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Energy Method in Efficient Estimation
of Elastic Buckling Critical Load of
Axially Loaded Three-Segment Stepped
Column

This paper treats the elastic stability of three-segment stepped column that
is subjected to axial concentrated compressive forces using the strain
energy method. Efforts have been made to establish the methodology for
the development of a model that is useful for quick, yet quite accurate,
estimation of the elastic buckling critical load. By using the load, segments
stiffness and lengths ratios, the dimensionless influence coefficient is
defined for any combination of parameters. The diagrams of critical load
based on geometric parameters variation are given. The results of
analytical model are compared with numerical results obtained from finite
element method. Within two investigation regimes, influences of bending
stiffness and lengths variations are analyzed separately.
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1. INTRODUCTION

In order to accomplish weight reduction and decrease
production costs of steel carrying structures, the
engineers often design steel columns as multi-segment
carriers with a non-uniform cross-section. Since
columns are usually compressed by payload, self-
weight, etc., one of the most important aspects of using
such carriers is their elastic stability. This paper treats
the elastic stability of three-segment stepped column
that is subjected to axial concentrated compressive
forces. Since the issue of elastic stability of multiple-
stepped columns is best analyzed by means of
computerized structural analysis methods [1], this is the
effort towards development of such analytical model for
calculating the elastic buckling critical load that
possesses a suitable form for building the software
application. The basis for building such analytical
model of critical buckling load of stepped column is
well-known Euler’s model [1-3].

The determination of critical buckling load of the
columns with non-uniform cross-section can be a
complex task that depends on different load and
boundary conditions. An exact solution approach to
studying the buckling of a non-uniform column with
spring supports under combined concentrated and
distributed loads is presented in [4]. In paper [5], the
governing differential equation for buckling of a multi-
step non-uniform beam under several concentrated axial
forces is established. Some authors have taken into
consideration the cases of an axially compressed non-
uniform column subjected to the stepped axial loads that
act eccentrically on the column [6,7]. Paper [7] also
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included the influence of initial imperfections on the
stability of non-uniform steel members subjected to
eccentrically applied axial loading. In some papers the
expressions for describing the distribution of flexural
stiffness of a non-uniform column and the distribution
of axial forces acting on the column are related [8,9].
The results obtained from the proposed methods are
often compared with those determined from finite
element method (FEM) [10]. Further, some authors
have pointed out the application of effective lengths
concept [11]. Considering the complexity of the issue,
great efforts have been made to establish the
methodology for the development of models that are
useful for quick, yet quite accurate, calculations of the
critical buckling load of tapered columns [12,13]. On
the other hand, some authors have carried out the
buckling analysis of non-prismatic columns based on
modified vibration modes [14]. In addition, some
authors have studied the stability of composite columns
and beams of variable cross-sections [15-16].

In general, the issue of elastic stability of a stepped
column can be solved through several ways, but most of
the previous studies can be sorted into two main
approaches.

The first approach means determining the elastic
buckling critical force that is based on differential
equations of elastic lines for every segment of complex
column structure, where the segments are defined either
by value change of axial load or by geometric
characteristics change of cross section. This approach
leads to exact but more complex solution. On the other
hand, in order to derive simplified but yet quite accurate
solution, it is rational to resort to energy method of
calculating the critical force. For the sake of simplicity,
the application of this method can be firstly shown on
the simple model of column with uniform cross-section
that is subjected to the axial compressive force at its top
P (Fig. 1a).
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The strain energy accumulates as the column is
being bended. At the same time, the potential energy
decreases due to certain lowering of acting point of the
force. If AV represents strain energy and AT the work
of force P while lowering its acting point, then the
elastic stability will be maintained if AV —AT >0, or
violated for AV —AT <0. The eigenvalue P, called
the critical load, which denotes the value of load P for
which a nonzero deflection of the perfect column is
possible, can be determined from the following
condition:

AV =AT . (1)

The displacement of acting point of force P is
theremainder between bended column elastic line length
and column height. To determine the total displacement,
the relation upon an elementary portion of the elastic
line is established (Fig. 1b):
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By expanding the function into Maclaurin serie, it is
derived:
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Figure 1. a) Cantilever column with constant cross-section

with axial compressive force at the top b) Elementary
portion of bended column elastic line

The total displacement of force P acting point is
obtained by integration [2]:

]
1 dyo
A==|(=)"dx. 4
: { ) @
Work of force P along displacement A is:
1 G d
AT = P2 =—P[(Z))2dx. (5)
2 0 dx
Strain energy is calculated as follows:
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2. METHODOLOGY OF THE ANALYTICAL MODEL

Mzdx
2FI

(6)

The case being considered is a three-segment cantilever
stepped column subjected to axial compressive force
acting at the top. The line that goes through the
centroids of all cross-sections is straight. In addition, the
following assumptions are made: the column is assumed
to be made of homogeneous material that obeys
Hooke’s law, the load P is concentrated and the
deformations of the column are small. Self-weights
were also taken into account, which are considered to
act at the middle of segments lengths. The model of the
considered case is shown in Fig. 2.
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Figure 2. Three-segment cantilever stepped column
subjected to axial compressive force and self-weight

As approximate function that satisfies the boundary
conditions of support and deflection at the top, the
following expression can be adopted:

$(x) = 5(1-cos ) 7
21
where ¢ is deflection at free end of the column and / is
overall column length.
Deflection values at points of forces action,

according to adopted approximation of elastic line are:
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s = y(x=hs) = 5(1—003”2—};5)

8y = y(x = hg) = 81 —cos L) ®)

8 = y(x="h) =§(1—cosﬂ2—};l

where h; , i=1,...6 are section lengths:
h1=11/2; h2: 11, h3: 11+12/2; h4: 11+ 12, h5: 11+ 12+13/2; h6:
1+ L+,

Total strain energy due to the bending moment is
obtained from the expression

6 b2 Iy 42
AV :ZAVi :J« M (x)dx+ j M; (x)dx+
~ 2EI 2EI
i= 0
I3 M2 hy 52
3 (x)dx M} (x)dx
i J- 2EI " j 2EI " ©)
hy 2 3 2
+hf M2 (x)dx +”f M2 (x)dx
b 2ED 2EI,

Members under integrals M;(x), i=I,...,6 represent
bending moments functions by sections:

M (x) = (G + Gy + G5 +Gy)y -
—(G10) + G603 + G305 + G40)

M;(x) = (Gy + G5+ Gy)y = (G263 + G365 + G46)

M3(x) = (Gy +G3 +Gy)y = (G163 + G365 + G40) (10)

M4 (x) = (G3 +Gy)y — (G305 + G49)

Ms(x) = (G3 +Gy)y = (G305 + G46)

Mg(x) =Gy —Gyd

After introduction of loads, bending stiffness and
lengths ratios m;=G,/G,, m,=G,/G, m;=G;/G,
n=L/1;, n;=Iy/I;,, s;=l/l, s;=l/l and s;=l3/I, the

members from (9) after integration and many
transformations can be written in the following form:

G52l Gs%l
AV, = Gyl 4 AV, = Gy 4
1 4 ElL a[4] 2 4 ElL 2[4]
G521 G52l
AV3 = G4 [A3] AV4 = G4 [A4]
4zEl, L 4zEl, L an
| L
G2l G521
AVS :—IG4[A5] AV6 :—1G4[A6]
47zE13I—1 47:15131—1

1 1

where expressions designated as G and A, i=1,...6 are
given in Table 1. Coefficients which are used within
these expressions are given in Table 2.

Total strain energy gets a simpler formulation:

6 2

Go°lG Ay Ay As A

AV = AV, = A+ dy + 2 A S 76 ((12)
a 4rEL n, ny, n3 n

Total deformation work of all forces on

corresponding displacements is:
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4
AT =Y AT, (G,,). (13)
m=1
In accordance with (5), work of force G; along its
acting point displacement is:

1 hld ?

)y
AT, =—G — | dx. 14
175 1'([(dxj x (14)

Starting from the implied equation of elastic line (7)
after integration it is obtained

2
_Gor ”(”_hl_sin”_hl] .

15
16/ / [ (1)

1

Other members of the expression for total
deformation work have the form as (15), where
integration boundaries are changed, so it is derived:

2
ATy =07 G s
16/ / /
Gy8% 7 (7h h
ATy =232 21T Gin IS (16)
16/ / /
2 2 2
AT4 _ G45 ﬁ(ﬂ_s.nﬂ'—lJ: G45 T
16/ / / 16/
Total deformation work of all forces on
corresponding displacements is:
2
AT =9 7% (17)

16/

where the expression designated as H is given in Table
1.

The expanded form of (1) from which the buckling
critical load is to be calculated is:

2
Go IG4(

4y Ay A5 4g) 8%xG
A4+ 4 i B S R :ﬁH.(léﬁ)
47El 16/

np np n3 N3

Considering Euler’s formula for buckling critical
force of cantilever column, the suitable form in this case
would be:

2
7 El
PcﬁTzl-q:BL-q. (19)

First member of equationPCl, is the known Euler’s

formula for buckling critical force of column with
uniform first segment’s cross-section and overall height.
Parameter ¢ encompasses the influences of segments
lengths ratios, bending stiffness ratios and load ratios.
Therefore, the analysis of elastic stability is reduced
to the analysis of dimensionless influence parameter g:

_Fr _ H _
Tpl Ay A, A
For Al+,<12+—3+—4+—5+ﬁ (20)

np np n3 n3

:f(ml,m29m37n2:n39‘g19s2’s3)
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Table 1. Expressions in (11) and (17)

2 2
4 :Mﬂsl_g”lal"'l?lbl
2p
2 2 2
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Table 2. Coefficients within expressions in Table 1

ay =sin(0.257s;)

ay =sin(0.57s)

az = sin(0.57r (S1 + 0~5S2 ))

ag = Sil’l(o.Sﬂ'(Sl +5 ))

as = sin(O.Sﬂ(sl +S2 +0.5S3 ))
by =sin(0.57s))

by =sin(7sy)
by =sin(7z (s +0.55))
by =sin(7z (s +s;))
bs =sin(7z (s +5, +0.553))
¢ =cos(0.257s;)
¢y =cos(0.57(s; +0.5s, ))

3 = COS(O.Sﬂ'(Sl +S2 +0.5S3 ))

D1 =m1+m2 +m3 +1

pPr =my +m3 +1

p3 =mg +1

H =mcp +myCy +mzCy

P =MyCy +MmM3C3

3 =m3C3

By varying the values of dimensionless load ratios
and segments stiffness and lengths ratios, the influence
coefficient can be defined for any combination of the
parameters. On the other hand, segments lengths ratios
have the limitation sl+s2+s3=1. If in expression for
influence parameter q are put the values ml=m2=m3=0,
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n2=n3=1 and sl1=s2=s3=0, it is obtained that g=1, i.e.
Pcr=Pcrl, which is the known Euler’s equation.

3. COMPARATIVE RESULTS OBTAINED FROM
ANALYTICAL MODEL AND FEM

Since the influence coefficient of critical axial load
g=q(m;mymsnynss;,s»s;)  depends on  many
parameters, it gives the possibility to perform various
analysis. Simplifying the verification, it was considered
that segments’ self-weight load is much smaller than
compressive axial force at the top of the column
(G1,G,,G3 <« G4=P or m;=my=m3=0), which is the most
often case in real life. This means that the influence
coefficient ¢ is analyzed in cases of bending stiffness
and lengths ratios variation.

In order to verify the analytical model, the FEM
analysis is performed by using ANSYS software.
Circular hollow sections with constant and equal wall
thickness are taken for segments’ cross-sections,
therefore the bending stiffness variation is done by
changing the diameters values, Fig. 3a.
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Figure 3. Verification model for analytical solution:a)
stepped column with cross-sections; b) FE model and
result for well-known case of cantilever column with
uniform cross-section.

Wall thickness of pipes is w=5[mm] and overall
height of column is /=3000[mm]. In all cases, the
diameter of first (lowest) segment is D;=100[mm],
while the diameters of second and third segment D, and
Dj; are varied. Young’s modulus of elasticity for steel is
taken to be E=2.1-10°[kN/cm’]. In all cases, the
compressive axial force P=1000[N] is applied at the top
of the column, while its bottom end is fixed.

Since the results of an analytical model are to be
compared with FEM results that are considered as true,
a preliminary test was done in order to verify the FEM
model. A well-known case of cantilever column with
uniform  cross-section with pipe diameter of
D=100[mm], wall thickness w=5[mm] and height
[=3000[mm] was discretized by 9644 20-node
hexagonal finite elements and 64718 nodes, Fig. 3b.

Analytical solution is well-known Euler’s formula:
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_7El 7%2.1-10% 168,81
41 4-300°

The result obtained by FEM is a load multiplier (Fig
3b) that scale the loads applied in the static structural
analysis, which precedes the buckling analysis. Since
the applied load is 1kN, the bucking critical force is
load multiplier itself, i.e. 97.152 kN, Fig 3b. Relative
error of FEM model in relation to known analytical
solution is 0.037% which can be neglected.

Two analysis regimes were established. Firstly,
analytical and numerical models were compared
through variation of pipe diameters (bending stiffness)
while maintaining segments lengths equal. After that,
the comparison was done for the regime with variable
segments lengths and fixed (adopted) cross sections.
Atotal of 40 tests were done, 20 tests per each analysis
regime.

Pl =97.188kN (21)

3.1 Variation of pipe diameters (bending stiffness)
with fixed and equal segments lengths

Bending stiffness variation is accomplished by changing
the pipe diameters of the second and the third segment,
while the segments lengths are kept equal, i.e.
s;=s,=s3=1/3. The diameters are changed by 5[mm]
gradually, while maintaining the relation D;>D,>D;.
Table 3 comparatively shows elastic buckling critical
force values P, obtained from analytical and numerical
FEM model for various combinations of segments
diameters.

Elastic buckling critical force value P, from the
FEM model is calculated by multiplying the load
multiplier and the value of compressive axial force
acting at top of the stepped column. Since the applied
force is P=1[kN] (Fig.3), the load multiplier itself
represents the critical force in [kN], Fig. 4.

Fig. 5 represents the diagram of critical force (19)
based on variable bending stiffness ratios and constant
and equal segments lengths. The results of FEM model
are represented through points with designation given in
Table 3. A relative error of results obtained from the
analytical model in comparison with FEM is listed in a
far right-hand column.

Total Deformation
Type: Total Deformation ML%
oad Multlpller 90,526
Unlt rm
0.1619 Max
0.14391
0.12592
0.10794
0,059946
0.071957
0,053965
0,035975
0.017959
0 Min

D.DD 1000,00 2000,00 {mmm}

SDD uli} 1500.00

Figure 4. Elastic buckling critical force for D2=9.50[cm] and
D3=9.00[cm] (bolded value in Table 3 - point R1)
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Figure 5. Critical force versus bending stiffness ratio for
analytical and FEM prediction

3.2 Variation of segments lengths ratios within
fixed pipe diameters (bending stiffness)

Lengths variation is done by changing the relative
segments participation in overall column length for
several combinations of pipe diameters. It is adopted
that the first segment ratio takes values in the range
0.20+0.60, while other two segments have equal
lengths. Since it must be s;,+s,+s;=1, it follows that
S2:S3:0.5(1'S1).

In the same manner as Table 3, Table 4
comparatively shows elastic buckling critical force
values P, obtained from analytical and numerical
FEM model for various combinations of segments

lengths.

Total Deformation
Type: Total Deformation

«Load Multiplier: 57,20
Unit: ram

0.19731 Max
0.17539
0.15347
0.13154
0.10962
0.057694
0.065771
0.043847
0.021924

0 Min

Y‘\T/ X

000,00 (mm)

0.00 1000, 00
500,00 1500.00

Figure 6. Elastic buckling critical force for D,=8.00[cm],
D3=7.50[cm], s; =0.20, s,=5;=0.40 (bolded value in Table 4 -
point M5)

Since the applied force is P=1[kN] (Fig.3), the load
multiplier itself represents the critical force in [kN],
Fig.6.

Fig. 7 represents the diagram of critical force (19)
based on variable segments lengths ratios and fixed
segments bending stiffness.
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Figure 7. Critical force versus segments lengths ratio for
analytical and FEM prediction

4. CONCLUSION

Considering the variation of segments bending stiffness,
relative deviations of elastic buckling critical force are
generally less than 3% (Table 3) except for a few cases
with largest stiffness reduction (the largest relative error
7.06% is for the case with D,=8.00[cm], D;=5.50[cm]).
Greater differences in pipes diameters size within
segments transitions caused larger relative error of
critical force value due to deviation of column real
elastic line in comparison with assumed sine shape.

On the other hand, within the variation of segments
lengths with fixed bending stiffness (fixed set of pipe
diameters), relative error is less than 1.39% (Table 4).

For both analysis regimes, the influence of variable
parameters on the elastic buckling critical force can be
evaluated through general dimensionless influence
parameter ¢, whose diagrams for analysis regimes,
presented in sections 3.1 and 3.2, are given in Fig.8 and
Fig. 9 respectively.

Diagram in Fig. 8 shows the expected increase of
dimensionless influence parameter g, higher values of
critical force versus increase of bending stiffness ratio
of second and third segment 7, and n; respectively. The
same conclusion can be made upon the diagram in
Fig.9, wherein the values of dimensionless influence
parameter g converge to 1 when participation of first
segment length in overall column length exceeds 80%

(s;,>08=P, ~Pl).
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Figure 8. Diagram of dimensionless influence parameter g
for bending stiffness ratios variation
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Figure 9. Diagram of dimensionless influence parameter g
for lengths ratios variation

Comparing the results obtained from analytical and
FEM model, it can be seen that relative deviations are
acceptable for application purposes. Therefore, it can be
pointed out that presented methodology can be used for
calculation of elastic buckling critical load of axially
loaded stepped column. Besides, derived analytical
dependence between critical buckling load and stiffness
and lengths ratios of three-segment stepped column is a
valuable basis for parameters optimization. Further,
introduced methodology can be used for managing more
complex cases with more segments and eccentric axial
loads. Finally, it generates a convenient platform for
building the application software solution for
calculating the elastic buckling critical load of axially
loaded multi-segment stepped column.
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EHEPTETCKHU METO/J Y EODUKACHOM
OJPEBUBABY KPUTHYHOT OIITEPEREIBA
HN3BUJAIBA AKCUJAJIHO OITEPEREHOT
TPOCEI'MEHTHOI CTYBA

Heo6ojma 3apaBkosuh, Munomup I'amuh, Muuie
CaskoBuh

Y pagy je pasMaTpaHa eJacTHYHA CTaOMIHOCT
TPOCETMEHTHOT aKCHjaTHO omnTepeheHor cTyba momohy
eHeprercke Merone. CrpoBeieHa je MeETOJOJOrHja ca
mbeM (opMHpama NPOPaYyHCKOT MoOJeNa KOju je
norogaH 3a Op30 M HCTOBPEMEHO JOBOJFHO TayHO
onpehuBame KpuTHYHOT onrtepehiema Koje TOBOAU [0
u3BMjama. YBoaehu y aHanm3y oaHoce omnTepeliema,
KPYTOCTH CaBHjarba M JyXKHHA CerMeHaTa, IeHHUCAH
je onmTH Oe3MMEH3MOHM YTHLAJHH KOe(HIHjeHT 3a
O0wio kojy KoMmOmHanujy mapamerapa. J[atu cy
JMjarpaMy IpOMeHe KPHTHYHOT onrtepehema y 0IHOCY
Ha BapHjalHjy TeOMETPHjCKUX Mapamerapa. Pesyiratu
AQHATUTUYKOT MOJeJIa Cy JaTH YIIOpeIo ca pe3yiaTraTuma
JIOOMjeHNM M3 HyMEpUYKE aHallM3e METOJIOM KOHAYHIX
eneMeHnaTa. Kpo3 qBa pexnma HCIUTUBAbA, 3aCE0HO Cy
aHaJIM3MpPaHHU YTUIAjU O] TPOMEHE KPYTOCTH CaBHjarba
U Iy’KHHa CerMeHarta.
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Table 3. Comparative results from analytical model and FEM for the regime of variable pipe diameters (bending stiffness) with
fixed and equal segment lengths

ISegment Per for lSlegment ISI?gment Pcr  |Per Poipt . Relative]
diameterll[cm4] D=n3=1 diameteru[cm4] n2=12/11 diameterl3[cm4] n3=I3/11|theory|FEM fiemgnatloneorror
D1 [cm] D2 [em] D3 [cm] [kN] - [lN] lin diagram. [%]
9.00 121.00 {0.72 89.89 [90.53[R1 -0.71%
8.50 100.92 10.60 88.57 [89.21|R2 -0.72%
9.50 143.58 10.85 8.00 83.20 |0.49 86.87 |87.12|R3 -0.29%
7.50  [67.69 [0.40 84.86 [84.62|R4 0.28%
7.00 54.24 10.32 82.27 [81.36|R5 1.12%
8.50 100.92 10.60 83.21 (83.33|G1 -0.14%
8.00 83.20 |0.49 81.70 [81.47/G2 0.28%
9.00 121.00 |0.72 7.50  [67.69 [0.40 79.92 [79.35/G3 0.72%
7.00 54.24 10.32 77.62 |76.37|G4 1.64%
1000 li6ss1 lo7.19 6.50  [42.71 [0.25 74.61 [72.63|G5 2.73%
8.00 83.20 |0.49 75.80 [75.42[B1 0.50%
7.50  [67.69 [0.40 74.26 (73.56/B2 0.95%
8.50 100.92 10.60 7.00 54.24 10.32 72.27{70.96/B3 1.85%
6.50  [42.71 0.25 69.66 |67.95|B4 2.52%
6.00 [32.94 (0.20 66.89 [63.66[B5 5.07%
7.50  [67.69 [0.40 67.80 |67.00M 1 1.19%
7.00 54.24 10.32 66.14 |64.97M2 1.80%
8.00 83.20 |0.49 6.50  [42.71 0.25 63.94 |62.27M3 2.68%
6.00 [32.94 (0.20 61.61 |58.91|M4 4.58%
5.50  [24.79 [0.15 58.07 |54.24M5 7.06%

Table 4. Comparative results from analytical model and FEM for the regime of variable segment lengths for some
combinations of pipe diameters (fixed bending stiffness)

Segment [ Pcr for Segment Segment Pcr Pcr Point  |Relative
g I 1l I il I

diameter D, [crr]14] NG| e oter [anl ] ny=0/I; diameter | [c r131 4 n;=L/I;| s; | s» | s;3 | theory | FEM |designation| error
[em] 1 4 [kN] | [kN] |in diagram | [%]

D; [cm] D; [cm]

0.6010.20{0.20{ 95.29 | 96.00 R1 -0.74%
0.5010.25|0.25| 93.69 | 94.36 R2 -0.71%
9.50 [143.58| 0.85 9.00 |121.00| 0.72 |0.40(0.30{0.30| 91.56 | 92.10 R3 -0.59%
0.30]0.35|0.35 88.99 | 89.81 R4 -0.91%
0.2010.40|0.40{ 86.10 | 86.56 RS -0.53%
0.6010.20{0.20 93.33 | 93.49 Gl -0.17%
0.50{0.25|0.25 90.19 | 90.41 G2 -0.24%
9.00 {121.00| 0.72 8.50 [100.92| 0.60 (0.40(0.30(0.30| 86.21 | 86.32 G3 -0.13%
0.30]0.35|0.35| 81.64 | 81.88 G4 -0.29%
0.2010.40|0.40{ 76.81 | 76.99 G5 -0.23%
0.60{0.20{0.20{ 90.86 | 91.11 B1 -0.27%
0.5010.25|0.25| 85.97 | 85.49 B2 0.56%
8.50 |100.92| 0.60 8.00 |83.20| 0.49 |0.40(0.30{0.30| 80.05 | 79.58 B3 0.59%
0.3010.35|0.35| 73.64 | 73.14 B4 0.68%
0.20]0.40|0.40 67.26 | 66.91 BS 0.52%
0.6010.20|0.20{ 87.78 | 87.26 M1 0.60%
0.5010.25|0.25| 80.95 | 80.12 M2 1.04%
8.00 |83.20| 0.49 7.50 |67.69| 0.40 (0.40(0.30(0.30| 73.14 | 72.14 M3 1.39%
0.30]0.35|0.35| 65.18 | 64.60 M4 0.90%
0.20]0.40|0.40 57.76 | 57.21 M5 0.96%

10.00 168.81| 97.19
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