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Energy Management System With PV Power
Forecast to Optimally Charge EVs

at the Workplace
Dennis van der Meer , Student Member, IEEE, Gautham Ram Chandra Mouli, Student Member, IEEE,

Germán Morales-España Mouli, Member, IEEE, Laura Ramirez Elizondo, Member, IEEE,
and Pavol Bauer , Senior Member, IEEE

Abstract—This paper presents the design of an energy
management system (EMS) capable of forecasting photo-
voltaic (PV) power production and optimizing power flows
between PV system, grid, and battery electric vehicles
(BEVs) at the workplace. The aim is to minimize charging
cost while reducing energy demand from the grid by in-
creasing PV self-consumption and consequently increasing
sustainability of the BEV fleet. The developed EMS consists
of two components: An autoregressive integrated moving
average model to predict PV power production and a mixed-
integer linear programming framework that optimally allo-
cates power to minimize charging cost. The results show
that the developed EMS is able to reduce charging cost sig-
nificantly, while increasing PV self-consumption and reduc-
ing energy consumption from the grid. Furthermore, during
a case study analogous to one repeatedly considered in the
literature, i.e., dynamic purchase tariff and dynamic feed-
in tariff, the EMS reduces charging cost by 118.44% and
427.45% in case of one and two charging points, respec-
tively, when compared to an uncontrolled charging policy.

Index Terms—Autoregressive integrated moving aver-
age (ARIMA), electric vehicles, energy management system
(EMS), forecast, mixed-integer linear programming (MILP),
solar carport.

NOMENCLATURE

Italic letters are used for denoting variables and indexes,
whereas regular letters denote parameters and sets.
A. Mixed-Integer Linear Programming

1) Indexes

c Charging points, running from 1 to C.
i Electric vehicle, running from 1 to N.
t Time, running from 1 to T min.
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2) System parameters

ηinv Inverter efficiency [p.u.].
ηMPPT DC–DC converter efficiency [p.u.].
λG2Vt

Marginal purchase price of utility energy during time
period t [€ /kWh].

λFITt
Feed-in tariff during time period t [€/kWh].

λPVt
Marginal price of PV energy during time period t

[€/kWh].
P+ , max

gridc
Maximum power transfer from the grid to the cth
charging point [kW].

P−, max
gridc

Maximum power transfer to the grid from the cth
charging point [kW].

Pmax
PVt

Maximum PV power during time period t [kW].
3) Electric vehicle parameters

ηch, ηdis EV charging and discharging efficiency, respec-
tively [p.u.].

λdeg Degradation cost of BEV’s battery [€/kWh].
Earrival

i,c Energy content of the ith BEV at the cth charging
point upon arrival [kWh].

Edeparture
i,c Energy content of the ith BEV at the cth charging

point upon departure [kWh].
Emin

i,c , Emax
i,c Minimum and maximum energy content of the ith

BEV at the cth charging point for all time periods
t, respectively. [kWh].

Nmax Maximum initiations of charging and discharging
process [p.u.].

Pmax
chi

, Pmax
V2Gi

Maximum power transfer to and from the ith BEV,
respectively [kW].

tarrivali Arrival time of the ith BEV [h].
tdeparturei

Departure time of the ith BEV [h].
4) Continuous and positive decision variables

Ctot Total cost incurred from the charging/discharging
process [€].

Ei,c,t Energy content of the battery of the ith BEV at the
cth charging point during time period t [kWh].

PV2Gi , c , t
Power transfer from the ith BEV at the cth charg-
ing point during time period t [kW].

PG2Vi , c , t
Power transfer to the ith BEV at the cth charging
point during time period t [kW].

PEVi , c , t
Total power transfer to the ith BEV at the cth
charging point during time period t [kW].
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P+
grid-EVi , c , t

Power transfer from the grid to the ith BEV at the

cth charging point during time period t [kW].
P−

EV-gridi , c , t
Power transfer to the grid from the ith BEV at the

cth charging point during time period t [kW].
PPV-EVi , c , t

Power transfer from the PV system to the ith BEV
at the cth charging point during time period t [kW].

PPV-gridt
Power transfer from the PV system to the grid
during time period t [kW].

5) Binary variables

D
ch,+
i,c,t Positive difference between ON and OFFstate of binary

variable ui,c,t {0, 1}.

D
ch,−
i,c,t Negative difference between ON and OFFstate of binary

variable ui,c,t {0, 1}.

D
dis,+
i,c,t Positive difference between ON and OFFstate of binary

variable vi,c,t {0, 1}.

D
dis,−
i,c,t Negative difference between ON and OFFstate of binary

variable vi,c,t {0, 1}.
si,c,t Binary variable that prevents feeding power into the

grid while drawing power from the grid {0, 1}.
ui,c,t Binary variable that states whether the ith BEV at the

cth charging point during time period t is available for
charging (1) or not (0) {0, 1}.

vi,c,t Binary variable that states whether the ith BEV at the
cth charging point during time period t is discharging
(1) or not (0) {0, 1}.

I. INTRODUCTION

G
LOBAL temperature continues to rise, with 2015 cur-
rently being the warmest year since measurements began

[1]. It is well established that using fossil fuels greatly con-
tributes to CO2 emissions. More specifically, in the Netherlands,
the transport and electricity sectors emit 21.5% and 30% of total
CO2 discharge, respectively [2]. In order to mitigate emissions
due to the former sector, electrification of the vehicle fleet is a
viable solution. Although battery electric vehicles (BEVs) and
plug-in hybrid electric vehicles (PHEVs) can reduce the car-
bon footprint and increase sustainability of the transport sector,
this strongly depends on the generation mix of the electricity
with which these are charged [3]. Moreover, even relatively low
penetration of PHEVs and BEVs in densely populated areas,
such as Amsterdam can already reduce grid reliability due to
significant power surges caused by uncontrolled charging [4].
Measures such as price incentives, advances in smart grid tech-
nology, e.g., smart charging, and vehicle to grid (V2G) can
alleviate stress on the grid and consequently improve reliability
of the grid [4], [5]. Furthermore, if source and load are located
relatively close to each other, it could also reduce stress on the
grid [6].

A. Literature study

Optimization of power flows is an intensely researched topic.
Previous studies aimed to minimize emissions [6], to mini-
mize penalty cost [7], [8], to minimize operating cost [9]–[14],
to maximize PV self-consumption [15], [16], to improve self-
consumption [17], [18], or to maximize profit [19]. The studies

Fig. 1. Schematic representation of the solar carport.

in [6], [11]–[13], [15], [16], [19] achieved satisfactory global
optima in terms of their respective objective functions and set-
tings, but performed a day-ahead optimization without forecast-
ing and, except for [15], used a coarse temporal resolution, i.e.,
1 h. In [8], an intraday energy management system (EMS) was
developed for a residential parking lot that produced promising
results, albeit with a coarse temporal resolution and absent of a
predictive feature. Further, Chen and Duan [9] and Honarmand
et al. [10] did include forecasting into their EMSs but did not
use these for intraday operation. Additionally, the former study
did not attain global optimality. In [7] and [14], the authors
developed EMSs that worked on an intraday basis with fore-
casting capabilities and achieved promising results, albeit local
optima. Moreover, the former study was performed with a coarse
temporal resolution, while the latter study was performed on a
microgrid with many additional distributed generators (DGs)
such as fuel cells. Furthermore, the work in [17] and [18], took
a different approach through a heuristic strategy and a fuzzy
logic controller with forecasting capabilities, respectively. Be-
cause of these approaches, global optimality could not have
been achieved, however, results presented in [17] showed that
self-consumption of PV power increased significantly, whereas
results in [18] showed that energy demand from the BEVs were
satisfied, while significantly reducing impact on the grid. In ad-
dition, their proposed methods allowed high temporal resolution
and therefore allowed practical applications.

We propose an EMS that forecasts PV power influx and sub-
sequently optimally plans and allocates power flows at a solar
powered workplace parking lot, presented in Fig. 1, with BEVs
at a high temporal resolution, with the aim to

1) minimize charging cost;
2) reduce stress on the main grid;
3) increase PV self-consumption;
4) increase sustainability of vehicle fleet.

It is important to note that item (3) is realistic because we
assume that the marginal price of energy produced by the PV
system is less than the price of energy from the grid, which will
be elaborated upon in Section IV.

B. Contributions

The main contributions of this paper are as follows: First,
the proposed EMS allows us to use a novel modular converter
topology as investigated in [20], to which multiple BEVs can

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2021 at 11:31:26 UTC from IEEE Xplore.  Restrictions apply. 
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be connected at the same time, which in turn will reduce capi-
tal expenditure without the risk of reducing consumer comfort.
This is important to stress, since BEV chargers form a sub-
stantial portion of the overall system cost. Second, through the
inclusion of forecasting capability for PV power production, we
can plan power allocation rather than react. Finally, the problem
formulation is generic and the charger is modular, and both can
therefore readily be extended to a larger scale.

The long time for which BEVs are parked at the workplace
offers the possibility to charge these with locally produced PV
energy. However, a recent study showed that the average en-
ergy transfer at the workplace is 8.53 kWh [21]. Since a 10 kW
charger can transfer up to 80 kWh of energy to a BEV dur-
ing an 8 h workday, we can conclude that the charger will
likely not be fully utilized, which in turn reduces the economic
performance of the system. In light of the first two contribu-
tions, there are at least two approaches to reduce charging costs
for BEVs: First, reduce the number of charging points in or-
der to reduce capital expenditure of the overall system. This
gives us the opportunity to perform an interesting case study,
where we examine the behavior of the proposed EMS in a case
when four BEVs are connected to a single charging point. Sec-
ond, by utilizing inexpensive PV power and dynamic prices in
combination with an EMS that can anticipate on both these in-
puts and plan a charging strategy that minimizes charging cost
accordingly.

C. Paper Organization

The paper is organized as follows: Section II describes
the modeling approach of the time-series forecast model.
Section III formulates the mathematical optimization frame-
work. Section IV specifies the case studies that are used to assess
the performance of the proposed EMS. Section V presents the
results and compares these to an uncontrolled charging policy,
i.e., the status quo. Finally, Section VI presents the conclusions
of this research and Section VII presents directions for the future
research.

II. TIME-SERIES MODEL FOR PV PRODUCTION

This section presents the time-series model that forecasts PV
power production, which will be used as input data for the
proposed EMS model.

A. Solar Power Forecasting

Solar power forecasting methods are usually divided into sta-
tistical and physical models, where the former are best suitable
for intraday forecasts at high spatial resolution, whereas the lat-
ter are best suited for day-ahead forecasts with low spatial res-
olution [22]. Regarding intraday forecasts, Reikard [23] found
that autoregressive integrated moving average (ARIMA) models
were outperformed by artificial neural networks at the highest
temporal resolution, although at the cost of lower spatial resolu-
tion. However, Diagne et al. [22] concluded that ARIMAs pro-
vide the best accuracy in case of forecasting horizons between
5 min and 4 h. Since we work at 1 min temporal resolution and
high spatial resolution, the ARIMA class is selected.

TABLE I
PARAMETERS OF THE SARIMA(1, 1, 3) × (0, 1, 1)1440 MODEL

Parameter Value

φ1 0.0130
θ1 −0.0220
θ2 8.94 ·10−5

θ3 −0.859
Θ −0.970
Mean 7.93 ·10−9

Variance 0.0244

B. ARIMA Process

Box and Jenkins proposed the general ARIMA process and
the modeling approach in 1970. This approach consists of three
steps and the entire process can be regarded as an iterative
process. The three steps are as follows [24]:

1) Model identification.
2) Model estimation.
3) Diagnostic checking.

The ARIMA model consists of two parts: The autoregres-
sive model of order p (AR(p)) and the moving average model
of order q (MA(q)), which both describe stationary processes.
However, since irradiance data display nonstationary behav-
ior, differencing should be applied to stationarize the time se-
ries. In addition, the data of interest can be seasonal, with s
time periods, in which case the ARIMA model can be ex-
tended to a seasonal ARIMA (SARIMA) model. Introducing
B as the backward shift operator, such that BXt = Xt−1,
the SARIMA model can be expressed in polynomial form as
follows:

φ(B)Φ(Bs) (1 − B)d (1 − Bs)D
Xt = θ(B)Θ(Bs)ǫt (1)

where φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p describes the
nonseasonal AR(p) process with φ1, . . . , φp as parameters, and
θ(B) = 1 + θ1B + θ2B

2 + · · · + θqB
q the nonseasonal MA(q)

process with θ1, . . . , θq as parameters. A similar approach
is taken in case of the seasonal AR(P) and MA(Q) pro-
cesses. Furthermore, the first difference can be formulated as
(Xt − Xt−1) = (1 − B)Xt and consequently the dth differ-

ence as (1 − B)d
Xt . Similarly, seasonal differencing (D) is

formulated as (Xt − Xt−s) = (1 − Bs) Xt [25]. The SARIMA
process is commonly abbreviated as SARIMA(p, d, q) ×
(P, D, Q)s.

C. Results of the Box–Jenkins Approach

Table I presents the parameters of the SARIMA(1, 1, 3) ×
(0, 1, 1)1440 model obtained through the Box–Jenkins approach.
Since |φ1| < 1 and the mean is approximately zero, the sta-
tionarity condition is satisfied, thus passing the third step, i.e.,
diagnostic checking. Subsequently, we are able to create an out-
of-sample forecast with a 15-min horizon and 1-min resolution.
Fig. 2 presents the resulting PV profile of a 10 kWp array for
a sunny day in May 2012. To assess the performance of the
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Fig. 2. Out-of-sample forecast with forecast horizon of 15 min.

model, we calculate R2 and RMSE:

R2 = 1 −
∑

t (yobserved,t − ypredicted,t)
2

∑

t (yobserved,t − ȳobserved)2
(2)

RMSE =

√

∑n
t=1 (ypredicted,t − yobserved,t)

2

n
(3)

where yt represents the value of the time-series at time t, ȳ is
the mean of the time series, and n is the length of the time-series.
R2 and RMSE amount to 0.986 and 0.395 kW, respectively, and
the model is therefore considered suitable for forecasting.

III. MILP MODEL

In this paper, we use a modular converter topology as in-
vestigated in [20], which offers four advantages. First, multiple
BEVs are allowed to connect to a single charging point, which
reduces capital expenditure since fewer charging points have to
be implemented. However, since it is physically not possible
to charge BEVs connected to the same charging point simul-
taneously with different charging power, a binary variable is
necessary that represents the charging or discharging state of a
BEV. Consequently, the problem under consideration is mod-
eled as a mixed-integer program (MIP). Modeling the problem
as an MIP gives us the additional advantage to include binary
variables, which can be used to keep track of the amount of
charging and discharging initializations and protect the batter-
ies of the BEVs connected to the system accordingly.

Although the charging process of batteries is nonlinear, it is
common in the literature to approximate it with linear equations,
which allows us to formulate the problem as an MILP. The main
advantage of formulating our problem as such, also being the
second advantage of the proposed EMS, is that although the
problem is nonconvex due to the integer variables, the branch
and bound algorithm guarantees global optimality nonetheless
[26]. For this paper, the MILP is modeled in the general algebraic
modeling system and solved by using the CPLEX solver, ver-
sion 12.6 [27]. Furthermore, we take an aggregated approach in

TABLE II
OVERVIEW OF PARAMETER VALUES

Parameter Value

ηch 0.90
ηdis 0.90
ηMPPT 0.98
ηinv 0.98
λdeg €0.038/kWh
λG2Vt Dynamic
λFITt Dynamic
λPVt €/kWh

which the owner of the workplace collaborates with BEV own-
ers, e.g., employer–employee relation, in order to reduce cost
and promote BEV ownership.

The third advantage of the proposed EMS is the inclusion
of forecasting as introduced in Section II, which allows us to
plan power allocation rather than react. Finally, scalability is
an important aspect of the project under investigation and the
problem formulation presented in this section is therefore kept
generic, so that the size of the project can readily be adjusted.
Table II presents the parameter values that are used in this paper.

A. Constraints

1) BEV Constraints: Each BEV has its own limitation of
charging and discharging power:

0 ≤ PG2Vi , c , t
≤ ui,c,t · Pmax

G2Vi
∀i, c, t (4)

0 ≤ PV2Gi , c , t
≤ vi,c,t · Pmax

V2Gi
∀i, c, t. (5)

As stated before, it is physically impossible to charge multiple
BEVs at the same charging point. In order to reduce cost, we use
a modular converter topology as investigated in [20] Therefore,
we need to introduce the following constraint

N
∑

i=1

ui,c,t +

N
∑

i=1

vi,c,t ≤ 1 ∀c, t. (6)

Notice how the two sets of binary variables, ui,c,t and vi,c,t ,
are necessary to guarantee that only one BEV can either charge
or discharge in a given charging point during a given period.
That is, (6) guarantees that maximum one binary variable can
be one, then (4) and (5) force all remaining BEVs cannot neither
charge nor discharge.

Due to losses the BEVs receive less power than available at
the charging point (PG2Vi , c , t

). We assume the round trip effi-

ciency for the batteries to be 0.92 [28], and thus,
√

0.92 = 0.96
for a single trip. In addition, we assume charger efficiency to
be 0.94 [29] and consequently we can calculate that charg-
ing/discharging efficiency amounts to 0.96 · 0.94 = 0.90. The
power received by the BEVs can then be calculated according
to

PEVi , c , t
= ηch · PG2Vi , c , t

− 1

ηdis
· PV2Gi , c , t

∀i, c, t. (7)
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Subsequently, we can calculate energy content of the BEVs:

Ei,c,t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if t < tarrivali ∀i, c

Earrival
i,c if t = tarrivali ∀i, c

Ei,c,t−1 + PEVi , c , t
· ∆t if tarrivali < t < tdeparturei

∀i, c

Edeparture
i,c if t ≥ tdeparturei

∀i, c

(8)

where BEV owners can define their desired energy content
upon departure.

In order to preserve battery life the respective batteries are
protected from deep discharges and overcharges through

Emin
i,c ≤ Ei,c,t ≤ Emax

i,c ∀i, c, t. (9)

Finally, to reduce the adverse effect that intermittent charg-
ing/discharging has on capacity fade [30], we allow the EMS to
initiate a maximum of Nmax charging/discharging processes as
follows:

ui,c,t − ui,c,t−1 = D
ch,+
i,c,t − D

ch,−
i,c,t ∀i, c, t (10)

vi,c,t − vi,c,t−1 = D
dis,+
i,c,t − D

dis,−
i,c,t ∀i, c, t (11)

T
∑

t=1

(

D
ch,+
i,c,t + D

ch,−
i,c,t

)

≤ Nmax ∀i, c (12)

T
∑

t=1

(

D
dis,+
i,c,t + D

dis,−
i,c,t

)

≤ Nmax ∀i, c. (13)

Furthermore, we need to specify when the BEVs are discon-
nected from the charging point

ui,c,t = 0, if t < tarrivali or t > tdeparturei
∀i, c (14)

vi,c,t = 0, if t < tarrivali or t > tdeparturei
∀i, c. (15)

2) Photovoltaic (PV) System Constraints: The PV system
has a rated capacity of 10 kWp and is equipped with a dc–dc
converter with maximum power point tracker (MPPT) that has
a European efficiency of 0.98 [31]. Furthermore, in order to
allow the EMS to curtail PV power, we introduce the following
equation

C
∑

c=1

N
∑

i=1

1

ηMPPT
· PPV-EVi , c , t

+
1

ηMPPT · ηinv
· PPV-gridt

≤ Pmax
PVt

∀t.

(16)

3) Grid Constraints: The EV–PV charger is a three-port
charger rated at 10 kW [20], [32], [33] and therefore charging
and discharging power are limited according to the following
equations:

0 ≤ P+
grid-EVi , c , t

≤ si,c,t · P+ , max
gridc

∀i, c, t (17)

P−
EV-gridi , c , t

+ PPV-gridt
≤ (1 − si,c,t) · P−, max

gridc
∀i, c, t (18)

where the binary variable si,c,t is imposed on the system to
prevent arbitrage.

Finally, we can formulate the power balance that controls the
charging process of the BEVs:

C
∑

c=1

N
∑

i=1

(

Pchi , c , t
− PV2Gi , c , t

)

=

C
∑

c=1

N
∑

i=1

PPV-EVi , c , t

+
C

∑

c=1

N
∑

i=1

(

ηinv · P+
grid-EVi , c , t

− 1

ηinv
· P−

EV-gridi , c , t

)

∀t (19)

where ηinv is the grid-tied inverter efficiency. The efficiency
of a grid-tied inverter depends on the topology; however, we
found 0.98 to be a reasonable value [34].

B. Objective Function

As stated before, the aim is to minimize total cost (Ctot) while
reducing stress on the grid and increasing PV self-consumption,
since 48% of the consumers would likely transition to BEVs be-
cause of sustainability concerns, whereas 71% of the consumers
would do so for the lower overall cost [35]. Therefore, the op-
timization problem is formulated such that the aforementioned
aspects are considered, which leads to the following objective
function

Ctot =

(

T
∑

t=1

C
∑

c=1

N
∑

i=1

λG2Vt
· P+

grid-EVi , c , t

+
T

∑

t=1

C
∑

c=1

N
∑

i=1

λPVt
· PPV-EVi , c , t

−
T

∑

t=1

C
∑

c=1

N
∑

i=1

(λFITt
− λdeg) · P−

EV-gridi , c , t

−
T

∑

t=1

(λFITt
− λPVt

) · PPV-gridt

)

· ∆t. (20)

We can see from the objective function that the EMS indeed
works as an aggregated system. It is, however, possible to keep
track of individual charging cost and bill the respective owner
at the end of the period, e.g., monthly. Furthermore, it is im-
portant to stress that the objective function in its presented
form is equal to maximizing profits. Finally, Fig. 3 presents
the flowchart that depicts the functioning of the proposed EMS.

IV. CASE STUDIES

The effectiveness of the EMS is examined on the basis of
two case studies: One and two charging points. Studying one
charging point that is fully occupied allows us to ascertain the
behavior of the EMS with maximum electricity demand. How-
ever, because of the formulation of the EMS, it is also possible
for multiple charging points to collaborate in terms of power ex-
change. For example, if there is a surplus of power production
at charging point 1, it could sell this to the grid or comple-
ment charging point 2 if needed. Since introducing a second
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Fig. 3. Flowchart representing the functioning of the EMS.

charging point that is also fully occupied will not display signif-
icant collaboration due to high electricity demand, the second
case study features an additional charging point that is occupied
for 50%, which allows us to show in more detail the collab-
oration. It should be noted that the behavior of a single, fully
occupied charging point can be extrapolated to a larger scale.

Furthermore, the aforementioned case studies are compared
to an uncontrolled charging policy. The reason for comparing the
proposed model to an uncontrolled charging policy rather than to
up-to-date models is twofold: First, the charging methodology
in this paper is novel in the sense that a modular converter
topology is used, which allows for multiple BEV connections at
the same time. Therefore, comparison with up-to-date models
cannot be done without modifying those. Second, uncontrolled
charging is still the standard in many countries, and hence, a
direct comparison between the proposed EMS and the status
quo will provide a clear picture on the benefit that one can
expect.

Finally, realistic input parameters and appropriate price mech-
anisms should be selected. It should be noted that we assume
these to remain constant throughout the day that is under investi-
gation. This is sufficient for the present study, as the optimization
is done for a 24-h cycle, from 00:00 h to 23:59 h. There will
be day to day variation in these parameters, and the user is re-
sponsible for giving these as an input to the EMS. Therefore,
we argue that the characteristics are relatively static on a daily
basis. In addition, this paper is a first step into the realization
of the proposed EMS, and directions for future research, e.g.,
stochastic optimization, will be elaborated upon in Section VII.

A. Driving Patterns

Driving patterns of commuters show clear recursive behavior
throughout the week. Yearly, the Dutch mobility survey (MON)

TABLE III
ARRIVAL AND DEPARTURE TIME OF DUTCH MOTORISTS

Arrival Departure

Average (h) 8.30 A.M. 5.30 P.M.
Standard deviation (h) 1.1 1.1

presents driving patterns of civilians and a study analyzing these
patterns, performed in [36], found clear peaks at 8 A.M. and 6 P.M.
for morning and evening commute, respectively. Furthermore,
these peaks show normal behavior with approximately 1-h stan-
dard deviation. Table III presents the exact values of the normal
distribution, which are adapted from [18].

B. BEV Specifications

The BEV fleet shows large variation in battery capacity, rang-
ing from 22 to 90 kWh [37]. However, workplace charging tends
to be used merely to extend the range of the BEV, with an av-
erage energy transfer of 8.53 kWh and standard deviation of
6.49 kWh [21]. Realistic initial and final energy content need to
be selected for the case studies, which is often done by using a
probability function, e.g., uniform [17], [38] or log-normal [39].
We use a uniform distribution between 0.3 · Emax

i,c and 0.5 · Emax
i,c

for initial energy content. The required energy stored in the bat-
tery upon departure lies between 0.6 · Emax

i,c and 0.8 · Emax
i,c . Con-

sequently, maximum energy demand by a single BEV will be
(0.8 − 0.3) · 90 kWh = 45 kWh and minimum energy demand
by a single BEV will be (0.6 − 0.5) · 22 kWh = 2.2 kWh.

C. Price Mechanism

To ascertain the performance of the proposed EMS, we use
both a dynamic purchase tariff (λG2Vt

) and dynamic feed-in tar-
iff (FIT) (λFITt

), similar as in [10], [11], and [40]. The purchase
tariff is adapted from Amsterdam power exchange [41], to an av-
erage of €0.23/kWh. We also assume that the FIT is 10% lower
than the purchase tariff, i.e., λFITt

= 0.9 · λG2Vt
[40]. Note that

the price mechanism in the additional case studies encompasses
a flat purchase tariff of €0.23 /kWh in combination with 1) a flat
FIT of €0.23 /kWh or 2) € 0.09 /kWh [42]. The reason for this is
to examine the performance of the EMS, if it were presently im-
plemented in the Netherlands. In addition, we consider battery
degradation due to V2G discharging. Lab experiments regard-
ing capacity loss per normalized Wh have found that this was
rather low: −6.0 · 10−3% for driving tasks and −2.7 · 10−3%
for V2G tasks [30]. However, the authors noted that capacity
fade could significantly increase due to intermittent discharging,
which is the reason why we introduced (10) and (11). We use
€ 0.038 /kWh as degradation cost, adapted from [6], which in
turn based their findings in [30]. Moreover, this value is similar
to that found in [43]. Finally, we defined λPVt

in the objective
function, implying that energy from the PV system is not free.
While for the Netherlands, this amounts to € 0.097 /kWh [44],
it is usually ignored [10], [11], [45], most likely under the as-
sumption these are sunk cost. Therefore, we assume λPVt

to be
zero, so as to allow for fair comparison.
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TABLE IV
INPUT PARAMETERS

tarrival (a.m.) tdeparture (p.m.) Earrival (kWh) Edeparture (kWh)

BEV 1 7.31 6.19 29.7 70.2
BEV 2 8.37 7.23 13.8 21.9
BEV 3 7.54 5.17 10.6 17.4
BEV 4 8.50 3.09 10.8 21.3
BEV 5 7.50 4.35 37.5 64.5
BEV 6 9.02 6.59 10.3 23.3

Fig. 4. Power allocation with dynamic FIT, 4 BEVs, uncontrolled charg-
ing.

V. RESULTS

Table IV presents the input parameters of the BEVs, result-
ing from their respective probability distributions. We can de-
duce from these results that average energy demand amounts
to 17.65 kWh, more than double the average demand accord-
ing to [21]. Furthermore, we impose identical dynamic tariffs
on the uncontrolled charging policy, so as to ascertain the true
effectiveness of the EMS under such circumstances.

A. One Charging Point

From an economical standpoint, it is more attractive to con-
nect multiple BEVs to a single charger since these are costly.
The number of BEVs depends on energy demand, on PV power
generation and on converter rating. In this paper, four BEVs are
allowed to connect to a single charging point because of the lim-
ited converter rating and PV power production, and therefore,
increasing the number of connections would likely reduce the
effectiveness of the system.

Figs. 4 and 5 present the results of the uncontrolled charg-
ing policy and the optimal charging strategy according to the
EMS, respectively. There are at least three points of interest.
First, power withdrawal from the grid and tariff levels show a
similar trend in case of uncontrolled charging, namely a peak
during the morning and decrease thereafter. Evidently, this is
opposite of what can be considered optimal. In addition, PV
power is fed into the grid while λFITt

is at its minimum, con-
sequently reducing revenue. Second, we can see from Fig. 5
that the EMS shifts demand away from the peak in morning tar-
iff, while feeding generated PV power into the grid. Therefore,
we can conclude that the EMS actively performs demand side

Fig. 5. Power allocation with dynamic FIT, 4 BEVs.

TABLE V
RESULTS ONE CHARGING POINT

PV self Egrid Ctot Cost
consumption (%) (kWh) (€) reduction (%)

Uncontrolled charging 73.65 39.61 2.181
Optimal charging 82.41 27.07 −0.4022 118.44

management (DSM) by peak shaving and load shifting. Third,
the EMS proves that V2G does not lead to optimality. There is
essentially one possibility for V2G, which is during the second
peak of λFITt

. However, due to the limited time period in which
the purchase tariff is low, it is not feasible to charge a BEV
beyond its energy requirement, so as to sell it later. Addition-
ally, the surplus of PV power in the morning is immediately fed
into the grid, avoiding efficiency losses. Finally, a preliminary
case study of our future research, in which ten fully occupied
charging points are examined, i.e., 40 BEVs, shows that cost
come down from €21.81 to −€4.022.

Table V presents the numerical results of the uncon-
trolled and optimal charging strategies. PV self-consumption,
i.e., the fraction of generated PV power consumed by
the BEVs, has been increased from 73.65% to 82.41%.
Additionally, energy exchange with the grid, defined

as Egrid =
∑

t

∑

c

∑

i

(

P+
grid-EVi , c , t

+ P−
EV-gridi , c , t

+ PPV-gridt

)

·
∆t, was reduced by 31.66%. Furthermore, total cost has been
reduced by 118.44%, thus turning cost into profit.

B. Two Charging Points

As stated before, the present case study will investigate the
effect on collaboration when a second charging point is intro-
duced that is occupied for 50%, which is a likely scenario during,
e.g., vacation periods. As a consequence, there will likely be a
surplus of PV power and since the EMS is formulated, such that
it allows collaboration as long as that is optimal, we can assess
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Fig. 6. Power allocation with dynamic FIT, 6 BEVs, uncontrolled charg-
ing.

Fig. 7. Power allocation with dynamic FIT, 6 BEVs.

whether or not the overproducing charging point can comple-
ment the fully occupied charging point.

Figs. 6 and 7 present the power allocation during the un-
controlled charging policy and optimal charging strategy, re-
spectively. In both cases, we can see similar patterns as in the
previous section, i.e., power withdrawal from the grid during
peak price and power feed into the grid when λFITt

has sig-
nificantly lowered in case of the uncontrolled charging policy,
whereas the EMS shows that the optimal charging strategy is
to shift demand away from peak price period while feeding PV
power into the grid during this peak. Furthermore, the EMS
does let BEV 6 participate in V2G during the evening peak in
FIT. The EMS stores energy in BEV 6, which is connected to
the semioccupied charging point, so as to feed it back into the
grid during peak FIT. This is accompanied by additional charg-
ing/discharging losses however, it is more profitable than feed-
ing PV power directly into the grid during the afternoon, even
when taking battery degradation into account. Furthermore,
Fig. 7 shows that there are instances in time that there is collab-
oration between the charging points, however, due to additional
losses and high FIT this can lead to suboptimal performance, and
is therefore limited to time periods when FIT is relatively low.

Table VI presents the numerical results, from which we can
see that self-consumption increased from 58.04% to 66.32%,

TABLE VI
RESULTS TWO CHARGING POINTS

PV self- Egrid Ctot Cost
consumption (%) (kWh) (€) reduction (%)

Uncontrolled charging 58.04 94.24 −1.468
Optimal charging 66.32 75.20 −7.743 427.45

TABLE VII
RESULTS FLAT TARIFFS, ONE CHARGING POINT

FIT PV self Egrid Ctot Cost
(€/kWh) cons. (%) (kWh) (€) reduction (%)

Uncontrolled charging 0.23 73.65 39.61 0.7538
Optimal charging 0.23 95.80 7.986 0.4877 35.30
Uncontrolled charging 0.09 73.65 39.61 3.297
Optimal charging 0.09 95.80 7.986 0.8983 72.75

TABLE VIII
RESULTS FLAT TARIFFS, TWO CHARGING POINTS

FIT PV self Egrid Ctot Cost
(€/kWh) Cons. (%) (kWh) (€) reduction (%)

Uncontrolled charging 0.23 58.04 94.24 −5.071
Optimal charging 0.23 82.56 24.36 −5.603 10.49
Uncontrolled charging 0.09 58.04 94.24 3.069
Optimal charging 0.09 82.56 24.36 −2.193 171.46

whereas energy exchange with the grid was reduced by 20.20%.
Furthermore, profit has increased by 427.45%. This notable
result is mainly due to the ability to shift demand away from the
peak in purchase tariff and cooperation between the charging
points.

C. Additional Case Studies

Here, we examine the performance of the EMS if it were
presently implemented, i.e., with flat tariffs rather than dynamic
tariffs. Tables VII and VIII present the results, for one and two
charging points, respectively. The following two points can be
observed. First, cost reduction is more notable in case of a lower
FIT. Specifically, the EMS reduces charging cost by 72.75%
and 171.46% in case of a FIT of €0.09 /kWh and one and two
charging points, respectively, versus 35.30% and 10.49% in case
of a FIT of €0.23 /kWh. The reason for this is that in both cases,
a significant portion of PV power is fed into the grid but yields
less due to a substantially lower FIT. This result shows that
high FITs are concealing the true potential of the EMS. Second,
a sensitivity analysis in which Egrid was minimized showed
that the self-consumption in these case studies are maximal,
implying that flat tariffs encourage the EMS to maximize self-
consumption.

VI. CONCLUSION

In this paper, we proposed a forecasting enabled EMS in a
MILP framework, which allows it to plan power allocation in
15-min. periods while taking dynamic tariffs into account. The
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aim was to minimize total cost while reducing stress on the grid
and increasing PV self-consumption, and consequently increas-
ing sustainability of the vehicle fleet. The model was developed
considering a modular converter topology, which allowed us to
connect multiple BEVs to a single charging point while one
BEV could be charged during a certain time period. In this way,
capital expenditure could be reduced when compared to the
case when each BEV would require its own charging point. We
showed that for these case studies the EMS significantly reduced
total cost while reducing energy exchange with the grid and in-
creasing self-consumption, while satisfying energy demand and
consequently maintaining consumer comfort. More specifically,
in case of one charging point, total cost was reduced by 118.44%,
whereas profit was increased by 427.45% when two charging
points were considered. Furthermore, due to participating in
DSM, self-consumption was increased. Additional case studies
showed that if the EMS would be implemented with flat tariffs,
it would reduce cost between 10.49% and 171.46%, while high
feed-in tariffs (FITs) conceal the effectiveness of the EMS. A
preliminary case study of our future research with ten charging
points showed similar results, meaning that the EMS can indeed
be scaled up. Additionally, its predictive capability enabled the
EMS to anticipate on future PV generation, which proved to be
vital for its effectiveness. In terms of forecast accuracy the EMS
performed satisfactory, achieving an R2, of 0.986 and RMSE of
0.395 kW.

In addition, we found that in the presented setting, V2G is
currently not economically viable due to battery degradation
costs, except in case of a significant surplus of PV power pro-
duction. For V2G to become attractive, battery prices have to
decrease significantly.

Finally, it should be noted that the case study presented in
this paper is one of many applications that the EMS could be
used for. As we showed with the preliminary, i.e., scaled up,
case study, the EMS can be readily extended to a larger scale. In
addition, one might think of adding additional DGs and loads as
case study, thus emulating a smart grid, in which the EMS can
ensure stability and consumer satisfaction.

VII. FUTURE RESEARCH

The following step in our research is to introduce a stochas-
tic optimization framework, where parking times and electricity
demand from the BEVs are considered to be uncertain. Further-
more, as the output of any PV system is inherently uncertain,
probabilistic PV power production forecasting should be con-
sidered. By incorporating these uncertainties, we can find the
optimal charging strategy under highly variable circumstances.
In addition, modularity of the charger and the generic problem
formulation presented in this paper will allow us to increase the
scale of the BEV fleet under consideration.
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