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Summary. The intermediate state of a type-I superconductor involves a fine-scale mix-
ture of normal and superconducting domains. We take the viewpoint, due to Landau, that
the realizable domain patterns are (local) minima of a nonconvex variational problem.
We examine the scaling law of the minimum energy and the qualitative properties of do-
main patterns achieving that law. Our analysis is restricted to the simplest possible case:
a superconducting plate in a transverse magnetic field. Our methods include explicit
geometric constructions leading to upper bounds and ansatz-free inequalities leading
to lower bounds. The problem is unexpectedly rich when the applied field is near-zero
or near-critical. In these regimes there are two small parameters, and the ground state
patterns depend on the relation between them.
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1. Introduction

The intermediate state of a type-I superconductor is induced by an applied magnetic field
of suitable magnitude. In this state, the material forms a microscopic mixture of normal
and superconducting domains. A model based on energy minimization was introduced by
Landau in 1937 [33]; it was among the earliest “Landau theories” of condensed matter
physics. A rich theoretical and experimental literature had developed by the 1970s—
reviews can be found in the 1969 article by Livingston and DeSorbo [37] and the 1979
book by Huebener [23]. The subject was dormant for many years, but has recently begun
to attract fresh attention [15], [19], [40].

This paper pursues a theme begun by Landau and revisited by many others since. We
examine the scaling law of the minimum energy and the qualitative properties of domain
patterns achieving this law. Our motivation is not that the system actually minimizes
its energy. Indeed, the details of the intermediate state are highly history-dependent,
with many metastable states. However the observable structures should have relatively
low energies. One therefore expects them to share the energy scaling of the ground
state.

As we shall explain in Sections 2 and 3, the minimum energy has the form

E = E0 + E1, (1.1)
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where E0 is the value obtained by ignoring surface energy and E1 is the correction due
to nonzero surface tension. The scaling law of interest is the dependence of E1 on the
surface tension ε of the normal-superconductor interface and the normalized magnitude
0 < ba < 1 of the applied magnetic field.

The leading order term E0 was completely understood by Landau. It describes the
limiting behavior as the surface tension ε→ 0. This corresponds to a “thermodynamic”
theory of the intermediate state, determining e.g. the volume fraction of the normal
domains. Mathematically, it is associated with the relaxation of the underlying nonconvex
variational problem.

To study domain structure, however, one must look beyond relaxation to the principal-
order correction E1. Our goal is therefore (i) to identify the scaling law of this correction,
and (ii) to understand what microstructural features are required to achieve this scaling
law. Our analysis is restricted to the simplest possible case: a plate of thickness L under
a transverse applied field.

There are a number of different regimes, each associated with a different microstruc-
tural picture. Here is an informal summary (these results will be developed more grad-
ually, and stated more carefully, in Section 3):

(a) For intermediate values of ba , bounded away from 0 and 1, E1 ∼ ε2/3L1/3. It is
relatively easy for a flux domain pattern to achieve this law; the main requirement
is that its local length scale be about right.

(b) For relatively small values of ba , in the range (ε/L)2/7 � ba � 1, the prefactor is
proportional to b2/3

a . Thus E1 ∼ b2/3
a ε2/3L1/3; to achieve this scaling the magnetic flux

should cross the sample by a uniformly distributed family of branched flux tubes.
(c) For the smallest values of ba , when ba � (ε/L)2/7 � 1, the scaling law is different.

Indeed, in this regime E1 � baε
4/7L3/7. Notice that this is smaller than the scaling

law of (b), since baε
4/7L3/7 � b2/3

a ε2/3L1/3 when ba � (ε/L)2/7 � 1. To achieve
this scaling the magnetic flux should cross the sample by a nonuniformly distributed
family of branched flux tubes.

(d) For relatively large values of ba , i.e. for ba near 1, the situation is similar to (b),
but not quite the same. The prefactor is proportional to (1− ba) with a logarithmic
factor: E1 � (1−ba)| log(1−ba)|1/3ε2/3L1/3. To achieve this scaling (with the loga-
rithmic factor) the magnetic flux should fill most of the sample, leaving a uniformly
distributed family of superconducting tunnels.

(e) For the largest values of ba , the sample is entirely normal and E1 ∼ (1 − ba)
2L .

This is preferred when (1 − ba)
2L � (1 − ba)| log(1 − ba)|1/3ε2/3L1/3, i.e. when

(ε/L)2/3 � (1− ba)| log(1− ba)|−1/3.

The optimality of the scalings described in (c) to (e) is not proved in this paper; rather, we
shall address this in [12]. But we do prove here that (d) is optimal up to the logarithmic
factor, i.e. E1 � (1− ba)ε

2/3L1/3.
Notice that the problem is richest when ba is near 0 or 1. This is natural. For inter-

mediate values of ba there is just one small parameter, ε/L , but for extreme values of
ba there are two small parameters. So it is quite reasonable that the energy-minimizing
behavior should depend on the relation between them.

Landau’s variational description of the intermediate state is basically a nonconvex
variational problem regularized by surface energy. Such problems arise in many areas of
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condensed matter physics. They have recently attracted a lot of attention as examples of
energy-driven pattern formation. Thus our work is conceptually close to recent studies
of martensitic phase transformation [13], [28], [29], [30], micromagnetics [10], [11],
compressed thin film blisters [3], [26], and block copolymers [9], [38], [41]. However
most of these references address problems with a single small parameter: the normalized
surface tension. The present paper is different, due to our interest in extreme applied
fields (near-zero and near-critical ba)—where the problem has two small parameters.

There is nothing particularly new about the idea of using energy minimization to
understand the intermediate state. We review the relevant literature in Section 2. But
briefly: past investigations have generally minimized the energy within specific, relatively
simple classes of patterns. The weakness of this approach is obvious: minimization within
a restricted class gives only an upper bound. Proving it is a good bound—showing
the restricted class was chosen well—requires a matching, ansatz-independent lower
bound.

Our work is different: we provide lower as well as upper bounds. This is, to our
knowledge, the first treatment of ansatz-free lower bounds for the energy of the inter-
mediate state. We actually develop two rather different approaches. One uses a sort of
“dual problem” to estimate the magnetic energy between two cross-sections (Section 5).
The other takes advantage of an analogy to micromagnetics, and recent progress in that
setting (Section 7).

The need for a more global, ansatz-independent understanding has long been recog-
nized by theorists. For example, in 1957 Balashova and Sharvin wrote: “In one way or
another all the formulas proposed for connecting the surface tension with the dimensions
of the domains have been obtained only under various simplifying assumptions, still re-
quiring experimental verification, about the shapes of the domains” [2]. This statement,
written over 45 years ago, remains equally valid today. Our analysis avoids the simpli-
fying assumptions criticized by Balashova and Sharvin, by considering lower as well as
upper bounds.

One might have expected that after 65 years of study, the list of possible regimes
would long since have been identified. Actually, it was not. Of the regimes (a)–(e) listed
above, only (a), (b), and (e) have been recognized in the literature. The constructions
associated with (c) and (d) are (to the best of our knowledge) new. Even the observation
that for ba near 0 or 1 there are two small parameters, and that the relation between them
should matter, appears to be new.

Our analysis provides insight concerning several aspects of the intermediate state:

(i) Hysteresis. Flux patterns created by increasing the applied field from 0 are very
different from those generated by decreasing it from the critical field. This is con-
sistent with the fact that the constructions associated with regimes (b), (c), and (d)
are rather constrained and quite different from one another. Structures nucleated
when ba is near 0 tend to persist as the field increases, because for intermediate
values of ba the cross-sectional geometry doesn’t really matter.

(ii) In-plane complexity. The domain patterns seen experimentally are typically quite
complex, particularly for intermediate applied fields (well away from ba = 0 or 1).
It is natural to ask whether such complexity is energetically favored. The answer
is no, at least at the level of the scaling law. Indeed, our lower bounds show that
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no pattern, regardless of its complexity, can achieve a better scaling law than the
simplest ordered constructions.

(iii) Varying length scale. Landau was the first to suggest that for ε/L � 1 the length
scale of the microstructure should vary with depth. Our lower bound confirms this,
by showing that if the microstructure is independent of depth then it cannot achieve
the optimal ε2/3L1/3 scaling law.

These insights are consistent with the present understanding of the intermediate state.
Our focus on energy minimization has the strength of permitting rigorous analysis.

It has, however, corresponding weaknesses. We do not identify the actual geometry of
any metastable state. And we do not address the processes by which domain patterns
nucleate or change.

The paper is organized as follows: Section 2 provides physical and mathematical
background. Section 3 gives a mathematically precise formulation of the underlying
variational problem, and a more complete summary of our main results. Section 4 dis-
cusses the upper bounds associated with several constructions. Section 5 shows that our
constructions are more or less optimal, given their topology. The analysis of Sections 4
and 5 shows that, except in the regime of Section 4.5, the energy of a domain pattern
is mainly determined by its local length scale. Section 6 highlights this conclusion—
and clarifies the constructions of Section 4—by discussing one-dimensional variational
problems for optimizing the local length scale. Section 7 presents our ansatz-free lower
bounds. Finally Section 8 concludes with a brief discussion.

The ansatz-free lower bounds in Section 7 scale optimally for intermediate values of
ba . However, they do not get the optimal prefactor in ba near 0 or 1. Improved bounds,
with optimal scalings in ba or 1− ba (for ba near 0 and 1 respectively) will be presented
in a forthcoming paper with S. Conti [12].

2. Background

This section reviews our present understanding of the intermediate state. This discussion
is, we think, useful for appreciating the significance of our results. However it is not
strictly speaking necessary for understanding the mathematics; the impatient reader can
skip directly to Section 3.

2.1. The Intermediate State as a Nonconvex Variational Problem

Superconductivity can be modeled in a number of different ways. We take a variational,
sharp-interface viewpoint, following a long tradition begun by Landau [33]; for more
general treatments see e.g. Huebener [23] or Tinkham [43]. The basic variable is the
magnetic field B, which is divergence-free. The superconducting material occupies a
region � ⊂ R3. The material is characterized by a critical field bc, above which it loses
its superconducting properties. In most of this paper we choose units so that bc = 1. For
the following discussion, however, we avoid this convention for the sake of clarity.

We wish to model the effect of an applied field ba = (ba, 0, 0), assumed constant, by
solving an appropriate variational problem. In any subset of � that remains supercon-
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|B|

φ
0

bc
ba

Fig. 1. The free energy φ and its
convexification (bold).

ducting we have B = 0, as a consequence of the Meissner effect. For reasons that will
become clear below, the free energy density of this superconducting state takes the value

φ0 = b2
a − b2

c < 0 (2.1)

when the magnitude of the applied field is ba . We expect some regions of � to become
nonsuperconducting (normal). In such regions we have B 
= 0, and the free energy
density is φ(B) = |B− ba|2. Outside � the free energy is likewise |B− ba|2. Ignoring
for the moment the interfacial energy of the superconductor-normal interfaces, we arrive
at the variational problem

min
div B=0

∫
�

φ(B) +
∫
�c

|B− ba|2, (2.2)

with

φ(B) =
{

φ0 if B = 0,
|B− ba|2 if B 
= 0.

The free energy φ is nonconvex (see Figure 1). Therefore it can prefer mixtures
over pure states; more precisely, energy minimization sometimes requires a microscopic
mixture of superconducting and normal domains. This is the intermediate state. Its
effective (locally averaged) energy is described by the convexification of φ, evaluated at
the locally averaged magnetic field (commonly called the magnetic induction). This was
known already to Landau in 1937, and is discussed in the monographs cited above. From
the mathematical viewpoint, (2.2) can be viewed as a nonconvex variational problem in
need of relaxation; see e.g. [14], [32].

The convexification of φ is easy to calculate. For the rest of Section 2.1, we denote by
B the locally averaged field. Since |B−ba|2 is convex, we need only consider oscillations
of B taking two values: B/λ on volume fraction λ, and 0 on volume fraction 1− λ:

φcon(B) = min
0≤λ≤1

λ
∣∣∣∣∣Bλ − ba

∣∣∣∣∣
2

+ (1− λ)φ0

 . (2.3)
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A brief calculation shows that the optimal choice of λ occurs when

|B|
λ
= (b2

a − φ0)
1/2 = bc .

Thus, in the mixture, the magnitude of the magnetic field oscillates between 0 and the
critical value bc; our choice of φ0 in (2.1) was specifically designed to reach this result.
Completing the convexification calculation: For a given (locally averaged) field B, the
volume fraction of normal material is λ = |B|/bc if this is less than one and λ = 1
otherwise, and the value of the relaxed energy (2.3) is easily seen to be

φcon(B) = φ0 − 2〈B,ba〉 +
{

2bc|B| if |B| ≤ bc,

|B|2 + b2
c if |B| ≥ bc .

(2.4)

The thermodynamic theory of the intermediate state determines the locally averaged
magnetic field B by solving the relaxed variational problem:

min
div B=0

∫
�

φcon(B) +
∫
�c

|B− ba|2.

For most domains� the solution is nonconstant and must be sought numerically. However
the situation simplifies considerably when � is a plate, because the optimal B is then
constant throughout � and equal to ba outside �. The simplest case—the focus of this
paper—is that of a plate oriented transverse to the applied field: Then the optimal B is
identically equal to ba. Indeed, the relaxed variational problem is convex, and this choice
of B is obviously admissible, with first variation equal to 0. (We have skipped over a
technical point: If the plate has infinite extent, then the energy is formally infinite. We
shall resolve this difficulty by imposing periodic boundary conditions in the longitudinal
directions.)

Thus, for a flat plate in a transverse applied field, the thermodynamic (relaxed) theory
predicts an intermediate state when the applied field satisfies 0 < ba < bc. The volume
fraction of normal material is ba /bc, and that of the superconducting material 1− ba /bc.

2.2. The Intermediate State as a Pattern-Formation Problem

The thermodynamic theory just presented gives, as its main prediction, the local vol-
ume fraction of normal material. This prediction compares well with experiments—for
example, with measurements of the overall magnetization.

However experiments show more than just volume fractions: They also reveal the
spatial structure of the normal and superconducting regions. The review article by Liv-
ingston and DeSorbo [37] gives a good summary of the phenomenology, with many
photographs. The structures seen are quite complex, with considerable hysteresis—
details are rarely reproducible, and even the qualitative, topological characteristics can
be history-dependent. Obviously the system has many metastable states and a very com-
plicated bifurcation diagram.

This sort of situation is common in condensed matter physics. Energy minimization
can still be a useful tool, though the system clearly does not achieve a globally energy-
minimizing state. A common approach is to minimize energy numerically, or analytically



126 R. Choksi, R. V. Kohn, and F. Otto

(a)

(b)

Fig. 2. Schematic examples of (a) a plate with a layered, unbranched domain
structure, and (b) a plate with a layered, branched domain structure. The black
regions superconduct, while the white regions are normal.

within a suitable ansatz. Then the “local minimum” is determined by the initial guess or
the choice of ansatz.

The viewpoint of the present paper is different and more global. We aim to evaluate, at
least approximately, the minimum value of the energy, and to identify common features
of all near-minimum-energy states. If, as seems plausible, the accessible metastable states
have relatively low energies, then the features we identify will apply to them as well as
to the global energy-minimizing state.

What energy to minimize? Certainly not (2.2). That functional, being nonconvex,
does not achieve its minimum. As Landau already understood, it must be augmented by
including the surface energy of the normal-superconductor interfaces:

min
div B=0

∫
�

φ(B) +
∫
�c

|B− ba|2 + εb2
c [Interfacial Area] , (2.5)

where “interfacial area” refers to the total area of all normal-superconductor interfaces
within�, and ε > 0 is the surface tension (with dimensions of length). This formulation
is too informal for mathematical analysis—we shall be more precise below—but it is
sufficient for the present heuristic discussion. We emphasize that the inclusion of surface
energy does much more than simply restore existence of a minimum. Physically, the
surface energy—though small in magnitude—is dominant at small length scales where
the details of pattern formation occur. Mathematically it is a singular perturbation, which
regularizes the functional and selects the correct microstructures.

What should we hope to learn from energy minimization? In view of the complexity
and hysteresis observed in experiments, it is not reasonable to seek the exact form of the
energy-minimizing domain pattern. Rather, the appropriate goals are to understand
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(a) The microstructural length scale: How does it depend on ε? Is it more or less uniform,
or does it coarsen away from the faces of the plate?

(b) The cross-sectional topology: For example, is a layered geometry significantly better
or worse than one with threads of normal material in a matrix of superconductor, or
tunnels of superconductor in a matrix of normal?

(c) The cross-sectional complexity: Is there an energetic incentive for complexity? In
other words, do the relatively disordered, labyrinthine structures observed experi-
mentally achieve significantly lower energies than more ordered structures such as
laminar geometries?

The literature includes many attempts to answer these questions by minimizing (2.5)
within a suitable ansatz. We restrict our attention to work concerning a plate in a trans-
verse applied field. Landau’s initial 1937 treatment [33] considered a 2D (layered) pattern
of normal and superconducting domains, flared a bit at the faces of the plate but other-
wise uniform (the flaring is energetically unimportant, see [15], so this construction is
basically the one shown in Figure 2a). In 1943, Landau realized that a branched-layered
microstructure does better if the surface energy is small enough [34] (see Figure 2b).
Landau also noted that the branched construction does not require a layered geometry;
something similar can be done using normal threads in a matrix of superconductor, and
this construction is preferred when the volume fraction of normal material is small. An-
drews pursued this theme in 1948 [1], giving a careful treatment of the branched-thread
construction (roughly equivalent to our Section 4.3). Experiments by Balashova and
Sharvin in 1957 revealed that domain patterns often have two distinct length scales: a
longer one associated with labyrinthine structure, and a shorter one associated with cor-
rugations superimposed on that structure [2]. In 1958, Faber explained that corrugation
provides an alternative means of changing the local length scale—different from but
energetically equivalent to branching—and showed that when ε is sufficiently small a
layered configuration is unstable to corrugation [18]. This work strongly suggests certain
answers to our first two questions:

(a′) When ε is small enough compared to the thickness of the plate, the microstructural
length scale should vary with depth. In other words, it should be larger in the middle
of the plate than at the faces.

(b′) At intermediate volume fractions there is little energetic difference between different
constructions with similar length scales. At the extreme volume fractions, however,
thin threads or tunnels of one phase in a matrix of the other are preferred over
laminar patterns.

Our results provide fresh support for these conclusions. With regard to (a′) they are quite
conclusive: We show that the length scale must vary with depth, because if it doesn’t
(more precisely, if the entire domain pattern is independent of depth), then the minimum
energy scales as E1 ∼ ε1/2L1/2 � ε2/3L1/3.

With regard to (b′), our results are most novel in the small-ba regime. It was al-
ready recognized by Landau and Andrews that a uniform distribution of branched flux
tubes do better than a laminar geometry; this is basically an isoperimetric effect—
circular cross-sections have less surface energy. But we show, for the first time, that
if ba � (ε/L)2/7, then it is not optimal for the flux tubes to be uniformly distributed;
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Fig. 3. Rough sketch of a plate with a com-
plex but unbranched domain structure.

one gets a better scaling law by arranging them in clusters. This is basically a fringe-
field effect: clustering reduces the exterior magnetic energy. We deduce that for very
small applied fields the cross-sectional geometry should have two distinct length scales:
the distance between tubes within a cluster, and the distance between clusters
themselves.

Question (c) is different: There is no ansatz for “cross-sectional complexity,” so
methods like those of Landau and Andrew are not relevant. There are of course different
types of complexity. Small-scale corrugations near the faces represent one type; they
change the local length scale, as noted by Faber, consistent with point (a′). Large-scale
labyrinthine structures represent another type of complexity. The numerical work of
Dorsey, Goldstein, and Jackson [15], [19] suggests the answer here:

(c′) The labyrinthine cross-sectional complexity arises not from a significant energetic
mandate, but rather from degeneracy and hysteresis.

The model used in [15], [19] assumes that the domain structure is uniform throughout
the plate. In view of (a′), this is appropriate only when ε is large enough relative to the
thickness of the plate, not the regime of focus here. But we agree with the conclusion
(c′). Our geometry-independent results provide fresh, very different support for this
conclusion, by showing that no pattern—no matter how complex or labyrinthine—can
achieve a better scaling law than highly ordered constructions like those considered by
Landau and Andrews.

Figures 2 and 3 serve to illustrate points (a′) and (c′). They give schematic examples of
domain patterns that are (i) layered and unbranched, (ii) layered and branched, (iii) com-
plex and unbranched. Our ansatz-independent lower bounds show there is a substantial
energetic incentive for branching, but little incentive for unbranched complexity. Indeed,
when ε is small enough, the scaling law associated with a branched domain structure
(Figure 2b) is better than the one associated with an unbranched structure (Figure 3)
(Landau already knew this). Experimentally one often sees patterns combining features
of Figure 2b and Figure 3: labyrinthine cross-sectional complexity, with superimposed
corrugations to reduce the length scale near the faces of the plate (see e.g. [2], [18]). It
is natural to ask whether such patterns may form because they achieve a better scaling
law. The answer is no: They cannot do better than the optimal ε2/3L1/3 law, which is also
achieved by the highly ordered, branched structure in Figure 2b. This is the impact of
our ansatz-independent lower bound.
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Point (c′) makes reference to degeneracy and hysteresis. The problem is degenerate
in the sense that there are many different domain structures with approximately the same
energy. Indeed, we show in Sections 5 and 6 that the main requirement for achieving the
optimal scaling law is getting the local length scale right. As a result of this degeneracy,
nucleation and hysteresis are very important. For example, under a small applied field,
energy minimization prefers a structure of thin normal threads in a matrix of superconduc-
tor (see (b′)). As the applied field increases, the normal-thread/superconducting-matrix
topology is maintained, not because energy minimization favors it at larger volume
fractions, but rather because the energy is more or less indifferent.

We digress to highlight an open problem. Dzyaloshinksii [16] and Sharvin [42] ob-
served in the late 1950s that the situation is very different when the applied field is
oblique rather than transverse to the plate. The nonzero tangential component breaks
the degeneracy and eliminates the complexity, quite reliably inducing a layered domain
pattern. We suppose the layered state must be strongly preferred energetically in the
presence of an oblique applied field. However we do not know a theoretical explanation
why this is so.

Now an awkward but important point. We have emphasized that energy minimiza-
tion requires the local length scale to vary with depth if the surface tension ε and the
plate thickness L satisfy ε/L � 1. Yet in many experiments the local length scale
seems roughly uniform. This puzzle was explained by Lifshitz and Sharvin in 1951 [36].
Briefly: the energy achievable using a variable length scale is about Cvε

2/3L1/3, while
that achievable using a uniform length scale is about Cuε

1/2L1/2. The constants Cu and
Cv depend somewhat on the choice of ansatz, but for reasonable choices they are of the
same order of magnitude, with Cv > Cu . For typical materials and experiments ε is
of order 10−4cm, while L is about 1cm, so the variable length-scale energy is better if
Cv/Cu < (ε/L)−1/6 ≈ 4.6. This is plausibly true—but perilously close to the margin.
Examination of the constructions shows that for such a ratio of ε/L , the number of gen-
erations of refinement would be at most one or two. Perhaps corrugation is seen more
often than branching because small corrugations achieve something like a fractional
generation of refinement.

2.3. Remarks on the Sharp-Interface Model

Our sharp-interface variational model is precisely the one considered by Landau [33],
[34] and Andrews [1], among others. It can be derived, at least formally, from the more
fundamental Ginzburg-Landau model. The correspondence is discussed in almost every
exposition of the Ginzburg-Landau theory. Systematic treatments based on asymptotic
analysis can be found in [6], [7], [8], [15], and a rigorous convergence result in a 1D
(radial) setting is given in [5].

The main point is this: The Ginzburg-Landau theory predicts a correlation length ξ
and a penetration depth λ. The correlation length gives the minimum scale on which
the superconducting order parameter can vary; the penetration depth gives the distance
the magnetic field penetrates into a superconducting region. The surface tension ε of a
normal-superconducting interface has the form ξ f (κ), where κ =: λ/ξ is the Ginzburg-
Landau parameter and f (κ) > 0 for κ < 1/

√
2. The distinguishing characteristic of a

type-I superconductor is that the associated value of κ is less than 1/
√

2.
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In practice, a sharp-interface model is appropriate if the correlation length is small
compared to the length scale of the domain structure. For typical type-I superconductors
the penetration depth is λ ∼ 10−6cm and the correlation length is ξ ∼ 10−4cm, while
for a 1cm-thick plate in a transverse field, the length scale of the domain structure is
about 10−2cm. So the sharp-interface framework should be adequate.

2.4. The Link to Micromagnetics

Many authors have noted the existence of an analogy between the domain structures in a
uniaxial ferromagnet and those seen in the intermediate state of a type-I superconductor.
Briefly: The two problems have similar preferences, but the type-I superconductor is more
constrained. To explain in greater detail, we focus on the case of a uniaxial ferromagnetic
plate, with the easy axis and the applied magnetic field both oriented in the transverse (x1)
direction. Then the magnetization m prefers two special values, (±1, 0, 0), and it prefers
to be divergence-free; deviations are penalized by the anisotropy and magnetostatic terms
of the micromagnetic variational principle. For a plate-shaped type-I superconductor in
a transverse magnetic field, by contrast, the magnetic field B prefers to take the value
(bc, 0, 0) in the normal phase, but it is constrained to be 0 in the superconducting phase,
and it is constrained to be divergence-free.

How can this analogy be used? One alternative is to argue that there is no phys-
ically significant difference between the constrained and penalized versions; this is,
roughly speaking, the starting point of [15], [19]. But there is also a second, more vari-
ational alternative: Every test field for the constrained problem determines a related test
field for the unconstrained one. The value of this viewpoint is demonstrated in Sec-
tion 7, where we apply it to deduce our ansatz-free lower bounds from the results of
[11].

3. The Variational Problem (P)

Section 3.1 gives a precise formulation of the singularly perturbed variational problem
(2.5). Then Section 3.2 gives a variational characterization (P) for the correction due to
positive surface energy—the term E1 of (1.1). Problem (P) is the mathematical focus of
the rest of this article. Section 3.3 explains our use of (standard but perhaps not universal)
symbols like �, �, and ∼=. Finally, Section 3.4 summarizes our main mathematical
results.

3.1. A Precise Formulation with Surface Energy

Nondimensionalizing the magnetic fields, we henceforth take the critical field to be
bc = 1. The applied field is then ba = (ba, 0, 0) with 0 < ba < 1. The region occupied
by the superconductor is a plate of thickness L , orthogonal to this field.

To avoid edge effects, and to facilitate spatial averaging, we restrict our attention
to patterns that are spatially periodic in the plane of the plate. The choice of period is
unimportant, provided it is large compared to the length scale of the microstructure. To
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simplify notation, we set it to 1, i.e. we take Q = [0, 1]2 as the two-dimensional period
cell. A representative volume of the plate is thus

� = (0, L)× Q,

and a representative volume of its complement is correspondingly

�c = [(−∞, 0] ∪ [L ,∞)]× Q.

Our variational problem has two unknowns: the magnetic field and the domain pattern.
We represent the latter by a function χ defined on the plate and periodic in y and z, such
that

χ =
{

1 in the superconducting regions,
0 in the normal regions.

Notice that the interfacial area is simply the total variation of χ :

interfacial area =
∫
�

|∇χ |.

The constraint that B vanish in the superconducting regions is easy to express: It says
Bχ = 0 on �. Our precise formulation of (2.5) is thus

min E(B, χ),
div B = 0,

Bχ = 0 in�,
(3.1)

with

E(B, χ) =
∫
�

(|B− ba|2 − χ
)

dx dy dz+ε
∫
�

|∇χ |+
∫
�c

|B−ba|2 dx dy dz. (3.2)

Here B ranges over all L2
loc vector fields, periodic in y and z, which satisfy div B = 0 in

the sense of distributions; χ ranges over all characteristic functions, periodic in y and z,
with finite total variation; and Bχ = 0 in � means B = 0 almost everywhere on the set
where χ = 1.

We expect the inclusion of surface energy to assure the existence of a minimizer. Our
problem (3.1) has this property for any ε > 0. The proof is a standard application of the
direct method of the calculus of variations. The only novelty is the constraint Bχ = 0;
we must check that it holds for the weak limits B∗ and χ∗ of a minimizing sequence
Bj , χj . This is easy: Such a sequence has

∫
�
|∇χj | uniformly bounded, so the χj → χ∗

strongly in L1. Therefore the product Bjχj converges weakly to the product of the limits
B∗χ∗. Since Bjχj = 0 for all j , we conclude that B∗χ∗ = 0 as well.

We remark that (3.1) is not the only reasonable interpretation of (2.5). A different
alternative would have been to define the superconducting region as the set where B = 0.
This amounts to slaving slave χ to B by

χ =
{

1 where B = 0,
0 where B 
= 0.

(3.3)
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We dislike this alternative because the resulting energy is not lower semicontinuous—
the perimeter of the set where B = 0 can change drastically under weak convergence.
Therefore the existence of a minimizer cannot be proved by the direct method of the
calculus of variations. Our interpretation is less than or equal to the slaved one, since the
choice (3.3) is admissible for (3.1). Therefore the geometry-independent lower bounds
we prove for (3.1) hold a fortiori for the slaved interpretation as well.

3.2. A Variational Problem (P) for the Principal-Order Correction

We know, from general considerations, that the leading-order term E0 in our (conjectured)
expansion of the energy is the minimum of the convexified problem. For a plate in a
transverse field it is achieved at B = ba, so we deduce from (2.4) that

E0 =
∫
�

φcon(ba) = −(ba − 1)2L . (3.4)

But our real interest is in the principal-order correction E1 associated with positive
surface energy. We claim that this correction is itself given by a variational problem,
namely

(P)
min

div B = 0
Bχ = 0 in�

∫
�

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz

+ε
∫
�

|∇χ | +
∫
�c

|B− ba|2 dx dy dz.

In the course of proving this, we shall also give a self-contained proof of (3.4). The
argument makes use of the following simple lemma:

Lemma 3.1. For any divergence-free B, periodic in y and z, if
∫
�c |B−ba|2 dx dy dz <

∞, then for every x ∈ (0, L) we have∫
Q

B1(x, y, z) dy dz = ba . (3.5)

Proof. The divergence-free property together with the periodicity hypothesis give

∂

∂x

∫
Q

B1 dy dz = −
∫

Q

(
∂B2

∂y
+ ∂B3

∂z

)
dy dz = 0.

So the left-hand side of (3.5) is independent of x for all x ∈ R. Its value must be ba since
otherwise

∫
�c |B− ba|2 dx dy dz would be infinite.

We turn now to the justification of (P). By Lemma 3.1 we have∫
�

[
b2

a − 1+ 2(1− ba)B1
]

dx dy dz = −(ba − 1)2L .
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Therefore our energy (3.2) can be expressed as

E(B, χ) = −(ba − 1)2L +
∫
�

|B− ba|2 − χ − [b2
a − 1+ 2(1− ba)B1] dx dy dz

+ ε
∫
�

|∇χ | +
∫
�c

|B− ba|2 dx dy dz.

Since Bχ = 0 on �, the integrand of the second line is

|B− ba|2 − χ − [b2
a − 1+ 2(1− ba)B1] = B2

2 + B2
3 + (1− χ)(B1 − 1)2.

Thus for any admissible χ and B, we have

E(B, χ) = −(ba − 1)2L +
∫
�

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz

+ ε
∫
�

|∇χ | +
∫
�c

|B− ba|2 dx dy dz.

To complete the argument we must show that the minimum value of (P) tends to 0 as
ε → 0. The following lemma proves this, and even gives a rate. The proof is by now
standard, but we give it anyway for the reader’s convenience.

Lemma 3.2. As ε → 0, the minimum value of (P) is at most Cε1/2L1/2, where C > 0
depends on ba but not on ε or L.

Proof. Consider an arrangement of superconducting and normal layers oriented per-
pendicular to the z axis, with volume fraction 1− ba of superconductor. To express this
mathematically, define a function ζ(z) for 0 ≤ z ≤ 1 by

ζ =
{

1 if 0 ≤ z ≤ 1−ba
2 or 1+ba

2 ≤ z ≤ 1,
0 if 1−ba

2 < z < 1+ba
2 ,

then extend ζ to all z ∈ R by periodicity. The layered microstructure we wish to consider
is associated with χ = χm(x, y, z) = ζ(x, y,mz) where m is a large integer. As a test
function for the magnetic field, we define Bm separately inside and outside of�. Inside,
we set Bm = (θm, 0, 0) where

θm(x, y, z) =
{

0 if χm(x, y, z) = 1,
1 if χm(x, y, z) = 0.

Outside, we set Bm = ∇u + ba, where u is the (y, z)-periodic solution on �c of the
boundary value problem

�u = 0, ux (L , y, z) = θm(L , y, z)− ba, ux (0, y, z) = θm(0, y, z)− ba .

Notice that div Bm = 0 since the normal component of Bm is continuous at x = ±L .
The associated principal-order correction to the energy is

E1(χm,Bm) = ε

∫
�

|∇χm | +
∫
�c

|∇u|2

� εmL + ‖θm(L , ·, ·)− ba‖2

H−
1
2 (Q)

� εmL + C(ba)
1

m
(3.6)
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(see the appendix for a discussion of the space H−
1
2 and its norm). The result follows

easily, by optimizing the microstructural length scale 1/m.

Remark. We are, in general, interested in the dependence of our prefactors on ba . The
proof of Lemma 3.2 actually shows that

min(P) ≤ C ba | log ba|1/2 (1− ba) | log(1− ba)|1/2 ε1/2 L1/2,

with C independent of ba . It suffices to use the full force of Proposition A.2 from the
appendix, which specifies the dependence of ‖θm(L , y, z)− ba‖2

H−
1
2 (Q)

on ba .

3.3. Some Notation

We fix a notation for inequalities up to some fundamental unspecified constant. For
functions f and g of certain parameters, let us agree that:

(1) f � g (respectively f � g) means there exists some fundamental constant C
(independent of all parameters) such that f ≤ Cg (respectively, f ≥ Cg).

(2) f ∼ g means f � g and f � g; in other words, there exist fundamental constants
c and C such that cg ≤ f ≤ Cg.

(3) f ∼= g means there exists a fundamental constant C such that f = Cg.

If a prefactor depends on ba , then we shall make this dependence explicit, as in (3.6)
above. We sometimes write C , c, etc., for a generic fundamental constant that may vary
from line to line.

3.4. Summary of Our Main Results

We have shown that problem (P) captures precisely the energetic correction due to
positive surface tension. This variational problem will be the focus of our attention
henceforth. We aim (i) to identify the optimal scaling law for its minimum value, and
(ii) to understand what features a domain structure must possess to achieve this scaling
law.

Upper bounds for the scaling law are obtained by considering specific constructions.
The proof of Lemma 3.2 gives one such bound, namely minP ≤ C(ba)ε

1/2L1/2. But
as Landau observed in 1943, a branched construction does better if ε/L � 1; and
as Andrews observed in 1948, a branched-flux-tube microstructure does better than
layers if ba is close to 0. We review these constructions in Sections 4.1 to 4.3. We
also show the existence of another, previously unrecognized alternative in Section 4.5.
Its flux tubes branch but remain clustered—roughly speaking, it interpolates between
Andrews’s branched construction (where the flux tubes are uniformly distributed) and
an unbranched structure (the ultimate extreme of clustering). Our new construction does
better than the others for the smallest values of ba . Taken together, these arguments show
that for ba near 0,

minP � baε
4/7L3/7, for ba � (ε/L)2/7, (3.7)

minP � b2/3
a ε2/3L1/3, for (ε/L)2/7 � ba . (3.8)
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For intermediate values of ba , Landau’s branched layered construction (Sections 4.1–
4.2) and Andrews’s branched flux tube construction (Section 4.3) give the same scaling
law:

minP � ε2/3L1/3, for ba bounded away from 0 and 1. (3.9)

The situation near ba = 1 is not symmetric to that near ba = 0, because the supercon-
ducting and normal phases are physically quite different. The analogue of Andrews’s
construction for near-critical ba uses branched superconducting tunnels. It too seems to
be new; we describe it in Section 4.4. This construction shows that for ba near 1,

minP � (1− ba) | log(1− ba)|1/3ε2/3L1/3 if ε/L � | log(1− ba)|−2. (3.10)

If ba is large enough, there will be no superconducting region. That corresponds toχ = 0,
B = (ba, 0, 0), achieving

minP � (1− ba)
2L .

This scaling law does better than (3.10) when (ε/L)2/3 � (1− ba)| log(1− ba)|−1/3.
Most of these bounds are optimal, or nearly so, as we shall explain presently. To

prove such a statement, one requires ansatz-independent lower bounds. For surface
energy this is a familiar topic—the standard isoperimetric inequality amounts to an
ansatz-independent lower bound on surface energy at given volume. We are, however,
not aware of prior work on ansatz-independent lower bounds for magnetic energy.

The constructions in Section 4 provide a convenient starting point for addressing this
issue. Each has a branched, periodic structure, and it is natural to ask whether the unit
cell has been chosen more or less optimally. There are two distinct issues: Have we made
a good choice of the interior geometry (expressed by χ )? And have we done a good job
of estimating the magnetic energy (associated with B)? Section 5 addresses these issues.
Its main result, Proposition 5.1, is a lower bound on the magnetic energy between a pair
of given cross-sections.

Proposition 5.1 shows, as an immediate consequence, that the “branched” construc-
tions of Sections 4.1 to 4.4 are more or less optimal. In particular, it provides matching
lower bounds for (3.8) and (3.9), and a nearly matching lower bound for (3.10), for
all microstructures of the type considered in Section 4. These are not exactly ansatz-
independent bounds, since they assume a branched structure. Still, they show that the
detailed structure of the flux tubes hardly matters; rather, what matters is the geometry
and topology of a typical cross-section.

The main requirement for achieving the ε2/3L1/3 scaling law seems to be that the
local length scale have the proper dependence on x . Section 6 emphasizes this feature
of the problem by introducing a family of “toy problems” for the local length scale h(x).
These scalar variational problems permit us to concentrate on the essential physics—the
topological type of the microstructure, and the choice of the local length scale. Since they
are easy to analyze, the toy problems make it easy to understand the basic structure of the
problem. In particular, the scaling law associated with each construction is immediately
evident from the associated toy problem, by nondimensionalization. Our toy problems
seem to be new as a technique for understanding the intermediate state; however, a
similar idea was used long ago by Hubert to analyze the domain structure of a uniaxial
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ferromagnet [21]. There is no toy problem for the construction of Section 4.5—involving
clustered, branched flux tubes, and associated with (3.7)—because that microstructure
has two length scales rather than one.

The analysis in Sections 5 and 6 tells us what can and cannot be achieved using
a branched periodic construction. It does not however address the impact of cross-
sectional complexity. Might such complexity serve to reduce the energy, as a substitute
for branching? The answer is no. We show this in Section 7.2, by proving that for
intermediate values of ba , if the microstructure is independent of x , then it cannot do
better than ε1/2L1/2, regardless of its cross-sectional geometry and complexity:

value of (P) � ε1/2L1/2

for x-independent structure, and ba bounded away from 0 and 1.

This bound is truly ansatz-independent, in the sense that it assumes nothing except x-
independence. The ε1/2L1/2 scaling law is achieved by a layered microstructure. Thus at
the level of the scaling law there is no energetic incentive for cross-sectional complexity.

What about complexity combined with branching? For example, Faber observed that
the local length scale can be changed using corrugation rather than branching. Can
such a construction (or another as-yet unimagined pattern) beat the highly regular ones
considered in Section 4? The answer is no, at least at the level of the scaling law, for
intermediate values of ba . Indeed, we show in Section 7.2 that for any domain pattern,
of any complexity and with any dependence on x ,

value of (P) � min{ba, (1− ba)}ε2/3L2/3

provided (ε/L)2/3 � ba and (ε/L)2/3 � (1− ba). (3.11)

This bound shows that the branched periodic constructions come within a constant of
optimality so long as ba stays away from 0 and 1.

What must a domain pattern look like to achieve the ε2/3L1/3 scaling law? It is natural
to conjecture that its local length scale, suitably defined, must resemble the solution of
our “toy problem.” What we can prove is a weaker statement: Its total surface energy,
integrated in x , is similar to that of the branched periodic construction. This is discussed
in Section 7.3.

The preceding discussion has focused on intermediate values of ba—i.e. values far
from 0 or 1. The situation is more complex for ba near 0 and near 1—reflected by
our constructions achieving specific scalings involving ba , cf. (3.7), (3.8), and (3.10).
Ansatz-independent bounds matching these scalings will be presented in [12].

4. Guessing the Local Length Scale: New and Old Constructions

The proof of Lemma 3.2 showed that an unbranched, laminar domain structure achieves
the scaling law ε1/2L1/2. This section presents several constructions of branched domain
patterns that achieve the better scaling law ε2/3L1/3. One, discussed in Sections 4.1 and
4.2, is essentially due to Landau; it is two-dimensional (laminar). Another, discussed
in Section 4.3, is essentially due to Andrews; it is three-dimensional, with thin tubes
of the normal material in a matrix of superconductor. A third, discussed in Section
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(a)

b awm / 2bawm

l m

(b)

Fig. 4. (a) The 2D (laminar) construction with N =
2. The black regions are superconducting, and the
applied field is ba < 1/2. (b) The unit cell with
length lm and height wm .

4.4, is the large-applied-field analogue of Andrews’s construction, with thin tubes of
superconducting material in a matrix of normal. For intermediate values of ba , all these
constructions achieve roughly the same energy. For ba near 0 or 1, however, the 3D
constructions do better. This is seen not in the ε2/3L1/3 scaling law, which remains the
same, but rather in the dependence of the prefactor on ba .

We also present a two-scale construction in Section 4.5. It does better than Andrews’s
construction when the applied field is sufficiently small. The geometry consists of flux
tubes that branch but remain clustered.

The realizability of each construction requires some modest restrictions on the surface
tension ε, the plate width L , and the applied field ba—see (4.3), (4.4), (4.5), (4.8), and
(4.19). In each case the condition has two parts. One requires that ε1/3L2/3 (which has the
dimensions of length) be small enough compared to the periodicity of our unit cell Q.
The other requires that the nondimensional ratio ε/L be small enough. In most cases the
smallness requirement on ε/L is precisely the same as the condition that the construction
do better than its unbranched analogue (this is easiest to see from the table in Section 6).

The constructions in Sections 4.1 to 4.4 all follow the same basic pattern. We sketch
it now, concentrating for simplicity on the 2D version shown in Figure 4. In the center of
the plate we have a periodic pattern with length scale w consisting of a minority phase
within the majority phase. As one approaches either face of the plate (the figure shows
only the right half x ≥ L/2), the minority domains (whether normal or superconducting)
split in two. The process continues N times; thus at the face of the plate the domain
structure is similar to that in the center, but its length scale is much finer, w/2N rather
than w. The details of the splitting are dictated by the choice of a basic cell structure,
like that shown in Figure 4b. The cell structure is used at many different scales, so it
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must be defined for all values of the cell height w and cell length l—subject only to the
admissibility condition that the slope of the superconductor-normal interface be at most
of order 1. (For Figure 4, this requires w � l.)

To specify the construction, we must choose the height w and length l of the coarsest
cells and the number of generations N of refinement. We use the following branching
algorithm, which abstracts Landau’s analysis of the intermediate state and also related
work by Privorotskii [39] on the domain structure of a uniaxial ferromagnet (see also
[10]):

Step 1: Specify the geometry of the basic unit cell, for any admissible w and l, and
estimate its energy as a function of w and l. Then optimize with respect to l while
holding w fixed. This gives a formula for l = lopt (w), the optimal l as a function of
w.

Step 2: Setting wm = w/2m and lm = lopt (wm), imagine for a moment using infinitely
many generations of refinement. The energy can be evaluated by summing a geometric
series. So can the total length

∑∞
m=1 lm . We choose w so this total length is of order

L: This gives a formula w = w(ε, L , ba) and lets us calculate the interior energy in
terms of ε, L , and ba .

Step 3: The infinitely branched construction anticipated in Step 2 is not permissible:
it eventually violates the admissibility condition on the slope of the superconductor-
normal interface. Therefore the branching process must be truncated after N stages.
We choose N = N (ε, L , ba) so that the exterior magnetic energy—estimated using
the H−1/2 norm as in the proof of Lemma 3.2—is comparable with the energy in the
interior of the sample.

Step 4: One must check that this works. There are two conditions: First, Step 3 must
give N � 1; and second, the resulting wN and lN must be admissible. This leads to
the two-part realizability condition for each construction.

The domain pattern obtained this way is dyadically branched, but it is not strictly speaking
self-similar. Indeed, the aspect ratio of the period cell at the mth stage, wm /lm , is not
independent of m, since lm is chosen to optimize the energy (Step 1) rather than chosen
by geometric similarity.

Our branching algorithm is greedy, in the sense that we choose lm = lopt (wm) for each
wm = w/2m . An apparently different alternative would be to let lm be arbitrary (subject
to
∑

m lm = L), then optimize the energy at the end. The greedy method is easier to
present, since it eliminates lm as a degree of freedom as early as possible. But the other
alternative gives the same result—indeed, the “toy problems” presented in Section 6
amount to an implementation of that idea.

The constructions presented here are very similar to those in our recent paper [10]
on uniaxial ferromagnets. We shall therefore be fairly brief, referring the reader to that
work for more detailed discussion.

A word is in order about Step 2. If the plate has thickness exactly L , why is it sufficient
that

∑∞
m=1 lm be approximately L? The answer is that the construction has a great deal

of freedom. For example, we can change the choice of lm and therefore
∑∞

m=1 lm by a
constant factor without altering the energy scaling law.
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4.1. The Branched, Layered Microstructure—Small Applied Field

The initial steps of this 2D (laminar) construction are the same for large and small ba .
So for the moment we avoid placing any restriction on ba .

The structure follows Figure 4, with the convention that the black regions are super-
conducting and the white regions normal. The basic unit cell is given in Figure 4b with
wm = w/2m and lm chosen appropriately. In drawing Figure 4, we have taken ba < 1/2.

To present the construction mathematically, we shall construct a 2D vector field
B(x, y) and a characteristic function χ(x, y). The associated 3D structure is naturally
given by χ(x, y, z) = χ(x, y) and B(x, y, z) = (B(x, y), 0).

We must specify the test field for B. In the superconducting regions (black in Figure
4) we must set B = 0. In all horizontal normal regions we set B = (1, 0). In the mth cell
(Figure 4b) we choose B to be piecewise constant, with

B =

(

1, (1−ba)w

2l

)
in the white leg pointing northeast,(

1,− (1−ba)w

2l

)
in the white leg pointing southeast.

(4.1)

The resulting B is divergence-free. In estimating its energy, we are only interested in
how the result scales as ε → 0 and ba → 0 or 1; therefore we shall ignore numerical
constants of order 1. The admissibility condition on the slope of the superconductor-
normal interface requires wm � lm when ba is bounded away from 1, but only (1 −
ba)wm � lm for ba near 1 (see Figure 5).

Step 1: For the energy Ecell of the unit cell, we have

Ecell � ε l +
(
(1− ba)

w

l

)2
ba w l = ε l + (1− ba)

2 ba
w3

l
.

Optimization in l gives

lopt (w) ∼= b1/2
a (1− ba)w

3/2

ε1/2
and Ecell � ε1/2 b1/2

a (1− ba)w
3/2.

Step 2: We set wm = w/2m and lm = lopt (wm). Since there are 1/w cells that refine, we
have

Einside � 1

w

∞∑
m=1

2m−1 ε1/2 b1/2
a (1− ba)w

3/2

(
1

2m

)3/2

� ε1/2 b1/2
a (1− ba) w

1/2.

Since {lm} is a geometric series, the condition
∑

lm
∼= L is equivalent to lopt (w) ∼= L .

This gives

w ∼= ε1/3 L2/3

b1/3
a (1− ba)2/3

and Einside � b1/3
a (1− ba)

2/3 ε2/3 L1/3. (4.2)

From here the argument is slightly different for small versus large ba . So we assume
for the rest of this subsection that ba ≤ 1/2, and hence ignore factors involving (1− ba).
As we shall see, the realizability conditions for this regime are

ε1/3 L2/3

b1/3
a

� 1 and ε/L � b4
a | log(ba)|3. (4.3)
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a  
a  

(1 - b  ) mw w /2m(1 - b  )

Fig. 5. The unit cell of the 2D branched construction at the mth stage, for ba ≥ 1/2.
The vertical dimension is wm and the horizontal dimension is lm .

The former says that w � 1 when w is given by (4.2), so that the unit cell fits in our
domain �; the latter is needed in Step 4.

Step 3: We must choose an appropriate truncation. In view of Propositions A.1 and A.2
in the Appendix, the exterior magnetic energy will be less than or comparable to the
interior energy if

Eoutside � b2
a | log ba|wN = b2

a | log(ba)|w
2N

∼= b1/3
a ε2/3 L1/3, i.e. wN

∼= ε2/3 L1/3

b5/3
a | log(ba)| .

Step 4: One readily checks that (4.3) implies

wN

lN

∼= ε1/6 b1/3
a | log(ba)|1/2

L1/6
� 1 2N ∼=

(
b4

a | log(ba)|3 L

ε

)1/3

� 1.

Therefore the construction is realizable.

In summary, this 2D branched construction shows that

min(P) � b1/3
a ε2/3 L1/3,

provided ba ≤ 1/2, if ε and L satisfy (4.3). For ba small, the branched thread construction
of Section 4.3 will do better, achieving a prefactor of b2/3

a rather than b1/3
a .

4.2. The Branched Layered Structure—Large Applied Field

We turn now to the case ba ≥ 1/2 of Landau’s 2D branched construction. As we shall
see, the realizability conditions for this regime are

ε1/3 L2/3

(1− ba)2/3
� 1 and ε/L � (1− ba)

2 | log(1− ba)|3. (4.4)

The basic geometry was described in the previous section. All that change for ba ≥ 1/2
are the details of the truncation and the prefactor of the energy scaling law. The unit cell
has the form shown in Figure 5. Notice that the slope of the superconductor-normal
interface is of order (1− ba)w/l; we require that this be at most of order 1 for the cell to
be admissible.
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From Steps 1 and 2 in Section 4.1 we have

w ∼= ε1/3 L2/3

(1− ba)2/3
and Einside � (1− ba)

2/3 ε2/3 L1/3.

Notice that w � 1 by (4.4).
For Step 3, in view of Propositions A.1 and A.2 of the appendix, we take

wN
∼= ε2/3 L1/3

(1− ba)4/3 | log(1− ba)| .

This choice insures that the exterior energy is no larger than the interior energy.
For Step 4, we note using (4.4) that

(1− ba)wN

lN

∼= (1− ba)
2/3 | log(1− ba)|1/2 (ε/L)1/6 � 1,

2N ∼= (1− ba)
2/3 | log(1− ba)| (L/ε)1/3 � 1.

Thus the 2D branched construction shows that

min(P) � (1− ba)
2/3 ε2/3 L1/3,

for ba ≥ 1/2, provided that ε and L satisfy (4.4). For ba large, the branched tunnel
construction of Section 4.4 will do better, achieving a prefactor of (1−ba) | log(1−ba)|1/3

rather than (1− ba)
2/3.

Remark. Comparison of Figures 4 and 5 reveals an important asymmetry between the
normal and superconducting phases. The normal region consists of threads running the
entire width of the plate, which carry magnetic flux from one side to the other. The
superconducting region, on the other hand, consists mainly of islands that connect to
just one face of the plate. This asymmetry is responsible for the different scaling of the
prefactor in the two cases b1/3

a versus (1 − ba)
2/3. It is also reflected in our terminol-

ogy for the 3D constructions—“normal threads” in a superconducting matrix, versus
“superconducting tunnels” in a normal matrix. Finally, it is reflected in the slope of the
normal-superconductor interface, which is of orderwm /lm for ba near 0, but (1−ba)wm /lm

for ba near 1.

4.3. Thin Threads of Normal Material—Small Applied Field

It was already noticed by Landau that when ba is sufficiently small, isoperimetric effects
favor normal threads rather than layers. The first detailed discussion of such a structure
was given by Andrews [1]. The following construction is similar to Andrews’s.

We assume throughout this discussion that ba ≤ 1/2. We shall see that the realizability
conditions for this construction are

ε1/3 L2/3

b1/6
a

� 1 and ε/L � b2
a . (4.5)



142 R. Choksi, R. V. Kohn, and F. Otto

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���

(a)

a
1/2

b w~

~

a
1/2

( 1 - b  ) w

(b)

Fig. 6. Schematic of the 3D basic cell with dimension w ×w × l: (a) the
boundary domain structure; (b) the four normal threads.

The structure is truly three-dimensional, but it still follows our branching algorithm. The
basic cell consists of four normal regions (flux threads) in a matrix of superconductor
(see Figure 6). Each flux thread branches dyadically as it approaches the faces of the
plate.

Our flux tubes have square rather than round cross-sections, because it is easier to
write down suitable test fields in this case. Of course isoperimetric effects favor round
cross-sections. But the energy scaling law—the main focus of our interest—is insensitive
to the choice of cross section. (This is intuitively clear from the following discussion,
and rigorously valid as a consequence of Section 5.2.)

Step 1: We must specify the structure of the basic cell, which consists of four flux threads
(see Figure 6b). We naturally take B = 0 in the superconducting region outside the flux
threads. We choose B constant in each of the four flux threads, with B1 = 1 and B2, B3

chosen so that B points parallel to the thread wall. Thus the value of B in the threads is
(1,±λ,±λ), with

λ :∼= (1− b1/2
a ) w

l
,

where the constant is determined by the geometry. The resulting field is weakly divergence-
free. The energy Ecell of the basic cell satisfies

Ecell � ε b1/2
a w l + λ2 ba w

2 l � ε b1/2
a w l + ba w

4

l
. (4.6)
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Optimization in l gives

lopt (w) ∼= b1/4
a w3/2

ε1/2
, Ecell � ε1/2w5/2 b3/4

a .

Step 2: We set wm = w/2m and lm = lopt (wm). Since there are 1/w2 cells that refine, we
have

Einside � 1

w2

∞∑
m=1

4m−1ε1/2 b3/4
a w5/2

(
1

2m

)5/2

� ε1/2w1/2 b3/4
a .

The requirement lopt (w) ∼= L gives

w ∼= ε1/3 L2/3

b1/6
a

and Einside � b2/3
a ε2/3 L1/3. (4.7)

Note that w � 1 by (4.5).

Step 3: We again use Propositions A.1 and A.2 of the Appendix. The truncation stage
N should satisfy

Eoutside � b3/2
a wN = b3/2

a w

2N
∼= b2/3

a ε2/3 L1/3, whence wN
∼= ε2/3 L1/3

b5/6
a

.

Step 4: We must show that this truncation is admissible. In fact, (4.5) implies

wN

lN

∼= ε1/6 b1/6
a

L1/6
� 1 and 2N ∼=

(
b2

a L

ε

)1/3

� 1,

so the construction is realizable.
In summary, this 3D branched thread construction shows that

min(P) � b2/3
a ε2/3 L1/3,

for ba ≤ 1/2, provided that ε and L satisfy (4.5).

4.4. Thin Tunnels of Superconducting Material—Large Applied Field

This section presents the large-ba analogue of Andrews’s construction. In this regime we
are considering microstructures with a small volume fraction of superconductor. It is no
surprise that isoperimetric effects favor superconducting tunnels rather than layers. The
details are however quite different from the low-ba setting, due to the asymmetric roles
of the superconducting and normal phases. This construction (and the resulting scaling
law) have not, to our knowledge, been previously discussed.

We assume throughout this section that ba is sufficiently close to 1. The realizability
conditions are

ε1/3 L2/3

(1− ba)1/2 | log(1− ba)|1/3
� 1 and ε/L � | log(1− ba)|−2. (4.8)
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For such ε, L , and ba , the construction shows that

min(P) � (1− ba) | log(1− ba)|1/3 ε2/3 L1/3. (4.9)

In its outline, the construction is closely parallel to that of Section 4.3. At scale w,
the superconducting tunnels have diameter of order (1− ba)

1/2w. It is convenient to set

ᾱ = (1− ba)
1/2,

so ᾱ plays a role similar to that of b1/2
a in Section 4.3.

Our main task is to specify the basic cell and estimate its energy. Its structure is
sketched in Figure 7. The left-hand cross-section has single superconducting circle,
while the right-hand cross-section has four superconducting circles. In its interior, the
cell has five roughly conical superconducting tunnels in a matrix of normal material.
One of these tunnels—the central one—tapers to the right; the others—the peripheral
ones—taper to the left. We shall show that this cell can be realized with energy

Ecell � ε ᾱ w l + ᾱ4 | log ᾱ| w
4

l
. (4.10)

This formula replaces (4.6) of Section 4.3. Steps 2–4 of the branching algorithm are
entirely parallel to those of Section 4.3, except that the admissibility condition (stipulating
that the slope of the superconducting-normal interface not be large) is ᾱwN /lN � 1. Their
details can safely be left to the reader.

The rest of this section is devoted to specifying the basic cell, constructing a suitable
test field B, and estimating its energy. The hard part is the specification of B. We shall
do it in two stages: first giving B in a (constant cross-section, circular) cylinder around
each tunnel; then specifying it in the complement of these cylinders. In determining B
we will focus on a typical cross-section, shown in Figure 8.

We start by specifying more precisely the geometry of the basic cell of sizew×w× l.
Let θ be a sufficiently small constant. Since ba is close to 1, we may assume that ᾱ < θ .
We take the radius of our cylinders to be

r1 = θw.
The central superconducting tunnel is approximately conical, tapering to the right, with
circular cross-sections. At 0 < x < l we take its radius to be

rc(x) := ᾱwφ(x /l), (4.11)

Fig. 7. The unit cell: a central supercon-
ducting tunnel tapering to the right, and
four peripheral superconducting tunnels
tapering to the left.
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B given by (4.15)

Γ^

problem
solution of a Neumann 
B given by 

B = 0

Fig. 8. A typical cross-section of the unit cell. The small circles are the
superconductor-normal phase boundaries. The larger circles delimit our
cylinders. They are not phase boundaries, but we construct B separately
within and outside of the cylinders.

whereφ : [0, 1]→ [0, 1] is a decreasing function withφ(0) = 1 andφ(1) = 0. The total
area of superconductor in each section should be constant. Therefore the four peripheral
superconducting tunnels should have cross-sectional radius

rp(x) := ᾱ

2
w[1− φ2(x /l)]1/2. (4.12)

We said earlier that the tunnels should be “approximately conical.” Actually, what matters
is that each be conical near its apex, where B is somewhat singular. Therefore we require
that for some δ > 0,

(1− φ2(t))1/2 = t if 0 ≤ t ≤ δ and φ(t) = 1− t if δ ≤ t ≤ 1. (4.13)

It follows that for both the central and peripheral tunnels,∣∣∣∣ dr

dx

∣∣∣∣ � ᾱ
w

l
, for 0 ≤ x ≤ l, (4.14)

with r = rc(x) or r = rp(x).
We turn next to the specification of B in the cylinders. Of course B = 0 in each

superconducting tunnel, so we have only to give B in the region between each tunnel and
the associated cylinder boundary. The treatment of the central and peripheral tunnels are
similar, so we may focus on the region near the central tunnel. Let� be the (approximately
conical) boundary of the tunnel, and let n = (n1, n2, n3) be its outward unit normal. At
fixed x , the cross section of this tunnel is a disk; we denote its boundary by �̂ = �̂(x).
Notice that the in-plane normal to �̂ is n̂ = (n2, n3)/

√
1− n2

1.

Fixing x , we shall take B = (1, B2, B3) in the annular region between the tunnel and
the cylinder. Since B must be divergence-free as a three-dimensional vector field, we
need

∂B2/∂y + ∂B3/∂z = 0

in the annular region, and

(B2, B3) · n̂ = −n1√
1− n2

1
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at its inner boundary �̂. Taking y = z = 0 to be the center of the annulus and writing
r2 = y2 + z2, a convenient choice is

(B2, B3) = A(x) rc(x)
( y

r2
,

z

r2

)
, for rc(x) < r < r1, (4.15)

with

A(x) := −n1(x)√
1− n2

1(x)
.

Notice that the magnitude of A(x) is controlled:

|A(x)| =
∣∣∣∣drc

dx

∣∣∣∣ � ᾱ w/l, (4.16)

by (4.14). We also note, for later reference, that at the outer boundary r = r1,

|(B2, B3) · n̂| = |A(x)| rc(x)

r1
� ᾱ2 x w/l2 � ᾱ2w/l, (4.17)

using (4.11), (4.14), and (4.16).
Let us evaluate the magnetic energy associated with the construction thus far. It is∫ l

0

∫
annulus

B2
2 + B2

3 d A dx �
∫ l

0
A2(x) r2

c (x)
∫ r1

rc(x)

1

r2
r dr dx

�
∫ l

0
A2(x) r2

c (x) log

(
r1

rc(x)

)
dx .

Using (4.11) and (4.16), we have

Ecylinder �
∫ l

0

ᾱ4w4

l2
φ2
( x

l

)
log

(
θ

ᾱ φ
(

x
l

)) dx . (4.18)

By changing variables to x̄ = x /l, one easily verifies that the value of this integral is of
order ᾱ4| log ᾱ|w4/l.

The four peripheral cylinders are handled similarly. Each produces a magnetic energy
term of order ᾱ4| log ᾱ|w4/l.

It remains to extend B to the complement of the cylinders. As before, we concentrate
on the cross section at fixed x (see Figure 8), and we take B = (1, B2, B3). Our task is
now to define (B2, B3) in complement of the circles (a square of sidew, with five circles
of radius θw removed). It must satisfy

∂B2/∂y + ∂B3/∂z = 0,

with

(B2, B3) · n̂ = A(x)
rc(x)

r1
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at the central circle (to match (4.17)) and a similar condition at each of the four pe-
ripheral circles. At the boundary of the square, we can impose either periodicity or the
homogeneous condition

(B2, B3) · n̂ = 0.

It is easy to verify that these boundary conditions are compatible (indeed, (B2, B3) · n̂
averages to 0 around each circle separately; see e.g. (4.15)). A convenient choice is
obtained by solving Laplace’s equation�ψ = 0, with inhomogeneous Neumann data at
each circle and homogeneous Neumann data at the boundary of the square, then taking

(B2, B3) =
(
∂ψ

∂y
,
∂ψ

∂z

)
.

This PDE is being solved in a fixed domain (independent of x , and even independent of
w after scaling); the Neumann data depend on x but are uniformly bounded, according
to (4.17), by a constant times ᾱ2w/l. By an elementary elliptic estimate, the solution
satisfies a bound of the same order:(

1

w2

∫
|∇ψ(y, z)|2 dy dz

)1/2

� ᾱ2w/l.

Thus the magnetic energy outside the cylinders is∫
B2

2 + B2
3 dy dz dx �

(
ᾱ2w

l

)2

w2l = ᾱ4w4

l
.

The desired estimate (4.10) follows immediately from this result, (4.18), and elementary
geometry.

4.5. Clusters of Branched Normal Threads: A Two-Scale Construction for the Small-
est Applied Fields

The constructions in Sections 4.3 and 4.4 have a certain uniformity. The flux threads
(for low ba) or superconducting tunnels (for high ba) are distributed uniformly in the
(y, z) directions, in the sense that they intersect each plane x = constant in a periodic
pattern. The threads or tunnels refine by a sort of branching process as they approach the
faces x = 0, L . The branching creates additional surface and magnetic energy within
the plate, but it reduces the external magnetic energy. As a result it leads to an ε2/3L1/3

scaling law, better than the ε1/2L1/2 scaling achieved without branching—except perhaps
near ba = 0 or 1, when the prefactor is important.

This section presents a different, less uniform construction, which does better when
ba is small enough. The idea is simple: We let the flux tubes branch, but we keep them
in relatively small bundles. Compared with the uniform branching of Section 4.3, this
saves interior magnetic energy, since the tubes stay more nearly parallel to the x-axis;
but it costs exterior magnetic energy, since the pattern on the faces x = 0, L has a larger
length scale. The construction is realizable if

ε3/7L4/7 � b1/2
a and b7/2

a � ε/L � 1; (4.19)
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r

R

b Ra
1/2

R

r

(a) (b)

Fig. 9. The two-scale construction: (a) a section in the middle of the
plate showing the two scales R and r ; (b) a section closer to the face of
the plate, after one generation of refinement. Note that, contrary to our
prior convention, the normal regions are now black.

in this regime it shows that

min(P) � baε
4/7L3/7. (4.20)

Notice that the hypothesis b7/2
a � ε/L is exactly the condition that this construction does

better than the one in Section 4.3, i.e. the condition that baε
4/7L3/7 � b2/3

a ε2/3L1/3.
The hard work has already been done in Steps 1 and 2 of Section 4.3. There we

constructed, for any w and any b < 1/2, a pattern of branching normal threads in the
cylinder (0, L)× (0, w)× (0, w) with volume fraction b of normal material and 1− b
of superconductor. The internal energy of this pattern is, from Section 4.3,∫ L

0

∫ w

0

∫ w

0
ε|∇χ | + [B2

2 + B2
3 + (1− χ)(B1 − 1)2] dx dy dz � b3/4ε1/2w5/2. (4.21)

The branching must stop after finitely many steps, say N , due to the condition that
wN � lN = lopt (wN ) ∼= b1/4w3/2

N ε−1/2. This gives the condition

wN � b−1/2ε. (4.22)

We also need
∑

m lm
∼= L; since this is a geometric series, the condition is equivalent to

b1/4w3/2ε−1/2 ∼= L . (4.23)

Our two-scale construction is shown schematically in Figure 9. The period cell
Q = (0, 1)2 is divided into squares of side R; at the center of each square lies a flux
thread bundle of side r and volume fraction ba R2/r2. To evaluate the interior (surface +
magnetic) energy, we apply (4.21) withw replaced by r and b replaced by ba R2/r2, then
sum a geometric series; this gives

Einterior � R−2 ·
(

ba R2

r2

)3/4

ε1/2r5/2 = ε1/2b3/4
a R−1/2r. (4.24)
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Now, r and R are not independent: They are coupled by (4.23) withw replaced by r and
b replaced by ba R2/r2. This gives after simplification

R ∼= L2εr−2b−1/2
a , (4.25)

and substitution into (4.24) gives

Einterior � bar2L−1. (4.26)

To estimate the exterior energy, we observe that at the faces x = 0, L the form
of B1 = f (y, z) is a doubly periodic function with period R, which on each R × R
period-square is given by

f =


1 on little squares occupying area fraction ba R2/r2 on an interior

r × r square, arranged periodically at scale wN ,

0 on the rest of the r × r square,

0 outside the r × r square.

It is convenient to compare this with the function obtained by averaging over each r × r
square:

f̄ =
{

ba R2/r2 on each r × r square,

0 outside the r × r squares,

on each R × R period-square. By the triangle inequality and the definition of the H−1/2

norm, we have

Eexterior �
(‖ f − f̄ ‖H−1/2 + ‖ f̄ − ba‖H−1/2

)2
.

Applying Proposition A.2 from the Appendix with α = r2/R2 and m = 1/R, we obtain

‖ f̄ − ba‖2
H−1/2 � (ba R2/r2)2(r2/R2)3/2 R = b2

a R2r−1. (4.27)

We claim that similar arguments, which we will address at the end of this section, lead
to

‖ f − f̄ ‖2
H−1/2 � (ba R2/r2)3/2wN (r

2/R2) = b3/2
a wN Rr−1. (4.28)

The former is dominant, i.e. ‖ f − f̄ ‖2
H−1/2 � ‖ f̄ − ba‖2

H−1/2 , if wN is small enough,
specifically if

wN � b1/2
a R. (4.29)

Under this hypothesis the exterior energy is b2
a R2r−1 and the total energy is thus

Etotal � bar2L−1 + b2
a R2r−1 ∼= bar2L−1 + baε

2r−5L4.

Optimizing over r gives

r ∼= ε2/7L5/7 and Etotal � baε
4/7L3/7,

which is the desired estimate.
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It remains to check feasibility. We require

(a) r � R � 1 and ba R2/r2 � 1, so the construction makes geometric sense; and
(b) (ba R2/r2)−1/2ε � b1/2

a R so wN can be chosen to satisfy both (4.22) and (4.29)—in
other words, so the termination of refinement dictated by (4.22) does not contribute
significantly to the exterior energy.

One easily verifies that these conditions are satisfied in the regime (4.19).
Lastly we address (4.28). Using Proposition A.2 of the appendix, it follows that

‖ f − f̄ ‖2
H−1/2 = R ‖g‖2

H−1/2 , (4.30)

where g is defined on the unit cube Q by

g =


1− ba

R2

r2 on little squares occupying area fraction ba R2/r2 of one
interior r /R × r /R square, arranged periodically at scale wN /R,

−ba
R2

r2 on the rest of the r /R × r /R square,

0 outside the r /R × r /R square.

Proposition A.1 of the appendix shows how to relate the H−1/2 norm squared to the
L2 norm squared of a “fringe field” ∇u which lives outside the sample. There we use
periodic boundary conditions in y and z but because of the symmetry of g, using instead
Neumann boundary conditions (∇u ·n = 0) leads to the exact same solution; the Fourier
decompositions of g, hence u, involve only the cosine eigenfunctions. Hence to calculate
the fringe field u associated with g, it suffices to construct the fringe field associated
with the internal r /R × r /R square using the Neumann boundary conditions (in y, z),
and then extend with 0 outside the internal cubic cylinder. Moreover, by symmetry, we
may compute the L2 norm squared of this internal fringe field by the value of the H−1/2

norm squared from Proposition A.2 applied to the periodic extension,1 and then discount
appropriately with the volume fraction (r /R)2. To this end, we consider Q containing a
periodic array of r /R × r /R squares, each with internal structure of the interior part of
g. By Proposition A.2, the associated H−1/2 norm squared is

(
ba

R2

r2

)3/2
wN

R
.

Combining this with (4.30), we have

‖ f − f̄ ‖2
H−1/2 � R

(
ba

R2

r2

)3/2
wN

R

r2

R2
= b3/2

a

wN R

r
.

1 Here we are applying the H−1/2 norm to a function that does not have mean value zero. This is only an issue
of definition; we may just as well have defined the H−1/2 norm on equivalence classes of functions where two
functions are equivalent if they differ by a constant.
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5. Supporting the Guesses: Local Optimality of the Constructions

The constructions in Section 4 give upper bounds on the minimum energy. Here and in
Section 7 we shall give corresponding lower bounds.

Our immediate goal is relatively modest. For the constructions in Section 4, which
involve a basic unit cell and dyadic branching, we wish to show that the basic unit cells
were chosen well and the magnetic energy was estimated efficiently. This is the impact
of Section 5.2. The match between bounds and constructions is perfect for the cells used
in Sections 4.1 to 4.3; it misses by a logarithmic factor for the cells of Section 4.4.

In truth, however, we also have a more ambitious goal. Section 5.1 develops a flexible
method for bounding the magnetic energy from below. The importance of this result goes
far beyond the specific application in Section 5.2: It motivates our analysis of the “toy
problems” in Section 6. And it is this approach, not the one of Section 7, that achieves
the optimal scaling laws for ba near 0 or 1, as we shall explain in [12].

5.1. A Lower Bound on the Magnetic Energy, for Fixed End Conditions

The basic unit cells in Sections 4.1 to 4.4 were choices of B and χ , defined for x in some
interval 0 < x < l and Q-periodic in y and z. It is easy to see (using that div B = 0)
that if the bulk energy∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz

vanishes, then B1 must be independent of x . So it is natural to seek a lower bound for
the bulk energy in terms of the difference between B1 at the two ends of the cell, x = 0
and x = l. The following proposition achieves such a bound.

Proposition 5.1. Consider any divergence-free vector field B and characteristic func-
tion χ , defined for 0 < x < l and Q-periodic in y and z, with Bχ = 0. Let

b =
∫

Q
B1(x, y, z) dy dz, (5.1)

noting that the right-hand side is independent of x (Lemma 3.1). Define

L = max

{∫
Q

[B1(l, y, z)− B1(0, y, z)] g(y, z) dy dz :

g periodic, Lipschitz continuous, |∇g| ≤ 1

}
, (5.2)

and assume that
L
lb

� 1. (5.3)

Then ∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz � L

2

bl
. (5.4)
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Proof. The idea of the proof is this. If we ignore surface energy, then the minimum mag-
netic energy consistent with specified boundary conditions is described by the relaxed
problem discussed in Section 2.1. Since the relaxed problem is convex, its dual provides
a natural framework for proving lower bounds. (These comments are offered purely for
motivation. As usual when using duality, the argument is finally elementary—making
no explicit use of convexity or relaxation.)

Our starting point is the relation

B2
2 + B2

3 + (1− χ)(B1 − 1)2 ≥ 2|B| − 2B1. (5.5)

The proof is elementary: Where χ = 1 both sides vanish, and where χ = 0 we have

B2
2 + B2

3 + (B1 − 1)2 = 1+ |B|2 − 2B1 ≥ 2|B| − 2B1.

Applying (5.5), we see that for any Lipschitz continuous u(x, y, z) with |∇u| ≤ 1,∫ l

0

∫
Q

[
B2

2+B2
3+(1−χ)(B1−1)2

]
dx dy dz ≥ 2

∫ l

0

∫
Q

[〈B,∇u〉−B1] dx dy dz. (5.6)

Now consider the choice

u(x, y, z) = (1+ γ 2)−1/2(x + γ g(y, z)),

where g is periodic and Lipschitz continuous with |∇g| ≤ 1 and γ > 0 is an arbitrary
constant. Since B is Q-periodic with div B = 0, an easy integration by parts gives∫ l

0

∫
Q
〈B,∇u〉 dx dy dz

=
∫ l

0

∫
Q

∂

∂x
(B1u) dx dy dz

=
∫

Q
[B1(l, y, z)u(l, y, z)− B1(0, y, z)u(0, y, z)] dy dz

= (1+ γ 2)−1/2

{
lb + γ

∫
Q

[B1(l, y, z)− B1(0, y, z)] g(y, z) dy dz

}
.

Since
∫ l

0

∫
Q B1 dx dy dz = bl, we conclude after maximization over g that

1

2

∫ l

0

∫
Q

B2
2+B2

3+(1−χ)(B1−1)2 dx dy dz ≥ [(1+γ 2)−1/2−1]lb+γ (1+γ 2)−1/2L.

For any γ we have (1+γ 2)−1/2−1 ≥ − 1
2γ

2, and for 0 ≤ γ ≤ 1 we have γ (1+γ 2)−1/2 ≥
γ /
√

2. Using these inequalities, our lower bound becomes

− 1
2γ

2lb + 1√
2
γL. (5.7)

Let c0 be the constant implicit in (5.3), i.e. suppose

L
lb
≤ c0.
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Then a convenient choice is

γ = L
c1lb

with c1 = max{c0, 1}.

Clearly 0 ≤ γ ≤ 1, and substitution in (5.7) gives(
− 1

2c1
+ 1√

2

) L2

c1lb
� L

2

lb
,

since c1 ≥ 1. So our lower bound becomes∫ l

0

∫
Q

B2
2 + B2

3 + (1− χ)(B1 − 1)2 dx dy dz � L
2

lb
, (5.8)

which is the desired result.

Remark. We note that L, defined by (5.2), is (by definition) the Monge-Kantorovich
norm of B1(l, y, z)− B1(0, y, z). Since B1 prefers to be 1 in the normal material while
B1 must be 0 in the superconductor, L is roughly the Monge-Kantorovich norm of the
difference between the characteristic functions χ(l, y, z) and χ(0, y, z) representing the
phase geometry at the two ends x = 0, l. It has the dimensions of length and provides a
measure of the “physical scale” on which the difference χ(l, y, z)−χ(0, y, z) oscillates.

The proof of Proposition 5.1 actually achieves somewhat more than the assertion of
the proposition. Indeed, the argument is not restricted to the g that maximizes (5.2), and
this will be important below. We have shown

Corollary 5.2. Suppose g(y, z) is Lipschitz continuous and periodic on Q, with |∇g| ≤
1 pointwise. Let

L1 =
∫

Q
[B1(l, y, z)− B1(0, y, z)] g(y, z) dy dz,

and assume that

L1

lb
� 1.

Then we have the following lower bound for the bulk energy:∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz � L

2
1

bl
.

5.2. Optimal Scaling of the Unit Cells

We now apply Corollary 5.2 to show that the basic unit cells of Sections 4.1 to 4.3
achieve the optimal scaling laws. We will also show that the cell of Section 4.4 misses
the optimal scaling by at most a logarithmic factor.
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Consider first the branched, layered construction presented in Sections 4.1 and 4.2.
Its basic unit cell is shown in Figures 4 and 5. When the length is l and the width is w,
its bulk energy is∫ l

0

∫ w/2

−w/2

[
B2

2 + (1− χ)(B1 − 1)2
]

dx dy ∼ (1− ba)
2ba

w3

l
;

this was a crucial ingredient for Step 1 of our branching algorithm. Periodic extension
in y gives a choice of B and χ defined in the entire cylinder (0, l)× Q (independent of
z and satisfying B3 = 0) with bulk energy∫ l

0

∫
Q

[
B2

2+B2
3+(1−χ)(B1−1)2

]
dxdydz ∼

{
baw

2l−1 for ba near 0,
(1− ba)

2w2l−1 for ba near 1.
(5.9)

We claim that no other choice with the same end conditions at x = 0, l can achieve a
better scaling law.

Consider first the case when ba is near 0. Then B1(l, y) − B1(0, y) has the form
φ(y/w), where φ is periodic with period 1 and mean value 0. Since ba is small, φ takes
the values ±1 on short intervals (each having length of order ba), and it equals 0 off
these intervals. So one easily constructs a function g(y), periodic with period 1, such
that |g′| ≤ 1 and

∫ 1
0 φ(y)g(y) dy ∼ ba . Using the notation of Corollary 5.2 with test

function gw(y) = wg(y/w), we find that

L1 =:
∫ 1

0
φ(y/w)gw(y) dy ∼ wba .

The corollary applies if L1/(lba) � 1, i.e. if w/l is at most of order one, and it gives the
lower bound ∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz � baw

2l−1.

This matches (5.9), verifying the optimality of our 2D unit cell in the low-ba regime.
The argument for ba near 1, is only slightly different. We still have B1(l, y) −

B1(0, y) = φ(y/w) with φ periodic of period 1. But for ba near 1, φ takes the val-
ues ±1 on short intervals each having length of order 1− ba , and it equals 0 elsewhere.
Arguing as above, we get (for a suitable g)

L1 =
∫ 1

0
φ(y/w)gw(y) dy ∼ w(1− ba).

Corollary 5.2 applies if L1/(lba) � 1; for ba near 1, this requires that w(1− ba)/l be at
most of order one. The conclusion of the corollary is∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz � (1− ba)

2w2l−1,
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which matches (5.9), verifying the optimality of our 2D unit cell in the high-ba

regime.
We turn now to the 3D, small-applied-field construction presented in Section 4.3. Its

basic unit cell, shown in Figure 6, has thin threads of normal material in a matrix of
superconductor. When the length is l and the width is w, its bulk energy is∫ l

0

∫ w/2

−w/2

∫ w/2

−w/2

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz ∼ ba

w4

l
;

we used this fact in Section 4.3. Periodic extension gives a B and χ defined in the entire
cylinder (0, l)× Q with bulk energy∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz ∼ ba

w2

l
. (5.10)

The argument leading to a matching lower bound is much as before: B1(l, y, z) −
B1(0, y, z) has the form φ(

y
w
, z
w
) where φ is periodic with period 1 and mean value

0. Now φ takes the values ±1 on small squares, each having area of order ba ; off
these squares it equals 0. One easily constructs a function g(y, z), periodic with pe-
riod 1, such that |∇g| ≤ 1 and

∫
Q φ(y, z) g(y, z) dydz ∼ ba . Using the test function

gw(y, z) = wg
( y
w
, z
w

)
, we get

L1 =
∫

Q
φ
( y

w
,

z

w

)
gw(y, z) dy dz ∼ wba .

Corollary 5.2 applies for w/l � 1, and it gives the lower bound∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz � baw

2l−1,

which matches (5.10).
Finally we turn to the 3D, large-applied-field construction presented in Section 4.4.

Its basic unit cell, shown in Figure 7, has thin tunnels of superconductor in a matrix of
normal material. When the length is l and the width is w, its bulk energy is∫ l

0

∫ w/2

w/2

∫ w/2

w/2

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz ∼ (1− ba)

2| log(1− ba)|w
4

l
;

we used this fact in Section 4.4. Periodic extension gives a B and χ defined in the entire
cylinder (0, l)× Q with bulk energy∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz ∼ (1−ba)

2 log |(1−ba)|w
2

l
. (5.11)

This is the one regime where our lower bound does not match the construction—it
lacks the logarithmic factor. The argument is similar to the other cases. We still have
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B1(l, y, z) − B1(0, y, z) = φ(y/w, z/w), where φ is periodic with period 1 and mean
value 0. This time φ takes the values±1 on small disks, each having area of order 1−ba ,
and it equals 0 elsewhere. Arguing as usual, we get L1 ∼ w(1 − ba). Corollary 5.2
applies if L1/(lba) � 1; for ba near 1, this requires w(1− ba)/l � 1. The conclusion of
the corollary is

∫ l

0

∫
Q

[
B2

2 + B2
3 + (1− χ)(B1 − 1)2

]
dx dy dz � (1− ba)

2w2l−1, (5.12)

which lacks the logarithmic factor of (5.11).
It is natural to wonder which is suboptimal: the construction in Section 4.4 or the lower

bound (5.12). We will show in the upcoming paper [12] that this bound is suboptimal,
i.e. the logarithmic factor is necessarily present.

Remark. The constructions in Section 4 made many geometric choices. Focusing for
example on the 3D small-applied-field setting, we chose the cross section of the nor-
mal threads to be rectangular; we decided that one tube should branch into four in
the basic unit cell; and we chose the geometry of that branching. We did not at-
tempt to optimize over such geometric choices, because optimization seemed unlikely
to change the scaling law. Our lower bounds confirm the insensitivity of the scaling
law to these geometric choices. Indeed, the bounds are very robust. Their scaling de-
pends mainly on the periodicity of the cross sections, not on the details of the phase
geometry.

6. Toy Problems for the Local Length Scale

We now revisit the constructions of Sections 4.1 to 4.4. They have a lot in common, dif-
fering mainly in the choice of cross-sectional geometry, so it is natural to seek a unified
viewpoint. The “toy problems” presented here achieve this goal, as well as considerable
simplification.

Each toy problem is a one-dimensional variational problem for the local length scale
h(x) at depth 0 ≤ x ≤ L . Its terms represent surface energy, interior magnetic energy,
and exterior magnetic energy. The expressions for these terms reflect the underlying
geometric choices (e.g. lamellar versus 3D branching), and they capture the asymmetry
between ba → 0 and ba → 1.

We find the toy problems enlightening because they capture the essential physics
of the constructions while avoiding the tedious geometrical details. In particular they
explain the energy scaling laws: Each is an immediate consequence of the associated toy
problem after nondimensionalization. A similar argument was used long ago by Hubert
to explain the scaling of magnetic domains in a uniaxial ferromagnet [21].

To formulate a toy problem, one must fix in advance the overall geometry of the
construction, leaving a single local length scale h(x) to be determined. The two-scale
construction of Section 4.5 does not fit this mold, since it has two distinct length scales.
Therefore we do not offer a toy problem for that case.
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6.1. Lamellar Structures

We first address the 2D (lamellar) structures considered in Sections 4.1 and 4.2. We
claim the essential physics is captured (for both large and small ba) by the toy prob-
lem

(T P)1 min
h(x)

{∫ L

0

[
ε

h(x)
+ (1− ba)

2 ba h2
x

]
dx + ψ(ba) h(0) + ψ(ba) h(L)

}
,

where ψ(ba) is of order 1 for ba bounded away from 0 and 1, and

ψ ∼ b2
a | log(ba)| for ba → 0, ψ ∼ (1− ba)

2 | log(1− ba)| for ba → 1.

The integral of ε/h(x) represents surface energy. The terms ψ(ba)h(0) and ψ(ba)h(L)
represent exterior magnetic energy, evaluated using Propositions A.1 and A.2 of the
appendix. These need no explanation—they are dictated by the lamellar geometry.

The middle term represents the interior magnetic energy associated with changes in
the length scale h. To explain its form, consider a sequence x1 < x2 < · · · such that
h(xi+1) = h(xi )/2. According to Section 5.2—see (5.9) and the argument just following
it—the magnetic energy between xi and xi+1 is of order

(1− ba)
2 ba

h2(xi )

xi+1 − xi
.

Since our choice of xi gives h(xi )− h(xi+1) = h(xi )/2, this is a constant times

(1− ba)
2 ba

(h(xi+1)− h(xi ))
2

xi+1 − xi
.

In formulating (T P)1 we have approximated this expression by

(1− ba)
2 ba

∫ xi+1

xi

h2
x dx,

and summed over i .
Let us nondimensionalize (T P)1. Our branched construction predicts that the length

scale in the center of the sample is of order ε1/3 L2/3 b−1/3
a (1 − ba)

−2/3 (see (4.2)). Let-
ting DL denote this length, consider the nondimensional quantities h̄ and x̄ defined
by

x̄ = x

L
, h̄(x̄) = 1

DL
h(x).

In the new variables, (T P)1 becomes

(NDT P)1 ε2/3 L1/3 b1/3
a (1−ba)

2/3 ·min
h̄(x̄)

{∫ 1

0

[
1

h̄(x̄)
+h̄2

x̄

]
dx̄+γ1 h̄(0)+γ1 h̄(1)

}
,

with

γ1 =
(

L

ε

)1/3
ψ(ba)

b2/3
a (1− ba)4/3

.

We shall show in Section 6.4 that, for γ1 � 1, the expression in braces is of order 1. We
thus recover the main conclusions of Sections 4.1 and 4.2: The energy scaling law for
the 2D (laminar) construction is b1/3

a (1− ba)
2/3ε2/3L1/3.
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6.2. Normal Threads

We now address the construction of Section 4.3, involving a small volume fraction of
normal threads. We assume ba ≤ 1/2, and write α = b1/2

a for notational convenience.
We claim the essential physics is captured by the toy problem

(T P)2 min
h(x)

{∫ L

0

[
α ε

h(x)
+ α2 h2

x

]
dx + α3 h(0) + α3h(L)

}
.

The first term under the integral is the surface energy. It is proportional to the surface
area of the threads—hence the factor of α. The second term under the integral is the
interior magnetic energy, estimated as in Section 6.1 but using (5.10) in place of (5.9).
The terms α3h(0) and α3h(L) represent external magnetic energy, evaluated once again
using Propositions A.1 and A.2 of the Appendix.

We nondimensionalize. Our branched constructions predict that the length scale in the
middle of the plate is of order ε1/3 L2/3 α−1/3. Letting DL denote this length and defining
the nondimensional quantities h̄ and x̄ as before, (T P)2 becomes

(NDT P)2 ε2/3 L1/3 b2/3
a · min

h̄(x̄)

{∫ 1

0

[
1

h̄(x̄)
+ h̄2

x̄

]
dx̄ + γ2 h̄(0) + γ2 h̄(1)

}
,

with

γ2 =
(

L

ε

)1/3

b2/3
a .

We thus recover the main conclusion of Section 4.3: For γ2 � 1, the energy scaling law
of this construction is b2/3

a ε2/3L1/3.

6.3. Superconducting Tunnels

Finally, we address the construction of Section 4.4, involving a small volume fraction
of superconducting tunnels. We assume 1 − ba is sufficiently small, and write ᾱ =
(1− ba)

1/2 for notational convenience. We claim the essential physics is captured by the
toy problem

(T P)3 min
h(x)

{∫ L

0

[
ᾱ ε

h(x)
+ ᾱ4 | log(ᾱ)| h2

x

]
dx + ᾱ3 h(0) + ᾱ3 h(L)

}
.

The explanation is much as before. The justification of the term representing interior
magnetic energy follows the argument in Section 6.1 with (5.9) replaced by (5.11). (We
use (5.11) not (5.12) because we know, from recent work [12], that it is the construction
that is optimal, not the lower bound (5.12).)

We nondimensionalize as before. For the construction of Section 4.4, the length scale
at the center of the plate is

DL = ε1/3L2/3

ᾱ| log ᾱ|1/3
.
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Defining h̄ and x̄ as usual, (T P)3 becomes

(NDT P)3 ε2/3 L1/3 (1− ba) | log(1− ba)|1/3

·min
h̄(x̄)

{∫ 1

0

[
1

h̄(x̄)
+ h̄2

x̄

]
dx̄ + γ3 h̄(0)+ γ3 h̄(1)

}
,

with

γ3 =
(

L

ε | log(1− ba)|2
)1/3

.

We thus recover the main conclusion of Section 4.4: For γ3 � 1, the energy scaling law
of this construction is ε2/3L1/3(1− ba)| log(1− ba)|1/3.

6.4. Toy Problem Predictions

After nondimensionalization, our toy problems all reduce to the same form:

min
h(x)

{∫ 1

0

[
1

h(x)
+ h2

x

]
dx + γ h(0) + γ h(1)

}
. (6.1)

As explained in the preceding sections, the energy scaling laws follow from the following
simple result:

Lemma 6.1. For any γ � 1, we have min (6.1) ∼ 1.

Proof. Let emin be the minimum value of (6.1) . The upper bound emin � 1 is easy,
requiring no condition on γ : It suffices to consider the test function

h(x) = min{x2/3, (1− x)2/3}.
For the lower bound, we assume γ ≥ c0 with c0 > 0. Then obviously

h(0) ≤ emin

c0
.

But we also have, for any 0 ≤ a < b ≤ 1,∫ b

a

1

h
+ h2

x dx ≥ 2
∫ b

a

√
1

h
|hx | dx = 4

∫ b

a
|(√h)x | dx ≥ 4 |

√
h(b)−

√
h(a)|. (6.2)

Now, if the optimal h satisfies

h ≤ 2emin

c0
uniformly on [0, 1], (6.3)

then

emin ≥
∫ 1

0

1

h
dx ≥ c0

2emin
,
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whence emin ≥
√

c0/2. Otherwise, if (6.3) is false, then (6.2) gives

emin ≥ 4

[(
2emin

c0

)1/2

−
(

emin

c0

)1/2
]
= 4(
√

2− 1)c−1/2
0 e1/2

min,

whence emin ≥ Cc−1
0 . Since both alternatives give lower bounds for emin , the proof is

complete.

In the table below, we record the different predictions of (T P)1−3 in two regimes
for the relative size of the sample. The scaling “without branching” is obtained by re-
stricting h(x) to be constant (independent of x), while the scaling “with branching” is
obtained by minimizing over all h(x), assuming γi � 1. The regime where branching is
energetically preferable is determined by (a) direct comparison of the two scaling laws,
or (equivalently) by (b) the condition that γi � 1.

Toy Problem Minimum energy Minimum energy Branching
/ Structure without branching with branching regime
(T P)1
2D (n) threads ba | log(ba)|1/2ε1/2 L1/2 b1/3

a ε2/3 L1/3 ε/L < b4
a | log(ba)|3

cf. Sec. 4.1
(T P)1
2D (s) tunnels (1− ba)| log(1− ba)|1/2 ε1/2 L1/2 (1− ba)

2/3 ε2/3 L1/3 ε/L < (1− ba)
2 | log(1− ba)|3

cf. Sec. 4.2
(T P)2
3D (n) treads ba ε

1/2 L1/2 b2/3
a ε2/3 L1/3 ε/L < b2

a
cf. Sec. 4.3
(T P)3
3D (s) tunnels (1− ba) ε

1/2 L1/2 (1− ba) | log(1− ba)|1/3 ε2/3 L1/3 ε/L < | log(1− ba)|−2

cf. Sec. 4.4

7. Ansatz-Independent Bounds

This section addresses the issue of geometric complexity by proving ansatz-independent
lower bounds. Our argument makes use of a well-known analogy between the inter-
mediate state and micromagnetics. Briefly, we show that each superconducting domain
pattern leads to an associated magnetization pattern (Section 7.1), then we use results
from [11] to deduce the desired lower bounds (Section 7.2).

Our bounds and constructions have the same scaling law for intermediate values of
ba , but they differ by just a logarithmic factor for ba near 1. Moreover, they scale quite
differently in the small-ba regime; for example, the bound has a prefactor of ba , while
the branched-normal-thread construction has a prefactor of b2/3

a . The forthcoming paper
[12] provides lower bounds with optimal scaling in ba, ε, and L for applied fields near 0
and 1. These results require a method different from the approach of this section—closer
in spirit to that of Section 5.
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7.1. A Connection with Micromagnetics

For a uniaxial ferromagnet, the micromagnetics variational problem is the following:
Among all unit vector fields m that vanish outside � ⊂ R3, minimize

(M) Q
∫
�

m2
2 + m2

3 + δ
∫
�

|∇m|2 +
∫

R3
|∇u|2,

where �u = div m in R3. Here Q is the quality factor, measuring the “hardness” of the
material, and δ is the exchange constant.

To focus on domain morphology without having to solve simultaneously for the in-
ternal structure of domain walls, it is natural to consider an analogous sharp-interface
problem. This is common in the magnetics literature, where it goes by the name “domain
theory” (see e.g. [35]). For a uniaxial ferromagnet, the natural problem is to minimize,
among BV vector fields which vanish outside �,

(Msharp) Q
∫
�

m2
2 + m2

3 + ε
∫
�

|∇m| +
∫

R3
|∇u|2.

Here �u = div m in R3 just as before, and ε denotes the surface tension of the domain
walls. The correspondence between (M) and (Msharp) is standard, and is discussed at
length in [10].

We claim that (Msharp) is very closely related to our problem (P). Indeed, if B and
χ are test fields for (P), consider the associated magnetization m defined by

m(x, y, z) = (m1(x, y, z), 0, 0) :=


(−ba, 0, 0) if x ∈ [0, L] and χ = 1,

(1− ba, 0, 0) if x ∈ [0, L] and χ = 0,

(0, 0, 0) if x /∈ [0, L].

(7.4)

It is straightforward to see (see e.g. [10]) that the magnetic field ∇u equals πgradm, the
L2 projection of m onto the space of gradients. Hence setting B̃ = B− (ba, 0, 0), which
is divergence-free, we have

ε

∫
�

| ∇m1 | +
∣∣∣∣πgradm

∣∣∣∣2
L2(R3) = ε

∫
�

| ∇m1 | +
∣∣∣∣πgrad

(
m− B̃

)∣∣∣∣2
L2(R3)

≤ ε

∫
�

| ∇m1 | +
∣∣∣∣m− B̃

∣∣∣∣2
L2(R3) . (7.5)

One easily checks that the last line is precisely the energy associated with our
problem (P).

Our work [11] gave ansatz-independent lower bounds in the context of micromag-
netics. Using (7.5), we also have ansatz-independent lower bounds on problem (P). The
remainder of Section 7 explains this observation and its consequences.

7.2. Patterns of Arbitrary Complexity, and Patterns of Arbitrary Complexity but In-
dependent of x

The following theorems are very close to the results in [11]. But we are interested in
the scaling law of the prefactor as ba tends to 0 or 1, an issue not addressed in [11].
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Therefore we repeat the (relatively short) proofs, for the reader’s convenience.

Theorem 7.1. Suppose

ε/L � b3/2
a (1− ba)

3/2 and ε1/3 L2/3 � 1. (7.6)

Then

min (P) � ba (1− ba) ε
2/3 L1/3.

Theorem 7.2. Suppose

ε/L � b2
a(1− ba)

2 and ε1/2 L1/2 � 1. (7.7)

Then

min
χ, B indep of x

(P) � ba (1− ba) ε
1/2 L1/2.

Proof of Theorem 7.1. Suppose B and χ are admissible for (P). We may assume with-
out loss of generality that∫

�

(1− χ)(B1 − 1)2 < c0 ba(1− ba)ε
2/3 L1/3, (7.8)

for any fixed c0, since otherwise there is nothing to prove. The value of c0 will be chosen
in the course of the proof.

Consider the associated magnetization m defined by (7.4). It suffices to prove that

E(m) := ∣∣∣∣πgradm
∣∣∣∣2

L2 + ε
∫
�

| ∇m1 | � ba (1− ba) ε
2/3 L1/3.

Let m̂ denote both the discrete Fourier series in (y, z) ∈ Q and the Fourier transform in
x ∈ R, i.e.

m̂(ξ,n)=
∫ ∞
−∞

e−2π iξ x m̂(x,n) dx, with m̂(x,n)=
∫

Q
e−2π i(yn1+zn2)m(x, y, z) dy dz,

where n ∈ Z2 and ξ ∈ R. Notice that

∣∣∣∣πgradm
∣∣∣∣2

L2 =
∑

n

∫ ∞
−∞

ξ 2

ξ 2 + |n|2 |m̂1(ξ,n)|2 dξ.

Using Lemma A.4 of the Appendix with λ = |n| and g(x) = m̂1(x,n), we have

∑
n

∫ ∞
−∞

ξ 2

ξ 2 + |n|2 |m̂1(ξ,n)|2 dξ �
∫ L

0

∑
n

1

1+ (|n|L)2 |m̂1(x,n)|2 dx .
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Thus setting α := max{ba, 1− ba} = ||m1(x)||L∞(Q) ≥ 1
2 , we have

ε

∫
�

| ∇m1 | +
∣∣∣∣πgradm

∣∣∣∣2
L2

�
∫ L

0

{
ε

∫
Q
|∇m1(x, y, z)|dy dz +

∑
n

1

1+ (|n|L)2 |m̂1(x,n)|2
}

dx

�
∫ L

0

( ε

α L

)2/3
{(

ε L2

α

)1/3

α

∫
Q
|∇m1(x)| dy dz

+
(
α L

ε

)2/3 ∑
n

min

{
1,

1

(|n|L)2
}
|m̂1(x,n)|2

}
dx

�
∫ L

0

( ε

αL

)2/3
{(

ε L2

α

)1/3

α

∫
Q
|∇m1(x)| dy dz

+
∑

n

min

{
1,

α2/3

ε2/3 L4/3

1

|n|2
}
|m̂1(x,n)|2

}
dx

�
( ε

L

)2/3
∫ L

0

∫
Q

m2
1 dx dy dz. (7.9)

From line 3 to line 4 of (7.9), we made use of our hypothesis that L � ε, and we
passed from line 4 to line 5 by applying Lemma A.3(a) of the Appendix with the choice
N ∼= ε−1/3 L−2/3 α1/3, which is possible by the second inequality in (7.6) and the fact
that α ≥ 1

2 .

Our final task is to relate
∫ L

0

∫
Q m2

1 to ba . We have

∫ L

0

∫
Q

m2
1 dx dy dz =

∫ L

0

∫
Q

b2
aχ + (1− ba)

2(1− χ) dx dy dz. (7.10)

Heuristically we expect B1 ≈ 1− χ . If this relation held exactly, then matters would be
easy: Using Lemma 3.1, the right-hand side of (7.10) would become Lba(1− ba). This
together with (7.9) would give the desired estimate.

In general B1 
= 1 − χ , but the difference is controlled by (7.8). So we argue as
follows: By Lemma 3.1,

∫ L

0

∫
Q

b2
aχ + (1− ba)

2(1− χ) dx dy dz

=
∫ L

0

∫
Q
(1− 2ba)(B1 + 1− χ − B1)+ b2

a dx dy dz

= ba(1− ba)L + (1− 2ba)

∫ L

0

∫
Q

1− χ − B1 dx dy dz. (7.11)
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The condition B1χ = 0 implies (1 − χ − B1)
2 = (1 − χ)(B1 − 1)2. Combining this

with Hölders inequality, we have∫ L

0

∫
Q
|1− χ − B1| dx dy dz ≤ L1/2

(∫ L

0

∫
Q
(1− χ − B1)

2

)1/2

= L1/2

(∫ L

0

∫
Q
(1− χ)(B1 − 1)2

)1/2

.

Let c1 be the constant implicit in the first part of (7.6):

ε/L ≤ c1b3/2
a (1− ba)

3/2.

Combining this relation and (7.8) with the preceding estimate, we get∫ L

0

∫
Q
|1− χ − B1| dx dy dz ≤ c1/2

0 c1/3
1 ba(1− ba)L .

Choosing c0 so that c1/2
0 c1/3

1 ≤ 1/2, we conclude from (7.11) that∫ L

0

∫
Q

m2
1 dx dy dz ≥ 1

2
ba(1− ba)L .

Combining this with (7.9) gives the desired estimate

E(m) � (ε/L)2/3 ba (1− ba) L .

Proof of Theorem 7.2. The argument is very similar, using part (b) of Lemma A.3 in-
stead of part (a). The details can safely be left to the reader (see also [11]).

Theorems 7.1 and 7.2 show, roughly speaking, that

(a) there is no energetic incentive for in-plane complexity, and
(b) branching or refinement is required for energy minimization,

for intermediate applied fields and ε/L � 1. Indeed, for ba bounded away from 0
and 1, the minimum energy is of order ε2/3L1/3, and this scaling law is achieved by the
highly ordered constructions of Section 4—even the laminar one of Section 4.1. Theorem
7.1 shows that no domain structure, regardless of its complexity, can achieve a better
scaling law—this is the careful statement of point (a). And Theorem 7.2 shows that if
branching and refinement were prohibited, the scaling law would be different, namely
ε1/2L1/2 � ε2/3L1/3—this is the careful statement of point (b).

We remark that the proof of our ansatz-independent lower bound shares some features
with the constructions and toy problems. After renormalization of the total energy, i.e.
factoring out (ε/L)2/3, one must show that what remains is bounded below by a constant
times the volume of the domain. The constructions are rather rigid; the assertion is true,
but we wonder whether it is merely an accident. The toy problems are less rigid, fixing
the geometry but optimizing over the local length scale h(x); they show, in particular,
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that the constructions’ success is no accident. Theorem 7.1 is less rigid still, replacing
the toy problem with an interpolation inequality; it shows that no as-yet-undiscovered
construction can give a better scaling law.

The constructions and toy problems have one advantage over the ansatz-free view-
point: They predict the local length scale throughout the plate. In the less rigid, ansatz-free
setting, we are only able to estimate a suitably averaged length scale. This is explained
in Section 7.3.

7.3. Average Domain Width of Minimizing Structures

We have focused on the scaling law of the minimum energy. In truth, however, the
experimentally relevant scaling law is not that of the minimum energy, but rather that of
the microstructural length scale. Indeed, the length scale is readily observable (especially
at the faces of the plate). Such measurements—combined with a theoretical scaling law—
represent the principal means for estimating the surface tension ε of the superconductor-
normal interface.

Traditionally, the scaling law for the microstructural length scale has been deduced
by considering constructions like those of Section 4. Our “toy problems” could provide
an attractive alternative, but we shall not pursue this here. Rather, we wish to explain
how Theorem 7.1 yields ansatz-free upper and lower bounds for the average length
scale—more precisely, for the total perimeter per unit volume.

For any B and χ admissible for problem (P), let

D(B, χ) = volume of �

total surface area
= L∫

�
|∇χ | .

Clearly D(B, χ) has dimensions of length; for dyadically branched constructions like
those of Section 4 it is (a constant times) the length scale in the middle of the plate. So
we view D(B, χ) as an ansatz-free, global measure of the microstructural length scale.

Theorem 7.3. For any δ > 0, and any 0 < ba < 1, there exist constants C1, C2, C3,
and C4 (depending on δ and ba) such that

ε/L ≤ C1 and ε1/3 L2/3 ≤ C1

imply

(a) min(P) ≤ C2ε
2/3L1/3, and

(b) if B and χ are admissible for (P) and achieve value ≤ 1
δ
C2ε

2/3L1/3, then

C3ε
1/3L2/3 ≤ D(B, χ) ≤ C4ε

1/3L2/3.

Thus the energy-minimizing domain pattern has length scale of order ε1/3L2/3—and so
does any pattern that comes within a factor of 1/δ of the minimum value.

Proof. The argument is identical to that of Proposition 4.1 in [11]. Therefore we just
indicate the main idea. Theorem 7.1 with ε replaced by Mε gives

C(ba)(Mε)
2/3L1/3 ≤ (Mε)

∫
�

|∇χ | +
∫
�

B2
2 + B2

3 + (1− χ)B2
1 +

∫
�c

|B− ba|2,
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while by hypothesis we have

1

δ
C2ε

2/3L1/3 ≥ ε

∫
�

|∇χ | +
∫
�

B2
2 + B2

3 + (1− χ)B2
1 +

∫
�c

|B− ba|2.

If M is sufficiently large, then we may subtract the latter from the former to deduce an
estimate of the form

ε

∫
�

|∇χ | ≥ Cε2/3L1/3,

which can be rewritten asD(B, χ) ≤ C4ε
1/3L2/3. The opposite inequality is trivial: Since

the magnetic terms are nonnegative, we have ε
∫
�
|∇χ | ≤ 1

δ
C2ε

2/3L1/3, which can be
rewritten as D(B, χ) ≥ C3ε

1/3L2/3.

The same method can be applied to domain patterns that are independent of x . This
restriction changes the scaling law to

C3ε
1/2L1/2 ≤ D(B, χ) ≤ C4ε

1/2L1/2,

and the proof naturally uses Theorem 7.2 rather than Theorem 7.1.
It would be interesting to obtain a pointwise estimate of the length scale—e.g. to prove

it is correctly predicted by the appropriate toy problem from Section 6. To prove such
a result, one would surely have to use additional information beyond simply assuming
the energy is small. Our Theorem 7.3 makes no use of any optimality condition; but it is
natural to expect that more should be true at (local or global) minima. See [13], [30] for
results of this type in a related but different setting.

8. Conclusion

The analysis of the intermediate state is at once a topic in the calculus of variations and
a problem of energy-driven pattern formation. The variational viewpoint is convenient
because it permits us to ask—and in large measure answer—a precise question: What is
the scaling law of the minimum energy? The answer is interesting due to its unexpected
complexity near ba = 0 and ba = 1. The analysis is interesting as well, since it involves
ansatz-independent lower bounds.

In the end, however, we are interested in the patterns, not the energy scaling law. We
want to understand what robust features are shared by all patterns with a given energy
scaling. The usual approach to this question is to examine alternative constructions. Our
toy problems and bounds are valuable because they offer additional, rather different
insight.

From our perspective, the analysis of the intermediate state is the study of a particular
nonconvex variational problem regularized by surface energy. There is, at present, no
general method for identifying optimal scaling laws and patterns for such problems. The
route to a general understanding is surely by way of examples like this one.
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A. Appendix

This appendix discusses the relevant properties of the space H−1/2 and recalls two lemmas
from [11]. Let L2

� be the space of Q-periodic L2 functions with mean value 0 (recall that
Q = [0, 1]2). The subspace H−1/2(Q) ⊂ L2

�L is defined as

H−1/2(Q) =
{

f ∈ L2
�

∣∣∣∣ ∑
|n|
=0

| f̂ (n)|2
|n| < ∞

}
,

and we define

‖ f ‖2
H−1/2(Q) =

∑
|n|
=0

| f̂ (n)|2
|n| .

Here n ∈ Z2, and f̂ (n)denotes the nth Fourier coefficient of f . The following proposition
explains why the external magnetic field energy is estimated by the H−1/2 norm of B1−ba

evaluated at x = 0 and x = L .

Proposition A.1. Let f ∈ H−1/2(Q) and consider the unique finite energy solution
(periodic in y and z) to the Neumann problem

�u = 0 in [0,∞)× Q with ux (0, y, z) = f.

Then ∫
[0,∞)×Q

|∇u|2 dx dy dz = 1

2π
‖ f ‖2

H−1/2(Q).

Proof. Denoting the discrete Fourier transform of u(x, y, z) in the y and z variables by
û(x,n) with n = (n1, n2) ∈ Z2, we have

u(x, y, z) =
∑
|n|
=0

û(x,n) e2π i(n1 y+ n2z).

Thus

û(x,n)xx − (2π |n|)2û(x,n) = 0, û(0,n)x = f̂ (n).

Hence,

û(x,n) = −e−2π |n|x f̂ (n)
2π |n| ,

and ∫ ∞
0

∫
Q
|∇u|2 dy dz dx =

∑
|n|
=0

∫ ∞
0

2e−4π |n|x | f̂ (n)|2 dx

=
∑
|n|
=0

| f̂ (n)|2
2π |n| =

1

2π
‖ f ‖2

H−1/2(Q).
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gf

α α1/2

Fig. 10.

For the constructions in Section 4, B1 is piecewise constant and periodic in y and
z. The next proposition estimates the H−1/2 norms of such functions. For α ∈ (0, 1

2 ),
consider f, g ∈ L2

� defined as follows (see Figure 10):

f (y, z) :=
{

1 − α if 1−α
2 < z < 1+α

2 ,

−α otherwise,

g(y, z) :=
{

1 − α if 1−√α
2 < y, z < 1+√α

2 ,

−α otherwise.

Proposition A.2. Extend both f and g to R2 by periodicity, and for any natural number
m, define fm(y, z) := f (y,mz) and gm(y, z) := g(my,mz). They satisfy

‖ fm‖2
H−1/2(Q) � α2 | log(α)|

m
and ‖gm‖2

H−1/2(Q) � α3/2

m
.

Proof. From the definition of the Fourier coefficients, it is straightforward to check that

‖ fm‖2
H−1/2(Q) =

1

m
‖ f ‖2

H−1/2(Q) and ‖gm‖2
H−1/2(Q) =

1

m
‖g‖2

H−1/2(Q).

Since we are only concerned with ĝ(n) and f̂ (n) for n 
= 0, it suffices to consider̂(g + α)(n) and ̂( f + α)(n). Focusing first on g, we have (by a convenient translation
within Q)

| ̂(g + α)(n)|2 ∼=
∣∣∣∣∣
∫ α1/2

0
e2π in1 y dy

∣∣∣∣∣
2 ∣∣∣∣∣
∫ α1/2

0
e2π in2z dz

∣∣∣∣∣
2

= 1

n2
1

∣∣∣e2π in1α
1/2 − 1

∣∣∣2 1

n2
2

∣∣∣e2π in2α
1/2 − 1

∣∣∣2
� α

1+ αn2
1

α

1+ αn2
2

.

Therefore,

‖g‖2
H−1/2(Q) =

∑
|n|
=0

|̂g(n)|2
|n| �

∑
|n|
=0

1

|n|
α

1+ αn2
1

α

1+ αn2
2

�
∫ ∞

0

∫ ∞
0

1√
y2 + z2

α

1+ αy2

α

1+ αz2
dy dz
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� α3/2
∫ ∞

0

∫ ∞
0

1√
y2 + z2

1

1+ y2

1

1+ z2
dy dz

� α3/2.

The analysis of f is similar:

‖ f ‖2
H−1/2(Q) =

∑
|n|
=0

| f̂ (n)|2
|n| �

∫ ∞
1

1

z

α2

1+ α2z2
dz

� α2
∫ ∞
α

1

z

1

1+ z2
dz

� α2 | log(α)|.

Finally we state two lemmas proved in [11].

Lemma A.3. For any Q-periodic function f , and any positive integer N,

(a)
∫

Q
| f |2 dx dy �

{
1

N
sup

Q
| f |

∫
Q
|∇ f | dx dy +

∑
n∈Z2

min

{
1,

N 2

|n|2
}
| f̂ (n)|2

}
,

(A.1)
and

(b)
∫

Q
| f |2 dx dy �

{
1

N
sup

Q
| f |

∫
Q
|∇ f | dx dy +

∑
n∈Z2

min

{
1,

N

|n|
}
| f̂ (n)|2

}
.

(A.2)

Lemma A.4. Consider any g : R→ R such that g(x) = 0 for |x | > L. Then for any
λ ∈ R, ∫ ∞

−∞

ξ 2

ξ 2 + λ2
|̂g(ξ)|2 dξ � 1

1+ (λL)2

∫ L

−L
|g(x)|2 dx .
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