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Abstract | In female animals, energy metabolism and fertility are tightly connected, and reciprocally regulated. 

However, the relative contributions of metabolic and reproductive pathways have changed over the course 

of evolution. In oviparous animals, metabolic factors take precedence over fertility, enabling egg production 

to be inhibited in a nutritionally poor environment. By contrast, in placental mammals, the opposite occurs: 

the need to feed a developing embryo and neonate forces metabolic pathways to adapt to these reproductive 

needs. This physiological necessity explains why in female mammals alterations of gonadal activity, including 

age-dependent cessation of ovarian functions, are associated with a disruption of metabolic homeostasis 

and consequent inflammatory reactions that trigger the onset of metabolic, cardiovascular, skeletal and 

neural pathologies. This Review discusses how metabolic homeostasis and reproductive functions interact 

to optimize female fertility and explains the pathogenic mechanisms underlying the disordered energy 

metabolism associated with human ovarian dysfunction owing to menopause, polycystic ovary syndrome and 

Turner syndrome. Finally, this article highlights how hormone replacement therapy might aid the restoration 

of metabolic homeostasis in women with ovarian dysfunction.

Della Torre, S. et al. Nat. Rev. Endocrinol. 10, 13–23 (2014); published online 22 October 2013; doi:10.1038/nrendo.2013.203

Introduction

Although women have a greater life expectancy than men, 
the gap is narrowing.1 From 1990 to 2011 the difference in 
life expectancy between men and women dropped from 
an average of 6.61 to 4.67 years in European countries 
and from 7 to 5 years in the USA.2 The fact that women 
develop an increased susceptibility to weight gain as 
they age3 could potentially contribute to this phenom
enon, because obesity is a wellknown risk factor for a 
large number of metabolic, cardiovascular and skeletal 
dis orders.4 Understanding the biological basis of weight 
gain in ageing women is, therefore, relevant to define 
ap propriate st rategies to combat obesity in this population.

One interesting hypothesis suggests that the female
specifi c propensity to weight gain (and, thereby, to 
metabolic dysfunction) might be the consequence of 
adaptations that enable reproduction and nurturing  
of offspring in foodscarce environments.3 Uncontrolled 
reproduction in a nutritionally poor environment would 
lead to competition for food between mothers and their 
offspring, which ultimately might result in extinction of 
the species. Female fertility and energy metabolism are, 
therefore, tightly interconnected; during the reproduc
tive period of life, the physiological activity of the gonads, 
with their cyclic production of sex hormones, ensures a 
continuous regulation of food intake and energy expendi
ture. However, with the cessation of ovarian function, 

gonadal control over energy metabolism decreases, 
with negative consequences. In women, weight gain and 
obesity are most prevalent around and after menopause.5 
Moreover, pathol ogies that involve ovarian dysfunction, 
such as polycystic ovary syndrome (PCOS) and Turner 
syndrome, are generally associated with metabolic dis
orders.6,7 Thus, an obesogenic milieu might be particu
larly metabolically harmful in species adapted to survive 
in nutrientpoor environments.

The molecular mechanisms involved in the inter actions 
between fertility and metabolism have been little investi
gated in mammals. However, the remarkable similarities 
in these mechanisms among oviparous species demon
strate that strong selection pressure has favoured the 
preservation of pathways that coordinate reproductive 
functions with energy availability. Indeed, mechanisms 
that limit female gonadal activity during times of calorie 
restriction should have been positively selected for in all 
species during evolution.8 An appreciation of the role of 
evolution in shaping these reproductive and metabolic 
pathways might, therefore, improve our understanding of 
human female physiology.

In this Review, we discuss how the reciprocal inter
actions between pathways that control fertility and energy 
metabolism are organized and underline the key roles 
of molecules such as estrogens and insulinlike growth 
factors (IGFs) in these pathways. We also discuss how 
this novel perspective could challenge current therapeu
tic strategies—amelioration of metabolic disorders, for 
example, might become an important goal of hormone 
replacement therapy (HRT), particularly in ageing women.
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Nutritional status—links to fertility

Mechanisms in oviparous species

In oviparous species, the most important yolk proteins 
are vitellogenins, a family of large glycoproteins that 
provide nutrients (such as amino acids, carbohydrates, 
phosphates and sulphates) to the embryo, as well as lipids, 
hormones, vitamins and metals.9 Synthesis of vitello
genins takes place in metabolic organs that are function
ally comparable to liver.10 Vitellogenins also have a key 
role in fat storage and mobilization; thus, egg maturation 
ceases when energy availability is restricted. Moreover, 

vitellogenins and the molecular pathways directing their 
synthesis are wellconserved across all oviparous species, 
from invertebrates to vertebrates.11 In liverlike tissues, 

stimuli from local sources and the nervous system (such 
as insulinlike peptides,12 amino acids and nutritional 
signalling factors, such as target of rapamycin13),12,14 
control vitellogenin production in concert with gonadal 
hormones (ecdysone and estrogens) to signal the state of 
egg development and m aturation (Figure 1).

Mechanisms in placental mammals

In mammals, including primates, severe malnutrition 
and allostatic overload reduce fertility.15 Reproduction 
is still arrested in nutritionally unfavourable settings, 
but the mechanisms involved have increased  complexity 
compar ed with those in oviparous species.

In the mammalian liver, estrogenregulated synthesis 
of apolipoproteins16 seems to have a role in maintain
ing reproductive capacity, as defective hepatic produc
tion of VLDL leads to female sterility.17 Interestingly, 

Key points

 ■ Metabolic and reproductive pathways are tightly associated, and this relationship 

has been conserved throughout evolution

 ■ Reproductive disorders can lead to changes in metabolic function

 ■ Similarly, metabolic disorders can underlie changes in reproductive function

 ■ Hormone replacement therapy for reproductive disorders might also have 

beneficial effects on energy metabolism

Figure 1 | The mutual control of nutritional status and reproduction throughout evolution. In oviparous animals, vitellogenin 
synthesis takes place in the organ functionally comparable to the mammalian liver,9 and is regulated by nutritional cues 
together with gonadal hormones (such as ecdysone or estrogens).13 Once synthesized, these lipid transport proteins are 
secreted into the circulatory system to reach the gonads where they regulate the maturation of the egg. Vitellogenins and the 
proteins they transport provide the embryo with energy necessary for its development. In all oviparous animals, therefore, 
nutritional cues have a direct control over reproduction regulating oogenesis, or inducing infertility or a dormant fertility state 
(dauer and diapause). In placental mammals, the liver regulates gonadal function through the synthesis of the lipid transport 
protein apoB (a member of the vitellogenin family) and the synthesis of IGF-1.144–146 Estrogens, together with dietary intake, 
regulate liver production of both apoB and IGF-1. In addition, estrogens have a strong influence on the activity of all organs 
relevant for energy metabolism and provide the embryo with the energy molecules necessary for its growth. In mammals the 
control of energy metabolism on reproduction, typical of oviparous animals, is maintained, but reproductive functions become 
the key driver of metabolic functions. Abbreviations: AA, amino acids; apoB, apolipoprotein B-100; E2, estradiol; GH, growth 
hormone; IGF, insulin-like growth factor; ILPs, insulin-like peptides; IPC, insulin-producing cells; JH, juvenile hormones; LDLR, 
LDL receptor; Sperm-dep, sperm dependent; Vg, vitellogenin.
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apolipoprotein B100 (apoB100) contains a vitello
genin domain,18 and placenta formation is impaired 
in apoBknockout mice.19 Moreover, dietary intakes of 
amino acids can also regulate fertility.20 Hepatic syn
thesis of IGF1, which is essential for the reproductive 
cycle, is regulated by aminoaciddependent activation 
of estrogen receptor (ER) α in the liver.21 These mecha
nisms resemble those in oviparous species. However, 
in placental animals, the central regulation of energy 
expenditure and reproduction takes precedence 
over these ancestral, nutritionbased, mechanisms of 

fertility control. Peripheral messages converge in the 
brain nuclei responsible for their integration and for 
production of the efferent signals that ultimately control 
allostatic regulation in the organism. Several tissues 
and organs communicate nutritional status to the cen
tral nervous system. White adipose tissue secretes  
the anorexigenic hormone leptin in amounts proportional 
to the amount of energy stored as fat.22 The stomach pro
duces the orexigenic hormone ghrelin.23 The intestine 
secretes peptide YY in response to food intake, which 
induces satiety.24 Finally, the pancreas releases insulin, 
which has a similar action to leptin in the hypo thalamus.25 
All these signals converge and are integrated in the brain
stem and arcuate nucleus which, together with other 
hypothalamic nuclei, regulate both ovulation and energy 
homeostasis. For example, sensors of energy status in the 
arcuate nucleus—such as cocaine and amphetamine 
regulated transcript (CART)– proopiomelanocorti n 
(POMC) neurons and agoutirelated peptide (AgRP)–
neuropeptide Y (NPY) neurons—direct the synthesis of 
gonadotropins in the pituitary by regulating the activity 
of gonadotropinreleasing hormone (GnRH) neurons 
located in the preoptic area (Figure 2).26

In placental mammals, the nutritional burden asso
ciated with development of the embryo and growth of 
the offspring has been transferred to the mother. Conse
quently, the regulatory mechanisms linking energy avail
ability and reproductive function had to be adapted to 
take into account the variable energy demands of each 
stage of the reproductive cycle (periodic ovulation, preg
nancy and lactation).26 Thus, the need to have highly 
reciprocal control of both energy sensing and reproduc
tion might have favoured the selection of ERα and ERβ as 
the nexus through which these two functions are linked. 
Indeed, these receptors can be activated by nutritional 
signalling molecules (such as amino acids and IGF1), as 
well as gonadal hormones,21 and can regulate expression 
of a diverse range of genes.26 ERα and ERβ are exception
ally versatile sensory and regulatory effectors that are 
widely expressed in mammalian tissues.27

The essential role of estrogens and their receptors in 
reproduction has long been known. However, emerg
ing evidence suggests that estrogen signalling also has 
a central role in the control of energy metabolism. The 
concentration of various circulating estrogen metabo
lites such as estradiol, estrone, estriol and their ratio 
depends on fertility status.28 The exact role of each of 
these metabolites is unclear; therefore, in this Review, the  
term estrogens refers to all estrogenic compounds. 
The major naturally occurring estrogens in women are 
estrone, estradiol (which has the most potent effect on 
ERα and ERβ), and estriol (which has the least potency). 
In addition, pregnant women produce estetrol. Estradiol 
is the predominant estrogen produced during the repro
ductive years (mean levels of which rise from a nadir 
of 106.5 ± 25.7 pmol/l of plasma during menstruation, 
to a peak of 1167.4 ± 99.1 pmol/l of plasma around 
midcycle). Changes in estrone concentrations follow a 
similar, although less marked, pattern (from a nadir of  
148.0 ± 14.8 pmol/l during menstruation, to a peak  
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Figure 2 | ERα in hypothalamic circuits regulates energy metabolism and 
reproduction. Estrogen inhibits food intake via ERα signalling on POMC/CART 
neurons (red) that signal to second-order neurons (yellow) in the lateral 
hypothalamus, to kisspeptin neurons (green) in the paraventricular nucleus and to 
orexigenic AgRP/NPY neurons (blue) in the arcuate nucleus. Conversely, AgRP/
NPY neurons, when activated, inhibit the POMC-CART neuron possibly through the 
Y

1
 receptor. Estrogens act on SF-1 neurons (purple) in the ventromedial 

hypothalamus to regulate energy expenditure and fat distribution. ERα in the 
arcuate nucleus is a critical regulator of food intake, whereas ERα in the 
ventromedial hypothalamus regulates energy expenditure.39 Finally, POMC/CART 
(through kisspeptin and second-order neurons) and SF-1 neurons signal energetic 
status to GnRH neurons (orange) that are responsible for the pituitary release of 
gonadotropins, thereby regulating plasma estrogen levels. AgRP/NPY and POMC/
CART neurons express receptors for leptin that allow them to be sensitive to the 
amount of energy stored in fat. Abbreviations: AgRP, agouti-related protein; CART, 
cocaine and amphetamine-regulated transcript; DMH, dorsomedial hypothalamus; 
ERα, estrogen receptor α; GnRH, gonadotrophin releasing hormone; LH, lateral 
hypothalamus; ME, median eminence; NPY, neuropeptide Y; POA, preoptic area; 
POMC, pro-opiomelanocortin; PVN, paraventricular nucleus; SF-1, steroidogenic 
factor-1; VMH, ventromedial hypothalamus.
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of 628.8 ± 48.1 pmol/l at midcycle).29 With menopause, 
estradiol levels decrease markedly, although estrone levels 
remain comparable to those observed in fertile women. 
The transcriptional programme regulated by ERα and 
ERβ might be modulated in response to changing levels 
of circulating hormones, which characterize the different 
stages of female fertility.26,30,31 Accordingly, the set of genes 
controlled by ERα and ERβ might substantially change 
in response to different concentrations and ratios of hor
mones. Hence, in the same target tissue, the intracellular 
activity of these receptors might vary at each reproductive 
stage or during the estrous cycle, leading to an alternate 
activation of p athways that control energy metabolism.26

After loss of estrogen production due to ovariectomy32 
or menopause,33 adipose tissue mass rapidly increases, 
and its distribution changes. These effects can be reversed 
by the administration of HRT.32 The influence of estro
gens on energy metabolism is believed to be largely 
mediated by ERα. Mice lacking ERα have increased body 
weight and food intake compared with wildtype litter
mates,34 and administration of ERαselective agonists (but 
not ERβselective agonists) has anorexigenic effects in 
these mice.35,36 Interestingly, mice lacking ERβ have vari
able degrees of reduced fertility, show abnormal follicular 
maturation and very few corpora lutea,37 whereas mice 
lacking ERα are infertile and have markedly hypoplastic 
reproductive organs and tissues,27 again highlighting the 
close a ssociation between regulation of energy balance 
and fertility.

Estrogenmediated metabolic effects occur at multiple 
levels. In the brainstem, estrogens potentiate or attenuate 
the effect of various peptides that signal satiety or hunger, 
respectively (such as cholecystokinin, which is released 
from the small intestine in response to food inges
tion,38 or ghrelin,39 production of which is stimulated by 
fasting). In the arcuate and ventro medial nuclei, estro
gens stimulate POMC and steroidogenic factor 1 (SF1) 
neurons,40 thereby repressing the synthesis of orexi
genic neuropeptides (such as AgRP and NPY).41 POMC 
expression is regulated by ERα; in mice lacking this 
receptor, leptin and insulin no longer increase POMC 
expression.42 Moreover, mice lacking ERα specifically in 
POMC neurons are hyperphagic and have reduced sensi
tivity to leptin, despite POMC expression being main
tained in the hypothalamus.40 Thus, the anorexigenic 
effect of estrogens on POMC neurons is clearly medi
ated by ERα, although whether the underlying mecha
nism involves direct regulation of POMC expression or 
potentiated effects of other anorexi genic hormones, such 
as leptin, or both remains unclear. POMC neurons also 
express CART, and, to our knowledge, no data describe 
whether ERα or ERβ (or both) are involved in CART 
regulation, even if CART expression is modulated by 
estradiol.43 AgRP and NPY are essential targets for the 
anorexigenic effect of estrogens. AgRP–NPY neurons do 
not express ERα in vivo.41 However, given that ERα is 
abundantly expressed in the arcuate nucleus of the hypo
thalamus,44 whereas expression of ERβ is barely detect
able at this location, estrogens might conceivably regulate 
AgRP–NPY neurons through ERα on other neuronal 

subtypes (such as kisspeptin neurons in the ventrome
dial hypothalamus that innervate AgRP–NPY neurons). 
The mechanisms through which estrogens regulate 
GnRH neurons to control fertility are unclear. Estrogen 
decreases GnRH expression in GT17 cells (a hypotha
lamic cell line that expresses ERα and ERβ), an effect that 
might be mediated by ERα.45 Although GnRH neurons 
seem to express only ERβ in vivo,46 a role for both ERα 
and ERβ receptors in regulating GnRH neuronal activity 
as well as GnRH secretion remains probable. Different 
mechanisms are potentially required, including direct 
actions of estrogen through ERβexpressing GnRH 
neurons, and indirect actions of estrogen through 
ERαexpressing afferents of GnRH neurons.

Moreover, estrogen signalling potentiates leptin sensi
tivity, possibly by increasing expression of the leptin 
receptor in the hypothalamus.47 The overall effects 
of increased estrogen signalling are induction of an 
anorexi genic response and fat redistribution to subcuta
neous rather than visceral depots. In the arcuate nucleus, 
anteroventricular periventricular nucleus and preoptic 
area, estrogen signalling integrates with afferent signals 
from peripheral organs and tissues, such as the stomach, 
pancreas and adipose tissue and, through kisspeptin 
neurons, controls the release of GnRH48 in response to 
an individual’s metabolic status. These effects are medi
ated mainly by ERα, which is abundantly expressed in 
these hypothalamic nuclei (Figure 2).49

ERα and ERβ are expressed and active in all metabolic 
organs. In adipose tissue, estrogens increase subcutane
ous fat deposition in lower body areas and decrease lipo
lytic activity (which maintains fat stores in case periods 
of food scarcity occur during pregnancy or lactation). 
When estrogen signalling decreases, the subcutaneous fat 
redistributes to visceral areas;31,34,50 this phenomenon has 
been observed in women after natural or o ophorectomy
induced menopause;32,33 in animal models of selective 
ablation of ERα;27,34 in humans with lossoffunction 
ERα polymorphisms;51 and in ovariectomized mice, the 
phenotype of which can be partially rescued by treat
ment with 17βestradiol.32 Studies in cultured adipocytes 
show that estrogens have a direct antilipogenic and pro
lipolytic activity in vitro, associated with inducing the 
expression of hormone sensitive lipases and decreasing 
the activity of lipoprotein lipase.52,53 These same effects 
of estrogens in fatty acid metabolism are observed in 
animal models.52–54 However, the exact contributions of 
ERα and ERβ to these activities remain to be defined. 
Although the results of studies in mice genetically engi
neered to lack ERα suggest that ERα is the main receptor 
involved in the control of adipose tissue distribution,34 
other studies, mainly in cultured adipocytes, suggest 
that estradiol also has antilipogenic and antiadipogenic 
effects mediated by ERβ.55

ERα involvement in the control of lipid metabolism 
is certainly relevant in the liver,26 where this receptor 
isoform is predominant.27 In addition to controlling 
the synthesis of lipid transport proteins, such as VLDL, 
hepatic ERα signalling also regulates the expression of 
numerous genes, the products of which are involved 
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in pathways of cholesterol and fatty acids synthesis, 
according to the phase of the menstrual cycle and fertil
ity status.26 The oscillation of lipid biosynthesis induced 
during the menstrual cycle by fluctuating estrogen 
levels is necessary to maintain healthy fat metabolism. 
Menopause, ovariectomy and suppression of ERα activ
ity in the liver are all associated with increased hepatic 
fat deposition.26 These observations suggest that the 
changes in estrogen metabolism that accompany each 
stage of reproductive activity in women might regulate 
ERα transcriptional activity in the liver, thereby promot
ing the release or the storage of energy in the form of fat, 
as necessary for reproductive function.26

ERα and ERβ are expressed in all tissues relevant to 
glucose metabolism, including skeletal muscle and liver.27 
However, the most studied extragonadal site of estro
gen action is the pancreas, where its important protec
tive effect has been known for decades.56 In pancreatic 
β cells, estrogens have an antiapoptotic action,57 repress 
both lipid biosynthesis and the accumulation of fat, 
preventing lipotoxicity,58 and directly stimulate insulin 
biosynthesis.59 This last effect might be important in late 
pregnancy, when high estrogen levels could synergize 
with high prolactin levels to promote βcell insulin pro
duction, to meet the increased metabolic demand.60 Of 
particular relevance with regard to the potential thera
peutic use of hormonal interventions is that the beneficial 
effects of estrogens on pancreatic β cells are observed with 
physiological plasma estrogen levels, as estrogen con
centrations above or below the physiological range are 
associated with metabolic dysfunction.61 Animal studies 
have shown that after ovariectomy, sensitivity to insulin 
is progressively impaired. The a dministration of estradiol 

to reach early gestational concentrations of the hormone 
(734–918 pmol/l) improves insulin sensitivity whereas 
a 100fold higher physiological dose than normal cycle 
concentration decreases insulin sensi tivity.62 Randomized 
controlled clinical trials should be carried out to better 
evaluate the longterm effects of oral contraceptives or 
HRT in women. The use of contra ceptives can de teriorate 
glucose tolerance;63 however, low estrogen doses (for 
example 0.625 mg/day), when administered orally can 
improve tolerance.64 Moreover, the Heart Estrogen 
Progestin replacement study65 and the Women’s Health 
Initiative found a lower incidence of diabetes mellitus in 
women taking HRT.66 Finally, high estrogen levels during 
late pregnancy (1,278–7,192 pg/ml)67 decrease insulin 
sensitivity, which might lead to gestational diabetes mel
litus. However, the mechanism mediating these effects 
requires clarification. Normalization of glycaemia must 
also take into consideration hormonal status, because sex 
hormones counteract the effects of insulin.68

Metabolic effect of reproductive status

Menopause

Given that mammalian reproductive functions also regu
late energy homeostasis, the fact that cessation of ovarian 
function leads to the manifestation of metabolic dis orders 
is not surprising. Indeed, postmenopausal women have 
increased vulnerability to a large number of patholo
gies, including disorders of the cardiovascular, skeletal, 
immune and nervous systems.69 How menopause triggers 
the onset of such diverse pathologies is unclear; perhaps 
declining levels of circulating estrogens weaken ERα and 
ERβ activity and thereby cause subtle alterations of energy 
metabolism in multiple tissues. Over time, such changes 
could lead to overt pathology owing to the diversity of 
organs involved. However, in our opinion, for each indivi
dual woman, the risk of developing a specific disease is 
influenced by genetic and environmental factors, as well 
as her overall health status (Figure 3).

Altered lipid metabolism

Menopause is associated with increased body weight, 
decreased lean mass70 and abdominal fat accumula
tion.33,71 Several enzymes involved in fat turnover are 
reduced in adipose tissue from postmenopausal women 
(such as acetylcoenzyme A carboxylase 1, longchain
acyl coenzyme A dehydrogenase and  hormonesensitive 
lipase).72 Increased insulin resistance is also evident, pos
sibly prompted by nonphysiological fatty acid deposits,73 
high levels of circulating free fatty acids, and increased 
production of reactive oxygen species from mitochon
drial βoxidation of fatty acids.74 Macrophages are 
recruited by the increased fat mass75 and, in combination 
with adipocytes, secrete proinflammatory cytokines and 
chemokines.76–78 Fatty acids also accumulate in the liver, 
where they facilitate the development of diffuse hepatic 
steatosis, characteristic of postmenopausal women.79 
This steatosis further contributes to the proinflamma
tory state, which facilitates the onset of the pathologies 
associated with climaterium such as atherosclerosis, 
osteoporosis and metabolic dysfunctions. Furthermore, 
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Figure 3 | Reciprocal regulation of energy metabolism and 
reproduction. Reproduction and energy metabolism are 
controlled to guarantee a metabolic status that is finely 
tuned to reproductive needs. The alteration of ovarian 
functions that characterizes menopause and other 
endocrine disorders changes these metabolic pathways, 
which might lead to obesity, metabolic syndrome,  
diabetes mellitus or NAFLD. Changes in energy 
metabolism might further impair reproductive activity. 
Abbreviations: NAFLD, nonalcoholic fatty liver disease; 
PCOS, polycystic ovary syndrome.
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in the liver, cessation of estrogenic control of choles
terol, fatty acid26 and lipoprotein metabolism leads to a 
decrease in production of HDL2 (large, anti atherogenic 
lipid particles)80 and an increase of HDL3 (small, 
proatherogenic particles).79,80 Total cholesterol, LDL, tri
glycerides,81,82 apoB100 and apoB100containing  lipo
proteins and lipoprotein(a),83 a complex of an LDLlike 
particle and apoA,81 are also increased, which contribute 
to the develop ment of an athero genic lipid profile and an 
increased risk of cardiovascular disease. The loss of estro
gen’s anti inflammatory action in circulating monocytes 
and microglia84,85 is another important patho physiological 
element that, together with the altered lipid transport 
associated with reduced levels of apoE, might lead to brain 
neurodegenera tive pathologies. For example, the inci
dence of disorders such as Alzheimer disease is similarly 
low in both female and male individuals ≤50 years old, 
but increases after this age and thereafter is considerably 
higher in women.86

Impaired muscle and bone physiology

After menopause, skeletal muscle function is reduced, 
as is muscle strength and mass, an effect that is reversed 
by HRT.87 Additionally, the decline in expression of the 
glucose transporter GLUT4,88 which is associated with 
impaired muscle ERα activity, together with a general
ized proinflammatory milieu might participate in the 
increased risk of insulin resistance typical in postmeno
pausal women. The proinflammatory state and increased 
levels of circulating cytokines (IL1, IL6 and TNF) also 
have repercussions in other organs, such as bone, where 
they contribute to a decrease in BMD and increase in 
osteoclast number.89

Nonalcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) is a metabolic 
condition that leads to liver damage. The spectrum of 
NAFLD ranges from simple steatosis, through non
alcoholic steatohepatitis and cirrhosis, to liver failure 
and hepatocellular carcinoma. NAFLD is characterized 
by hepatic lipid accumulation (fat comprises 5–10% of 
the total organ weight), which is associated with insulin 
resistance in the liver,90 increased lipogenesis90 and 
reduced secretion of triglycerides.91 Insufficient suppres
sion of lipolysis in adipocytes72 further contributes to the 
formation of lipid deposits in the liver. These alterations 
result in impaired mitochondrial fatty acid oxidation92 
and upregulation of both peroxisomal βoxidation and 
microsomal ωoxidation. Together with production  
of lipotoxic lipid intermediates, increased production of 
ROS, and induction of a proinflammatory response, these 
changes further contribute to progression of NAFLD and 
insulin resistance.93

NAFLD can occur in individuals of all ages and ethnic 
groups, and has a prevalence of about 30%;94 this disorder 
is more common in men, in whom it has a 2.0–3.5fold 
higher prevalence than in women.95,96 After menopause, 
the incidence of NAFLD increases significantly to 
reach the levels seen in men.97 HRT reduces the risk of 
hepatic steatosis98 and the prevalence of NAFLD79 in this 

population. These and other data, including the associa
tion of NAFLD with altered ovarian function,99 suggest 
that estrogens protect against the development of NAFLD.

The exact aetiology of NAFLD in postmenopausal 
women is unclear. However, estrogen deficiency cer
tainly contributes to the loss of inhibition of de novo fatty 
acid synthesis,26,100 decreased VLDLmediated export of 
lipids,97,101 and reduced fatty acid oxidation97,100 in the 
liver. This view is supported by studies in ovari ectomized 
rodents, in which administration of estrogens prevented 
hepatic fat accumulation by inhibiting expression of 
genes that encode proteins involved in lipo genesis, 
including sterol regulatory elementbinding protein 1c, 
peroxisome proliferatoractivated receptor (PPAR) γ, 
stearoylcoenzyme A desaturase 1, acetylcoenzyme 
A carboxylase and fatty acid synthase.26,100 Estrogens 
also facilitate VLDLmediated export of lipids from the 
liver, by increasing hepatic VLDLtriglyceride produc
tion and expression of microsomal triglyceride transfer 
protein.97,101 Finally, estrogens sustain the βoxidation of 
fatty acids by inducing expression of PPARα.100

Polycystic ovary syndrome

NAFLD is often associated with PCOS,102 which affects 
up to 10% of women of reproductive age.103 PCOS is a 
major metabolic and reproductive disorder characterized 
by hyperandrogenism, chronic anovulation and poly
cystic ovaries,104 as well as metabolic disturbances—50% 
of women with PCOS have overweight or obesity,105 and 
dyslipidaemia (increased levels of LDL and decreased 
levels of HDL) is also commonly observed.106 In the USA, 
39% of women with PCOS have hepatic steatosis,102 and 
50% have insulin resistance and metabolic syndrome.6 
Indeed, insulin resistance, independent of obesity, is the 
metabolic disorder that is most strongly correlated with 
PCOS.107 This decreased insulin signalling might be due 
to serine hyperphosphorylation of the insulin receptor 
and its substrate IRS1.108

The cause of anovulation in women with PCOS has 
not been clearly identified, but might involve an increase 
in GnRH pulse frequency, possibly caused by low pro
gesterone levels in these patients, which augment both 
luteinizing hormone release from the pituitary and 
ovarian androgen production.109 Insulin might increase 
luteinizing hormone production and synergize with it 
to stimulate androgen synthesis by ovarian theca cells, 
thereby further impairing the development of ovarian 
follicles.110,107 This observation further emphasizes the 
tight interconnection between metabolic and reproduc
tive disturbances in patients with PCOS. The presence of 
metabolic disorders worsens the clinical and biochemical 
manifestations of PCOS. Being overweight contributes 
to hyperandrogenism, insulin resistance and dyslipidae
mia;105,110 conversely, a reduction in excess body weight 
ameliorates these abnormal metabolic and reproductive 
features of PCOS.105

The oral contraceptive pill has been the mainstay 
of therapy for women with PCOS for several years— 
combinations of estrogens and progestins ameliorate hir
sutism, acne and oligomenorrhoea in these patients.110,111 
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Additionally, HRT, possibly by reducing abdominal fat 
deposits, is thought to counteract the worsening of 
hyperinsulinaemia that occurs with ageing in women 
with PCOS.112 Concerns about the use of oral contracep
tive therapy in patients with PCOS have been raised by 
the observation of increased triglyceride and cholesterol 
levels,113 a phenomenon that is not in line with either 
observations from experimental studies of HRT or with 
the notion that endogenous estrogens protect against 
dyslipidaemia.81 Further studies should be carried out to 
clarify the extent to which these alterations in patients’ 
lipid profiles were related to the specific compound used 
(ethinyl estradiol), its dosage and route of administration.

Metformin, an antidiabetic agent, can effectively restore 
ovarian function in women with metabolic disorders—
indeed, metformin not only reduces insulin levels but also 
directly stimulates ovarian steroido genesis.114 However, 
the effects of this therapy on reproductive outcomes 
seem to be limited, as live birth rates do not improve in 
metformintreated women with PCOS (despite improved 
clinical pregnancy rates).115 Metformin in combination 
with oral contraceptives can also mitigate the reproduc
tive and metabolic symptoms of PCOS.111 This obser
vation, which is in line with the theory that gonadal 
hormones are essential for a wellbalanced metabolism, 
also requires confirmation in additional studies including 
a statistically relevant number of patients with PCOS.111

Turner syndrome

Turner syndrome is a common genetic disorder affecting 
1 in 2,500 liveborn girls116 that is caused by the total or 
partial absence of one X chromosome (genotype 45,XO). 
The most common features of Turner syndrome are infer
tility due to gonadal dysgenesis, short stature,117 metabolic 
disorders, webbed neck and other physical abnormali
ties.118 Reduced dosage of genes on the X chromosome, 
which in 46,XX female individuals escape Xinactivation 
(and are, therefore, functionally diploid), is thought to 
cause most Turner syndrome features.119 However, candi
date Xchromosome genes responsible for specific Turner 
syndrome features are yet to be identified.120

The clinical features of patients with Turner syndrome 
include obesity,121 low lean body mass and increased BMI, 
waist circumference122 and visceral adipose tissue;99 more
over, triglycerides and LDL levels are elevated, but HDL 
levels are decreased.123 Patients with Turner syndrome 
also have smaller lipid particle sizes than do 46,XX indivi
duals.123 Interestingly, the extent of the differences in lipid 
levels and particle sizes between 46,XX and 45,XO indivi
duals is very similar to that between men and women.81 
Thus, haploinsufficiency of Xchromosome genes whose 
products are involved in lipid metabolism is probably the 
cause of dyspilidaemia in patients with Turner syndrome, 
in agreement with the fact that men generally have a more 
atherogenic lipid profile than do women.124 As a result, 
patients with Turner syndrome have a sevenfold increased 
risk of mortality from ischaemi c heart disease.121

Moreover, 80% of patients with Turner syndrome have 
abnormal liver function,125 which is associated with intra
cellular hepatic lipid accumulation,99,125 elevated levels of 

liver enzymes,126 and increased incidence of NAFLD,99 
cirrhosis,122 liver hyperplasia and inflammation.127 The 
hepatic abnormalities seem to be caused by the lack of 
estradiol production, as estradiol treatment ameliorates 
these abnormalities.128

Although many clinical features in patients with 
Turner syndrome recapitulate the metabolic syndrome, 
paradoxically, such patients have decreased levels of 
fasting glucose, insulin and leptin (despite their high vis
ceral adiposity), even compared with women who have  
premature ovarian failure.129 However, the low insulin 
levels are thought to result from defective βcell secre
tory function130 or a glucosestorage defect,131 and the 
decreased leptin levels are probably attributable to low 
fasting insulin levels.132 Impaired glucose homeostasis is 
also frequent121,122 and results in an increased risk of dia
betes mellitus,122,126 which is the cause of death in 25% of 
patients with Turner syndrome.133

Current guidelines for the treatment of Turner syn
drome recommend growth hormone therapy and suggest 
the initiation of estrogenbased HRT in patients aged 
12–14 years.134 Patients with Turner syndrome require 
high doses of growth hormone to achieve optimal develop
ment because they are resistant to its metabolic effects.7,135 
Growth hormone therapy aids the decrease of adiposity 
and abdominal fat, and increases lean mass and circulating 
IGF1 levels,7 whereas HRT is necessary for female sexual 
development, normalization of BMD and improvement 
of neurocognitive functions.118 Furthermore, estrogen 
therapy has important beneficial effects on the metabolic 
derangements associated with Turner syndrome, resulting 
from decreasing visceral adipose tissue,7 increasing HDL 
levels121 and maintaining normal liver metabolism.128 
Indeed, estradiol therapy improves liver function128 and 
regulates the release of growth factors and antiapoptotic 
factors, which maintain the integrity of hepatocytes and 
promote their proliferation.136

Current and future aims of HRT

Estrogens regulate both reproductive and metabolic func
tions, which have adapted to the reproductive cycle with 
fluctuating production of the metabolites relevant for 
energy storage or utilization.26 Estradiol is the molecule 
most likely to be responsible for the beneficial effects of 
estrogens on metabolism, because it is the most potent 
and predominant form of estrogen during the fertile age, 
and its levels substantially decrease after menopause. 
However, the literature on levels of individual estrogen 
metabolites and their physiological effects is limited and 
often conflicting. Furthermore, we still do not under
stand the exact consequences of either the termination of 
ovarian activity or the oscillation of metabolic functions. 
Experimental and clinical observations show that ovari
ectomy disrupts the rhythm of ERα activation in the liver26 
and induces rapid disorganization of lipid metabolism 
characterized by accumulation of hepatic fat deposits.26,79 
Decreased circulating estrogens and the lack of estrogen 
receptor oscillatory activity that occurs after menopause 
might trigger a derangement of energy metabolism in 
organs that are targets of estrogen action, such as adipose 
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tissue, muscle and hypothalamus. Functional deteriora
tion leading to the onset of specific pathologies (cancer, 
immune, neuropsychiatric, cardiovascular and cerebro
vascular diseases) are also observed with desynchrony of 
the circadian rhythm, which is generated by clock genes 
and proteins that regulate sleep and wakefulness, body 
temperature, blood pressure, digestive secretion, immune 
responses and metabolism.137–141 In analogy with such 
findings, the observed lack of efficacy of HRT with regard 
to menopauseassociated dysmetabolism might plausibly 
be caused by their inability to reinstate the oscillatory 
activity of ERα and ERβ in sexually mature individuals21 
and the consequent reciprocal control of genes regulating 
both fertility and energy metabolism.

The aim of all forms of HRT used to date has been to 
keep hormone levels constant. However, in some organs, 
cyclical modulation of ERα and ERβ signalling might be 
necessary to activate the expression of large numbers of 
genes whose products maintain energy homeostasis. For 
example, hepatic ERα becomes associated with distinct 
classes of promoters during different phases of the estrous 
cycle,26 which might be necessary to poise ERα signalling 
for rapid selection of the transcriptome most appropri
ate for the specific energy requirements of each stage of 
the reproductive cycle. Previous studies in our laboratory 
suggest that selective estrogen receptor modulators, either 
alone or in combination with natural hormones, might 
have a substantial effect on the relative phasing and inten
sity of ERα and ERβ activity in target organs.26,142 These 
findings raise the possibility that the complex actions of 
ERα and ERβ in the whole organism might eventually be 
reproduced pharmacologically. However, currently a clear 
understanding of the pattern of ERα and ERβ activity that 
would have the most favourable effect on women’s health 
during ageing is lacking. In the absence of such knowl
edge, we believe that the analysis of the effects of existing 
forms of HRT on a single parameter (such as the period 
or amplitude of ERα or ERβ activity in different organs) is 
not sufficient to establish the superior ity of one treatment 
over another. Specific methodo logies and algorithms 
for the comparative analysis of multivariate parameters 
of synthetic ERα and ERβ ligand activity should also 

be developed.143 Initial animal studies have shown that 
screening, based on the wholebody analysis of ERα and 
ERβ, by molecular imaging is a viable method.143 This 
innovative technique might aid the development of novel 
HRT modalities better able to mimic estrogens’ effects 
during the reproductive cycle.

Conclusions

This Review underlines the close link between energy 
metabolism and reproduction, to provide a compre
hensive view of the role of estrogens in mammalian 
physiology. Given the association between energy pro
duction and reproductive activity, a main aim of HRT 
should be restoration of the metabolic functions charac
teristic of women still undergoing reproductive cycling. 
However, in postmenopausal women, current forms of 
HRT cannot reinstate the low morbidity from skeletal, 
cardio vascular and metabolic diseases typical in women 
of fertile age. Improved understanding of the exact 
physiological role of estrogens is, therefore, required to 
develop new types of HRT that can address metabolic as 
well as hormonal derangements.
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