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Abstract: Buildings use up to 40% of the global primary energy and 30% of global greenhouse gas
emissions, which may significantly impact climate change. Heating, ventilation, and air-conditioning
(HVAC) systems are among the most significant contributors to global primary energy consumption
and carbon gas emissions. Furthermore, HVAC energy demand is expected to rise in the future.
Therefore, advancements in HVAC systems’ performance and design would be critical for mitigating
worldwide energy and environmental concerns. To make such advancements, energy modeling and
model predictive control (MPC) play an imperative role in designing and operating HVAC systems
effectively. Building energy simulations and analysis techniques effectively implement HVAC control
schemes in the building system design and operation phases, and thus provide quantitative insights
into the behaviors of the HVAC energy flow for architects and engineers. Extensive research and
advanced HVAC modeling/control techniques have emerged to provide better solutions in response
to the issues. This study reviews building energy modeling techniques and state-of-the-art updates
of MPC in HVAC applications based on the most recent research articles (e.g., from MDPI’s and
Elsevier’s databases). For the review process, the investigation of relevant keywords and context-
based collected data is first carried out to overview their frequency and distribution comprehensively.
Then, this review study narrows the topic selection and search scopes to focus on relevant research
papers and extract relevant information and outcomes. Finally, a systematic review approach is
adopted based on the collected review and research papers to overview the advancements in building
system modeling and MPC technologies. This study reveals that advanced building energy modeling
is crucial in implementing the MPC-based control and operation design to reduce building energy
consumption and cost. This paper presents the details of major modeling techniques, including
white-box, grey-box, and black-box modeling approaches. This paper also provides future insights
into the advanced HVAC control and operation design for researchers in relevant research and
practical fields.

Keywords: advanced HVAC technology; building energy modeling; white-box model; grey-box
model; black-box model; building HVAC optimization; HVAC model predictive control (MPC)

1. Introduction

The building sectors (e.g., commercial and residential buildings) account for about
40% of total global primary energy use and about 30% of global greenhouse gas (GHG)
emissions [1]. According to the U.S. Energy Information Administration (EIA) [2], the
share of the global delivered energy consumption in buildings could be expected to keep
increasing from 20% in 2018 to 22% in 2050. Among the energy-related factors in a building,
cooling, heating, and the relevant subsystems are the major components of the building
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energy consumption. In this way, improving a building’s heating, ventilation, and air-
conditioning (HVAC) and its associated systems has played a crucial role in energy and
emission reductions [3]. Because of the complexity of building energy systems’ design and
operation, various aspects, such as the system’s transient energy flow and indoor/outdoor
heat interactions, need to be reflected in its design and operation process to increase the
overall energy efficiency of HVAC systems [4]. HVAC systems, which provide the cooling
and heating supply into a building’s thermal zones, can consist of diverse subsystem
configurations, including air-loop systems (e.g., heating/cooling coils and supply/return
air fans) and water-loop systems (e.g., chillers, boilers, heat exchangers, cooling towers, and
water pumps). In addition, the HVAC systems of modern buildings need to satisfactorily
deal with various interrelated variables (e.g., temperature, humidity, and velocity) against
changeable external disturbances (i.e., outdoor weather conditions) to provide appropriate
thermal comfort to occupants [5,6].

In response to this complexity, whole building or system level energy simulations
have been widely used to assess appropriate options for energy demand reduction while
meeting the indoor thermal comfort requirements and resolving the environmental issues.
A good overview of the detailed fundamentals, features of energy-related systems, and
main applications for building energy systems and their calculations is given by the Amer-
ican Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [7,8].
According to the report [8], HVAC systems need to be operated with appropriate control
schemes because they are major contributors to the whole building’s energy and thermal
comfort, keeping the desired environment for occupants inside buildings. There are many
considerations during a building energy and heat system analysis, including building age,
locations, building envelope materials, energy-related systems, and size. As computational
intelligence for building energy system applications is becoming an essential part of the
building design and energy management processes [9], the importance of comprehensive
energy simulation modeling has been re-emphasized and highlighted. A simulation analy-
sis of heating and cooling systems has become essential at the early design stage and the
remedial option stage in the case of new and existing buildings, respectively [10].

The current energy-related modeling techniques, involving the prediction, manage-
ment, and optimization of the building energy systems design and control, can be grouped
into three categories [11], physics-based modeling (i.e., white-box models), data-driven
modeling (i.e., black-box models), and hybrid modeling (i.e., grey-box models), by reflect-
ing both physical laws and data-based models. Building energy-related analysis tools
and approaches is based on the three methods required to predict thermal and/or energy
behaviors and analyze interactions between many connected parts for the building thermal
zones and integrated cooling and heating systems. Those modeling approaches can be
used to investigate indoor thermal requirements and occupant’s needs, which generally
depend on the individual performance of energy-relevant sublevel parts (e.g., internal
heat gains, HVAC-related systems, and other connected systems). The whole-building
energy performance is also integrated by considering the individual components in a
building [12]. Since the whole-building energy performance within a building is based on
many subsystem components, building energy-related analysis tools can be separated by
different options, including building design tools, independent modeling tools of building
energy-relevant subsystems, and detailed whole-building energy simulation programs. In
addition, many whole-building energy simulation tools and applicable prediction methods
exist to determine energy analysis indicators for different design scenarios to minimize
energy costs and peak energy consumption [12,13]. For this review, this study focuses on
heating and cooling energy-related systems (e.g., HVAC systems), including modeling
approaches and integrated control techniques.

To operate HVAC systems more efficiently, the appropriate control and operation of
the energy-related systems are key techniques. Since HVAC-related systems of modern
buildings consist of many different types of subsystem configurations with a dynamic
operation [14], controlling HVAC systems in an effective way between multiple goals (e.g.,
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energy reduction and occupant comfort) is still challenging, specifically in finding the opti-
mal control signals and operating multiple systems simultaneously within a building. The
rule-based reactive control strategy is commonly used for traditional HVAC control systems,
including pre-determined or tracked schedules [15]. The pre-determined schedules can be
used to select proper temperature setpoints based on heuristic rules. The tracked setpoint
input schedules can be determined based on the difference between variables (e.g., temper-
ature, pressure, and flow) using techniques such as the proportional, integral, and derivate
(PID) control [16]. The rule-based control strategies can also be facilitated to reduce the
building energy usage, and thus, GHG emissions, by adjusting the setpoint signals based
on an interactive heuristic approach. Although the rule-based feedback control algorithm
has been widely adopted for building controls because it is relatively simple and effective
for building applications, it is still challenging to have optimal solutions, typically when
it must be customized to dynamic response events or seasonal weather conditions [15].
One effective method to resolve such control issues for energy- and environmental-efficient
buildings is the model predictive control (MPC) approach [17]. The application of the MPC
method for buildings has been actively studied and implemented due to its capability
of solving an optimization problem at every decision moment by satisfying conflicting
goals, such as energy reduction and indoor thermal comfort. Lately, its application is
becoming more powerful because most modern buildings are equipped and connected
with complicated heat systems and/or on-site intermittent systems, such as renewables
and/or grid connections. In addition, the recent trends in the affordable cost of relevant
hardware components (e.g., controllers, communication infrastructure, and sensors) and
the ease of application have led to the success of the MPC for building applications [18,19].

Given that MPC applications can effectively predict a building’s future behaviors (e.g.,
thermal demands and/or energy savings), using building modeling tools and/or devel-
oped mathematical models are essentially considered. As mentioned earlier, three energy
modeling categories can be used for building applications with the MPC framework [20].
According to the problem formulation, the three modeling approaches have different chal-
lenges and applicability to the MPC. Many recent studies on MPC have been conducted for
intelligent building operations by focusing on energy reduction and/or minimization with
simultaneous indoor thermal comfort improvement. For instance, Drgona et al. [21] provide
a good overview of advanced building control methods by addressing a unified framework
of building MPC technologies for real-world applications. Based on their conclusion, al-
though there still have been challenges in MPC market penetration based on the advanced
stage of relevant research fields, large-scale MPC implementation in a marketplace could be
expected to take place over the coming years because MPC is the most promising solution
and has been actively studied for reductions in building HVAC energy and environmental
issues. Despite a large number of existing studies on building energy modeling and its
advanced operation fields, a comprehensive review of many recent advancements is still
needed because practical applications and adoptions by built-environment engineers are
in their early stages. In addition, the technology development in such fields has rapidly
evolved in response to the fast transition to energy management technologies and practical
applications for buildings and building-connected systems.

Based on the above observations and further considerations, this review study aims
to deliver a thorough review of building energy modeling techniques and state-of-the-art
updates for MPC HVAC applications associated with the modeling techniques by reviewing
the most recent research articles in this field based on a database search. More specifically,
the key contributions of this review study are summarized as follows:

• This study introduces the advancements of currently applicable energy modeling tools
and methods that can be applied to assess building energy performance and can be
integrated with HVAC control and optimization.

• This study investigates recent research articles based on the three applicable build-
ing energy modeling approaches (i.e., white-box, grey-box, and black-box modeling
approaches) and their research-based applications.
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• This study also provides an overview of MPC-based HVAC operation methods and
their practical applications based on published research papers. This part reviews the
major subsystem configurations (e.g., the air-loop and water-loop demand/supply
sides) of HVAC-related systems with dynamic operation and control methods.

• This study, finally, highlights the conflicting issues and future insights into the opti-
mized control and operation of HVAC based on energy modeling-based approaches
for smart and integrated buildings.

The rest of the paper is organized as follows. Section 2 provides a systematic review
process based on a database search. The review of three major energy modeling approaches
(i.e., white-box, grey-box, and black-box modeling approaches) is presented in Section 3.
This section introduces modeling details of the three approaches, and each modeling
method’s relevant research papers are summarized. Section 4 comprehensively reviews
the MPC-based energy modeling, controlling, and optimization studies by focusing on
radiant cooling and heating, the air-handling unit, the electric heat pump-based HVAC,
and chiller systems. Section 5 gives both the conclusions and discussion based on recent
advancements, challenges, and directions for future works.

2. Systematic Review Process

This review study first investigated relevant keywords and context-based collected
data to comprehensively overview their frequency and distribution. Then, to narrow the
study selection and search scopes, this study focused on and analyzed relevant review-type
articles published primarily since 2000 by classifying keywords and application types.
Then, research-type papers were reviewed to extract informative and useful outcomes for a
systematic review by highlighting the most recent findings in energy simulation methods,
tools, and applications in building energy system fields.

Figure 1 presents the overall workflow of the systematic review process based on the
available published articles regarding energy modeling techniques, MPC-based HVAC
control, and optimized operation schemes in buildings. The current whole-building en-
ergy modeling and prediction, management, and optimization techniques for energy
performance of integrated buildings can be grouped into three categories: physics-based
modeling (i.e., white-box models), hybrid modeling (i.e., grey-box models), and data-driven
modeling (i.e., black-box models). Based on those categories, search scopes and research
types were narrowed for more detailed investigations on such items. The overall topics
focus on whole-building energy simulation tools, energy system modeling for building
connected applications, data-driven building energy prediction, model predictive control
and optimization, and white-box, black-box, and grey-box models regarding energy and
environmental systems for building applications. In addition, published journal articles
since 2010 based on MDPI’s and Elsevier’s databases (e.g., found through Google Scholar,
MDPI’s open access journal list [22], Scopus, and ScienceDirect [23]) were collected to
overview each paper’s major objectives, methodologies, limitations, and future challenges.
It should be noted that for all the papers used for this review study, about 80% of them are
based on Elsevier’s database.
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3. Building Energy Modeling Approaches
3.1. White-Box Modeling Approaches

The white-box modeling methods (known as the physical-based or engineering meth-
ods) use physical principles to solve the calculation of thermal and energy behaviors on the
whole-building level or for sublevel systems in buildings [24]. A series of mathematical
models are built up step-by-step based on elaborate physical functions or thermodynamics
of the mass and energy balances, momentum, and flow balance [25]. The common way
of making a white-box model for building energy modeling is as follows: building ge-
ometry/envelope, internal heat gains (e.g., lights and occupants), sublevel systems (e.g.,
HVAC and renewable systems), and control and management parameters. Because of such
required parameters that involve the building itself and its environmental information,
the modeling is relatively complex and time-consuming to obtain adequate and accurate
results corresponding to realistic situations in buildings [26].

Although a wide collection of building energy modeling tools was used throughout the
building energy community, most tools were traditionally created for design applications,
detailed system simulations, and simple operation managements based on homeostatic
short-term feedback mechanisms [27,28]. In the case of white-box modeling approaches,
building energy modeling tools typically serve the thermal and HVAC system performance
analysis of buildings individually based on the definitive input data of building geometries,
HVAC systems, internal heat gains, and weather data [12]. The U.S. Department of Energy
(DOE) provides a directory of building-related energy modeling tools, as shown in Figure 2,
which have been traditionally and recently used to improve HVAC energy efficiency or
incorporate renewable energy systems to enable the smart building performance [29].

Hong et al. [12] reviewed the state-of-the-art methodologies on the development
and application of computer-aided building modeling tools. In their survey of various
building energy modeling tools, only a few simulation tools were available in the public
domain even though numerous building design and HVAC system simulation tools were
used throughout the building communities. In addition, they mentioned building energy
modeling tools that were registered in the International Energy Agency (IEA) Energy
Conservation in Buildings and Community Systems (ECBCS) Programme, such as DOE-
2, COMIS, and TRNSYS. Their study proved it to be challenging to compare building
energy simulation programs in absolute ways because each building simulation tool had
its advantages and disadvantages regarding building thermal load and HVAC system
levels. Figure 2a illustrates the building energy simulation tools available for the building
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thermal load analysis and HVAC system supports. Additionally, Figure 2b shows the public
and private sector simulation tools and co-simulation services through the OpenStudio
Platform. Based on this platform, a co-simulation analysis can be performed for a more
advanced assessment, including to assess system size and real-time optimization, detailed
visual comfort analysis, novel HVAC system implementation, etc. [30].
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In reference [13], the features of twenty widely used building energy simulation tools
were reviewed, including BLAST, BSim, DeST, DOE-2.1, eQUEST, EnergyPlus, ECOTECT,
Esp-r, IES, TRNSYS, etc. Crawley et al. [13] also provided detailed trends about building
energy modeling tools and compared the features of building simulation tools based on
different categories (e.g., general modeling features, zone thermal loads, infiltration, and
HVAC systems). Ercan [33] also provided a systematic review of current software tools
(e.g., EnergyPlus, TRNSYS, Modelica/Dymola and MATLAB/Simulink) by focusing on the
advanced model-based energy evaluation and operation control for building applications
associated with HVAC and renewable energy systems.

Those studies [12,13,33] mostly reviewed an extensive list of building energy modeling
tools and provided summaries of the current building energy modeling tools, including
advantages and disadvantages. This part of the review paper will focus on the existing
literature, adopting energy modeling tools and techniques to analyze and implement
energy-efficient HVAC-related technologies for building applications. Table 1 lists the
representative reviewed research articles regarding white-box models.

Table 1. List of the representative reviewed papers regarding “white-box” models for building energy
simulation.

Source Year The Focus of Article (Objectives) Software and Features (White
Box-Based Tool)

Coffey et al. [27] 2010 Development of a flexible modeling framework using GenOpt for
MPC.

Co-simulation approach with
EnergyPlus and TRNSYS.

Beausoleil-Morrison et al. [34] 2012
Development of an integrated system using energy conversion,
storage, and distribution technologies for existing whole-building
energy simulation tools.

Co-simulation between TRNSYS and
ESP-r.

A. L. Pisello et al. [35] 2012 Methodologies to reduce building energy demands through
post-occupancy assessment and to optimize building operations.

Modeling and performance evaluation
for optimization strategy using
EnergyPlus.

Li and Wen [36] 2014
Development of building energy estimation model for online
building control and optimization based on a system identification
approach.

Online modeling using EnergyPlus
and MATLAB.
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Table 1. Cont.

Source Year The Focus of Article (Objectives) Software and Features (White
Box-Based Tool)

Dirks et al. [37] 2015 Impact study of climate change on peak and annual building
energy use. Multi-simulation using EnergyPlus.

Davila et al. [38] 2016 Development and validation of an urban building energy model
to assess citywide hourly energy demands at building levels.

Modeling and performance evaluation
using EnergyPlus.

Oak [39] 2016 Development of the control system using building energy control
patterns in response to weather changes. Co-simulation between BIM and CFD.

Pang et al. [40] 2016
Development of the real-time simulation framework using FMI
(functional mockup interface) and FMU (functional mockup
units).

Co-simulation with EnergyPlus.

Seo and Lee [41] 2016 Analyzed part load ration (PLR) and operation features with VAV
system to evaluate energy savings potential.

Modeling and performance evaluation
using EnergyPlus.

Ng and Payne [42] 2016 Evaluated energy savings potential of ventilation-related energy
systems such as HRV and ERV.

Modeling and performance evaluation
using TRNSYS.

Chen et al. [43] 2017 Presented the retrofit analysis feature to automatically create and
simulate urban building energy models.

Open web-based modeling platform
with EnergyPlus.

Kim et al. [44] 2017 Performance evaluation of VRF and RTU-VAV systems under US
climate conditions.

Modeling and performance evaluation
using EnergyPlus.

Yun and Song [45] 2017 Development of automatic calibration method to reduce the errors
between simulated and measured HVAC energy use.

Automated calibration using
EnergyPlus.

Alimohammadisagvand et al. [46] 2018 Investigated the effect of demand response (DR) on building
energy use and cost.

Modeling and performance evaluation
using IDA ICE.

An et al. [47] 2018 Assessed cooling and heating performance of an office building
with building-integrated PV windows.

Modeling and performance evaluation
using EnergyPlus.

Fernandez et al. [48] 2018 Evaluated energy savings potential of energy-efficient measures in
commercial buildings under US climate zones. Multi-simulation using EnergyPlus.

Wu and Skye [49] 2018 Evaluated energy and cost savings potential of HVAC and
renewable systems under US climate conditions.

Modeling and performance evaluation
using TRNSYS.

Kim et al. [50] 2018 Investigated the daylighting and thermal effects of a double skin
façade system with interior and exterior blind controls.

Modeling and performance evaluation
using EnergyPlus and Dysim.

Kim et al. [51] 2018 Presented the detailed procedures for model calibration of a VRF
system with a dedicated outdoor air system.

Modeling and calibration using
EnergyPlus.

Wu et al. [52] 2018
Investigated commercially available HVAC technologies in terms
of energy, comfort, and economic performance for a residential
building.

Modeling and performance evaluation
using TRNSYS.

Yu et al. [53] 2018 Conducted the comparative analysis to evaluate HVAC energy
savings potential of the UFAD system.

Modeling and performance evaluation
using EnergyPlus.

Kim et al. [54] 2019 Presented a methodology of validating fault models that can be
used with the building energy simulation tool.

Modeling and calibration using
EnergyPlus.

Lee et al. [55] 2019 Investigated the part load ratio and the operating characteristics of
a gas boiler to enable energy savings.

Modeling and performance evaluation
using EnergyPlus.

Min et al. [56] 2019 Evaluated the energy performance of a multi-split VRF system
based on bypass and injection cycles using a numerical simulation.

Modeling and performance evaluation
using physics-based mathematical
models.

Taddet et al. [57] 2019
Real-time building simulation by implementing a data
communication chain in EnergyPlus with hardware-in-loop
integration for optimal HVAC operation.

Co-simulation with EnergyPlus.

Guyot et al. [58] 2020 Manual calibration of dynamic heating and cooling systems was
conducted using a real office building with 132 zones.

Modeling and calibration using
EnergyPlus.

N. Kampelis et al. [59] 2020 Development of a building energy simulation model and
calibration based on a trial-and-error approach.

Modeling using EnergyPlus and
calibration based on a trial-and-error
approach and Kalman filtering.

Cucca and Ianakiev [60] 2020 Development of the co-simulation tool coupling the model of a
building energy system with Dymola/Modelica and EnergyPlus. Co-simulation with EnergyPlus.

Im et al. [61] 2020
Investigated key influential parameters in estimating the
uncertainty of energy savings and performed uncertainty
quantification for several different scenarios.

Modeling and performance evaluation
using EnergyPlus.

Y. Kwak et al. [62] 2020 Proposed a flexible modeling approach to develop a reference
building for energy analysis based on parametric analysis.

Modeling and parametric analysis
using EnergyPlus.

Seo et al. [63] 2020
Assessment of the cooling energy performance between
chiller-based conventional AHU systems and water-cooled
VRF-HP.

Co-simulation with EnergyPlus.

A. Rosato et al. [64] 2020 Development and validation of a dynamic building simulation
model for fault detection and diagnostics (FDD).

Modeling and fault
detection/diagnostics (FDD) using
TRNSYS.
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Table 1. Cont.

Source Year The Focus of Article (Objectives) Software and Features (White
Box-Based Tool)

Calixto-Aguirre et al. [65] 2021 Proposed a methodology for the validation of non-airconditioned
building thermal simulation to increase building energy efficiency.

Modeling and performance evaluation
using EnergyPlus.

Ascione et al. [66] 2021 Development of user-friendly tool for building energy modeling
and simulation.

Co-simulation using EnergyPlus and
MATLAB.

Bampoulas et al. [67] 2021 Presented an energy quantification framework for various
residential building energy systems.

Modeling and performance evaluation
using EnergyPlus.

Martinez-Marino et al. [68] 2021 Simulated indoor thermal conditions in a multi-zone building
using a co-simulation method.

Co-simulation using TRNSYS and
MATLAB.

Piccinini et al. [69] 2021
Development of a novel reduced-order model technology
framework for energy savings through cost-effective energy
measures.

Modeling and calibration using
Modelica ROM.

R. D-Tumeniene et al. [70] 2021 Development of a building energy model for an administrative
building and model calibration with measured data.

Modeling and calibration based on an
EnergyPlus engine simulation tool.

Neves et al. [71] 2021 Investigated the energy and cost impact of geothermal heat pump
systems.

Modeling and performance evaluation
using EnergyPlus.

Based on the reviewed papers, the challenge of the current studies is to better in-
tegrate the whole simulation into design applications and detailed system processes for
improving the quality management [72]. Building energy modeling tools for future smart
buildings require automated operation by integrating with a real-time control algorithm
in the decision-making process under various built-environments [40]. Co-simulation can
overcome the disadvantages of each simulation tool by linking two or more simulation
tools together by exchanging run-time data [73]. The development of co-simulation can
also provide more accurate predictions, including about the HVAC system, plant sizing,
and occupant thermal comfort [74].

EnergyPlus is a widely used new-generated program developed by the U.S. Depart-
ment Of Energy (DOE) [75]. With the co-simulation process, the building system manager
manipulates the data interaction and data exchange between EnergyPlus and other linked
tools, such as SPARK and TRANSYS modeling tools [76]. For enabling optimized build-
ing control, co-simulation between EnergyPlus and Simulink through a building control
virtual testbed (BCVTB) and MLE+ is the current best practice [77,78]. A functional mock-
up interface (FMI) and functional mock-up unit (FMU) for co-simulation, developed by
the Lawrence Berkeley National Laboratory (LBNL), are also good middleware for the
improvement of computing techniques. The FMI and FMU can couple several different
simulation tools (e.g., EnergyPlus, TRNSYS, MATLAB/Simulink, Python, and LabView).
The middleware can allow data interaction and exchange between simulation programs
and real building automation systems (BASs) that can be developed for existing or novel
HVAC systems and their practical applications [41,61]. Modelica is the open standard of
an equation-based, object-oriented, and non-proprietary modeling language that has been
used in various building applications [79,80]. Since dynamic building energy models for
thermal and HVAC component analysis are developed in Modelica, it can be a proper tool
for control purposes in future smart buildings [34,79]. TRNSYS is an extensible simula-
tion tool for the whole-building energy simulation, including single- and/or multi-zone
buildings [81]. The TRNSYS simulation solves algebraic and differential equations of
physics-based energy systems in a whole building. TRNSYS’s building energy simulation
can provide engineers and researchers with diverse system analyses, from simple systems
to advanced HVAC system designs, including HVAC control strategies, renewable energy
systems (wind, solar, photovoltaic, hydrogen systems), etc. For pre- and/or post-processing
co-simulation, TRNSYS is also able to link with other software tools using a middleware
framework (e.g., Microsoft Excel, MATLAB/Simulink, COMIS, etc.) [82]. Esp-r, devel-
oped in 1977 by the Energy Systems Research Unit at the University of Strathclyde, is the
European reference building simulation program. Esp-r is capable of modeling thermal
zones and simulating the energy flows within combined building HVAC systems with
user-specified control actions [83]. In addition, co-simulation between Esp-r and TRNSYS
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simulation tools or other co-simulation frameworks (e.g., MATLAB/Simulink) allows the
strengths of both simulation tools to enable the modeling of innovative buildings and
energy system designs [35].

3.2. Grey-Box Modeling Approaches

Grey-box modeling approaches, known as “semi-physical” or “hybrid” modeling
methods, combines white- and black-box modeling approaches by considering a hybrid
structure with first-principle physics and data-driven strategies [84]. This approach includes
the first-principle equations to develop simplified physical processes occurring in the
system, and the equations developed from statistical methods and experimental data
to improve modeling efficiency with less-understood relationships [85]. The grey-box
algorithms include the advantages and shortcomings of the other two methods to represent
the system’s actual behavior and efficiently deliver those methods’ benefits [86]. Figure 3
illustrates a typical process and the data requirements for developing a grey-box model.
This method can be more computationally efficient than the white-box method and offers
flexibility and scalable applications in a model design phase to facilitate the evaluation of
energy-efficient means at single or multiple building system levels [87]. This method has
been widely used for evaluating energy optimization scenarios when considering building
HVAC control or smart-connected system applications [26].
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A resistance-capacitance (RC) or thermal network model is commonly used to create
grey-box models. Although there are several challenges, such as theoretical limitations
and confusing model structures, this approach has been used for many research topics in
building energy-related and/or HVAC systems because of the benefits, including: (1) a
faster calculation with simplified physics-based models and (2) online controls [26]. The
thermal conditions of a building can be expressed with an electric circuit analogy with
multiple parameters (i.e., the number of thermal resistances and capacitances) of the model
obtained from the measured data, considering available physical insights [88].

The grey-box models can be created based on two subcategories: (1) the physical
approach and (2) the semi-physical approach [89]. The major difference between the
physical and semi-physical approaches is model structures. For the physical approach,
the model structure can be built based on physical models, and the parameters used for
the physical models are typically estimated from the measured data. Zhang et al. [90]
provided an excellent example of the physical approach for grey-box modeling. Zhang’s
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study proposed a dynamic, simplified RC-network model for a building ventilation system
and obtained the parameter identification effectiveness using experimental data. The semi-
physical approaches use physical insights to guide the data through data-driven models.
Hossain et al. [91] presented a grey-box modeling approach that uses the Bayesian neural
network method to estimate the parameters of a grey-box thermal model with a training
dataset. Numerous hybrid model structures of grey-box modeling have been used in the
literature. The common grey-box model comprises one first-principle physical submodel
and one black-box based submodel with parallel and serial arrangements, even though the
number and type of submodels can vary according to application features [92].

The energy modeling of buildings’ HVAC and their subsystems or community levels
has multiple roles, such as thermal behavior estimation, HVAC size design and optimiza-
tion, and subsystem/urban energy controls, including real-time operation [93]. For the
grey-box modeling approaches, there are numerous representations of research articles
regarding RC modeling for building envelopes, single- or multi-zone modeling with inter-
nal/exchanged heat gains (e.g., zone air mixed, electrical heat gains, and infiltration), and
simplified building HVAC models or district/urban energy prediction models. Among
the existing research articles, the topics of thermal load calculation, HVAC operation con-
trol/operation, and optimization based on MPC frameworks are relatively dominant for
buildings’ HVAC and their connected applications [26]. Table 2 summarizes the list of the
more representative papers reviewed for this paper, focusing on the grey-box models for the
building thermal load and HVAC energy simulation. Because parameter identification is a
significant process for grey-box model development, this table also presents how they ob-
tained and/or assumed the parameter identification data for each study. Those parameter
values are generally identified based on measured data and/or simulation assumptions.

Table 2. List of the representative reviewed papers regarding “grey-box” models for building thermal
load and HVAC energy simulation.

Source Year The Focus of Article (Objectives) Parameter Identification (or Other Features)

Nielsen and Madsen [94] 2006 Evaluated the heat consumption of a large district heating system
using a grey-box modeling approach.

Experimental identification with measured heat
consumption and climate data.

Kampf and Robinson [95] 2007 Development of a grey-box model to simulate heat flows for a
building with an arbitrary number of zones.

Assumed identification and ESP-r were used
for model verification.

Balan et al. [96] 2011 To simulate the thermal behavior of a building for energy
reduction using a simplified thermal-network grey-box model.

Experimental identification of the model’s
parameters.

Berthou et al. [97] 2014
Development and validation of a grey-box model by adopting a
second-order model to predict thermal behavior in an office
building.

Experimental data for the identification process
and sensitivity analysis to identify the most
important parameters.

Reynders et al. [98] 2014
Development of a robust grey-box model that results in an
accurate prediction and long-term simulation in a residential
building.

Experimental identification for reliable
characterization of the physical properties.

Unerwood [99] 2014
Development of an improved method for the simplified modeling
of the thermal response of building components using a
5-parameter second-order grey-box model.

The extraction of the simplified model
parameters based on a multi-objective function
algorithm.

Ogunsola and Song [100] 2015 A simplified RC thermal model using an analytical solution
method for an office building.

Experimental data for the identification process
and the developed RC model was compared
with measured data and a white-box model.

Teres-Zubiaga et al. [101] 2015 Evaluated the thermal performance of a residential building with
a grey-box model.

Experimental data for the identification process
and improving accuracy.

Jara et al. [102] 2016 Presented the self-adjusting RC-network model for the parameter
identification of a simplified lumped parameter model.

First-order method with two resistances, one
capacitance, and simulated data used for the
identification process.

Ji et al. [103] 2016 Development of the RC-network model with a submetering
system for cooling load calculation in a commercial building.

For the identification process, measured data
from real buildings and simulated data from an
EnergyPlus model were used.

Zhang et al. [90] 2016
Proposed a dynamic, simplified RC-network model for radiant
ceiling cooling system integrated with an underfloor ventilation
system.

The parameter identification effectiveness
determined by experimental data.

Hu and Wang [104] 2017 Development of a self-learning grey-box thermal model to
investigate demand response for a HVAC system.

Pre-estimated and scaled parameters for the
identification process using measured data.
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Table 2. Cont.

Source Year The Focus of Article (Objectives) Parameter Identification (or Other Features)

Li et al. [105] 2017 Simplified RC-network model development and validation for the
pipe-embedded concrete radiant floor system.

RC model with two resistances and one
capacitance (2R1C), and validation through
numerical simulation and experimental data.

Afram et al. [106] 2018 Development of a grey-box model for a residential HVAC system
with heat recovery ventilator and air-source heat pump.

Experimental data for the identification process
and the developed model was compared with
measured data for validation.

Gori and Elwell [107] 2018
Development of a method for the quantification of systematic
errors on the thermophysical properties of buildings using a
dynamic grey-box model.

Experimental data for the identification process
and the comparison against the static method.

Macarulla et al. [108] 2018 Assessment of the potential of using the stochastic grey-box
modeling approach to estimate the ventilation air change rate.

Tracer-gas mass balance and experimental data
used for the identification process.

P. Bahramnia et al. [109] 2019
Development of a RC-network model and implementation of a
model predictive control strategy to optimize both temperature
and humidity operations.

Experimental data for the identification process
and the developed model was compared with
measured data by minimizing the optimization
index.

Shamsi et al. [110] 2020 An uncertainty framework for reduced-order grey-box energy
models in heat demand predictions of the building stock.

The identification process of using an
integrated uncertainty approach using a
copula-based theory and nested fuzzy Monte
Carlo approach.

Thilker et al. [111] 2021 Development of a nonlinear grey-box model for the heat dynamics
of a school building with a water-based heating system.

Experimental data with a DAQ system based
on IoT sensors for the identification process.

F. Belic et al. [112] 2021 Demonstration of a simple implementation of a RC-network
method for multi-zone buildings to save HVAC energy use.

The parameter identification effectiveness
determined by simulation and experimental
data obtained from the literature.

Joe [113] 2022
Application of MPC with a grey-box model to investigate the
operational cost-savings potential of an underfloor air distribution
system.

Experimental data used for the identification
process and simulation-based case study to
quantify the savings potential of the MPC.

3.3. Black-Box Modeling Approaches

With the rapid development of smart-integrated technologies (e.g., smart sensors and
electric appliances), the data collection from various devices or HVAC-related systems in
a building has become much easier [114]. Then, those collected data can be facilitated to
improve the energy-efficient performance across multiple research fields with data mining
techniques [115]. With such developments, the black-box modeling approach (i.e., the data-
driven model) has recently gained much attention as one of the biggest, most promising
building energy modeling techniques because of its simplicity and flexibility [116,117].
Unlike white-box and grey-box models, black-box modeling approaches do not require
principle physical equations to predict thermal and energy behaviors in a building. A
greater use of relatively complex HVAC controls and connected building energy systems,
consisting of many subsystem configurations, is advancing the use of black-box modeling
approaches and simulations. Black-box models for building thermal and energy prediction
are generally developed based on historically measured or generated data to capture the
hidden mathematical relationships between input and specified output variables using
machine learning and statistical methods [118,119]. Figure 4 represents a general process of
machine learning-based black-box modeling approaches. Black-box model approaches have
been well adaptable for building HVAC-related applications without the need for detailed
physical information about a building. Most projects for building HVAC applications focus
on analyzing time-series datasets with training, validation, and testing steps [120].

The black-box modeling process involves several steps, including data collection,
pre-processing, training, validation, and testing datasets to evaluate the implemented
machine learning algorithms. For building HVAC system applications, various time-series
data variables (e.g., data type, weather conditions, internal heat gain rates, schedules, and
operation features of HVAC systems) could be included. A building’s physical parameters
(e.g., locations, the number of floors, window to wall ratios, and surface construction fea-
tures) are also important for a cluster analysis based on data collection and pre-processing
phases [119]. The black-box model is developed and run on the training dataset in the
training process. The results are then compared to the original training data to adjust the
different parameters of the algorithm to fit the training dataset [122]. The validation process
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is considered to tune key modeling parameters to improve the fitting accuracy of the imple-
mented algorithm, which already fits the training dataset, using different datasets [120,123].
The testing process is conducted to evaluate the modeling and predicting performances
by running the developed algorithm on the test dataset (e.g., the remaining part of the
entire dataset) [120]. After the evaluation, any errors or uncertainty factors could be ana-
lyzed to capture practical issues with the model’s development (e.g., model input/output
parameters and structures), as shown in Figure 4.
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By reflecting the benefits of their classification and prediction capabilities, numerous
modeling techniques have been developed and explored in the building domain for build-
ing thermal and energy predictions, fault detection and diagnosis, and building system
optimization and controls [117,124]. Figure 5 lists the black-box modeling approaches
for building systems’ modeling and optimized controls. A review study by Afram and
Janabi-Sharifi [117] provides a good overview of the data-driven modeling methods for
HVAC modeling techniques in more detail. A taxonomy of the data-driven models is typi-
cally based on the criteria of a dataset for single-input/output or multiple-input/output
structures while considering auto-tuning, the ability to model linear or nonlinear behaviors,
and the robustness to parameters and disturbances [117,125]. Detailed information on each
modeling algorithm can be found in the study [4,117]. Table 3 summarizes the representa-
tive papers regarding black-box modeling approaches, focusing on HVAC energy modeling
techniques and practical applications. The modeling techniques and features presented in
Table 3 are described based on the list of the representative black-box methods, as shown
in Figure 5. Since this literature review is basically intended to present HVAC-related
research and practical applications of three practical modeling approaches, the reviewed
articles, listed in Table 1 through Table 3, are focused on specific tasks applied in building
HVAC-related systems and their MPC fields based on a database search.
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Table 3. List of the representative reviewed papers regarding “black-box” modeling approaches.

Source Year The Focus of Article (Objectives) Modeling Techniques and Features

Fan et al. [126] 2014
A data mining-based approach for developing an
ensemble model for predicting next-day energy
consumption.

• Data mining algorithm:

- The entropy-weighted k-means for
clustering analysis;

- The generalized extreme studentized
deviate test for outlier detection;

- Leave-group-out cross-validation for
parameter optimization.

Jetcheva et al. [127] 2014 A building-level neural network model for
day-ahead electric load forecasting.

• Data mining algorithm:

- The k-means for clustering analysis;
- Neural network (NN) for load

forecasting;
- SARIMA for the comparison with the

NN.

Ma and Cheng [115] 2016
Development of an integrated data mining
framework to estimate building EUI on an urban
scale.

• Data mining algorithm:

- Support vector regression (SVR),
artificial neural network (ANN), and
elastic net for elec. load forecasting and
comparison;

- The correlation feature selection (CFS)
for a data filter method.

Zhang et al. [123] 2016

Development of the forecasting model using
weighted SVR with nu-SVR and epsilon-SVR to
predict time-series half-hourly and daily electricity
consumption.

• Data mining algorithm:

- Support vector regression (SVR);
- DE, genetic algorithm (GA), and

particle swarm optimization (PSO) for
optimal parameter comparison.
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Table 3. Cont.

Source Year The Focus of Article (Objectives) Modeling Techniques and Features

Sarwar et al. [128] 2017 A field validation study of an autoregressive with an
exogenous model for thermal load prediction.

• Statistical model:

- An autoregressive with exogenous
(ARX) for thermal load prediction and
validation.

Keshtkar and Arzanpour [129] 2017 An adaptable autonomous energy management
solution for the residential HVAC system control.

• Fuzzy logic model:

- Supervised fuzzy logic model to detect,
learn, and adapt to new data.

Homod [130] 2018
Development of a novel control algorithm that could
handle large-scale nonlinear systems’ uncertainty
characteristics.

• Statistical model:

- Nonlinear regression using
Gauss–Newton method for fine-tuning
operation;

- Feedforward strategy to boost the
stability of the system control.

Causone et al. [131] 2019
A data-driven procedure to create yearly occupancy
and occupant-related electric load profiles for
building energy simulation.

• Data mining algorithm:

- A self-organizing map (SOM) and
k-means for clustering analysis;

- A K-NN algorithm for classification.

Png et al. [132] 2019

Implementation of a smart and scalable control
approach (i.e., smart-token-based scheduling
algorithm (Smart-TBSA)) using IoT devices and a
machine learning method.

• Data mining algorithm:

- Neural network (NN) for thermal load
forecasting.

H. Moayedi et al. [133] 2019
Development and model validation of energy
performance prediction models using machine
learning techniques and measured data.

• Data mining algorithm:

- Multi-layer perception regressor;
- Lazy locally weighted learning;
- Alternating model tree;
- Random forest;
- ElasticNet;
- Radial basis function regression.

Ali et al. [134] 2020

A methodology to implement bottom-up,
data-driven, and spatial modeling approaches for
multi-scale geographic information system mapping
of building energy modeling.

• Geometric model:

- Geographic information system (GIS)
mapping.

• Fuzzy logic model:

- Fuzzy string-matching algorithms.

• Data mining algorithm:

- Deep neural network (DNN) for
building energy prediction.

Akbari-Dibavar et al. [135] 2020
A hybrid optimization model for smart home energy
management in day-ahead and real-time energy
control.

• Stochastic model:

- Stochastic programming for
uncertainty analysis;

- A flexible, robust optimization
approach to creating a tractable
equivalent of the problem.

Tian et al. [136] 2020 An innovative method to develop energy-efficient
building energy models in office buildings.

• Statistical model:

- Statistical analysis to explore the
relationship between features and
energy consumption.

• Data mining algorithm:

- Shapley Additive exPlanations (SHAP)
to quantify the impact of each outcome
of a model.

Chiesa et al. [137] 2020
A working prototype of an IoT system that controls
natural and artificial light balance for smart
buildings.

• Fuzzy logic model:

- Fuzzy control logic for a LED light
controller.
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Table 3. Cont.

Source Year The Focus of Article (Objectives) Modeling Techniques and Features

M Borowski and K. Zwolinska [138] 2020
Development and model validation of cooling
energy prediction models for a hotel building using
two ML techniques: ANN and SVR.

• Data mining algorithm:

- ANN;
- SVR.

Kim et al. [139] 2021
Development of a new computational model that
predicts the thermal load in HVAC&R to be handled
by each device and equipment model.

• Data mining algorithm:

- Artificial neural network (ANN) for
HVAC flow rate prediction and
performance.

Elkamel et al. [140] 2021
Development of the generation capacity schedules
to meet the system’s load ability using a personal
rapid transit system.

• Stochastic model:

- A stochastic mixed-integer linear
programming model for day-ahead
scheduling.

Sonta et al. [141] 2021

Methods for linking lighting zone energy to
zone-level occupant dynamics and simulating
energy consumption of a lighting system based on
optimizing the layouts.

• Stochastic models:

- A stochastic approach for occupant
clustering;

- Genetic algorithm for optimizing
designs of buildings.

• Statistical models for energy consumption
prediction:

- Support vector regression;
- Multiple linear regression.

• Data mining algorithm for energy
consumption prediction:

- Artificial neural network (ANN);
- Random forests.

Chaouch et al. [142] 2021
A smart approach of the HVAC control system to
reduce the energy consumption without affecting
the thermal comfort of occupants.

• Fuzzy logic model:

- The fuzzy logic for control rules.

Zhang [143] 2021

Development of a framework that integrates active
learning and feature selection for MPC with
data-driven building energy modeling
improvement.

• Data mining algorithm:

- Active learning algorithm in machine
learning with feature selection for
predictive control.

Geraldi et al. [144] 2022
A framework to reduce the uncertainty of
archetypes for benchmarking buildings using
entropy and cluster analysis.

• Data mining algorithm:

- Artificial neural network (ANN) for
building energy prediction;

- The k-means for clustering analysis.

• Statistical model for the target building
stock’s energy use analysis.

Zhou et al. [145] 2022

Development of a predictive energy management
strategy for smart community, including
water-based district cooling for a cluster of
buildings’ several electric vehicle charging stations.

• Stochastic model:

- Scenario-based stochastic model for
MPC using Modelica-based dynamic
co-simulation model of smart
community.

Hu et al. [146] 2022

Development of a data-driven urban building
energy model synthesizing the solar-based building
in tendency and spatio-temporal graph
convolutional network algorithm.

• Geometric model:

- Urban geographic model for capturing
building level characteristics and
weather data;

- Graph neural network mapping model
for predicting building energy
consumption and quantifying the
impact of interdependency on the
energy use.

Wei et al. [147] 2022
A coupled real-time occupancy and equipment
usage detection/recognition approach for efficient
building energy controls of a smart building.

• Data mining algorithm:

- Convolutional neural network (CNN)
for building energy prediction;

- Region-based CNN for object detection
and recognition.
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4. Model Predictive Control (MPC)

As the HVAC systems play a critical role in the energy consumption in buildings,
appropriate capacity determination and efficient control methods are key aspects to reduce
building energy consumption and, thus, environmental issues from the design stage to
the operation stage [148]. Because the control strategy of the HVAC system is typically
not optimized at the first phase in terms of the indoor cooling/heating load and relevant
energy costs, it is relatively hard to satisfy the thermal comfort of occupants completely
in the building’s thermal zones. In this aspect, as a method for energy-efficient control,
techniques such as MPC, which can predict the subsequent operation of the system and
find an optimal control method through an optimal algorithm, should be applied to the
HVAC system in buildings [149,150]. Figure 6 depicts a typical closed-loop MPC scheme
for a building’s applications. To implement an MPC scheme for building HVAC energy and
connected systems, real building and energy modeling parts need to be considered with a
control loop. The real building domain of the control loop consists of the actual building
affected by real-time weather and the building’s characteristic conditions, an estimated to
provide the real-time state estimates and the input sequence from the MPC domain. In
addition, the MPC domain consists of two major parts: (1) an optimization part and (2) a
building energy simulation model. Various optimization and modeling techniques can be
used for the MPC regarding features and applications of control strategies (e.g., control
functions, parameters, and controllable components of energy systems in a building).
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With such MPC frameworks, various studies have recently been conducted on HVAC
systems and their related subsystem parts to enhance a building’s energy-efficient per-
formance. According to Gholam et al.’s [151] review study, the most predictive control
application parts under the built environment were HVAC-related components, includ-
ing air-handling units (AHUs) and different types of HVAC configurations to provide
cooling and heating to the conditioned zones. Figure 7 illustrates the schematic of typical
HVAC air-loop and water-loop configurations. This figure shows different components,
including heating/cooling sources, condenser parts, air-terminal units, AHUs, and zonal
supplementary systems. According to the study [15], there are two reasons why designing
an HVAC controller appropriately is challenging and complex. This is mainly because
there are not only many related subsystems associated with the HVAC system, but also
control levels (e.g., target setpoint and actuator level) of each component that could be
different, depending on the system’s configuration. This review paper focuses on the MPC
applications of the HVAC components: (1) radiant heating and cooling systems, (2) AHUs,
(3) chiller and cooling tower parts, (4) and heat-pump-based HVAC systems.
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In addition, most of the recent optimization studies on MPC techniques have fo-
cused on optimal control to save the HVAC system’s energy and satisfy the occupants’
thermal comfort [152]. Additionally, in the case of a building’s HVAC energy analysis,
there is a tendency to analyze it together with the energy cost (electricity charge, primary
energy cost) [153]. Based on such observations, this section provides an overview of
MPC-based HVAC operation methods and their practical applications based on published
research papers.

4.1. Radiant Cooling and Heating Systems

For radiant cooling and heating systems, Woo [154] proposed a new MPC-based sur-
face condensation prevention framework that can accurately estimate the rate of surface
condensation for thermo-active building systems (TABS). MPC-based TABS achieved 21.0%
to 29.6% of cooling distribution energy savings compared to the mechanical ventilation
cooling system and 2.5% to 10.0% compared to the on/off control. Joe and Karava [155]
show a smart operation strategy based on MPC and the results to optimize the perfor-
mance of hydronic radiant floor systems. The MPC-based operation strategy confirmed
34% energy savings in the cooling season and 16% energy savings in the heating season
compared to the feedback control. To compare energy savings and control performance,
the proportional integral differential (PID), feedback, proportional-integral (PI), rule-based
method, weather-compensated control, and heuristic feedforward control methods were
introduced together, and the control performance was evaluated by comparing the time
to reach the setpoint and the thermal comfort range. Zhang et al. [156,157] demonstrated
control performance by implementing MPC in radiant floor cooling and combining it with
underfloor ventilation (RFCUV), which was then compared with the PID. As a result of the
comparison, the control performance (setpoint temperature adjusting time) was superior,
the thermal comfort was satisfactory, and the energy-saving effects of 13.2~17.5% were
confirmed. Bursill et al. [158] proposed and tested an MPC approach using rule extraction
(RE), which can be simply applied to building controllers for optimal control. In their study,
where MPC was implemented in 27 rooms of the building, they showed the energy savings
of MPC and RE were 42% for MPC and 27% for RE during the cooling season, and 18% for
MPC and 33% for RE during the heating season. In addition, the hybrid model predictive
control (HMPC), distributed model predictive control (DMPC), and supervisory MPC were
introduced and showed superior results than normal MPC. Siroky et al. [159] provide a
good example of the HMPC application to a building heating system. Their hybrid model
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includes continuous variables that correspond to physical and discrete parameters serving
as indices of a linear time-invariant model. Their proposed HMPC strategy enhances
comfort and shows about 10.5% energy savings compared to the normal MPC.

4.2. Air-Handling Units (AHUs)

In a conventional HVAC system, the air-handling unit (AHU) is a challenging com-
ponent to accomplish a satisfactory performance over the entire operating range by using
linear control due to its nonlinear nature of system behavior. The representative role of
MPC in the AHU is to propose a supply air temperature (SAT) that maintains appropriate
energy consumption and an indoor environment above a certain level while maintaining
a high level of control performance. Yang et al. [160] present a novel MPC developed
for a dedicated outdoor air system (DOAS)-assisted separate sensible and latent cooling
(SSLC) system. The MPC performance when controlling a conventional AHU system and a
DOAS-integrated SSLC system was investigated experimentally and compared against a
conventional feedback-control-based building management system (BMS). The comparison
results show that the MPC system could achieve 18% and 20% savings in electricity for
the single-coil AHU and DOAS-integrated SSLC, respectively. In addition, the thermal
comfort can be improved significantly compared with the BMS. The DOAS-integrated
SSLC turned out to be advantageous compared to the single-coil AHU as it produced a
better thermal comfort when MPC controls both systems. Hadjiski et al. [161] discussed a
thermal comfort-based MPC for a wooden house AHU. The optimization procedure was
carried out in such a way as to minimize energy consumption, satisfying the predicted
mean vote (PMV) and additional constraints. As a result, the proposed MPC supervisory
control algorithm guarantees thermal comfort for occupants and energy efficiency. Since the
existing control method has cost and energy efficiency limitations, MPC has been applied
and studied as a method for this.

The biggest advantage of MPC technology is that it can optimize the system perfor-
mance during changes in operational conditions and failures according to various situations
through real-time measurement and prediction. Lee et al. [162] aimed to develop a control
algorithm to run a typical VAV system with optimized AHU discharge air temperature
(DAT) setpoints. In the study, the ANN proposes the hourly AHU DAT with the lowest
total cooling energy consumption. The results showed that the predictive accuracy had a
low coefficient of a variation root mean square error (CvRMSE) of 24%. In addition, the
predictive control algorithm reduced the cooling energy by around 10%, compared to a
typical control scheme of constantly maintaining AHU DAT at 14 ◦C. Henze et al. [163]
demonstrate optimized control of a real-time building thermal storage inventory in a test
facility based on a predictive model. The model-based predictive optimal controller effec-
tively orchestrated all secondary and primary building mechanical systems in real-time
without sacrificing the thermal comfort. It turned out that despite the imperfect weather
forecasts and mismatch of predictive building energy predictions compared to the actual
building energy, the measured utility cost savings were noticeable.

Most of the recent optimization studies conducted using the MPC technique in the AHU
dealt with the system’s energy savings and occupant’s thermal comfort. Heuristics, PID, and
PI were introduced together to compare energy savings and the control performance, and
the control performance evaluation was also compared. Schwlngshackl et al. [164] dealt
with the multi-input-multi-output (MIMO) control for an industrial AHU system. In their
MIMO control, the temperature and relative humidity of the supply air are controlled
simultaneously. The AHU cannot show satisfactory performance by using linear control
due to its nonlinear behavior in the system characteristics. They proposed a MPC strategy
based on a network of local linear models. The proposed network is compared against a
conventional PI control, and its accuracy performance is demonstrated in both a simula-
tion and a real-world test plant. The proposed idea can improve the plant’s performance
compared to the PI strategy. Huang et al. [165] demonstrated a MPC strategy to improve
the control of the AHU discharge air temperature by dealing with the constraints and
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uncertainties directly. Their proposed method is evaluated in a dynamic simulation envi-
ronment and compared with a conventional PI control. They showed that the proposed
method provides improved robustness compared to the traditional PI control under a
wide range of operating conditions. Huang [166] proposed a new control strategy for the
thermal zone system to deal with uncertainties, constraints, and nonlinearities. In the
study, a bilinear predictive controller is proposed for the zone temperature control and a
gain-scheduled robust predictive controller for the damper control. The control capability
of the proposed strategy was compared against the typical PI control. It turned out that
under different operating conditions, the proposed method showed greater robustness. It
also demonstrated that a good control capability could be accomplished without much
user intervention and commissioning.

Some studies have been conducted in computer simulation environments, and some
have explained the results of applying MPC to an actual building. EnergyPlus, TRNSYS,
and SIMulator of Building And Devices (SIMBAD) are often used as building energy
simulation programs, and MATLAB and LabVIEW are often used as programming software
for MPC implementation in real applications. In addition to the conventional MPC, various
MPC strategies, such as the supervisory MPC, economic MPC, centralized MPC, closed-
loop MPC, linear time-varying MPC, successive linear MPC, and nonlinear MPC, were
introduced in the literature [167–169]. Lee et al. [55] assessed the performance of the
standing column well (SCW) heat pump integrated with the heat storage tank using
EnergyPlus. To check the performance of the SCW system connected to the heat storage
tank, PLRs, COP, and the energy requirements of the typical systems based on a window
air-conditioner and boiler were evaluated. As a result of the study, the SCW heat pump
system connected to the heat storage tank showed energy savings of about 62% annually
compared to the conventional system and about 14% annually compared to the SCW heat
pump without the heat storage tank. Moon [170] suggested an indoor temperature strategy
method using ANN models for providing a comfortable thermal environment through the
integrated control of the surface openings and the cooling system. The performance of the
traditional- and ANN-based methods were comparatively evaluated for the double-skin-
facade building using the TRNSYS and MATLAB software. It turned out that the proposed
ANN-based logic could significantly reduce the number of operating condition changes of
the surface openings and cooling system while improving indoor temperature conditions.
However, the ANN-based control did not show superior energy efficiency compared to the
conventional logic, and it increased the amount of heat removal by the cooling system.

4.3. Heat Pump-Based HVAC Systems

Most recent optimization studies conducted using the MPC technique for heat pumps
focused on the energy saving-related aspects. In general, it is important to maintain a high
COP of heat pump technologies for energy-efficient operations in building applications. In
the case of a ground-source heat pump (GSHP), the energy consumption can be reduced
by efficient heat exchange and thermal storage, and the loss of the geothermal heat source
should be minimized. Various control strategies for heat pumps, e.g., the PID, genetic
algorithm, rule-based control, and feedback control, have been introduced to analyze
the performance or effect of the MPC application. The performance evaluation tends
to be mainly carried out through a COP comparison. Kuboth et al. [171] investigate
the potential of MPC for a heat pump in detached houses in terms of thermal comfort,
electric energy, and photovoltaic energy self-consumption. The MPC for a heat pump is
comparatively evaluated to a standard control strategy implemented into the reference
test rig. Their results showed an average improvement of 22.2% on heat pump COP and
234.8% on photovoltaic energy consumption, and it also showed that a resulting average
operational cost reduction of 34.0% can be achieved. Bechtel et al. [172] analyzed the impact
of different heat pump powers and heat storage sizes on shifting potentials and cost savings.
The parametric study results showed a significant improvement in energy efficiency and
cost savings.
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Furthermore, the limitations of considering variable electricity prices were investigated.
Lee et al. [173] presented a realistic variable speed control optimization model for a heat
pump using mixed-integer programming (MIP) to solve an issue with the unphysical
characteristics of linear variable-speed heat pump (VSHP) models at low compressor
speeds. MIP allowed for the consideration of all variables influencing VSHPs such as
outdoor air temperature, indoor temperature, and compressor speed. This VSHP model
was integrated with the neural network-based thermal load prediction in MPC simulations.
It is shown that this strategy could decrease energy costs by 9–22% and carbon emissions by
up to 22%. Weeratunge et al. [174] presented an MIP approach to minimize the operational
cost of a solar-assisted GSHP system with a consideration of the time-of-use electricity price.
Two system configurations and three operation modes were implemented and compared. It
is shown that the thermal storage could improve the peak shaving, decreasing the need for
expensive peak electricity production for the grid and decreasing operating costs by 7.8%
when optimized for minimized cost. Wanjiru et al. [175] further developed an open-loop
optimal control model using the closed-loop MPC for the operation of heat pump water
heaters (HPWHs) and integrated renewable energy systems. The study showed that it
could reduce 33.24% and 19l of energy and water in a day, respectively. The life cycle cost
(LCC) analysis was also conducted, which showed that the payback period would be less
than half of its life span.

4.4. Chillers and Cooling Towers

Chilled water systems are one of the commonly used systems in commercial buildings.
Most recent optimization studies conducted using the MPC technique for chilled water
systems focus on reducing cooling energy consumption. Optimal control studies were
conducted on the related control variables such as chilled water temperature, condenser
water temperature, chilled water flow rate, and condenser water flow rate. Yang et al. [160]
presented an MPC developed for a dedicated outdoor air system (DOAS)-assisted separate
sensible and latent cooling (SSLC) system. The MPC performance to control a conventional
AHU system and a DOAS-integrated SSLC system was investigated experimentally and
compared against a conventional feedback-control-based building management system
(BMS). The comparison result showed that the MPC system could achieve 18% and 20%
savings of electricity for the single-coil AHU and DOAS-integrated SSLC, respectively. In
addition, they also showed that thermal comfort could be improved significantly when
compared against the conventional feedback-control-based BMS. The DOAS-integrated
SSLC turned out to be advantageous when compared against the single-coil AHU in
producing a better thermal comfort when the MPC controls were applied to both systems.
Kang et al. [176] constructed a predictive model of a DX AHU-water source VRF heat
pump system based on EnergyPlus, MATLAB, and BCVTB. Performance curves and power
consumption were calculated for the prediction of energy consumption. A sensitivity
analysis of the cooling energy consumption was conducted based on the AHU discharge
air temperature, refrigerant evaporative temperature, and condenser fluid temperature and
flow rate.

In general, the goals for implementing the MPC’s optimal control method are to keep
the chiller’s COP high and the indoor temperature at an appropriate level, resulting in
improved energy consumption and cost. To analyze the performance and effect of MPC
applications, various control strategies, such as the genetic algorithm, rule-based control,
heuristic, fuzzy logic, adaptive neuro-fuzzy inference system, and feedback control, were
introduced, and the performance evaluation was performed through a comparison of the
COP, energy consumption, and operation cost. Lee et al. [177] developed a smart-valve-
assisted predictive control to solve the problem of implementing artificial intelligence for
energy savings in HVAC systems. Energy saving performances of the control system were
tested, and the energy-saving effect showed around 30% across the test sites. Rossetti [178]
investigated the idea of a “variable configuration” (VC) solar cooling plant that can self-
tune its layout, adapt to different weather and user conditions, and guarantee maximum
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energy savings. Their parametric analysis showed the practical benefits of a VC plant
coupled with an MPC controller. The primary energy ratio improvement of approximately
30% could be observed. In addition, research was conducted by predicting parameters
using MPC and constructing an ANN-based model for MPC application. In addition, the
general MPC, economic MPC, and model-free predictive control, which are extended from
the basic MPC concept, were introduced in the references [160,176,179,180].

5. Conclusions and Discussion

With buildings responsible for a large portion of the global energy consumption
and GHG emissions, improving energy efficiency is one of the most cost-effective ways
to reduce energy usage and emissions in the building sector. Adopting high energy-
efficient HVAC systems with advanced and optimized control and operation schemes can
be effective solutions, and it is imperative to explore current research efforts to understand
the current status and research gaps. This study reviewed the building energy modeling
techniques and state-of-the-art updates for MPC HVAC applications towards reducing
building energy consumption, costs, and the carbon footprint. This review study was based
on the most recent research articles (e.g., from MDPI’s and Elsevier’s databases) in this
field by classifying keywords and application types. For the review process, published
search papers based on a scientific journal database search were classified into two main
categories: (1) building energy modeling approaches and (2) model predictive control
(MPC)-based optimization and operation. The relevant keywords of the research papers in
each category were explored in detail, and then the overall methodologies and outcomes
from the selected studies were investigated from different viewpoints. The key findings of
this review study can be summarized as follows:

• The building energy modeling techniques are crucial steps in implementing the MPC-
based control and operation schemes. There are three major categories typically used
for building energy modeling approaches. There are no straightforward solutions be-
cause of the complexity and diversity of building HVAC system controls and/or opera-
tions. White-box modeling methods have been traditionally and widely used to assess
building energy consumption and implement the MPC control schemes. Although the
white-box modeling is relatively complex and time-consuming to obtain effective and
accurate outcomes with realistic situations in a building, this approach is a powerful
method to inform a building’s HVAC control design, retrofit, and optimal operation.
Based on the reviewed papers, it was identified that the co-simulation framework
between simulation tools to overcome the disadvantages of each simulation model-
ing method provided more robust solutions in advanced HVAC control/operation
technologies for current modern buildings under a non-stationary circumstance.

• The grey-box modeling approach has also been used for many buildings’ HVAC
and smart-connected system applications despite theoretical limitations, confusing
model structures, and the need for parameter identification from measured data.
This is mainly because this approach can be developed with relatively simplified
physics-based calculation models and flexible and scalable applications. Therefore,
it can also apply to multiple building simulations and grid-connected system levels.
Based on the observations from the reviewed papers, the parameter identification,
which is a necessary process for model development, varied according to different
research and practical applications, with mostly experimental and/or simulation-
based assumption identification being used. Lately, stochastic-based or uncertainty
framework approaches have also been applied to grey-box models to develop more
advanced network models, and thus, operate with dynamic control schemes.

• For the use of black-box models, many building energy researchers have adopted this
method due to their capabilities to handle complex and nonlinear problems, specifi-
cally when complicated datasets from single/multiple HVAC systems and different
control levels need to be considered. Since this method is based on a statistical analysis
of field-measured data, data collection and pre-mining processes before the model
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training/testing phases play a critical role in adjusting the model development condi-
tions for a better performance. Because the most unified building energy simulation
tools do not provide a black-box model analysis option, language-based (e.g., MAT-
LAB, Python, and R) development is commonly considered based on the datasets,
which can be obtained from measured and/or simulated data. Among the reviewed
studies, the most frequently used data-mining algorithms were the k-means for clus-
tering analysis and building thermal load and energy forecasting algorithms were
based on support vector regression (SVR), artificial neural networks (ANNs), deep
neural networks (DNNs), recurrent neural networks (RNNs), and tree- and regression-
based models. In addition, time-series datasets were mostly reflected to implement
machine learning algorithms for training and testing datasets. To enable advanced and
optimized control schemes for HVAC systems, co-simulation options were actively
adopted to allow for the strengths of the thermal load calculation and future energy
and cost forecasting by controlling interactions and the data exchange dynamically.

• To minimize the HVAC energy consumption in the building and its connected systems,
an advanced HVAC control/operation design using the MPC framework needs to be
significantly considered by detecting the change points of the building’s behaviors and
adjusting to the more effective control signals. Some components and configurations
can be applied to MPC-based building HVAC control schemes. For example, based
on the observations from the reviewed papers, an air-loop distribution side included
air-handling units and zonal units to control the supply air temperature and flow
rate actively, as well as the room setpoint temperature with MPC actuators, including
coils, an economizer, and supply fans. For the water-loop side of an HVAC system,
condenser-loop and plant-loop sides could be considered for the MPC control design.
The consider-loop tends to include a cooling tower, air/water source, and ground
source, whereas the plant-loop can consist of chillers, boilers, heat-pump-based HVAC,
and district cooling/heating systems. The most frequently used actuators for such
sides were fan and pump speeds for a condenser and supply water/refrigerant flow
temperatures and rates. Based on the reviewed papers, co-simulation frameworks
between a white-box model and a grey-box or a black-box model were typically
considered to implement optimized MPC control schemes to minimize HVAC energy
and costs.

Recently, the trends of affordable hardware costs, high-performance computing tech-
niques, bit-data-based machine learning analyses, and the rapid development of IoT devices
have practically led to an updated phase of the MPC-based HVAC applications. In future
works, MPC techniques will be a key solution to implement the digital twins of smart
homes and buildings in response to the growing energy and environmental issues globally.
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Abbreviation
AHU air-handling unit
ANN artificial neural network
ARX autoregressive with exogenous
ASHRAE the American Society of Heating, Refrigerating and Air-Conditioning Engineers
BAS building automation system
BCVTB building control virtual testbed
BMS building management system
CFS correlation feature selection
CNN convolutional neural network
COP coefficient of performance
CvRMSE coefficient of variation root mean square error
DAT discharge air temperature
DNN deep neural network
DOAS dedicated outdoor air system
DX direct expansion
ECBCS energy conservation in building and community system
EIA energy information administration
EUI energy use intensity
FMI functional mock-up interface
FMU functional mock-up unit
GA genetic algorithm
GHG greenhouse gas
GIS geographic information system
GSHP ground-source heat pump
HMOC hybrid model predictive control
HPWH heat pump water heater
HVAC heating, ventilation, and air-conditioning
LCC life cycle cost
LTI linear time-invariant
MDPI Multidisciplinary Digital Publishing Institute
MIMO multi-input multi-output
MIP mixed-integer programming
MPC model predictive control
PI proportional integral
PID proportional integral differential
PLR part load ratio
PSO particle swarm optimization
RC resistance-capacitance
RE rule extraction
RFCUV radiant floor cooling combined with underfloor ventilation
SAT supply air temperature
SCW standing column well
SHAP Shapley Additive exPlanations
SIMBAD simulator of building and devices
SOM self-organizing map
SSLC separate sensible and latent cooling
SVR support vector regression
TABS thermo-active building system
TES thermal energy storage
VAV variable air volume
VSHP variable-speed heat pump
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