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We develop a general perturbative theory of finite-coupling quantum ther-
mometry up to second order in probe–sample interaction. By assumption the
probe and sample are in thermal equilibrium, so the probe is described by the
mean-force Gibbs state. We prove that the ultimate thermometric precision
can be achieved—to second order in the coupling—solely by means of local
energy measurements on the probe. Hence, seeking to extract temperature in-
formation from coherences or devising adaptive schemes confers no practical
advantage in this regime. Additionally, we provide a closed-form expression
for the quantum Fisher information, which captures the probe’s sensitivity to
temperature variations. Finally, we benchmark and illustrate the ease of use
of our formulae with two simple examples. Our formalism is completely gen-
eral and makes no assumptions about separation of dynamical timescales or
the nature of either the probe or the sample. Therefore, by providing ana-
lytical insight into both the thermal sensitivity and the optimal measurement
for achieving it, our results pave the way for quantum thermometry in setups
where finite-coupling effects cannot be ignored.

1 Introduction
Precise measurements of low temperatures are crucial in experiments dealing with quan-
tum phenomena. Indeed, ultra-low temperatures are routinely achieved in nanoelectronic
systems [1, 2] and cold-atom based platforms [3, 4]. Applications range from the study
of fundamental problems in condensed matter [5–7] to thermalisation in closed quantum
systems [8–10]; and from the realisation of thermodynamic cycles [11–13] to analog quan-
tum simulation in optical lattices [14, 15], and computation on large-scale programmable
simulators [16, 17].

On the other hand, the application of estimation-theoretic methods to model thermo-
metric protocols in the ultracold regime has consolidated into the novel field of quantum
thermometry [18, 19]. Its central goals have been to establish fundamental scaling laws
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for the signal-to-noise ratio of low-temperature estimates [20–23] and to identify design
prescriptions that can make a probe more responsive to temperature variations [23–33]. A
particular focus has been recently placed on sensing applications with atomic impurities
[10, 27, 34–36], which has helped to close the gap between theory and applications [35].

Specifically, the quantum Fisher information F [37] has played a central role as a figure
of merit for quantum thermometry. It governs the scaling of the best-case signal-to-noise
ratio of unbiased temperature estimates, in the asymptotic limit a of large number of
measurements both in the frequentist approach, through the Crámer–Rao bound [38, 39],
and Bayesian approach, through the van Trees inequality∗ [47, 48]. In this paper, we study
equilibrium probe-based thermometry, where the temperature of the sample is inferred
by measuring a small system—the probe—which is coupled to it so that both equilibrate
[20, 21, 24, 27, 29, 34, 49, 50]. In this setting, we compute F and investigate the most
informative measurements for probes that are coupled non-perturbatively to the sample.

In this work, we go beyond the ‘weak’ probe–sample coupling, which is usually under-
stood as being ‘negligibly small’, such that the equilibrium marginal of the probe is simply
a Gibbs state with respect to the probe’s bare Hamiltonian at the sample’s temperature.
In this case, temperature may be optimally inferred from energy measurements [24], which
offers simplicity and universality. This is precisely the steady-state prediction of the com-
mon Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) [51–53] quantum master equation
describing the dynamics of the probe at time t. Importantly, however, the GKLS equa-
tion is mathematically rigorous only if the strength of the probe–sample coupling decays
with time and vanishes asymptotically [54]. This means that it cannot reliably describe
its own steady state, other than in the case of asymptotically vanishing dissipation. But
perturbative quantum master equations may encounter even bigger problems in the con-
text of quantum thermometry. Namely, the assumption that the probe–sample coupling
is neglible tends to break down in the low-temperature regime. There, the temperature T
sets a small energy scale that can become comparable to the interaction Hamiltonian—no
matter how small the latter may be next to the bare Hamiltonians of the sample and the
probe [55, 56].

Here, we refer to the ‘finite-coupling’ regime to denote situations in which the coupling
is not negligible. The probe would be then described by the marginal of the global probe–
sample equilibrium state, referred-to as mean-force Gibbs state—this can be significantly
far from ‘Gibbsian’ with respect to the probe’s bare Hamiltonian [57–71]. While the quan-
tum Fisher information of the probe in this regime has received considerable attention
[20, 21, 27, 29, 34, 50, 72, 73], not much is known about the optimal thermometric mea-
surement beyond some specific examples [21, 22, 34]. In this work, we show that energy
measurements remain optimal up to the first two leading orders in the coupling strength.
This is the first general result about the optimal thermometric measurement beyond the
weak-coupling regime and has critical practical importance. Namely, it establishes that
non-diagonal measurements, aimed at extracting temperature information encoded coher-
ences, do not necessarily confer a real advantage in the finite-coupling regime, nor does
any possible adaptive strategy. Furthermore, our approach provides general formulas to
evaluate thermal sensitivity explicitly, to second order in the coupling, circumventing the
common pitfalls of the conventional weak coupling assumption.

This paper is structured as follows: In Sec. 2 we introduce the perturbative formalism
of finite-coupling quantum thermometry and present our main results. We then apply

∗The Bayesian framework has been considered within quantum thermometry only recently [40–46],
proving particularly useful when estimating temperatures from scarce data in real experimental situations
[35, 41].
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our results to two standard probe–sample models in Sec. 3; namelly, quantum Brownian
motion and the spin–boson model. In Sec. 4 we give detailed derivations of the formulas
presented. Finally, in Sec. 5 we summarise and draw our conclusions.

2 Finite-coupling quantum thermometry
2.1 Framework
Let us consider a probe S (for ‘system’) coupled to a sampleB (for ‘bath’) with Hamiltonian

HHH = HHHS +HHHB +HHH int. (1)

The total system is in a Gibbs state at the inverse temperature β:

π̃ππ = e−βHHH

Z̃
, (2)

with partition function Z̃ = tr e−βHHH , and the goal is to determine the inverse temperature
β by measuring only the probe S. In this paper, we work in the units where ~ = k = 1,
the latter being the Boltzmann constant. In all what follows, operators are denoted with
boldface symbols. Note that, since only the probe is measured, for our forthcoming results
to hold it is only required that the probe’s state be given by trB [π̃ππ]—the actual global state
may differ from π̃ππ and be microcanonical [74–79], pure [77, 80, 81], or neither [76, 82].

To control the magnitude of the probe–sample interaction, we will henceforth write
the interaction term as HHH int = γVVV , where the dimensionless parameter γ is the coupling
strength. The equilibrium state of the probe, from which the inverse temperature β is to
be inferred,

π̃ππS =
trB

[
e−βHHH

]
Z̃

, (3)

is the so-called mean-force Gibbs state [64, 69], and it will only coincide with the bare
thermal state of the probe,

πππS = e−βHHHS

ZS

, (4)

in the limit of vanishing coupling (γ → 0). Here the partition function is ZS = tr e−βHHHS .
Estimates for β, drawn from a measurement record of length N via an unbiased esti-

mator, carry an uncertainty δβ such that the signal-to-noise ratio (SNR) is upper-bounded
through the Cramér–Rao inequality [37–39, 83, 84] as

β

δβ
≤
√
Nβ2FS(β). (5)

Here, FS(β) is the quantum Fisher information (QFI), which is given by [37, 83, 84]

FS(β) = trS

[
LLL2

Sπ̃ππS

]
, (6)

where the symmetric logarithmic derivative LLLS (SLD) is implicitly defined by

∂β π̃ππS = 1
2{L
LLS, π̃ππS}, (7)
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with {·, ·} denoting the anticommutator. Equation (7) is a Lyapunov equation with respect
to LLLS and, since π̃ππS is a bounded positive operator, it has a unique solution, given by [85]

LLLS = 2
∫ ∞

0
dλ e−λπ̃ππS (∂β π̃ππS)e−λπ̃ππS . (8)

The optimal thermometric measurement—namely, the one that minimizes δβ—is the
projection onto the eigenbasis of LLLS [37, 83, 84]. This saturates the Cramér–Rao bound
(5) in the N → ∞ limit [37, 48]. For any other measurement, the best-case scaling of
the SNR is given by the ‘classical’ Cramér–Rao bound [38, 39]. For example, when one
projects onto the eigenbasis of HHHS, then

β

δβ
≤
√
Nβ2IHHHS

(β), (9)

where IHHHS
(β) ≤ FS(β) is the (classical) Fisher information associated with this specific

measurement. Here, the bound also becomes tight in the N →∞ limit [86]. By definition,

IHHHS
(β) =

∑
n
p̃n (∂β ln p̃n)2, (10)

where p̃n := 〈εn| π̃ππS |εn〉 are the populations of the probe’s equilibrium state in the eigen-
basis {|εn〉}n of HHHS. Equivalently, IHHHS

(β) can be written as

IHHHS
(β) = trS

[
DHHHS

(LLLS)2DHHHS
(π̃ππS)

]
, (11)

where DHHHS
is the dephasing operation in the eigenbasis of HHHS:

DHHHS
(QQQ) :=

∑
n

|εn〉 〈εn|QQQ |εn〉 〈εn| . (12)

The bare energy measurement defined by {|εn〉}n is known to be optimal in the limit
γ → 0, where π̃ππS → πππS and, therefore, LLLS → 〈HHHS〉S − HHHS [24]; here and throughout,
〈·〉

S
:= trS [πππS ·]. Furthermore, the bare energy measurement is optimal at any γ as long as

[HHH int,HHHS] = 0, because then [π̃ππS,HHHS] = 0, and therefore [LLLS,HHHS] = 0, which means that
{|εn〉}n is an eigenbasis for LLLS. In general, however, π̃ππS, and hence LLLS, will not commute
with HHHS, so the optimal thermometric basis will differ from {|εn〉}n. Nonetheless, as
we prove below, the bare energy measurement remains as informative as the truly optimal
measurement up to the first two leading orders in the perturbative expansion in the probe–
sample coupling strength γ.

2.2 Results
2.2.1 Optimality of local energy measurements at finite coupling

Suppose π̃ππS is twice differentiable in γ. It can then be Taylor-expanded as

π̃ππS = πππS + γ ppp1 + γ2ppp2 +O(γ3), (13)

where ppp1 and ppp2 are some operators and O is the ‘big O’ as per the standard asymptotic
notation. In the same manner, the SLD LLLS of π̃ππS [Eq. (8)] will decompose as

LLLS = −∆HHHS + γ lll1 + γ2lll2 +O(γ3), (14)
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where −∆HHHS := 〈HHHS〉S −HHHS is the SLD of πππS = π̃ππS

∣∣∣
γ=0

and lll1, lll2 are some operators

related to πππS, ppp1, and ppp2 through Eq. (8). Plugging these into Eq. (6), we obtain

FS(β) = F (0)
S (β) + γ

[
tr(ppp1∆HHH2

S)− 2 tr(lll1πππS∆HHHS)
]

+ γ2
[
tr(lll21πππS) + tr(ppp2∆HHH2

S)− 2 tr(lll2πππS∆HHHS)− tr({ppp1, lll1}∆HHHS)
]

+O(γ3), (15)

where F (0)
S (β) := tr(πππS∆HHH2

S) = ∂2
β lnZS is the zeroth-order QFI, i.e., that of πππS. Now,

observing that

tr(ppp1∆HHH2
S) = tr(DHHHS

[ppp1]∆HHH2
S),

tr(lll1πππS∆HHHS) = tr(DHHHS
[lll1]πππS∆HHHS),

we immediately conclude from Eq. (11) that, up to the first order in γ, FS(β) and IHHHS
(β)

coincide; that is,
IHHHS

(β) = FS(β) +O(γ2). (16)

However, in general, DHHHS
[{ppp1, lll1}] 6= {DHHHS

[ppp1],DHHHS
[lll1]}, meaning that FS(β) and IHHHS

(β)
do differ in the second order. Therefore, we have shown that the bare energy measurement
is thermometrically optimal up to the first two leading orders (i.e., zeroth and first order),
provided that the O(γ) term in Eq. (15) is non-zero. In Appendix A we give explicit
examples.

Let us now consider the case where the deviation between the mean-force Gibbs state
π̃ππS and the local thermal state πππS appears only at O(γ2). This is relevant from the point
of view of applications, since it is the situation most commonly studied in open quantum
systems. Since, in this case ppp1 = 0, we have that, due to Eq. (8), also lll1 = 0. As a result,
the O(γ) term in Eq. (15) vanishes, so that FS(β) becomes

FS(β) = F (0)
S (β) + γ2

[
tr(ppp2∆HHH2

S)− 2 tr(lll2πππS∆HHHS)
]

+O(γ3). (17)

As above, we have that

tr(ppp2∆HHH2
S) = tr(DHHHS

[ppp2]∆HHH2
S),

tr(lll2πππS∆HHHS) = tr(DHHHS
[lll2]πππS∆HHHS),

which tells us that, according to Eq. (11), FS(β) and IHHHS
(β) coincide up to the second

leading order in γ. Moreover, as we will show below, if one additionally imposes the generic
assumption (19), the cubic term in Eq. (17) also vanishes (see Sec. 4), leaving us with

IHHHS
(β) = FS(β) +O(γ4). (18)

Equations (16) and (18) constitute our first main result. Namely, the bare energy
measurement is thermometrically optimal up to the first two nonzero leading orders in γ.
Importantly, Eq. (18) applies to typical open quantum system scenarios, which means that,
in such settings, measurement optimisation is only necessary at much stronger couplings†.

†Note, however, that measurements not commuting with the probe’s bare Hamiltonian can be advan-
tageous in nonequilibrium thermometry even in the ultraweak coupling limit [87, 88].
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2.2.2 Quantum Fisher information in finite-coupling thermometry

Having proven that energy measurements remain optimal at finite coupling, we now turn
to deriving a closed-form expression for FS(β) up to the second order in γ for the case of
ppp1 = 0. Here, we outline the derivation of our formulae. For a detailed derivation one may
skip directly to Sec. 4.

We begin by imposing the generic assumption of a factorised probe–sample interaction;
namely,

Assumption I : HHH int = γ SSS ⊗BBB, (19)

where SSS and BBB are coupling operators belonging to probe and sample, respectively. Im-
portantly, these are chosen such that SSS ⊗BBB is of the same dimension as HHHS and HHHB, to
ensure that γ is dimensionless.

As we will show below, under Assumption I, the condition ppp1 = 0 is equivalent to

Assumption II : 〈BBB〉
B

= 0, (20)

where 〈BBB〉
B

:= trB [πππBBBB], with πππB = e−βHHHB/ZB being the Gibbs state of the sample
with respect to its bare Hamiltonian HHHB, and with the same β as in Eq. (2). ZB =
tr e−βHHHB is the corresponding partition function‡. Importantly, this assumption is also
almost universally adopted in the theory of open quantum systems. There, Assumptions I
and II are often disregarded as technical. However, they are crucial from the perspective
of thermometry§.

Our main tool is the Taylor expansion for the operator exponential function [89]. Let
QQQ and RRR be a pair of dimensionless linear operators. Then, the function R 3 γ 7→ eQQQ+γRRR

can be cast as [90]

eQQQ+γRRR =
∞∑
n=0

QQQn(1)γn, (21a)

where QQQ0(s) = esQQQ and

QQQn(s) :=
∫ s

0
dt1

∫ t1

0
dt2 ......

∫ tn−1

0
dtn e

(s−t1)QQQRRRe(t1−t2)QQQRRR · · ·RRRetnQQQ. (21b)

Applying Eq. (21) to π̃ππS, we find, after some algebra, that

ppp1 = −〈BBB〉
B
πππS

∫ β

0
dβ1e

β1HHHS [SSS − 〈SSS〉
S
]e−β1HHHS , (22)

from where it evident that, unless SSS ∝ 111S, ppp1 = 0 iff 〈BBB〉
B

= 0.
Hence, the application of Eq. (21) to Eq. (3) up to the second order results in

π̃ππS = πππS

(
111S + γ2XXXS

)
+O(γ4), (23)

‡Note that, whenever γ 6= 0, the actual reduced state of B, trS [π̃ππ], will not coincide with πππB. Both πππB

and πππS are simply fictitious states that appear in our perturbative expansions.
§In open quantum systems theory [53], it is often argued that even when Assumption II is not met,

it can be easily enforced without loss of generality, by re-defining HHH = HHH ′S(β) + HHHB + HHH ′int, where
HHH ′S(β) = HHHS + trB [πππB HHH int] and HHH ′int = HHH int − trB [πππB HHH int]. Note, however, that there would be an
explicit β-dependence in the modified probe Hamiltonian, which does crucially change the problem from
a thermometric viewpoint.
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where the matrix elements (XXXS)nm = 〈εn|XXXS |εm〉 of the traceless operator XXXS in the
eigenbasis of HHHS =

∑
n εn |εn〉 〈εn| are

(XXXS)nn =
∫ β

0
du (β − u)ΦB(−iu)

(∑
k
φnk(−iu)− ΦS(−iu)

)
, (24a)

(XXXS)n6=m = 1
∆mn

∑
k
(SSS)nk(SSS)km

∫ β

0
duΦB(−iu)

(
eu∆km eβ∆mn − eu∆kn

)
. (24b)

We have defined

φnk(x) = |(SSS)nk|2e−i x∆nk . (25)

with ∆nk = εk − εn and (SSS)nk = 〈εn|SSS |εk〉. We have also introduced here the probe and
sample auto-correlation functions, defined as

ΦS(x) :=
〈
eixHHHSSSS e−ixHHHSSSS

〉
S

= trS

[
πππS e

ixHHHSSSS e−ixHHHSSSS
]

(26a)

ΦB(x) :=
〈
eixHHHBBBB e−ixHHHBBBB

〉
B

= trB

[
πππB e

ixHHHBBBB e−ixHHHBBBB
]
. (26b)

From these formulas, we see that the condition for the validity of Eq. (23), XXXS � 111S,
is satisfied if γ2〈SSS2〉S〈BBB2〉B � T 2. This shows that, the smaller the temperature T , the
weaker the coupling needs to be in order for the perturbative calculations to make sense.
An analogue of Eq. (24) was derived in Ref. [61] and for the special case of linear coupling
to a bosonic bath in Ref. [65].

Thus equipped with Eqs. (23) and (24), we can turn to Eq. (8) and write the SLD as

LLLS(β) = −∆HHHS + γ2∑
nm

αnm(β) |εn〉 〈εm|+O(γ4) (27a)

with ∆HHHS := HHHS − 〈HHHS〉S and coefficients

αnm(β) = 2 pn
pn + pm

∂β(XXXS)nm + pn∆nm

pn + pm
(XXXS)nm. (27b)

Here, ∆n := εn − 〈HHHS〉S. Also note that the populations appearing above are

pn = 〈εn|πππS |εn〉 = e−βεn/ZS (28)

and should not be confused with the populations of the mean-force Gibbs state

p̃n = 〈εn| π̃ππS |εn〉 = pn + γ2pn(XXXS)nn +O(γ4). (29)

We now have the two ingredients needed to compute the QFI from Eq. (6). After some
algebra, this can be compactly written as

FS(β) = ∂2
β lnZS + γ2

∫ β

0
du

[
Φ̃B(−iu) ∂2

βΦS(−iu) + 2 ∂βΦ̃B(−iu) ∂βΦS(−iu)
]

+O(γ4),

(30)

with the modified auto-correlation function Φ̃B(x) := (β− ix)ΦB(x). To second order in γ
the QFI can thus be expressed solely in terms of the probe and sample correlation functions.
We emphasise that the validity of Eqs. (27) and (30) is not, in any way, underpinned by
the Born–Markov approximation.

Equations (27) and (30) are our second main result. They can be applied directly
to any open quantum system under finite coupling, provided that Assumptions I and II
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are met. And since the systems satisfying these assumptions span an exceptionally wide
range, our closed-form expressions for LLLS and FS(β) open up new avenues in quantum
thermometry. Note that, when Assumptions I and II are violated, the QFI will in general
pick up a first-order term, as can be anticipated from Eq. (22). We provide illustrative
examples of that in Appendix A.

Finally, it is often useful to talk in terms of T rather than inverse temperature β.
Namely, from Eq. (5) we see that the best-case signal-to-noise ratio (SNR) for estimates
of T can be cast as

1
N

(
T

δT

)2

≤ β2 FS(β) := CS(T ) + γ2ξ(T ), (31)

with CS(T ) = β2∂2
β lnZS = ∂T 〈HHHS〉S being the heat capacity of the probe when in local

thermal equilibrium [24], and where ξ(T ) follows from the second-order term in Eq. (30).

3 Examples
We now benchmark our Eq. (30) against the exactly solvable Caldeira–Leggett model for
quantum Brownian motion and then, apply it to the spin–boson problem. In both cases,
we model the sample as an infinite collection of uncoupled harmonic oscillators spanning a
quasi-continuum of frequencies—the most common bath model in open quantum systems.
That is,

HHHB =
∑

k
ωk bbb

†
kbbbk, (32)

where bbb†k (bbbk) is the creation (annihilation) operator at frequency ωk. As it is also custom-
ary, we take the coupling operator BBB to be

BBB =
∑

k

(
gk bbb
†
k + g∗k bbbk

)
, (33)

Here, the coupling constants gk encode the overall dissipation strength (note that γ
still enters HHH int). We may collect them into the spectral density function

J(ω) = π
∑

k
|gk|2 δ(ω − ωk), (34)

where δ(·) stands here for the Dirac delta. Since we assume that the sample has a quasi-
continuum spectrum, we may give some smooth functional form to J(ω).

Using this notation, the bath correlation function evaluates to

ΦB(−iu) = 1
π

∫ ∞
0

dω J(ω) cosh
(
β ω/2− uω

)
sinh

(
β ω/2

) . (35)

Furthermore, using Eq. (30) we see that the second-order correction ξ(T ) to the SNR from
Eq. (31) is given by

ξ(T ) =
∫ ∞

0
dω J(ω) fS(T, ω), (36a)

where

fS(T, ω) = β2

π sinh β ω
2

∫ β

0
du (β − u) cosh

(
β ω/2− uω

)
×
[
∂2
βΦS(−iu) + ∂βΦS(−iu)

( 2
β − u

− ω coth β ω2 − ω tanh (2u− β)ω
2

)]
.

(36b)
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Eqs. (36) above hold for any spectral density J(ω), provided that the bath and the
probe–bath coupling are of the standard type defined by Eqs. (32) and (33). Hence,
Eq. (36) holds even where most master equations break down, e.g., when the bath cor-
relation function happens to be long lived. As we illustrate below, Eqs. (36) are indeed
very practical to quickly evaluate the finite-coupling corrections to thermal sensitivity, and
provide analytic intuition about their temperature dependence. This is our third result.

Specifically, in what follows we work with a spectral density with variable Ohmicity s
and exponential cutoff; namely,

J(ω) = Ωa−s ωs e−ω/Ω, (37)

where a controls the dimension of J(ω) and therefore depends on the choice of SSS: if
[SSS]=[ω]µ, then a = 1− 2µ, where [·] gives the dimension of the argument.

3.1 Quantum Brownian motion
In order to put the accuracy of our second-order formula to the test, we take a single
harmonic oscillator as the probe. That is,

HHHS = 1
2ω

2
0xxx

2 + 1
2p
pp2, (38)

while the probe operator entering in the interaction Hamiltonian¶ in Eq. (19) is SSS = xxx.
For this choice of SSS, dimensional analysis imposes the value a = 2 for the exponent in
Eq. (37). In this simple case, exact expressions can be found for the steady state of the
Brownian oscillator and its thermal sensitivity [29, 34], which allows us to benchmark
Eq. (30). Explicit expressions can be found in Ref. [29].

The only ingredient missing from Eqs. (36) is the probe correlation function, for which
a straighforward calculation yelds

ΦS(−iu) = 1
2ω0

e−uω0 + 1
ω0

cosh (uω0)
eβ ω0 − 1 . (39)

In Fig. 1 we compare the signal-to-noise ratio according to Eq. (31) against the exact
result and the thermal sensitivity of a probe in local thermal equilibrium, which is given
by the heat capacity alone. We see that our second-order formula accurately captures the
sensitivity for small coupling. As already advanced, at very low temperatures, β itself sets
an energy-scale compared to which the coupling is no longer perturbative. This results in
our second-order approximation becoming less accurate. On the other hand, the sensitivity
saturates at high temperature, and is correctly approximated by the assumption of local
thermal equilibrium on the probe, as expected. Hence, our formula provides substantial
quantitative advantage in the range of moderately low temperatures.

To get further insight into the correction we calculate the high-temperature expansion
of Eq. (36b), which gives

fS(T, ω) = − β2

6mπω +O(β4), (40)

¶Note that we are not adding a counter-term to compensate for the distortion of the harmonic potential
due to the coupling to the sample. While it may be important to do so whenever such renormalisation is
not expected to be physical—especially when the coupling is strong—this effect is irrelevant for us.
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Figure 1: Benchmarking Eq. (30) for quantum Brownian motion. The plot shows the signal-to-
noise ratio from our second-order formula (solid blue), the true SNR ratio from the exact mean-force
Gibbs state (dashed black), and from the infinitesimal coupling limit, i.e. the local Gibbs state (dotted
red). The second-order formula tracks the exact sensitivity well as long as the probe–sample coupling
is the only small parameter. It starts to break down when the temperature itself becomes a small
parameter as T → 0. We chose ω0 = 1, γ = 0.1, s = 1 and Ω = 100 (~ = k = 1).

doing the integral in Equation (36a) for our spectral density (37) gives

ξ(T ) = −Ω2 Γ (s)
3mπ β2 +O(β4), (41)

with Γ (·) the Euler gamma function. This is exactly the lowest-order contribution from the
frequency renormalisation due to the finite interaction with the sample, i.e. the classical
mean-force correction [91].

3.2 Spin–boson model
We now apply our formula to a case study for which no exact solution is available—the
spin–boson model. In order to study the effects of coherence in the steady state, we focus
on the ‘θ-angled’ spin–boson model. That is,

HHHS = ε

2σ
σσz, (42a)

SSS = cos θσσσz − sin θσσσx, (42b)

where σσσα are Pauli operators. For this choice of SSS, a = 1. We thus have the probe
correlation function

ΦS(−iu) = cos2 θ + cosh
(
ε u− β ε/2

)
sech

(
β ε/2

)
sin2 θ. (43)

In Fig. 2 we compare the the SNR ratio as per Eq. (31) for two values of θ and, once
again, also against the sensitivity of a locally thermal probe. We also plot the coherence
appearing in our approximation of the mean-force Gibbs state [Eq. (23)], and the coherence
showing up in the symmetric logarithmic derivative, to second order in γ [Eq. (27)]. In
this case, however, there is no exact SNR to compare with. We see that the two different
couplings yield slightly different sensitivity, departing from the SNR of the locally thermal
probe. We can also see that, at large enough temperature, the sensitivity drops to zero, as
the spin populations saturate.

Rather counter-intuitively, we can see in the right panel that the θ = π/4 coupling
generates temperature-dependent coherences in the second-order approximation to π̃ππS, and

10



-1 0 1 2
0

0.25

0.5

log T /ω0

T
/Δ
T

-1 0 1 2

0

1

2

π
12

×
10

-
5

-1 0 1 2

0

1

2

3

log T /ω0

L
12

×
10

-
5

Figure 2: Applying Eq. (30) to the spin–boson model. The left panel shows the SNR from our
second-order formula for two types of probe–sample coupling; namely, θ = 3π/2, i.e. SSS = σσσz (solid
blue) and for θ = π/4, i.e. the maximally coherent case (dashed orange). We compare these to
the sensitivity of a locally thermal probe (dotted red). The top-right panel shows the second-order
coherences of the respective mean-force Gibbs states. The same color coding applies. The bottom-
right plot shows the second-order coherences of the respective symmetric logarithmic derivatives in the
basis of HHHS. We emphasize that diagonal energy measurements saturate the second-order precision
bound despite π̃ππS and LLLS acquiring temperature-dependent off-diagonal elements at second order in γ.
The other parameters are the same as in Fig. 1.

in the second-order corrections toLLLS. Yet, we have proven that (diagonal) measurements in
the local energy basis HHHS—which destroy such temperature information—do still saturate
the ultimate precision bound, at least to second order in γ [cf. Eq. (18)]. In other words,
temperature-dependent coherences may only improve precision at higher orders in finite-
coupling quantum thermometry.

It is interesting to note that, in this case, the correction ξ(T ) to the optimal SNR has a
definite sign—it is always negative. Indeed, the factor in brackets in Eq. (36b) is negative
for all ω, while the spectral density is obviously positive for all ω. Hence, the weaker the
probe–sample coupling the better for this type of probe. For completeness, we calculate
the high–T limit of Eq. (36b). We get

fS(T, ω) = −2 sin2 (θ) ε2

3πω β3 +O(β5) (44)

which, after integration as per Eq. (36a), yields

ξ(T ) = −4 sin2 (θ) ε2ΩΓ (s)
3π β3 +O(β5). (45)

This highlights what can already be seen in Fig. 2—that here, the vanishing-coupling limit
gives a far better approximation to the thermal sensitivity at moderate-to-large tempera-
ture, when compared with the quantum Brownian motion example.

4 Derivation
4.1 Mean-force Gibbs state
In this section we elaborate on the derivation of the results presented in Sec. 2. The first
step in our search for an explicit expression for FS(β) will be to obtain a second-order
approximation of the reduced probe state π̃ππS, following [61]. Applying Eq. (21) to e−βHHH
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leads to:

e−βHHH =e−β(HHHS+HHHB)
(
111− γ

∫ β

0
dβ1 e

β1(HHHS+HHHB)VVV e−β1(HHHS+HHHB)

+ γ2
∫ β

0
dβ1

∫ β1

0
dβ2 e

β1(HHHS+HHHB)VVV e−(β1−β2)(HHHS+HHHB)VVV e−β2(HHHS+HHHB)
)

+O(γ3).

(46)

Taking the trace yields an approximation for the total partition function

Z̃ = ZSZB − γ β trS

[
e−βHHHSSSS

]
trB

[
e−βHHHBBBB

]
+ γ2

∫ β

0
dβ1

∫ β1

0
dβ2 trS

[
e−βHHHSe(β1−β2)HHHSSSS e−(β1−β2)HHHSSSS

]
× trB

[
e−βHHHBe(β1−β2)HHHBBBB e−(β1−β2)HHHBBBB

]
+O(γ3), (47)

where Assumption I [Eq. (19)] has been applied. Using (1 + x)−1 = 1 − x + O(x2),
Assumption II [Eq. (20)], and the definition of probe and sample auto-correlation functions
from Eq. (26), we find

1
Z̃

= 1
ZSZB

(
1− γ2

∫ β

0
dβ1

∫ β1

0
dβ2 ΦS(−i(β1 − β2))ΦB(−i(β1 − β2))

)
+O(γ4), (48)

Multiplying Eqs. (46) and (48), collecting terms, and taking the partial trace over the
sample, we find that the first order correction vanishes, so that

π̃ππS = 1
Z̃
trB

[
e−βHHH

]
= πππS

(
111S + γ2XXXS

)
+O(γ4),

where we have introduced the operator

XXXS =
∫ β

0
dβ1

∫ β1

0
dβ2 ΦB(−i(β1 − β2))

×
[
eβ1HHHSSSSe−(β1−β2))HHHSSSSe−β2HHHS − ΦS(−i(β1 − β2))111S

]
, (49)

Note that trS [XXXSπππS] = 0 as required by normalisation.
Writing the diagonal elements of the operator (XXXS)nn := 〈εn|XXXS |εn〉 in the eigenbasis

of HHHS =
∑
n εn |εn〉 〈εn| gives

(XXXS)nn =
∫ β

0
dβ1

∫ β1

0
dβ2 ΦB(−i(β1 − β2))

×
[∑

k
φnk(−i(β1 − β2))− ΦS(−i(β1 − β2))

]
, (50)

which can be turned into Eq. (24) by introducing the new variables u = β1 − β2 and
v = β1 + β2 and performing the integral over v; namely

(XXXS)nn = 1
2

∫ β

0
du

∫ 2β−u

u
dvΦB(−iu)

(∑
k
φnk(−iu)− ΦS(−iu)

)
=
∫ β

0
du (β − u)ΦB(−iu)

(∑
k
φnk(−iu)− ΦS(−iu)

)
,
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In turn, the off-diagonal elements of XXXS are

(XXXS)nm =
∑

k
(SSS)nk(SSS)km

∫ β

0
dβ1 e

β1∆kn

∫ β1

0
dβ2 e

β2∆mkΦB(−i(β1 − β2)) (51)

Again, we may introduce u = β1 − β2 and v = β1 + β2 and integrate over v, which gives

(XXXS)nm = 1
∆mn

∑
k
(SSS)nk(SSS)km

∫ β

0
duΦB(−iu)

(
eu∆km eβ∆mn − eu∆kn

)
(n 6= m).

(52)

4.2 Symmetric logarithmic derivative
We now use the expression for the mean-force Gibbs state to obtain the SLD via Eq. (8).
To do so, we differentiate Eq. (23) and use 〈HHHS〉S = −∂β lnZS to get

∂β π̃ππS = −∆HHHS πππS + γ2∂β(πππSXXXS) +O(γ4). (53)

Turning to the operator e−λπ̃ππS and combining Eqs. (21) and (23) leads to

e−λπ̃ππS = e−λπππS

(
111S − γ2πππS

∫ λ

0
dλ′ eλ

′πππSXXXS e
−λ′πππS

)
+O(γ4). (54)

Using this, we can finally compute the SLD. From Eqs. (53) and (54) we get

e−λπ̃ππS (∂β π̃ππS)e−λπ̃ππS = −∆HHHS πππSe
−2λπππS

+ γ2πππS

∫ λ

0
dλ′ e−(λ−λ′)πππSXXXS e

−(λ+λ′)πππS ∆HHHS πππS,

+ γ2e−λπππS∂β(πππSXXXS) e−λπππS

+ γ2∆HHHS πππ
2
Se
−2λπππS

∫ λ

0
dλ′ eλ

′πππSXXXS e
−λ′πππS +O(γ4) (55)

We can now recover Eq. (27) using Eqs. (8) and working again in the eigenbasis of HHHS.
Namely,

LLLS(β) = −∆HHHS + γ2∑
nm

αnm(β) |εn〉 〈εm|+O(γ4),

with coefficients

αnm(β) = 2 pn
pn + pm

∂β(XXXS)nm + pn∆nm

pn + pm
(XXXS)nm.

Here, we have used the fact that ∂β pn = pn (〈HS〉S − εn) = −pn ∆n (not to be confused
with the energy gaps ∆nk). As long as we know the sample correlation function ΦB(x) and
the eigenstates of HHHS, we will be able to obtain the elements (XXXS)nm from Eqs. (24) and
(52), and thus, the SLD as per Eq. (27).

4.3 Quantum Fisher information
The QFI can now be directly computed by using FS(β) = trS

[
LLL2

S π̃ππS

]
. Collecting terms

up to second order yields

FS(β) = ∂2
β lnZS + γ2∑

n

[
pn∆2

n(XXXS)nn − 2 pn∆nαnn
]

+O(γ4), (56)
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where ∂2
β lnZS = 〈(∆HHHS)2〉S and αnn = ∂β(XXXS)nn, by Eq. (27b).

We can still obtain the much more elegant expression (30), in terms of probe and sample
auto-correlation functions alone. Noting that

ΦS(−iu) =
∑

nk
φnk(−iu)

is easy to see that ∑
n
pn∆n(XXXS)nn = −∂βΦS(−iu) (57a)∑

n
pn∆2

n(XXXS)nn = ∂2
βΦS(−iu). (57b)

Furthermore, since
∑
n pn ∆n = 0, we see that ∂β(XXXS)nn reduces to

∂β(XXXS)nn = −∂βΦ̃B(−iu) ∂βΦS(−iu), (58)

where, recall that Φ̃B(−iu) = (β − u) ΦB(−iu). Hence, Eq. (56) can be recast as desired:

FS(β) = ∂2
β lnZS + γ2

∫ β

0
du

[
Φ̃B(−iu) ∂2

βΦS(−iu) + 2 ∂βΦ̃B(−iu) ∂βΦS(−iu)
]

+O(γ4).

4.4 Classical Fisher information for energy measurements
Finally, we connect with our general result in Eq. (18). To that end, we use the definition
(10) of the (classical) Fisher information associated to energy measurements of π̃ππS on the
basis of the bare Hamiltonian HHHS. Namely,

IHHHS
(β) =

∑
n
p̃n (∂β ln p̃n)2. (59)

Plugging in the mean-force Gibbs state populations from Eq. (29) gives

IHHHS
(β) =

∑
n
p̃n(∂β ln p̃n)2

= ∂2
β lnZS + γ2∑

n

[
pn∆2

n(XXXS)nn − 2∆n∂β(XXXS)nn
]

+O(γ4).

Here, we have used the identities ln p̃n = pn + γ2(XXXS)nn +O(γ4), ∂β ln pn = −∆n, and the
fact that

∑
n pn(∂β ln pn)2 = ∂2

β lnZS. As expected, we thus recover Eq. (56), meaning that
local energy measurements on the probe are as efficient as the truly optimal measurements
in finite-coupling quantum thermometry. This statement holds generally to second order
in the coupling for any thermometric setup. The only underpinning assumption is that
probe and sample have a separable coupling, and that the sample operator averages to
zero when in a local thermal state. This choice for the dissipative interaction is indeed
widespread in open quantum systems.

5 Conclusions
We have developed a theory of finite-coupling quantum thermometry, focusing on the
second-order correction terms. On the one hand, we have obtained closed-form expressions
for the symmetric logarithmic derivative, which fixes the optimal basis in which to measure
the probe; and the quantum Fisher information, which gauges the responsiveness of the
probe to temperature fluctuations on the sample. Our formulae make minimal assumptions
on the probe–bath coupling and can be readily applied to any setup by simply computing
the probe and sample auto-correlation functions. In particular, we make no assumptions
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on the nature of the sample, so that our framework is applicable even when standard open-
system weak-coupling tools—based on the Born–Markov approximation—break down.

On the other hand, we have proved that projective measurements in the local energy
basis of the probe are always optimal to the first two leading orders in the probe–sample
coupling. That is, even if temperature information may be encoded in the off-diagonal
elements of the probe’s marginal state, the advantage in extracting and processing such
information would only show up in higher order terms. Hence, measurement optimisation
is unnecessary for quantum thermometry at moderate couplings.

Finally, we have illustrated the use of our approach with two relevant examples—the
exactly solvable Caldeira–Legett model (which served as benchmark) and the spin–boson
model. Specifically, we have derived an explicit expression for the second-order correction
to the signal-to-noise ratio for temperature estimation, suitable for any open-system model
which uses a canonical linear bath with quasi-continuum spectrum; regardless of the specific
spectral density. Such formula can thus be of independent interest.

Our results open up new directions in finite-coupling thermometry. Namely, our for-
mulae can easily deal with thermometry on more realistic non-linear sample models, which
remain virtually unexplored to date. They can also facilitate the treatment of complex
probe–sample interactions, such as the ones appearing when modelling an atomic impu-
rity in a Bose–Einstein condensate [34], without the need for linearisation. Crucially,
having established the optimality of energy measurements up to second order in the cou-
pling strength highlights the importance of directing practical efforts towards measuring
the probe in its local basis. Furthermore, guaranteeing that optimal thermometry may
be attained using a fixed temperature-independent basis also eliminates the need for more
complex adaptive schemes.

Interestingly, lifting our Assumption II on the vanishing expectation value of the inter-
action in the stationary state of the sample would result in inhomogeneous terms, which
might introduce a thermometric advantage in terms of additional temperature dependence.
Studying how this may be exploited in practice will be the subject of future study.
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A Examples with 〈BBB〉
B
6= 0

In this short Appendix, we give explicit examples in which Assumption II in Eq. (20)—
namely 〈BBB〉

B
= 0—is not satisfied. Specifically, we begin by illustrating how, in this case,

the QFI and SLD may pick up terms of O(γ). To that end, let us consider the two-qubit
model

HHH = HHHS +HHHB +HHH int = ωσσσz,1 ⊗1112 + ω1111 ⊗ σσσz,2 + γ σσσz,1 ⊗ σσσz,2,
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where the sub-indices label the qubits, ‘1’ being the probe and ‘2’ being the sample. Also,
in all the expressions that follow, we shall set ω = 1 for simplicity.

The corresponding mean-force Gibbs state can be expanded as

π̃ππS = πππS + γ p1σσσz,1 + γ2p2σσσz,1 +O(γ3),

with p1 = 1
2 β sech2 β tanh β and p2 = 1

2 β
2 sech2 β tanh3 β. As we anticipated, in this

case the QFI does feature a linear term, namely

FS(β) = ∂2
β lnZS + sech4 β

[
β(cosh 2β − 3)− sinh 2β

]
γ +O(γ2),

and so does the symmetric logarithmic derivative

LLLS = −∆HHHS + l1σσσz,1 +O(γ2),

with l1 = 1 + tanh β + sech2 β (β + 2β tanh β − 1). We know from Sec. 2.2.1 that the
classical Fisher information for measurements in the local energy basis and the QFI must
agree in the zeroth and first order in γ. However, as noted in Sec. 2.1, due to the coupling
in this toy model being ’non-dissipative’, i.e., [HHH int,HHH] = 0, LLLS is diagonal in the HHHS basis
at all orders. Hence, energy measurements are always optimal in this particular case.

Let us now turn to a more general scenario. Namely,

HHH = HHHS +HHHB +HHH int = ωσσσz,1 ⊗1112 + ω1111 ⊗ σσσz,2 + γΠΠΠ1 ⊗ σσσx,2,

where ΠΠΠ = |1〉 〈1|. In this case, we can see that

π̃ππS = πππS + γ p1σσσx,1 + γ2 p2σσσz,1 +O(γ3),

with coefficients

p1 = 1
4 tanh β (tanh β − 1)

p2 = 1
8 sech β (tanh β − 1) (β sech β − sinh β).

In particular, note how the mean-force Gibbs state does feature β-dependent coherences.
The corresponding symmetric logarithmic derivative is

LLLS = −∆HHHS + γ l1σσσx,1 +O(γ2),

with l1 = 1
2 sech2 β (2 tanh β − 1), meaning that the optimal measurement is non-diagonal

in the energy basis already to first order in the coupling strength. And yet, as we proved in
full generality in Sec. 2.2.1, the classical Fisher information of local energy measurements
and the quantum Fisher information must agree to second leading order. Indeed, direct
calculation shows that

FS(β)− IHHHS
(β) = 1

4 sech4 β (1− 2 tanh β)2 γ2 +O(γ3).
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