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Abstract

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects 

motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is 

available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulner-

ability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in 

ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview 

of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology 

of ALS can lead to the identification of novel therapeutic targets.

Keywords Amyotrophic lateral sclerosis · Energy metabolism · Neuron-glia metabolic coupling · Mitochondria · Metabolic 

dysfunction · Metabolic treatment

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-

erative disorder characterized by the selective and progres-

sive degeneration of motor neurons in the brain and spinal 

cord. Motor neuron deterioration leads to muscle weakness 

and results in death due to respiratory failure typically within 

3–5 years after diagnosis [25]. In the Western world, the life-

time risk of developing ALS is estimated to be 1 in 400 [89].

ALS is a highly heterogeneous disease [187]; 5–10% of 

patients have a familial form in which inheritance almost 

exclusively occurs via an autosomal dominant Mendelian 

pattern. While over 120 potential ALS genes (http://alsod 

.iop.kcl.ac.uk/) have been identified, more than half of 

familial ALS patients carry mutations in either ‘superoxide 

dismutase 1’ (SOD1), ‘TAR DNA binding protein’ (TAR-

DBP), ‘fused in sarcoma’ (FUS), or carry a hexanucleotide 

repeat expansion in an intronic region of the ‘chromosome 

9 open reading frame 72’ (C9ORF72) gene [190]. Despite 

the genetic heterogeneity, most patients show cytoplasmic 

inclusions in motor neurons which stain positive for TDP-

43, the protein product of TARDBP [136]. This suggests that 

similar pathogenic mechanisms may be present in different 

ALS subtypes. Although most ALS patients have no family 

history, unraveling the genetic basis of the disease led to an 

array of ALS models, put forth different processes believed 

to be involved in ALS pathogenesis, and led to various clini-

cal trials [190]. Despite these efforts, translation of preclini-

cal findings into effective therapeutic strategies remained 

poor. Riluzole and edaravone are the only FDA-approved 

drugs to treat ALS. Riluzole prolongs life by only a few 

months [12] and edaravone improves patient functionality 

scores in a subset of patients [165, 211]. Due to the unavail-

ability of effective drugs, there is an urgent need for new 

treatment modalities in ALS.

A growing body of evidence shows dysregulated energy 

metabolism in ALS patients and models. Several of the met-

abolic abnormalities in ALS correlate to disease susceptibil-

ity and progression. Moreover, the remarkable vulnerability 

of motor neurons to energy depletion has become increas-

ingly clear. In this review, we focus on how energy metabo-

lism is impaired in ALS, and how motor neuron physiology 

contributes to their particular vulnerability to metabolic 

stress. We also discuss tested and emerging metabolism-

centric therapeutic avenues for ALS.
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Systemic metabolism correlates to ALS 
disease course

Control of whole-body energy homeostasis, the balance 

between energy uptake and expenditure, is crucial to main-

tain stable body weight and hence overall health [105]. 

In ALS patients, energy homeostasis is imbalanced [57]. 

While energy uptake is often lowered [1], energy expendi-

ture is suggested to be increased in a significant propor-

tion of patients with ALS [21]. While this observation 

stems from predictive equations which still need validation 

in ALS patients and should, therefore, be interpreted with 

care [176], energy expenditure exceeds uptake in most ALS 

patients, leading to reduced fat depots [81]. Imbalanced 

energy homeostasis is also a consistent finding in differ-

ent SOD1 [56, 62] and TDP-43 mouse models [30, 36]. 

Recently, the melanocortin pathway, a critical regulator of 

energy homeostasis and food intake in the hypothalamus 

[184], was hypothesized to contribute to imbalanced energy 

homeostasis in ALS patients [67] and mice [201]. However, 

reducing energy expenditure and inducing hyperphagia by 

targeting this pathway in mutant  SOD1G93A mice did not 

improve motor function or lifespan [53]. While the cause 

and importance of dysregulated energy homeostasis in 

human ALS remains to be established, body weight loss 

is an important prognostic factor in patients [149]. A lower 

pre-symptomatic body mass index has been reported in ALS 

patients [86, 126, 149] and the ALS risk is reduced up to 

40% among obese individuals [138]. In agreement, increased 

prediagnostic body fat [65], subcutaneous fat [111], and 

serum leptin [135] were associated with a decreased risk of 

ALS mortality.

The majority of ALS patients suffer from hypolipidemia 

[215]. Of note, hypolipidemia is also present in mutant 

SOD1 mice [62, 98] and precedes clinical onset in mutant 

 SOD1G93A mice [98]. Whether hypolipidemia is also a pre-

clinical feature in human ALS patients is difficult to assess, 

since diagnostic certainty is only reached in a progressed 

stage of the disease. In addition, elevated serum cholesterol 

and apolipoprotein E levels prolong survival and delay dis-

ease progression in ALS patients in most [52, 54, 103], but 

not all [31], studies, while statin treatment was associated 

with worsened outcome [224]. An additional study showed 

a positive correlation between blood lipids and respiratory 

function in ALS patients, potentially due to the decrease 

in  CO2 production, which lowers the load on ventilatory 

muscles [27, 31].

Interestingly, ALS patients suffering from diabetes show a 

delay in the onset of motor symptoms for up to 4 years [87]. 

A large case–control study reported an estimated odds ratio 

for ALS association with diabetes of 0.61 (95% confidence 

interval: 0.46–0.80) [99]. Remarkably, type II diabetes was 

associated with a decreased risk of ALS (odds ratio 0.79, 

95% confidence interval: 0.68–0.91) [127], while type I 

diabetes was associated with an increased risk (odds ratio 

5.38, 95% confidence interval: 1.87–15.51) [194]. These 

data suggest that a potential protective effect is restricted 

to type II diabetes. Large longitudinal studies are required 

to determine whether insulin resistance (a hallmark of type 

II diabetes) per se has a protective effect against ALS or 

whether the protective effect is secondary to environmental 

and/or genetic factors that contribute to the development 

of type II diabetes. Moreover, ALS patients often develop 

insulin resistance during the course of the disease [154]. 

Since muscle tissue represents the major site of glucose con-

sumption and storage, the development of insulin resistance 

during ALS is considered a consequence of muscle atrophy, 

although molecular evidence is still lacking. Even more, it 

has been suggested that deregulation of carbohydrate metab-

olism might contribute to ALS pathogenesis (see below).

Altogether, systemic metabolic defects in ALS correlate 

with disease duration and/or progression [21, 26, 81]. How-

ever, it remains to be determined whether and how these 

defects are causally connected to ALS pathogenesis.

Motor neuron metabolism in health

Since its first description by Charcot in 1869, the charac-

teristic selective degeneration and death of motor neurons 

in ALS has remained an enigma. Neurons are large, polar-

ized, excitable cells and, therefore, face unique challenges 

to maintain energy homeostasis (Fig. 1). They are the main 

contributors to the impressive energy demand of the central 

nervous system (CNS). First, action potential propagation 

is highly dependent on the  Na+/K+-ATPase [75]. Second, 

due to the extensive length of their neurites, neurons, and, a 

fortiori, motor neurons, depend on axonal transport [155]. 

Importantly, the molecular motors driving axonal transport 

hydrolyze one ATP molecule, generated via on-board gly-

colysis [217], for every 8-nm displacement of their cargo 

[79, 167]. Since synapses are major sites of neuronal energy 

consumption, the trafficking of mitochondria is critical to 

meet synaptic energy requirements [174]. On top of this, 

high ATP concentrations are needed to keep proteins soluble 

[143]. The high dependence of motor neurons on continu-

ous energy provision to maintain their normal function and 

integrity renders them particularly vulnerable to energetic 

stress [106].

To meet its substantial energy demand, the CNS largely 

relies on glucose as an energy substrate [121]. Recent 

in vitro and ex vivo studies have indicated though that 
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neurons can readily oxidize several non-glucose substrates 

and that a switch towards glutamate oxidation could protect 

neurons from excitotoxic cell death [49, 61]. These data, 

nonetheless, require in vivo confirmation, since the absence 

of the blood–brain/spinal cord barrier and specific condi-

tions of the CNS microenvironment might make it difficult 

to translate in vitro findings to an in vivo situation. Indeed, 

to date, the evidence indicates that only ketone bodies can 

sustain the energetic requirements of the CNS in conditions 

of severe glucose deprivation [35, 104]. Fatty acids are 

only poorly used as an energy substrate presumably due to: 

the slow passage of fatty acids across the blood–brain and 

blood–spinal cord barrier, the higher oxygen cost of fatty 

acid oxidation, the elevated superoxide generation during 

fatty acid oxidation in combination with poor anti-oxidant 

defense mechanisms of neurons, and the slower rate of ATP 

generation of fatty acid oxidation [168]. More than 90% 

of ATP generation in the CNS occurs via mitochondrial 

oxidative phosphorylation [82]. Acute fluctuations in ATP 

demand in the CNS are met by the creatine/phosphocreatine 

system, which represents an instant way to liberate high-

energy phosphates for ATP by the transphosphorylation of 

Fig. 1  Overview of ATP 

consuming processes in motor 

neurons. Motor neuron physiol-

ogy is highly energy demand-

ing. First, the  Na+/K+-ATPase 

and the  Ca2+-ATPase hydrolyze 

ATP to establish and maintain 

the membrane potential and cal-

cium homeostasis, respectively. 

Second, the molecular motors 

driving axonal transport depend 

on ATP hydrolysis. Third, 

synaptic activity is energetically 

expensive due to ion pump-

ing, vesicular neurotransmitter 

uptake, and the endocytosis of 

vesicles from the synaptic cleft. 

Fourth, millimolar concentra-

tions of ATP are required to 

maintain proteostasis. Gln 

glutamine, Glu glutamate, ATP 

adenosine triphosphate, ADP 

adenosine diphosphate, P inor-

ganic phosphate
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phosphocreatine by creatine kinases [4]. Since ATP turnover 

in the CNS is high and substrate reserves small, the creatine/

phosphocreatine system is crucial to buffer ATP fluctuations 

upon neuronal firing [16]. Moreover, the faster diffusion rate 

of phosphocreatine compared to ATP, and creatine compared 

to ADP [200], makes the creatine/phosphocreatine system 

suitable to connect sites of ATP generation to sites of ATP 

consumption.

Despite glucose being the dominant energy substrate, the 

CNS is a highly heterogeneous tissue composed of different 
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cell types which show distinct metabolic profiles (Fig. 2). 

Differences are mainly studied in neurons and astrocytes, 

and indicate that neurons are predominantly oxidative and 

that astrocytes are predominantly glycolytic [22, 121, 219]. 

Under normal conditions, carbohydrate catabolism com-

prises the conversion of glucose to pyruvate via glycolysis 

followed by the full oxidation of glucose, or its metabolites 

pyruvate or lactate, in the mitochondria by the tricarboxylic 

acid (TCA) cycle and electron transport chain. Oxidative 

catabolism requires oxygen and generates 31–36 molecules 

of ATP for every molecule of glucose (or half of it if lac-

tate or pyruvate is used as substrate). However, when the 

availability of oxygen is low (or in specific cell types—see 

below), glucose is only glycolytically catabolized to pyru-

vate, which generates only two molecules of ATP for each 

molecule of glucose, and is subsequently converted to lac-

tate. This is a necessary step, since the regeneration of nico-

tinamide–adenine dinucleotide  (NAD+) is required to keep 

glycolysis going when oxygen is limited [116]. Pyruvate 

dehydrogenase (PDH) is crucial to allow pyruvate entry into 

the TCA cycle and, hence, controls oxidative versus anaer-

obic catabolism. In astrocytes, PDH activity is low com-

pared to neurons [73]; and pyruvate dehydrogenase kinase 

4 expression, the main kinase suppressing PDH activity, is 

high, leading to higher glycolysis and lactate production 

[219]. In contrast, neurons have a lower rate of glycolysis 

under normal conditions due to the constant degradation 

of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 

3 (PFKFB3), a key positive modulator of glycolysis, by the 

E3 ubiquitin ligase anaphase-promoting complex/cyclosome 

[18, 78]. In agreement, glia transport and metabolize glucose 

analogues faster than neurons both ex vivo [9] and in vivo 

[85]. In addition, a part of the glucose that is taken up by 

neurons does not enter glycolysis but is instead directed to 

the pentose phosphate pathway (PPP) during which the anti-

oxidant reduced glutathione is regenerated (Fig. 2). Both 

overexpression [78] and stabilization [158] of PFKFB3 in 

neurons activated glycolysis at the expense of the PPP and 

resulted in oxidative stress and apoptotic death. These data 

suggest that neuronal homeostasis is particularly dependent 

on a tight balance between glycolysis and PPP flux to ensure 

sufficient ATP production while maintaining anti-oxidant 

status.

The more oxidative profile of neurons and more glyco-

lytic profile of glia becomes more pronounced upon neuronal 

activity [76, 124], suggesting that other energy substrates 

are used to meet the neuronal energy demand during neu-

ronal activity. Lactate is consumed in an activity-dependent 

manner in the CNS [162, 212] and is mainly oxidized by 

neurons compared to astrocytes [20, 196]. According to 

the astrocyte-neuronal lactate shuttle hypothesis, lactate is 

provided to neurons by astrocytes [147]. In brief, the reup-

take of glutamate by astrocytes depletes their ATP stores, 

which stimulates the uptake of glucose and subsequently 

the glycolytic flux. The resulting lactate is mainly exported 

through the astrocyte-specific monocarboxylate transporter 

4 (MCT4) and taken up by the neuron-specific MCT2 

transporters. Next, it is fully oxidized to generate ATP (for 

a review, see [121]). In addition to lactate, astrocytes can 

also provide pyruvate and ketone bodies to the neurons 

[148]. Oxidative phosphorylation of glia-derived substrates 

in neurons leads to the generation of reactive oxygen spe-

cies (ROS) which promote lipid production [112, 113]. 

Those lipids are transported to astrocytes via a fatty acid 

transport proteins (FATP) and apolipoprotein-dependent 

mechanism where they can form lipid droplets, be shunted 

into the ketogenic pathway, or undergo fatty acid oxidation 

[71] (Fig. 2). Impaired transport of lipids from neurons to 

glia accelerates neurodegeneration [112], suggesting a pro-

survival function of neuron-derived lipids in glia by serv-

ing as in situ energy substrates under stress. Of note, while 

astrocyte-neuron metabolic coupling seems to be essential 

for nervous system homeostasis in Drosophila [204] and 

mice [64, 109, 120], it does not imply a complete metabolic 

compartmentalization of glycolysis versus oxidative phos-

phorylation in glia and neurons, respectively [7, 48]. Indeed, 

neurons also take up and metabolize glucose and increase 

glucose consumption in an activity-dependent manner [6, 

47, 144]. In addition, neurons can catabolize glucose and 

lactate at the same time [115]. Therefore, it is likely that both 

oxidative phosphorylation of glia-derived energy substrates 

as well as neuronal glycolysis contribute to ATP production 

in high-energy demanding cellular situations.

Fig. 2  Motor neuron metabolism in health. An overview of the cur-

rent knowledge on motor neuron energy metabolism. Metabolic path-

ways are indicated in blue, important enzymes in red. Bold black 

arrows indicate the main metabolic routes in glia or motor neurons. 

Neurons have low glycogen stores and low expression and activity 

of PFKFB3. Activity of PDH is higher in neurons compared to glia. 

These differences result in a predominantly oxidative versus glyco-

lytic metabolic profile in neurons and glia, respectively. According to 

the astrocyte-neuronal lactate shuttle hypothesis, glia-derived lactate 

is shunted to motor neurons where it undergoes oxidative phospho-

rylation. ROS generation in motor neurons promotes lipid produc-

tion. These lipids are transported to glia where they can be stored or 

catabolized. Glut glucose transporter, HK hexokinase, G6P glucose 

6-phosphate, R5P ribose 5-phosphate, F6P fructose 6-phosphate, 

PFK phosphofructokinase, PFKFB3 phosphofructokinase-2/fructose-

2,6-bisphosphatase, F1,6BP fructose 1,6-bisphosphate, NADP+ oxi-

dized nicotinamide adenine dinucleotide phosphate, NADPH reduced 

nicotinamide adenine dinucleotide phosphate, ROS reactive oxygen 

species, G3P glyceraldehyde 3-phosphate, LDH lactate dehydroge-

nase, PDH pyruvate dehydrogenase, Pdk4 pyruvate dehydrogenase 

kinase 4, Oxphos oxidative phosphorylation, MCT monocarboxylate 

transporter, ACoA acetyl coenzyme A, CPT1 carnitine palmitoyltrans-

ferase 1, TCA  tricarboxylic acid cycle, O2 molecular oxygen, NADH 

reduced nicotinamide adenine dinucleotide, ETC electron transport 

chain, FATP fatty acid transport protein, APOE/D apolipoprotein 

E/D, ATP adenosine triphosphate, ADP adenosine diphosphate

◂
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Astrocyte contact with neurons is generally limited to 

the neuronal soma, synapses, and nodes of Ranvier, leav-

ing the largest part of the axon without metabolic support 

from astrocytes. This is especially true for motor neurons. 

In contrast, oligodendrocytes are well connected to the axon 

and perfectly positioned to support the metabolic demands 

of neurons [151]. These glial cells highly express MCT1, 

which is the MCT with the highest affinity for lactate [152]. 

MCT1 inhibition in organotypic spinal cord slice cultures 

reduced motor neuron survival, but this effect was rescued 

by the addition of high concentrations of lactate to the cul-

ture medium [109], suggesting that oligodendrocyte-derived 

lactate contributes to the survival of motor neurons. In addi-

tion, astrocyte-to-oligodendrocyte coupling is essential for 

myelination [193]. Whether coupling between different glial 

cells is also involved in the metabolic support of motor neu-

rons is unknown.

In summary, motor neurons require vast amounts of 

energy while having limited energy stores. Therefore, neu-

ronal function and survival requires the continuous provi-

sion of substantial amounts of nutrients for ATP production. 

Under normal conditions, neurons are predominantly oxida-

tive and astrocytes are predominantly glycolytic [219]. In 

addition, neurons keep a tight balance between glycolysis 

and flux through the PPP to maintain their anti-oxidant status 

while ensuring optimal ATP production. Of note, the meta-

bolic characteristics of neurons have been studied to a large 

extent in cortical neurons. Whether and how motor neurons, 

due to their specific anatomy and microenvironment, have 

different metabolic properties, remain to be determined. 

Their high need for continuous energy provision, nonethe-

less, renders motor neurons particularly vulnerable to ener-

getic stress [106]; and this could contribute to the selective 

vulnerability and degeneration of motor neurons observed in 

ALS. Indeed, fast-fatigable motor neurons, which have the 

highest peak needs of ATP [106], are initially targeted and 

are more severely affected during ALS compared to slow 

motor neurons [137].

Motor neuron metabolism in ALS

Cellular energy homeostasis is impaired in ALS

Mammalian AMP-activated protein kinase (AMPK) is a 

major cellular energy sensor activated by falling energy 

status. Upon activation, AMPK restores energy homeo-

stasis by promoting catabolic pathways, resulting in 

ATP generation, and inhibiting anabolic pathways that 

consume ATP [74]. Enhanced AMPK activation was 

observed in motor neurons of ALS patients and corre-

lated closely with the extent of cytoplasmic mislocaliza-

tion of TDP-43 [114]. In NSC34 motor neuron-like cells, 

5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside 

(AICAR)-mediated activation of AMPK caused TDP-43 

mislocalization [114]. These data link energy depletion in 

human motor neurons to ALS-related TDP-43 pathology. 

AMPK activation was also increased in spinal cord cultures 

or lysates of mutant  SOD1G93A mice [110]. Pharmacologi-

cal activation of AMPK worsened disease outcome in these 

mice [91]. In accordance, reducing AMPK-activity improved 

disease outcome in vitro or in C. elegans models expressing 

mutant SOD1 or TDP-43 [110]. These studies collectively 

show disturbed energy homeostasis at the cellular level in 

ALS and demonstrate its role in TDP-43 proteinopathy, the 

histopathological signature of ALS. While a clear mecha-

nistic link between AMPK activation and TDP-43 mislo-

calization is currently lacking, nucleocytoplasmic transport 

is known to be an energy-dependent process [17]. It is, 

therefore, possible that cytoplasmic mislocalization of an 

aggregation prone protein such as TDP-43 [88] results from 

AMPK-mediated inhibition of nucleocytoplasmic transport.

Mitochondrial dysfunction, an ALS hallmark

Mitochondrial dysfunction is a clinical hallmark of both 

sporadic and familial ALS [23, 55, 163]. As a consequence, 

multiple processes in which mitochondria play a key role are 

extensively investigated in ALS [182]. Seminal studies have 

shown dense clusters of mitochondria in the anterior horn of 

the lumbar spinal cord [164] and presynaptic mitochondrial 

swelling in motor neurons [180] of ALS patients. In addi-

tion, the amount of mitochondrial DNA, a direct marker of 

mitochondrial abundance, was reduced in the spinal cord 

from familial and sporadic ALS patients [207]. In mice car-

rying the  SOD1G37R mutation, membrane-bound vacuoles 

derived from degenerating mitochondria were observed in 

neurites [210]. Massive mitochondrial degeneration in motor 

neurons of mutant  SOD1G93A mice was already observed 

at disease onset [41, 102]. The observation that mitochon-

drial morphology is also abnormal in various murine FUS 

[80, 183] and TDP-43 models [170, 213] is important, since 

overexpression of human SOD1 per se, rather than the path-

ogenic effect of the mutation, induces mitochondrial vacu-

olization [84]. Besides morphological abnormalities, func-

tional changes are present in ALS mitochondria. In spinal 

cord mitochondria from ALS patients, there was decreased 

activity of the electron transport chain (ETC) complexes 

I + III, II + III, and IV [207]. Decreased activity of the mito-

chondrial enzymes citrate synthase and cytochrome c oxi-

dase was also reported in motor neurons from ALS patients 

[19]. Furthermore, impaired activities of complex I + III, 

II + III, and IV were also observed in mutant  SOD1G93A mice 

[129]. Importantly, reduced respiration and ATP synthesis 

preceded behavioral deficits in mutant  SOD1G93A mice [90, 
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129, 188], indicating a role in pathology. This has not yet 

been validated in other ALS models.

In addition to abnormal mitochondrial morphology and 

function, the cellular distribution of mitochondria is altered 

in ALS. In ALS patients, mitochondrial accumulation was 

observed in the cell body and proximal axon hillock [163]. 

Disturbed mitochondrial dynamics were also observed in 

embryonic and adult motor neurons expressing mutant 

 SOD1G93A [15, 45, 185], mutant TDP-43 overexpressing 

mice [122], and FUS patient-derived motor neurons [70]. 

Expressing mutant TDP-43 in motor neurons also induced 

aberrant mitochondrial distribution [205]. Miro1, a mito-

chondrial outer membrane protein coupling mitochondria to 

the axonal transport machinery, is downregulated in ALS, 

suggesting a mechanistic basis for impaired mitochondrial 

distribution in ALS [134, 218].

Abnormal mitochondrial physiology is a consistent obser-

vation in ALS patients and in multiple ALS models (Fig. 3). 

In mutant SOD1 [90, 129, 188] and FUS [183] ALS mouse 

models, mitochondrial dysfunction is an early event and 

overexpressing peroxisome proliferator activated receptor-

gamma coactivator 1 alpha (PGC1α), a major regulator of 

mitochondrial biogenesis, improved survival, motor func-

tion, and motor neuron survival in mutant  SOD1G93A mice 

[221]. PGC1α expression is also downregulated in the CNS 

of FUS-ALS mice and FUS patient derived motor neurons 

[10]. Therefore, improving mitochondrial biogenesis may be 

an attractive therapeutic strategy for ALS. It should be noted 

that mitochondrial abnormalities in ALS are not restricted 

to motor neurons. In skeletal muscle from patients, mito-

chondria are also structurally [130, 203] and functionally 

[38, 58] abnormal. While alterations in skeletal muscle can 

affect neuromuscular junction integrity [209], their role in 

ALS remains controversial (for a review, see [117]).

This said, the underlying cause of mitochondrial dys-

function in ALS and whether mitochondrial dysfunction 

is causally linked to motor neuron pathology in ALS still 

remains an open question. It is also not yet clear whether 

mitochondrial defects are present in all ALS subtypes. More-

over, mechanisms linking mutations in TDP-43 and FUS to 

aberrant mitochondrial physiology remain to be determined. 

Overall, the current literature suggests that aberrant mito-

chondrial physiology could be an important contributing 

factor to the pathogenesis of ALS.

Carbohydrate metabolism and ALS

In line with mitochondrial dysfunction, glucose uptake in 

the motor-sensory cortex of ALS patients is reduced [77, 

140]. FDG-PET studies linked the reduction of glucose 

uptake and phosphorylation to the severity of the disease 

[42]. Another FDG-PET study consisting of 81 patients with 

a suspected diagnosis of ALS was able to correctly classify 

95% of ALS cases, indicating reduced glucose uptake as an 

early diagnostic event in ALS [197]. In mutant  SOD1G93A 

mice, glucose uptake in the spinal cord increased pre-symp-

tomatically, but declined progressively during disease pro-

gression [133]. Under physiological conditions, there is a 

tight coupling between blood flow and glucose metabolism 

in the CNS [66]. Remarkably, the pre-symptomatic increase 

in glucose uptake in the spinal cord of mutant  SOD1G93A 

mice was not matched by increases in spinal blood flow 

[133]. Despite reduced glucose uptake, the spinal cord from 

end-stage mutant  SOD1G93A mice, as well as from autopsied 

ALS patients, is characterized by elevated concentrations of 

glycogen [50]. Blood flow–metabolism uncoupling together 

with increased glycogen storage in the CNS suggests a 

decreased ability to catabolize carbohydrates in mutant 

 SOD1G93A mice. However, it is debated whether reduced 

glucose uptake in the CNS of ALS patients reflects a reduc-

tion in neuronal carbohydrate catabolism or a reduction in 

the number of motor neurons. Nevertheless, the ability to 

catabolize carbohydrates appears to be reduced in human 

ALS patients as the expression of phosphoglucomutase 2 

like 1 and phosphoglycerate kinase, two key enzymes in gly-

colysis, is downregulated in fibroblasts from sporadic ALS 

patients [157]. In agreement, a recent proteomic study in 

sporadic ALS skin fibroblasts showed a marked reduction 

in components of glycolysis [188]. Whole-genome expres-

sion profiling in the motor cortex of sporadic ALS patients 

also showed a significant downregulation of glycolytic genes 

[108]. Another study in post-mortem cortex of ALS patients 

identified an over twofold reduction in PFKFB3 mRNA con-

tent [206]. In contrast, introducing mutant SOD1 in human 

fibroblasts or NSC34 motor neuron-like cells increased 

glycolysis and reduced mitochondrial ATP generation [3, 

195]. Given the limited capacity of neurons to upregulate 

glycolysis [78, 158], the physiological relevance to ALS of 

the upregulation of glycolysis in these cells remains to be 

established. Nevertheless, neurons can upregulate glycolysis 

[47] and oxidative stress is evident in post-mortem samples 

of ALS patients [63]. It is, therefore, possible that during 

severe energetic stress, motor neurons sacrifice their redox 

status to alleviate energetic stress and eventually die due to 

excessive oxidative stress.

It remains to be determined whether these metabolic 

alterations are taking place in motor neurons or glia (Fig. 3). 

Given that in both the cortex and the spinal cord, motor neu-

rons represent a quantitatively minor population, functional 

metabolic studies on induced pluripotent stem cell (iPSC)-

derived motor neurons from patients could provide valu-

able insight. Compared to neurons, glia are more glycolytic, 

and, therefore, likely significantly contribute to the observed 

reductions in transcription level of key glycolytic transcripts 

in the CNS of ALS patients. In oligodendrocytes from ALS 

patient and mutant  SOD1G93A mice, the expression of MCT1 
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transporters is downregulated [92, 109, 150]. In addition, the 

downregulation of the glutamate transporter GLT-1 in astro-

cytes from ALS patients is well established [161]. These 

observations suggest that the reduced glycolytic capacity is, 

at least in part, due to changes in glial metabolism.

Taken together, reductions in glucose uptake and 

increased glycogen storage in the CNS of ALS patients and 

ALS animal models suggest a reduced capacity to catabo-

lize glucose. Noteworthy, riluzole enhanced CNS glucose 

uptake both in vitro [43] and in vivo [32], suggesting that 

improving glucose transport rates in ALS affected cells may 

be a potential therapeutic avenue. While studies evaluating 

specific pathways are scarce, glycolysis seems to be down-

regulated. How different cell types in the CNS contribute 

to reduced carbohydrate catabolism remains to be investi-

gated. Therefore, future studies investigating the metabolic 

fate of glucose, using, i.e., traceable glucose analogues [8], 

in ALS models are urgently needed. Moreover, it is not clear 

how reduced carbohydrate catabolism might affect neuronal 

function.

Metabolic treatments tested in ALS

Energy metabolism is altered in ALS (Fig. 3) and corre-

lates to disease progression, suggesting a role for energy 

metabolism in ALS pathogenesis. As a consequence, target-

ing metabolism represents a rational strategy to treat ALS. 

Below, we will give an overview of therapeutic approaches 

that target energy metabolism and have been tested in ALS 

patients and/or preclinical models (for an overview, see 

Table 1). Most approaches focus on increasing the provision 

of energetic substrates or improving mitochondrial function. 

Some strategies target the electron transport chain as the 

Fig. 3  CNS energy metabolism is dysregulated in ALS. Metabolic 

processes shown to be affected in the CNS of ALS patients and/or 

models. Although most defects have not been attributed to a specific 

cell type, they are likely to result from either glia or motor neurons, 

or both. On the right, the presumably affected cell type(/s) is(/are) 

colored darker
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most important cellular source of oxidative stress. Creatine 

has also been investigated for its energy buffering capacities. 

Of note, most metabolic treatments have multiple mecha-

nisms of action. One example is dichloroacetate, which 

improves mitochondrial function indirectly by stimulating 

the conversion of pyruvate to acetyl coenzyme A (ACoA), 

and, therefore, also provides additional energy substrates to 

the TCA cycle. For reasons of clarity, we classified treat-

ments according to their principal mechanism of action.

Creatine

As described above, the creatine/phosphocreatine system 

plays a crucial role in neurons for cellular energy buffering 

and transport [4]. In mutant  SOD1G93A mice, creatine treat-

ment prevented ATP depletion in the cerebellar cortex and 

spinal cord [26], but not in skeletal muscle [46]. Creatine 

treatment in mutant  SOD1G93A mice markedly improved 

motor neuron survival but only moderately enhanced motor 

function and lifespan [101]. No studies evaluated the effect 

of creatine in other ALS mouse models. In ALS patients, 

creatine supplementation did not affect survival or disease 

progression [69, 160, 173]. Several reasons can explain 

the different effect of creatine in mutant  SOD1G93A mice 

and ALS patients. First, the efficacy of creatine in mutant 

 SOD1G93A mice can, at least in part, be explained by a buff-

ering effect of creatine on SOD1 overexpression-related 

mitochondriopathy [13, 84]. In addition, the treatment was 

initiated at different disease stages in mice compared to 

patients. While creatine intake in mutant  SOD1G93A mice 

was started before symptom onset and before the reduc-

tion in ATP concentration in the CNS [26], ALS patients’ 

treatment started at least 1 year after symptom onset when 

already extensive alterations in energy metabolism are pre-

sent. While creatine supplementation is able to prevent neu-

ronal ATP depletion in some conditions and for short periods 

of time [186], it acts by energy buffering and transport with-

out contributing to ATP production [4]. Therefore, it is likely 

that when treatment only commences during progressed dis-

ease states, the cascade of metabolic dysfunction is too far 

advanced for interventions to be successful.

Targeting oxidative stress

The interest in the role of oxidative stress was nurtured for 

decades by the finding that mutations in SOD1 can cause 

ALS [159]. Whether oxidative stress is a primary or second-

ary disease mechanism in human ALS is still unclear. The 

recent discovery that the free radical scavenger edaravone 

improves ALS functional rating scale (ALSFRS) scores of 

a subgroup of ALS patients suggests that oxidative stress 

affects motor neuron death [211]. Nevertheless, most clinical 

trials targeting oxidative stress failed to demonstrate clini-

cal efficacy (see below). Given the vulnerability of motor 

neurons to oxidative stress [172], neurons employ differ-

ent strategies to minimize ROS accumulation [168]. Hence, 

oxidative stress might be an indicator of advanced cellular 

damage rather than an early pathological event. Identifying 

the exact underlying mechanism responsible for the efficacy 

of edaravone in ALS patient subpopulations could provide 

further insight in the role of oxidative stress in ALS.

Coenzyme Q10 and MitoQ

Coenzyme Q, also known as ubiquinone, is the only 

endogenous lipid-soluble anti-oxidant found in humans. 

It acts as an essential cofactor in the electron transport 

chain where it accepts electrons from complex I and II 

and shuttles them to complex III. Its quinone group can 

be reduced to quinol, explaining its anti-oxidative prop-

erties [37]. In mutant  SOD1G93A mice, coenzyme Q10 

induced a mild improvement in survival [128]. However, 

a phase II clinical trial, treating ALS patients with small 

amounts of coenzyme Q10 for 9 months, did not observe 

improvements on ALSFRS [95]. Of note, the feeding 

regimen in this study only induced a moderate increase 

in plasma coenzyme Q10 levels and the previous studies 

in Parkinson’s disease suggest that doses up to 100-fold 

of the dose used are needed to slow disease progression 

[178, 179]. Although administration of high doses of exog-

enous coenzyme Q10 is well tolerated in humans [178], 

its hydrophobicity compromises bioavailability [128]. 

To improve this, MitoQ, a mitochondrion-targeted and 

recyclable coenzyme Q10 analogue, was developed [96]. 

MitoQ showed enhanced bioavailability and improved 

mitochondrial function in different neuronal cell types 

exposed to oxidative stress [189]. Rat mutant  SOD1G93A 

astrocytes were previously shown to be toxic to wild-type 

motor neurons [72, 214]. Interestingly, pretreatment of 

mutant  SOD1G93A astrocytes with low doses of MitoQ 

reduced oxidative damage and enhanced mitochondrial 

ATP generation in motor neurons [29]. Adding MitoQ to 

the drinking water of mutant  SOD1G93A mice slowed the 

decline of mitochondrial function in spinal cord and mus-

cle, reduced spinal cord oxidative damage, improved the 

integrity of neuromuscular junctions, increased hindlimb 

strength, and prolonged the life span of mutant  SOD1G93A 

mice [132]. While these results are promising, no clinical 

trials assessed the efficacy or tolerability of MitoQ in ALS 

patients thus far.
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Table 1  Metabolic treatments tested in ALS

Putative mechanism of action Metabolic treatment Effect on ALS models Effect on ALS patients

Energy buffering and transport Creatine Improved lifespan, motor neuron sur-

vival, and motor function in mutant 

 SOD1G93A mice [87]

No efficacy in phase II/III clinical trials 

[55, 139, 151]

Oxidative stress Coenzyme Q10 Improved survival in mutant 

 SOD1G93A mice—[111]

No efficacy in phase II clinical trial [81]

MitoQ Reduced toxicity of mutant  SOD1G93A 

rat astrocytes to healthy motor 

neurons in co-culture [24]

Improved motor function, survival, 

and histopathology in mutant 

 SOD1G93A mice [114]

To be tested

Dexpramipexole Improved survival, and motor func-

tion in mutant  SOD1G93A mice in 

one study [36], but not in a second 

study [177]

No effect in patient derived iPSCs 

[189]

No effect in rat cortical neurons 

transfected with mutant or wild-type 

TDP-43 [177]

No efficacy in phase III clinical trial 

[33]

Edaravone Delayed motor neuron degeneration 

and spinal cord SOD1 deposition in 

mutant  SOD1G93A mice [71]

Delayed disease progression in wob-

bler mice [69]

Improved motor performance in 

mutant  SOD1H46R rats [5]

Efficacy in a subset of ALS patients 

[184], FDA-approved

Additional and/or alternative fuel High caloric diet Delayed disease onset and extended 

survival in mutant  SOD1G93A, 

mutant  SOD1G86R, and mutant 

TDP-43A315T mice [30, 46]

Delayed motor neuron loss in the 

spinal cord of mutant  SOD1G93A 

mice [46]

Promising results in a phase II clinical 

trial [182]

Ketone bodies Ketogenic diets delay disease onset, 

improved motor neuron survival but 

not lifespan in mutant  SOD1G93A 

mice [195]

Ketone esters are to be tested in ALS 

models

To be tested

Medium-chain triglycerides Delayed disease onset, and improved 

motor neuron survival in mutant 

 SOD1G93A mice [167, 193]

To be tested

Pyruvate Improved motor performance, disease 

progression, and lifespan in mutant 

 SOD1G93A mice [121] but not in a 

subsequent study [48]

To be tested

Mitochondrial function Dichloroacetate Improved survival, delayed disease 

onset, and improved motor neuron 

survival in mutant  SOD1G93A mice 

[113, 120]

To be tested

Acetyl-L-carnitine Neurotrophic effects in rat embryonic 

motor neurons [10]

Improved survival in mutant 

 SOD1G93A mice [86]

Promising results in a phase II clinical 

trial [8]
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Dexpramipexole

Pramipexole is a dopamine agonist approved to treat Par-

kinson’s disease [171] and restless leg syndrome [125]. In 

addition, pramipexole demonstrates anti-oxidative properties 

[107]. Dexpramipexole, the R+ enantiomer of pramipexole, 

has a 100-fold lower affinity for dopamine receptors than 

pramipexole, but is equipotent to scavenge ROS [44, 68]. 

Dexpramipexole improved metabolic efficiency, defined as 

the amount of ATP generated for a given value of oxygen 

consumption, in whole rat brain-derived mitochondria [2]. In 

mutant  SOD1G93A mice, dexpramipexole prolonged survival 

and delayed motor deterioration [44]. In a phase II clinical 

trial, dexpramipexole administration to ALS patients was 

well tolerated and tended to attenuate functional decline in 

a dose-dependent manner [39]. However, dexpramipexole 

did not differ from placebo for any efficacy measurement 

in a subsequent phase III clinical trial [40]. Moreover, dex-

pramipexole did not show a protective effect in subsequent 

preclinical studies in mutant  SOD1G93A mice [202], ALS 

patient derived iPSCs [216], or rat cortical neurons trans-

fected with mutant or wild-type human TDP-43 [202].

Fueling energy metabolism

Imbalanced energy homeostasis is an early and persistent 

observation throughout the course of ALS. Moreover, 

endogenous energy stores, which are mainly located in skel-

etal muscle and adipose tissue, are progressively depleted 

during disease progression. Providing additional energetic 

substrates may, therefore, improve the clinical outcome. In 

addition, impairments in carbohydrate metabolism suggest 

that energy substrates other than glucose might have more 

pronounced effects. Enhancing the availability of specific 

metabolites is an alternative way to improve ATP produc-

tion. This could be particularly important in neurons to com-

pensate for losses of the TCA intermediate α-ketoglutarate 

that occur through the release of the α-ketoglutarate-derived 

neurotransmitters glutamate and GABA [169].

High caloric diets to treat ALS

In mutant  SOD1G93A,  SOD1G86R, and  TDP43A315T overex-

pressing mice [36, 56], a high fat diet delayed disease onset 

and extended survival, while caloric restriction shortened 

the lifespan of mutant  SOD1G93A mice [145, 146]. Moreo-

ver, a high fat diet attenuated motor neuron loss in the spi-

nal cord of mutant  SOD1G93A mice [56]. A small prospec-

tive study in ALS patients showed that high caloric diets 

were able to abolish weight loss [51]. In a phase II clinical 

trial involving 20 patients, subjects were assigned to one 

of three diets using gastrostomy: caloric intake designed to 

match caloric expenditure, a high fat diet, or a high carbo-

hydrate diet both providing an excess of calories. One out 

of 17 patients assigned to a hypercaloric diet died during the 

5-month follow-up period compared with three out of seven 

patients assigned to the control group [208]. While this study 

was promising, a sufficiently powered phase III clinical trial 

to examine the effect of hypercaloric diets on survival and 

functional outcome in ALS patients is still lacking. Moreo-

ver, whether the composition of the hypercaloric diet matters 

is an outstanding question.

Ketone bodies, ketogenic diets, and beyond

Ketone bodies are energy substrates endogenously pro-

duced from fat when glucose availability is limited. While 

the liver is the major site of ketogenesis, glial cells are also 

able to produce ketone bodies [5]. Ketone bodies have a 

high metabolic efficiency generating 30% more energy per 

molecule oxygen than pyruvate [199]. Therefore, ketones 

are suited to meet high-energy demands. Besides being an 

energy substrate, ketone bodies are signaling metabolites 

acting as histone deacetylase inhibitors to reduce oxidative 

stress [177]. In mutant  SOD1G93A mice, a ketogenic diet 

delayed disease onset and improved motor neuron survival 

without affecting lifespan [222]. However, as ketogenic diets 

are associated with a loss of muscle mass [24], the poten-

tial beneficial effect of ketosis on lifespan may be blunted. 

Recently, ketone esters have emerged as a novel approach to 

raise blood ketone bodies immediately [34, 97], even when 

co-ingesting high amounts of carbohydrates and proteins 

[198]. Ketone esters have improved disease outcome in an 

Alzheimer’s disease mouse model [93]. In ALS, the thera-

peutic potential of ketone esters is unexplored.

Medium‑chain triglycerides

Medium-chain triglycerides were previously used as a more 

palatable alternative to ketogenic diets to treat epilepsy and 

Alzheimer’s disease [181]. Medium-chain triglycerides are 

able to cross the blood–brain barrier via diffusion and enter 

neurons via monocarboxylate transporters [168] where they 

can undergo β-oxidation to form ACoA and ketone bod-

ies, which fuel the TCA cycle [192]. Two medium-chain 

triglycerides investigated in the context of ALS are caprylic 

triglyceride and triheptanoin, the triglycerides of octanoic 

acid (8C fatty acid) and heptanoic acid (7C fatty acid), 

respectively. Early administration of caprylic triglyceride 

to mutant  SOD1G93A mice delayed disease onset, improved 

motor performance, reduced motor neuron loss, and pro-

moted mitochondrial oxygen consumption in the spinal cord 

[220]. Pre-symptomatic triheptanoin ingestion also delayed 

disease onset and reduced motor neuron loss at symp-

tom onset in mutant  SOD1G93A mice [191]. Clinical trials 
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evaluating safety or efficacy of medium-chain triglyceride 

treatments in ALS patients are lacking.

Pyruvate

Pyruvate is the end product of glycolysis and represents a 

mitochondrial fuel entering the TCA cycle after conversion 

to ACoA. Pyruvate is neuroprotective in models for epi-

lepsy [153] and Alzheimer’s disease [83]. The neuroprotec-

tive properties of pyruvate are multifaceted and originate 

from anti-oxidant properties, the ability to facilitate gluta-

mate efflux from the brain, anti-inflammatory effects, and 

their ability to increase TCA cycling [223]. In the context of 

ALS, administration of 1 g pyruvate/kg body weight/week to 

mutant  SOD1G93A mice prolonged the lifespan by 12 days, 

slowed disease progression, and improved motor perfor-

mance when starting the treatment at the age of 70 days 

[142]. However, another study in which mutant  SOD1G93A 

mice received 0.5 g/kg body weight six times a week starting 

from the same age did not improve survival or rotarod per-

formance [59]. There are no clinical trials available assess-

ing the effect of pyruvate intake in ALS patients.

Enhancing mitochondrial function

In the presence of decreased mitochondrial function, provid-

ing additional and/or alternative energy substrates may be 

insufficient. Enhancing mitochondrial function and hence 

metabolic efficiency may be necessary.

Dichloroacetate

Increasing the conversion of pyruvate into ACoA, by provid-

ing the pyruvate dehydrogenase kinase inhibitor dichloroac-

etate improved survival, delayed disease onset, and reduced 

spinal motor neuron loss in mutant  SOD1G93A mice [131, 

141]. As dichloroacetate blunted the reduction of expression 

of mitochondrial genes seen in mutant  SOD1G93A skeletal 

muscle during disease progression, improving mitochondrial 

function could elicit this effect [141]. While in NSC34 motor 

neuron-like cells mutant SOD1 increased pyruvate dehydro-

genase kinase expression and lactate production [195], it 

was not tested if dichloroacetate treatment improved mito-

chondrial function in the CNS of mutant  SOD1G93A mice. 

Although doses of dichloroacetate used in preclinical ALS 

studies are well tolerated in patients with advanced solid 

tumors [33], ALS clinical trials are lacking.

Acetyl‑L‑carnitine

Acetyl-L-carnitine is the acetyl-ester of L-carnitine. Acetyl-

L-carnitine is an important cellular source of acetyl groups to 

generate ACoA in high-energy demanding situations [139]. 

Acetyl-L-carnitine also mediates transport of long chain fatty 

acids across mitochondrial membranes and is, therefore, rate 

limiting for β-oxidation. While the neuroprotective effects 

of acetyl-L-carnitine are mainly described in cortical neu-

rons [166, 175], an early study showed neuroprotective and 

neurotrophic effects of acetyl-L-carnitine in embryonic rat 

motor neurons [14]. Moreover, administration of L-carnitine 

to symptomatic mutant  SOD1G93A mice improved survival 

[100]. Based on these findings, a randomized double-

blind placebo-controlled phase II trial was performed in 

82 patients. Subjects ingested 3 g of acetyl-L-carnitine or 

placebo each day together with riluzole. Acetyl-L-carnitine 

was well tolerated, and respiratory capacity and ALSFRS 

showed mild improvements. In addition, median survival 

doubled in the acetyl-L-carnitine group compared to the pla-

cebo group [11]. Despite these results, a larger phase III trial 

has not yet been performed.

Conclusion and future perspectives

While dysregulated systemic energy metabolism is now 

well established in ALS patients, energy metabolism 

has received a little attention in ALS research due to its 

association with mutant SOD1 models. It now becomes 

obvious that abnormal energy metabolism also has a role 

in more recently developed ALS models [118, 170, 183, 

205]. In ALS motor neurons and glia, both mitochondrial 

and glycolytic energy metabolism seem to be impaired, 

but the molecular mechanisms underlying energetic stress 

remain unknown. Since motor neuron physiology is highly 

energy demanding, impairments in energy metabolism 

could, at least in part, explain the selective dying of motor 

neurons in ALS. As a consequence, targeting defects in 

energy metabolism in ALS represents a rational therapeu-

tic strategy. Manipulating energy metabolism is a particu-

larly potent strategy to treat complex diseases due to its 

intimate link to epigenetic control [60, 94, 119] and is, 

therefore, increasingly recognized as therapeutic target in 

cancer [28], immunodeficiency [123], and stroke [156]. To 

date, a unifying view on how different metabolic pathways 

converge and whether metabolic alterations contribute 

to disease etiology in ALS is non-existing. Future work 

using direct measurements of metabolic fluxes is clearly 

needed to obtain a more in-depth understanding of motor 

neuron metabolism in health and disease. Moreover, due 

to the compartmentalization of specific energy requiring 

processes in motor neurons, defining the role of metabo-

lism and ALS-related motor neuron dysfunction requires 

high-resolution and spatial subdivision of metabolic and 

functional analyses. Knowing how ALS motor neurons 

differ metabolically from healthy motor neurons could 

offer the necessary insights to develop future therapeutic 
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approaches in ALS. Another relevant area for future 

research is to explore the metabolic crosstalk between 

motor neurons and glial cells, as well as other disease-

relevant cells such as the muscle.

In conclusion, it is too early to consider ALS at present 

as a metabolic disease. However, the massive amount cir-

cumstantial evidence linking energy metabolism with ALS 

pathophysiology underscores the therapeutic potential of 

targeting metabolism. As is the case for many other path-

ways and mechanisms proposed to play a crucial role in 

ALS, the ultimate proof that disturbances in metabolism 

are causally linked to the selective motor neuron death 

in ALS will be a positive clinical trial with a therapeu-

tic strategy tackling energy metabolism in patients. In the 

meantime, we strongly believe that a better understanding 

of the metabolic biology of ALS could lead to the identi-

fication of novel therapeutic targets.
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