9 1.847 1.64 40 

Case2 

J 𝜽 K1,j K2,j 𝐶𝑀𝑗(MW) 

1 0 1.847 11.64 180 

2 0.14 1.378 11.63 230 
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3 0.26 1.079 11.32 310 

4 0.37 0.9124 11.5 390 

5 0.55 0.8794 11.21 440 

6 0.84 1.378 11.63 530 

7 1 1.5231 11.5 600 

Furthermore, 20 indipendent trial runs were 

performed for each algorithm; using HBA technique 

the convergence characteristic curve of objective 

function is shown in Fig. 2.  the simulation results for all 

studied technique are shown in Table V, the results 

demonstrate the efficacy of the HBA technique with the 

best of the objective function cost value when compared to 

other techniques; Using HBA, the optimal power 

generated from the three conventional generators (case1) is 

shown in, Fig. 3. The optimal power generated from: Solar 

PV generator, wind generator, and power transacted 

between main grid and MG is shown in Fig. 4. The 

optimal power curtailed from the three customers, and the 

incentive they get is shown in Fig. 5. 

Total power curtailed over the day for each customer for 

the best case  using PSO, JAYA, and HBA are  detailed in 

Table VI  for case 1 and Table VII for case 2. A 

comparison between the total cost for the three 

optimization techniques is shown in Table VIII and Table 

IX. 

Table V Comparison of the EM problem for Case 1 

 Total operating cost ($)  

Technique   Worst Best Mean SD 

PSO [18] 807.35 477.4 658.49 90.47 
JAYA [19] 790.67 647.49 711.32 41.57 
HBA 672.81 460.39 545.31 40.11 

 
Fig. 2 Convergence characteristic curve  of  HBA  for Case 1. 

 

Looking closely at the simulation results for case study 1, 

the results in Table VI shows that however the total power 

curtailment is slightly lower in the case of HBA than other 

techniques, the total incentive payment is much lower. 

Also, from Table VIII, it is shown that the total power 

transferred from the grid is much lower in the case of 

HBA. Also, the total cost is the lowest in this case. For 

case study 2, the results in Table VII indicates that the total 

power curtailment for all customers is higher in case of 

HBA with total incentive much lower than the PSO and 

JAYA cases. Also, it is clear from Table IX that using 

HBA technique gives the lower total cost over the other 

techniques. 

 
Fig. 3 Optimal output power for conventional generation units 

obtained by the studied optimization technique(case1). 

 
Fig. 4 Optimal output power for solar, wind and grid power 

transaction (case study 1).  

 
Fig. 5 Optimal power curtailed and incentive paid to customers 

obtained by the studied optimization techniques. 

 

Table VI Total energy curtailed and total incentive received 

(Case 1) 
No PSO JAYA HBA 

j 
saving 
(kWh) 

Incentive 
($) 

saving 
(kWh) 

Incentive 
($) 

saving 
(kWh) 

Incentive 
($) 

1 25.02 69.18 27.21 77.78 25.18 61.62 
2 33.20 82.23 32.599 88.05 32.49 77.71 
3 35.38 84.56 39.15 111.72 35.03 85.42 

Tot 93.6 235.97 98.96 277.56 92.70 224.77 

Table VII Total energy curtailed and total incentive 

received(Case2)  

No PSO JAYA HBA 

j 
saving 

(MWh) 

Incentive 

($) 

saving 

(MWh 

Incentive 

($) 

saving 

(MWh) 

Incentive 

($) 

1 179.24 8961.90 179.9 8994.90 179.92 8683.9 

2 229.24 11461.8 226 11333.90 229.87 12300.5 

3 307.52 15376.0 307.52 15439.70 309.34 13323.7 

4 389.21 19460.70 389.21 19438.90 389.9 19328.05 

5 439.55 21977.70 439.55 21888.80 439.97 20927.8 

6 529.48 26474.10 529.48 26470.80 528.93 21882.8 

7 599.94 29996.90 599.94 29964.40 598.57 29352.4 

Total 2674.2 133709.0 2670.6 133531.3 2676.5 125799.2 

Iteration 
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Time(h)
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Table VIII cost breakdown for the three optimization techniques 

(case study 1) 
 PSO JAYA HBA 

Total Conventional Power  (KW) 421.7591 390.0616 429.557 

Total Conventional Power Cost ($) 246.52 224.2431 254.1028 

Total Transferred Power (KW) -0.83 28.86 -3.36078 

Total transferred power Cost ($) -4.56305 140.2848 -18.4843 

Total Customer Incentive ($) 235.439 282.9575 224.7758 

Total Cost ($) 477.40 647.4854 460.3943 

 
Table IX  cost breakdown for the three optimization techniques 

(case study2) 
 PSO JAYA HBA 

Total Conventional Power  (MW) 33257.42 30330.53 30032.43 
Total Conventional Power Cost 
($) 

674639.9 665480 658960 

Total Transferred Power (MW) 419 3229.667 3642.39 
Total Transferred Power  Cost ($) 3142.5 23899.536 26317.925 
Total Customer Incentive ($) 133709.00 133531.30 125799.2 
Total Cost ($) 812491.4 822910.84 811077.1 

 

5. Conclusion  
In this work, the energy management problem for grid-

connected mode MG with DRP has been investigated. The 

main objective of this paper is to get the minimum 

conventional generation cost, minimize the transaction 

cost, and maximize the MG operator benefit. For an 

interval of 24h (one day), different optimization techniques 

(PSO, JAYA and HBA) have been applied to solve the 

energy management problem in MG to get an optimal 

operation at both sides, generation and demand side. Based 

on the results obtained by HBA showed best performance 

in reduction of operating cost, with a reduction in energy 

consumption about 93 KWh for the first case and 2676 

MWh for the second case. The results for two case studies 

have been discussed for the three studied optimization 

techniques, which prove that the HBA gives the lowest 

total cost. 
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