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Abstract. The Cahn-Hilliard equation, which is important in the context of first-

order phase transition, has frequently been studied in its simplified form,

c, = A[h(c) - KAc],

where c{x,t) is a concentration, h(c) is a nonmonotone chemical potential, and K,

the coefficient of gradient energy, is a positive constant. In this paper we consider the

Cahn-Hilliard equation with nonconstant mobility and gradient energy coefficients,

c, = V ■ [M(c)V{h(c) - K(c)Ac}],

where M(c) and K(c) are assumed to be positive. When K is constant, the free

energy functional

F{t) = J h{c)dc + ^K\Vc\2} dx

acts as a Liapounov functional for the Cahn-Hilliard equation. However, when K is

nonconstant F(t) no longer acts as a Liapounov functional, and it becomes relevant

to examine an alternative energy. In this paper the stability of spatially homogeneous

states is studied in terms of the energy

r rc-co rc

E(t) = / / / M~l(c + c0) dc dc dx.
J n Jo Jo

The possibility of dependence of h(c),M(c), and K(c) on a spatially uniform tem-

perature is also considered and the physical implications of the location of the limit

of monotonic global stability in the average concentration-temperature plane is dis-

cussed. In particular, this limit is shown to lie below the critical temperature.

Introduction. The Cahn-Hilliard equation first appeared [2] as a phenomenological

model equation for first-order phase transitions with a conserved order parameter.

It is possible to derive the Cahn-Hilliard equation if the free energy of the system is

assumed to be given by a Gibbs free energy augmented by a gradient energy term [3]

F(t)^ I^H(c) + ̂ K\Vc\2^ dx. (1.1)
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H[c, T)

concentration

Fig. la. The free energy H(c) at some temperature > Tc

H(c, T)

concentration

Fig. lb. The free energy H(c) at some temperature Ti < Tc

Here H{c) = /Qc h(c)dc, where h{c) is the intrinsic chemical potential. The form

of //(c) will depend on the temperature. Above some critical temperature Tc,H(c)

should have one minimum (or well) and below Tc,H(c) can be expected to have two

minima (or wells). See Figures l(a,b). The coefficient K is a coefficient of gradient

energy which can be assumed to be small and positive. If a generalized chemical

potential n is defined via
SF

and if a linear force-flux relation is assumed, i.e., J = A/V// where M > 0 is the mo-

bility, then the Cahn-Hilliard equation follows from mass conservation. Reasonable

accompanying boundary conditions on a bound region QcR" are no flux,

n • J = 0 on <9Q, (1.2)
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where n is the normal to the boundary, dQ, together with the natural boundary

conditions obtained from the free energy functional,

« • Vc = 0 on dfi. (1.3)

The inclusion of the gradient energy term arises by allowing the free energy to

depend on gradients of concentration as well as on the concentration itself. By

assuming the gradients to be small, and by expanding the free energy in the gradients,

the gradient term ^K\Vc\2 appears as the first nontrivial new contribution in the

isotropic system. Thus the Cahn-Hilliard equation can be considered to be valid

only if the gradients are reasonably small. If not only are the gradients small but the

system as a whole is nearly homogeneous, then it is reasonable to assume that M and

K are constants. Here we wish to consider the case where the gradients in the system

are small, but where the system as a whole is not nearly homogeneous. One can then

either adopt the Cahn-Hilliard equation with nonconstant coefficients,

ct = V • M(c)V[h(c) - K(c)Ac], (1.4)

or return to the free energy function and allow K to be nonconstant. A parallel

derivation would then yield

c, = V ■ M(c)V h{c) - ^-|Vc|2 - KAc ;i.5)

The important difference between (1.4) and (1.5) is that while the free energy func-

tional F serves as a Liapounov functional for (1.5), equation (1.4) does not possess a

similarly related Liapounov functional. In this paper, equations of the form (1.4) are

treated together with the no flux and "natural" boundary conditions, (1.2)—(1.3). On

physical grounds Eq. (1.5) may be preferable to Eq. (1.4). However, it is important

to consider the properties of Eq. (1.4) in order to obtain a measure of the robustness

of the original constant coefficient equation.

In studying the Cahn-Hilliard equation, stability considerations are traditionally

connected to the location of the spinodal and the coexistence curves. The spinodal

concentrations {ca,cb} are those concentrations such that

h'(ca) = h'(cb) = 0 (1.6)

and the coexistence concentrations are those concentrations {c^c'f,} such that

h(c'a) = h{c'b) = (c'b-c'ttrl h(c)dc. (1.7)
JCa

See Figures (2a,b). We denote the interval (ca,cb) the subspinodal region. If M

and K are constant, then the spatially homogeneous state c(x) =c is linearly stable

if c £ [ca,cb] and it is linearly unstable otherwise. If K and M are allowed to be

concentration dependent, then the stability interpretation of the spinodal and coex-

istence concentrations is no longer so transparent. We will approach these questions

in the next two sections.
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h(c, T)
T> Tc

concentration

h(c. T)
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Fig. 2. Typical diagrams for h = h(c, T), for T > Tc above and for

T<TC below. Here ca and cb denote the spinodal concentrations and

c'a and c'b denote the coexistence concentrations.

2. An energy result. In this section we study the stability of the spatially homoge-

neous state via the energy
rC-Cor rc-co rc

E= / M~\c + co)dcdcdx.
Jn Jo Jo

The physical interpretation of the energy E is unfortunately not transparent. Here

we define c(x,t) to be a solution to the initial boundary value problem:

c, = V ■ M(c)[V[h{c) - AK(c)Ac]], xeQ,

n • Vc = 0, x € d£l, , , ,

n-V[A(c)-A"(c)Ac] = 0. xedQ, V*,"*)

c{X, 0) = C0(^) € C4,

where n is the normal to the boundary of the region dQ. Here ft c R3 is assumed to

be a bounded region with a smooth boundary. Furthermore, we assume that M(c),

K(c), and h(c) are C1, and that there exist constants M0,K0, and A^i such that for

all c e R,
0 < M0 < M(c) and 0 < Kq < K(c) < K\.

The function h(c) is assumed to be monotone increasing or to possess at most one

internal minimum, see Figures la and lb, and the terminology "spinodal" and "co-

existence" concentrations will be understood to be defined by (1.6) and (1.7); in
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particular, ca and q, denote the spinodal concentrations and h'(c) > 0 if c e [ca,Cb]

and h'(c) < 0 otherwise.

A number of existence proofs have been given for Equation I(a-c) for the constant

coefficient case (see [7], [8]). A proof of existence for the non-constant coefficient

case is not given here, although it should be straightforward; instead we obtain a

priori estimates for stability regimes. If the coefficients in I(a-c) are constants, then

it is well known that the Cahn-Hilliard equation is material conservative [1]. This

is also true for I(a-c) with variable coefficients, since integrating I(a-c) over Q yields

that

- [ c{x,t)dx = 0,
at Jn

or equivalently, that

™W)f0cixJ)dx=JmLCo(x)dx=?:o {2A)

for all t > 0.

Let x(c) be the characteristic function of the subspinodal region (see Figures

2(a,b)):
r l c e [ca,cb]

X{C) ~ \ 0 C$[Ca.Cb].

Integrating by parts and employing the boundary conditions I(b-c), we find that

-j-E(t) = - f h'(c)\Vc\2 dx - [ K(c)(Ac)2 dx
dt JSi J £2

= -f h'(c)\Vc\2x(c)dx - [ h'(c)\Vc\2(\ - x{c))dx
J n Jq

- [ K(c)(Ac)2 dx.
Jn

Let us define

P = - [ /z'(c)|Vc|2*(c)<i.x,
Jn

D= [ h'{c)\Vc\2(I - x(c)) dx + [ K(c)(Ac)2 dx.
Jn Jn

Recalling that h'(c) > 0 if c £ [ca,cb], the subspinodal region, we see that D > 0 if

c constant and thus

jE{t) = P-D = -D[\-P/D].

We define a class of admissible functions,

A{c0) = cl |c(x) e C4|c(x) satisfies the boundary conditions

(I.b) and (I.c) and c(x) satisfies the conservation

of material constraint (2.1)}.

If c(x) e A(co), then c(x) - Co is a material conservative perturbation about the

uniform state c{x) = Co-
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Claim 1. Let Q = max (-h'(c)). There exists a positive constant A(Q) such that
c€[0,l]

for all admissible functions, P/D < R, where R\ = QA(Q)/Ko if [ca,cb] / 0 and

R\ - 0 otherwise. Here Kq is a positive lower bound on K(c).

Claim 2. For all admissible functions, E < R2D where R2 = A2(CI)/(2KoMq).

Here A(Q) is the same positive constant which appears in Claim 1 and Mq is a

positive lower bound on M(c).

From Claim 1, it follows that v(t) = sup {P(t)/D(t)} < 00.
c(x,0)£A

Theorem 1. If v(t) < 1 for all t e [0, T), then for all t e [0, T]

E{t) <E{0)expl-R^ j\l-1/(*'))<&'J. (2.2)

where R2 is defined in Claim 2. If all perturbations about a particular state c(x)

decay monotonically, then we say that that state is monotonically and globally stable.

In particular, if 0 = sup^(?) < 1 for all t, then c = Co is monotonically and globally
/>o

stable. If ^(0) > 1, then there exist initial conditions for which dE(0)/dt > 0.

Proof. The proof of Theorem 1 follows from Claims 1 and 2 together with standard

arguments. See, for example, [5], §4.

We now proceed with the proofs of Claims 1 and 2. Let us first prove that for

c(x) G A

f |Vc|2 dx < A(£2) f (Ac)2 dx.
J £j Jn

Integrating by parts,

I \Vc\2dx = — / (c — Co)Ac dx < I \c — c0\\Ac\dx
Jn Jn Jq

(*)

< J (c - Co)2 dx [f(Ac?dx
1/2

By Poincare's inequality for functions with zero mean,

1/2

j \V c\2 dx < Ax I2 {^L)[j \V c\2 dx [Ac)2 dx
1/2

from which (*) follows.

Proof of Claim 1. The proof proceeds by bounding - fn h'(c)\Vc|2^(c) dx in terms

of K(c)(Ac)2 dx. If range c(x,t) n [ca,cb] = 0, then the result is trivially true.

Otherwise 0 < - min h'(c)y(c) < Q and from (*) it follows that
<•€[0,1] V K ' - W

- f h'(c)\Vc\2x(c) dx < Q [ |Vc|2 dx < QA{Q.) [ {Ac)2 dx
Jq Jn Jn

<§-A(Q) [ K(c)(Ac)2 dx.
Ko Jq

Thus P < R\D where R\ = QA(Q)/K0.
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Proof of Claim 2. Applying first Poincare's inequality for functions with zero mean

and then using again the inequality (*), we obtain

r rc-co rc

E(c(x,t)) = J J J M~l(c + Co) dc dc dx

swi(Ac)2^^i/M(Ac)2^ D

When K(c) = constant, it is possible to compare the behavior of E{t) and F(t).

The following result shows that even if E(t) does not decrease monotonically, its

behavior is controlled by the behavior of F(t).

Theorem 2. There exists a constant C = C{c(x, 0), K) such that |^| <

Proof Integrating by parts and using Cauchy-Schwarz, one obtains

dF I f fc~c»
— =11 J M~l(c + c0) dcV ■ [MV{h(c) - KV2c}]dx

= \[ Vc [V{h(c)-KV2c}dx]
\Jn
r t i1/2r r i1/2 r r i1/2/ hf\x'2

< JJ \Vc\2dx J |V{/z(c) - KV2c}\2dx < J \Vc\2dx

Furthermore, since ^ < 0,

F(c(x,t)) = h{c)dc + K\Vc\2^ dx<F{c(x, 0)).

Hence, since fc h{c) dc is of quartic form with two minima,

J K\Vc\2dx <F(c(x, 0)) - J J h{c)dc dx < F(c{x, 0)) - min J h(c)dc • |Q|

= C(c(x, 0),K).

3. Physical implications. In the previous sections we have allowed M, K, and h to

be concentration dependent. It is well known that M, K, and h will also be expected

to vary with temperature. In this section, we take the temperature to be an additional

variable, but we assume that in any particular system, the temperature is fixed and

independent of space and time. We examine the dependence of monotonic global

stability on the variables T and Cq, where T is the ambient temperature and where

co = Pf /n co(x)dx.

Typically (e.g., for dilute binary solutions) the interval [c'a,c'b\ shrinks as the tem-

perature is raised and Q = - min h'(c, T) decreases, until at some critical temperature

Tc < oo, c'a = c'b and Q- 0. Likewise the spinodal interval [ca,cb] may be expected

to decrease. Let us define the region of monotonic global stability to be the set S,

S = {(co,T)\v(co,T)<l}.

Later we shall see that Ts(co) = (inf T\(cq, T) e S) is a well-defined function of Co

which we may call the limit of monotonic global stability in the (cq, T^-plane.
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T «. _ (Ccrit< ?crit)

(temperature)

spinodal

coexistence
curve

concentration

Fig. 3. A typical plot of the spinodal and the coexistence concen-

trations in the temperature-concentration plane. According to Result

3.1, (cq.T) € S if 7*> Tc.

Result 3.1. If T> Tc, then (Co, T) e S. See Fig. 3.

Proof. If T> Tc, then by hypothesis the interval [ca,cb] is empty. Hence P/D - 0

for all admissible functions.

In accordance with the explanation of the influence of temperature on the free

energy functional given at the beginning of this section, we assume that if Ti > T\,

then h'(c, T2) > h'(c, T\). We then obtain

Result 3.2. If (c0, T\) € 5 and if T2 > T\, then (c0, T2) e S.

Proof. Suppose that (co, T2) £ S. Then there exists an admissible function for

which P/D > 1. By using the inequality h'(c,T\) > h'(c,T2), it follows that at

(co> T\), for the same admissible function, P/D > 1. This is a contradiction to the

assumption that (cq, Ti) e S.

Result 3.2 implies that Ts(c0) is a well-defined function of Cq which may assume

the value -00. It is difficult to obtain information about the exact shape of Ts(co).

It is also possible to obtain the following characterization of S in terms of the

steady state solutions of the Cahn-Hilliard equation.

Result 3.3. If there exist nontrivial steady state solutions of the original equation

(1.4) corresponding to the parameter values (Co, T), then (co, T) $ S.

Proof. Any nontrivial steady state solution may be used as an initial condition for

which P/D = 1.

In particular for constant K, since extremals of the free energy functional are

steady state solutions of (1.4), we have

Result 3.3a. If K is constant, then (co, T) S if there exist admissible functions

which are extremals of the free energy functional corresponding to the parameter

values (Cq, T).
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Some notion of where nontrivial extrema are located may be obtained by invoking

the results of Carr, Gurtin, and Slemrod [6].

1) In one dimension, when K is positive and sufficiently small and Co € (c'a,c'b),

then the free energy has a unique nontrivial global minimizer.

2) In one dimension, when K is positive and sufficiently small and c0 € (c'a,c'b),

then the free energy has periodic extrema for all N, 0 < N < No.

In these results, the smallness of K necessarily is dictated by the proximity of

Co to the coexistence concentrations c'a and c'b. Thus nontrivial global monotonic

minimizers and periodic extrema exist throughout a region under the coexistence

curve bounded away from the coexistence concentrations. Thus most of the area

under the coexistence curve lies outside S. However, the top of the coexistence

curve located at (c, Tc) for some c lies within S. This is true both for constant and

nonconstant K and is not limited to one dimension.

Result 3.4. Ts(c0) < Tc for all Cq.

Proof. As in the proof of Claim 1,

- [ h'(c)\Vc\2 dx < -min/?'(c) f \Vc\2dx
Jii c Jn

s-m}nh'{c)jdmLK(c)(v2c)ldx

Since by hypothesis on the temperature dependence of the coexistence curve,

minA'(c) t 0 and T | Tc, it follows that for Tc - T sufficiently small,
C

dE(t)
dt

< [ [~h\c)\Vc\2 - K(c){V2c)2]dx
Jn

£ " hn*'(c)j5S(!5) +'] ja^)iyhfdx< o.

Hence all perturbations decay monotonically.

4. Discussion. Traditionally two stability limits have been studied in the context

of the Cahn-Hilliard equation—the spinodal curve and the coexistence curve. Both

limits have only limiting dynamic relevance. The spinodal curve is the locus of the

region of linear stability if the mobility is constant. The coexistence curve is the

region in which the free energy function has nonuniform extrema for K = 0. Even if

K is constant, but M is concentration-dependent, the spinodal curve no longer has

the meaning of linear stability and the region in which (for K constant) there exist

nonhomogeneous extremals lies inside the traditional coexistence curve.

In the general case of nonconstant K and M it would be relevant to study the

true limit of linear stability and the region in which there exist nonhomogeneous

stationary solutions. A means of approaching stability questions in the general case

is facilitated through the energy, which has been defined here as

r rc-co r

Jtl Jo Jo
M {c + Co) dc dc dx.
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This energy allows a region of monotonic global stability of the homogeneous state,

5 = 5"(co, T), to be defined. Under certain reasonable hypotheses on the temperature

dependence of the free energy, Ts = Ts(cq) is a well-defined function in the (co, T)-

plane. The curve Ts(cq) lies outside the region in which nontrivial stationary solutions

to (1.5) exist. In particular, this implies that for K constant, Ts(co) lies outside

the region in which nontrivial extremals of the free energy functional exist, which

corresponds roughly to a region just inside the coexistence curve. Both for constant

and nonconstant K we have that max Ts(co) < Tc. Lastly, energy result 2 shows that
Co

for constant K, the growth of the energy E is controlled by the growth of F(t).

While E may not be the optimal choice, it has been shown here to be a useful tool

for studying stability in cases where the free energy functional with gradient energy

terms is no longer applicable.
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