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dimensional gravity is derived and compared with the ADM definition of energy.
expression for energy in a gauge theoretical formulation of the string—inspired 1+1
the I S O(2, 1) gauge theoretical formulation of Einstein gravity. In addition, an
dimensions, expressions are obtained for energy and angular momentum arising in

the gravitational Einstein—Hilbert action is derived and discussed in detail. In 2+1
procedure in 3+1 dimensions, a symmetric energy—momentum (pseudo) tensor for
symmetry. Using Noether’s theorem and a generalized Belinfante symmetrization

We discuss general properties of the conservation law associated with a local
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conserved Noether current associated with diffeomorphism invariance.
compared with other definitions that have appeared in the literature. Also we remark on the
metric energy-momentum (pseudo) tensor, as an improved Noether current, is derived and

In Section III, the 3+1 dimensional Einstein-Hilbert action is investigated and a sym

( "improvement”
associated with a local symmetry and also symmetrization of the energy-momentum tensor

In Section II, we analyze in a systematic way general properties of the Noether charge

definition;5 we compare these two approaches.
Another way of finding an expression for energy in 1+1 dimensions is to use the ADM
gravity model‘* and obtain an expression for energy arising from the gauge transformations.

ln 1+1 dimensions, we consider a gauge theoretical formu1ation3 of the string-inspired

group gauge transformations are identified as energy and angular momentum.
based on the Poincaré group [ISO(2, The Noether charges associated with the Poincaré
are not valid.] On the other hand, there is a gauge theoretical formulation of the theory,2

In the 2+1 dimensional Einstein gravity, asymptotically Minkowski boundary conditions

tensors.

and which is derived without any statement about "background” or “asymptotic” metric
given by the Noether procedure rather than by manipulation of the field equations of motion,
for the symmetric energy-momentum (pseudo) tensor, which is conserved as in (1), which is
symmetric under interchange of two spacetime indices. Our goal is thus to find an expression
an energy-momentum (pseudo) tensor, the energy-momentum (pseudo) tensor needs to be
of global Poincaré transformations. To express the angular momentum solely in terms of
that we can associate energy, momentum and angular momentum with the Noether charges

In 3+1 dimensions, asymptotically Minkowski boundary conditions can be posed, so

can be viewed as “global” transformations.
it is invariant under Poincaré transformations, which comprise special diifeomorphisms and

action is invariant under diffeomorphisms, which are local transformations; more specifically,
action, in which case the conserved current is called a N octher current. The Einstein-Hilbert

In field theory, conservation equations are usually related to invariance properties of the

continuity equation we always need to specify asymptotic behavior.
satisfy suitable boundary conditions. In other words, to get a conserved quantity from a
provided f8VdS { j i vanishes at infinity. Therefore to insure conservation of Q, j { has to

Q = dw <2>f v
which leads to a conserved quantity,

(1)@»j" = 0
to some form of continuity equation,
a long time. The problem is to find an expression that is physically meaningful and related
The definition of energy and momentum in general relativity has been under investigation for

OCR OutputI. INTRODUCTION
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does not lead to a conserved quantity. Moreover, even if we get a finite value for Q with
Without suitable boundary conditions, this charge either diverges or vanishes, and in general

(8)Q = dV8, [Fi0(:z:)9(z)] = dSiFi°(z)6(:c)/ av/ v
The Noether charge is constructed as a volume integral of the time component j

indices p and u.

since the quantity in the parenthesis of (7) is antisymmetric under the interchange of the
which is certainly identically conserved, regardless whether F"' satisfies the field equations,

J" = @» (F""9) (7)

@»F”" = 2C Im [(D”¢)`¢] (6)

can be written with use of the equation of motion

= —F""6,,8 — (D"¢)*ie0q$ + D"q5ie0¢’

<5>MA, em w..¢··
'M = ——6A,, —-—6 -;-6 * ’ 1 " + ‘”

GL OL85

The associated Noether current

= A,,(a:) + 3,,6(a:), 6A,, = 8,,6

¢;(x) = c-€€¢(x)7 :¢(I)

local U (1) gauge symmetry.
where D,,¢ E (6,, + ieA,,)¢ and F,,,, E 8,,A,, — 8,,A,,. The Lagrangian L is invariant under a

(3)LZ = --}F,,,,F"" + (D"¢)*D,,q5

with a Lagrange density
To illustrate the result in a special example, let us consider the Maxwell—scalar system,

into field theory textbooks — so we give a general proof in the Appendix.
conserved currents associated with a global symmetry, her argument has not found its way
that is identically conserved. This was shown by E. Noether,6 but unlike the construction of
The Noether current associated with a local symmetry can always be brought to a form

II. CONSERVATION LAWS

Concluding remarks comprise the final Section VI.

After getting an expression for energy, we show that it agrees with the ADM energy.
In Section V, we consider a gauge theoretical formulation of 1+1 dimensional gravity.

in the context of the gauge theoretical formulation for the theory.
sional Einstein gravity, we obtain in Section IV expressions for energy and angular momentum

Since asymptotically Minkowski boundary conditions can not be imposed in 2+1 dimen
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u f" E e“u zz + a"
(14) OCR Output

eil: = 3 PC t (f)

be written as a total derivative without using the equations of motion.
where 6¢ denotes q5’(x) —¢$(:z:). Since the action is Poincaré invariant by hypothesis, 6.C can

Oo 88,,425 . @6,,0,49
6.C=-6 --66 —66,,6 ¢+ liqi + li Qs 13 ( )

GLOL OL

the transformations (11),
To derive the Noether current, let us consider the variation of the Lagrange density under

jEl= “€Ji, = *5%

(12)¤°; = ¢'0» S". = $3

600 = SOO = 0

group and the constants e",,, S"I, satisfy the following relations.
where L, containing the spin matrix S (L = 1 + %e",,S"I,), is a representation of the Lorentz

I I ¢(¤) —>¢ (¤= ) = L¢(<¤)
(11)

:1:** —+ :z:"‘ = x" — e",,r" — a"
respectively by

Under the infinitesimal action of these transformations, coordinates and fields transform

where 45 is a multiplet of fields, and suppose I is invariant under Poincaré transformations.

(10)I= / d¤¢£(¢»@»¢»@»@»¢)

Thus, consider

derivatives, as is true of the Einstein-Hilbert action.

theory. Here, we generalize his method to the case that the Lagrangian contains second

was originally presented by Belinfante,7 and which is always available in a Poincaré invariant
Next, let us review the symmetrization procedure of the energy-momentum tensor which

from a; global transformation.
extended through all space, thereby arriving at a Noether formula for the total charge arising
ensures that Q is time independent. The asymptotic condition that 9 be constant can be

The first condition gives finite Q when 9 is constant at infinity, and the second condition

60 F°' ~ 0

a.s 1* —> 00 (9)
Fm ~ M5)

An example of boundary conditions for (7) is

condition.

some 0(2:), the time dependence of Q is completely determined by the specified boundary



(22) OCR Outputh#B¤ = ; [LuB¤ _ L0'Bl*· _ LEM

Next we define h“¤°' as

metric in cx and B.
see = S°',,r;”p and L"°'B = L"°',,n"B, we see that the newly defined quantities are antisym
help of the Hat metric 17,,,, = diag(1, —1,··· , -1). Thus with the definitions cap = n0,,,e"B,
metric. But formulas (12) and (21) can be presented compactly by moving indices with the
As it is seen, Lorentz invariance of the action needs no reference to a background Minkowski

(21)

= L J _ I Q ____ S l __ 88,.05 S ’¢ + 63,,8,,¢> S Jam Be
- GL [Jl _ 8L GL - GL GL __t_ I · __ _ __ _ _ _____ _ 86,,8,,¢ S ’¢ (86,,3,06 @45 38,,8iq$ GM)

, , ., _ 00,,.0 S ° "’ + 0a,,0,¢ S ° M ’ 8"aa,a,S et + aa,a,¢ M + aa,0.¢ M
BL GL GL , 8,¢ (, OL ,)

Let = Le°.

Le°., = 0

and

88“8v¢ 66l‘6V¢
l*· _ _ P _ ,__i__ _ ____; @(7 0 _ (SQL + + 6V0d¢ 8v 6¤¢

@[1GL GL

where 6%**,, is the unsymmetric, canonical energy-momentum tensor,

(10)0,, I feecec, + gee, 1;ee.,| = 0
into (17), we get

(18)6¢ = f"6»¢ + §e"»$”t ¢

Inserting now the variation, see (11),

(17)_ u ___ _____ _ ____ : 8,,f L+ 6¢+ 6,,6q$ 6,,6q506L GL [ 86”¢33u6V¢ 8L 86“8V¢]

Equating the above two expressions for 6L, (14) and (16), we a.rrive at a conservation equation.

8.CGL OLE

we can rewrite (13) as a total derivative.

V 8¢> " 88,,45 "68,,8,,dw
(15)* 6 **"" 8 + 8

GL OL 8L "‘ T- 0

On the other hand, using the Euler·Lagrange equation
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Hereafter we use conventions of Landau and Lifschitz, see Ref.
**

(30) OCR Output81rk T,,,, = R,,,, — %g,,,, R

The same equation of motion follows from I and I,

(29)1,,, :5 [ mx,/—_-gg~~a,¢0,¢

To be specific, let us take the matter action for a massless scalar.

(28)G = 9’“' (1",Zp1”‘3., · FZVFZB

where G is given in terms of the Christoffel connections I`.

27 ( )- 1 = -— C14 ,/T 1 rv yG + M1 IGM /

involving the second derivatives. The explicit form of the first-derivative action is
can be put into a form involving only first derivatives through an integration-by-part of terms
where k is the gravitational coupling, R the scalar curvature, and I M denotes a matter action,

2 (6)I = -— d4 ,/— 2: gR-I-IM1 167%/

The Einstein-Hilbert action*

3+1 DIMENSIONS

III. GRAVITATIONAL ENERGY-MOMENTUM (PSEUDO) TENSOR IN

tives.

momentum tensor for a Poincaré invariant theory whose action may contain second deriva

In conclusion, we have derived an expression for a conserved and symmetric energy

The conservation law 8,,®“" = 0 and (25) imply that ®"" is symmetric.

8x°'®"" — x"®"°‘] = 0,, [
metric cap, it follows that
To prove that Gt"' is symmetric, take fc, to be ecpxp . Since (23) holds for arbitrary antisym

Gt"' = ®,,"" + 80,h""°‘ (24)

tensor.

[oz is raised with n°"° Upon taking fc, = ac, we arrive at the conserved energy-momentum

(23)3,, [fo, (G)C"° + 8,,h"°'")] = 0

properties of h“B°' and cup = -3,,f,q [B is lowered with nap], we finally get
so that it is antisymmetric in ,u and cv and és,-,,,gL"B°‘ is identical to e,,,,qh"B°. Using these
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(37} OCR Output. d-? [Wm · @1%;] + 0(hl)E = I d3T @°° = 1 Er-]; f
The corresponding expression for the energy derived from G is at order h

where B°'B = —h°‘B + %n°'p hl, — (/-g g°’B.

Grow _ Gun = @8uaB [n#VB0B _ 77¤VB}¢B _+_ TIGBBIIV _ UILBBGVT ~ O(h2) (36)

where l“” = ,/—gg"" - r;""; while the difference between G" a.nd G is

161rk
5 (3)] ( )l;4v_ ;4u=_f__ pu ¤B_ pf? au N h2 G G 6c,,Op[l l l I o

first order in h. The difference between G' and G is

Although obtained by totally different methods, G' and G" agree with G in (32) up to

the flat metric.

where A°‘B = —h°’B + %r]°‘B h".,/, gw, = nw, + hw, and indices are raised and lowered with

161rk
(34)Glrpv = _;8Q6B [n;wA¤B __ nc¤vAu/3 + n¤;9A;w _ n#BA¤V

and the other by Weinberg]

(33)@""’ = $6,; @¤@¤ [(·9)(9""y°‘°— s1°’”y"’g)]

The first one is discussed by Landau and Lifshitzg
momentum (pseudo) tensor. These are obtained by manipulating the Einstein field equation.
itational energy a.nd momentum,8*9·1° there seem to be only two for a symmetric energy
(pseudo) tensor found in the literature. Although there are many expressions for the grav

Let us compare the above result to other formulas for the symmetric energy-momentum

v):|Quv = @6GaB (nuvgu,6 _ nuvgu;3 + ncrhgpv _ nuBg¤

energy-momentum (pseudo) tensor from both I I.
with a bit more algebra using the equations of motion, we are led to the following symmetric

After some straightforward calculations following the generalized Belinfante method and

(5%),, = (W6: - n°"6E) g.. + (#*6: - ws?) g,..

Note that the spin matrix for the metric field gp., is given by

symmetric energy-momentum (pseudo) tensor arising both from I and I.
tions. Therefore we can use the generalized Belinfante method to End an expression for the
G is no longer a scalar. However, both I and I are invariant under Poinca.ré transforma

Although the action I is conventional in that only first derivatives occur, its integrand
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derived (42) with the correct factor.

did not obtain the factor §, which comes from the normalization of the action. Later, P. G. Bergmann
u

K0mar’s formula is actually twice of (42). Presumably, he reached his expression by guesswork, so he
***

the expected energy for the Kerr solution (39) [note that EN is not obtained from a symmetric
in attempting to use it in a definition of energy. For f“ = 66*, EN = _]` dar j? gives only half of
the simple and appealing formula (42) for the current, we encounter the following difficulty
which was first given by Komarg *** and is extensively discussed in the literature. In spite of

42-Lt:-LD D""-—D""

simple expression,
Using the equation of motion (30) and the relation [Dy, D"] f " = R“,, f ”, we get a remarkably

167rk\/-Q
41 ( )°"=T" " -¥— "R-D., D"" D""—2"”D °' J; tf +[f ( f + f 9 ¤f)l

Starting from the action I and after some straightforward calculations, we get

66#3V¢88“8v¢
40 ( )'”=—"£——-6 +-166 -5,,--6 Jf f ¢ V ¢¢

BL OLGC

6x" = —f"(:r), where f" is an arbitrary function of nz:.
we can read off the expression for the Noether current associated with the diffeomorphism
what is the conserved current associated with this diffeomorphism inva.riance. From (17),
metry certainly bigger than the (global) Poincaré symmetry. We are naturally led to inquire
method to general relativity. Observe that the action I is diffeomorphism invariant- a sym

We conclude this Section with comments on several other applications of Noether’s

survive; this of course does not happen for the Kerr solution.]
from one another, if the order h terms in (37) and (38) vanish and the terms of order hz
We find E = m and J;j = Jem. [E, E' and E" (similarly JU, Jfj and could be different

1 + ¥ + o(r) ] dx'd.1:'2k '2
(39)

. . dsl = ( 1 — -+ o(r)dt— 4k.Ieij3+ o(r"*) ] dx'dt ··2k 2 `2zj ) <% r

point source — the Kerr solution — whose line element has the following large r asymptote.
We evaluate these expressions on a solution to the Einstein’s equation with a rotating

· I ds'° [(x·0,,h,,, - x·0,.h,,, + 6,.,1..,,) - (e H j)] + o(h°)1 1-6;]; /

Ji, = I 4%- (vow - xfe°*

while the angular momentum reads
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such global effects, spacetime is not asymptotically Minkowski. For example, we can solve
Therefore, all effects of localized sources are on the global geometry. In the presence of
Because the Einstein and curvature tensors are equivalent, spacetime is flat outside sources.

(45)I= ——d‘1:(/_R gL ism

We begin by considering the 2+1 dimensional Einstein-Hilbert action.

GRAVITY

IV. ENERGY AND ANGULAR MOMENTUM IN 2+1 DIMENSIONAL

canonical energy-momentum (pseudo) tensor, exactly cancels it.
vanishes. This is because the added superpotential, needed to symmetrize the nonsymmetric,
and going through the generalized Belinfante procedure, one finds that the symmetric tensor

SB¤wAB= 6av _ 678:1wiB()# (5n:7) ;
(44)

S”“¤A= 6’°" - 6**3 ”ef(),. (£v,71)

for ef and wfare given byg

construct the symmetric energy-momentum (pseudo) tensor. Noting that the spin matrices
is EQEQREF. Since this action is invariant under Poincaré transformations, let us again
is invertible, with inverse E; and e E det ef equals ,/—g. Then, the scalar curvature
where ef and wfare the Vierbcin. and the spin-connection. We assume that the VicrbcinB

D EDRf? E 8.,wf-4- w$w6E- (»y 4-» 6)
(43)

I =d4"¤M€ABCD€£°?R$‘D1 @g /

The action in (26) may alternatively be presented in first-order, Palatini form,

(pseudo) tensor (32), whether or not a surface term is included (i.e. whether I or I are used).
Note that our use of the Belinfante-improved Noether method yields the same symmetric

expression and arrive at the accepted values of energy and angular momentum.
they include a contribution from I,. With this procedure one can supplement the Komar
The resulting constants of motion no longer arise from a locally conserved current, since

longer discussing arbitrary diffeomorphisms, but rather the restricted invariances of I + I,.

e. g. the Poincaré group. One then applies Noether’s theorem to I + I ,, but of course one is no
which however is not diffeomorphism invariant, but respects some restricted symmetry group,

is known.12 One needs to supplement the Einstein—Hilbert action I with a surface term, I ,,
(38) at order h, and gives the correct answer in the Kerr case. The resolution of this problem
momentum generator from (42) f dar jg, fl = cijzcj , the expression agrees with that from
get universal agreement with previous formulas. This is because if we construct the angular
tensor while E in (37) is]. But we can not simply “renormalize” by a factor of two and
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One verifies that (51) is a first order Palatini action equivalent to (45).

(JA 1 PB) = UAB, (PA , PB} = (JA , JB} = 0 (52) OCR Output

with ( , ) denoting an invariant bilinear form in the algebra.

51 <>- . 1 = —- A dA -A’<_. +.>1 ,6,,,/

The Chern-Simons action for this connection is

(de +6BCw c )PA-I-(dw +;e Bcw w )JAA A B c · A * A B C
(50)

F = dA + A2

tively the Dreibein. and the spin-connection, the curvature two—form is given by

If we introduce a connection one-form A = eAPA + wAJA, where eand ware respecA A

generator and the two J;’s as boosts.
ries, PA’s are interpreted as translation generators, Jo is interpreted as angular momentum
where indices are raised or lowered by 1;,;;;, and elm = 1. In Poinca.ré invariant field theo

[JA,-PB] = €ABUPC
(49)

[PA»PBl = 0, [JA, JB] = ¢Aa°Jc

The commutation relations of the Poincaré I S O(2, 1) group are

transformations to energy and angular momentum.
of gravity.! Here, we can exploit the possibility of relating charges associated with gauge

For another viewpoint, let us consider this theory as the Poincaré I S O(2, 1) gauge theory

Minkowski.

8TrkJ whenever the origin is circumnavigated. Such geometry is conical and not globally
However, the angular range of (1 — 4/cm)9 is diminished to (1 — 4km)2vr, while T jumps by

(48)T = t + 4kJ9, x' = rcos(1 — 4km)O, yl = rsin(1 — 4km)O

through the redefinitions

(47)dsz = dT2 — d:r’2 — dz/2

one can do is to make the line element "locally Minkowski”,

and there is no coordinate choice in which the asymptote is Minkowski spacetime. The best

(46)dsz = (dt + 4kJd0)- (11-- (1 - 4km)rd62222 2

described by the line elementl
the Einstein equation for a rotating point mass (string in 3+1 dimensions). The solution is
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f°F¤p + 6,. (f°‘A¤) + lA,»»f°'A¤]
(59) OCR Output

6,:A,, = LfA,, = f°‘8O,A,, + 3,,f°’A(,

transformation. 1 4

morphism implemented by a Lie derivative on a gauge potential (connection) and a gauge
Another choice for 0 could be the following. We recall the relation between a diffeo·

Swk , 87rk ,
= ;. i 9 = = .-L. * 9 = E- dx wm, J.- dx eJ

angular momentum. With this one finds

to be 1 along the P° direction for defining energy and 1 along the J ° direction for defining
To proceed we must choose a "globa1” form for 0 in (56). A natural choice is to take 0

(57).
identified as energy and angular momentum, with values m and J respectively on the solution
with xl = rcos0 and 1:2 = rsin0. We inquire if "charges” coming from (55) and (56) could be

w = O

w= ;% >< drk ° 2
(57)

c =(1 -4km)dr+ij;,2r(r·dr)
k iT

e= dt + %r >< drk ° {
spin-connectionu

The solution to F = O, which leads to (46), gives rise to the following Drcibcin. and

gauge function 0.
which is an identically conserved current as expected and totally dependent on the choice of

Snk
(56)‘ - .;- wp J" ——é @··(Ap» 9}

Using the equation of motion (F = O), we get

88pAV
"‘= —--—,6A,, —X" J ( } 55 ( )

GL
transformation is

where X *‘ = &e"""(A,, , 6,,0). Therefore the Noether current associated with this gauge

6C = 6..X'“ (54)
total derivative,

Note that the Lagrange density in the action changes under the gauge transformation by a

6A = d0 + [A, 0] (53)

transformation is

BAJA with aA and BA being infinitesimal parameters. The variation of A under a. gauge
The generator of gauge transformations is also an element of the algebra: 0 = cxAPA +
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H —> U'1H U
(Sn OCR Output

A U`*AU U"dU " "

is equivalent to I 3 with ng = 2r; and is invariant under gauge transformations,

A G a 41rGIg = nAF = [ |r;,,(De) +r;2dw +Bn3 da + e cube1 b (E(66)0 / Z A=0

where e“ and w are the Zweibcin and the spin-connection respectively. The action

(De)" Pa + dw.} -+- B da + e“e,,;,eI1 (§°>
(65)

F = dA + A2

A = e°P,, +wJ + BaI

The connection one-form A and the curvature two-form F are explicitly

(64)[Pa, J`] = ¢¤°Pz»» [Pa, Pb] = Bm!
whose algebra is

This theory is reformulated as a gauge theory using a centrally extended Poincaré group,3

where the "physical” metric is gw, /r; while R is the scalar curvature constructed from gw,.

(63)4vrG I3 = I dzx,/—g (nR — A)

In 1+1 dimensions, the action of string-inspired gravity theory‘ can be written as

FORMULATION

V. 1+1 DIMENSIONAL ENERGY IN GAUGE THEORETICAL

have an explanation for the dimensionless factor 8km.
However for angular momentum, where f° = O and f' = e":1:·', one gets 8km]. We do not

E = m (62)

For energy we take f° = 1 and fi = 0, thereby again one finds

(61). . Q, = dw [ww + (624* +w?e§) p]1 EH {

which with (57), becomes

(60)= W d t { s G O Q; ¤¤(A Af)1 87rk%
generated by f °A,_,, with the infinitesimal diffeomorphism f°. With this choice, we find
In this theory Fm, vanishes on shell, and it is natural to identify the gauge transformation
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(75a) OCR Outputez = c""6z , 0.0 = —5e° , al = O , wg = -/\ , wl = O
1 2’\

from Ig + Im. The geometry is given by ]z·" = (T, 0)

geometry, gp, = eznabcz. We present a solution to the classical equations of motion coming
Setting them to zero gives the usual action for a. point particle of mass m in a background
(:1,, is defined by e""6,,a,, = ,/—g). Notice the additional terms proportional to A and B.

(74)Im = -dr (p,,e“,,el;, + ,444;,, + Bap) §:" + §N(p2 + mz)4/{
by the interacting action
presence of infalling matter. The inclusion of matter is discussed in Ref. [15] and is described

To see what happens with an explicit solution, let us consider the black hole solution in

47TGE = (7],,83 -]·· T]2wg + Bngao)

41rGj]§ = e"”3,, (naeg + rygwo + Bnaao)

Therefore we get an expression for energy by taking in (70) 0 = f°‘A¤ and f" = (1, 0).

6fH = [H, f°‘A0,]
mi

6,.4,, = @»(f°A¤) + lA»»f°A~1

gauge function f°‘A,, [cf. (59)].
Infinitesimal diifeomorphisms are performed on shell by a. gauge transformation with

choice of gauge functions.
As anticipated, the current j " is identically conserved and again totally dependent on the

(70)4rGj" = ¢“”@» (m9“ + nw + UM) = ¢“”@» (MGA)

Using the equations of motion and (68), we get

86,, A;}
——-6.4_ "

GL **
(69)

aaa; aaa, 00,,.1,
lp = ·-—-— 6 °—— 5 , --i 6 ’‘· + "’ + “"

8L BL OL

The Noether current associated to this gauge transformation is

6a = —9°e,,;,e° + dB/B

(Sw = da (68)

sca = -€·,,ac’· + €·,a’·a + dm
is explicitly

parameters OA = (9“,oz, ,8). Note that the infinitesimal form of a gauge transformation on A
Here H = q,,P“—·éngf- %1;2I, and U is the gauge function eo· ee*with arbitrary local. P°’J”



-13..

free free
(80) OCR Output4vrG LB = (nae§| + ryzwgj + Bmag ) free

contributes to the Lagrange density a total derivative.
where subscript ‘free’ denotes an empty space solution [(75a)]. The necessary boundary

free
A0 —> A0] as 0 —> :!:oo (79)

the boundary condition to be

variations cancel. The required boundary term is then identified as the energy. Let us take
in the action an appropriate boundary term and a boundary condition such that boundary
where 45 denotes all the fields. To eliminate boundary contributions, we have to introduce

6L = 3LZ OL 1 - 6;,, — m (67],163 + 6-T]gwg + B67]3G0)I
Note that the variation of L is

where prime and dot denote derivatives on 0 and T respectively.

+ wo (¤“w¤¤'i + né) + Baoné— (M8 + nzwo + Bna¤¤)'
(77)

4vrG.C = ryaéf + mab; + Bngdl + eg (Bngeabclf + wl eabm, + 1];)

we rewrite the Lagrange density for the gravity sector as
Let us compare this result with the ADM definition of energy. To get an ADM energy,

76 < )E = A lA 2B
2 _ 2c · m "+P‘

Inserting the above solution into (73), we get the following value for the energy.
(75c)

1;;; = T + 4vrG 0(0 — 0(·r))
4x2

. _ = 2€2»\¤ +4,,.G g(U _ 0%.,)) |A+ + CAT + _-_€—»\r + exaEM·· 2 1 ·· X g/ég) ]

= 41rG9 0 — 0 T gi-—e’\°` —&e"’\"[j ( ( )) _/5 \/5
- = 4i€*=* +4700 U -a T & M + Lay + - M( ( )) c C“ `B j] \/i\/5 A

trajectory related to translation invariance of Im. Finally the Lagrange multiplier is
where pi. and p- ([3+, —p- 2 0 if g > 0) are the two independent constants of motion of the

b U5 >
1 va <¤>= -1 -- ·- -2-- UW + T A Og j B P + .-.(.(..-.. .,

’

with an arbitrary parameter /\. The point particle trajectory is then
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See for example, de Alwis in Ref.
****

tensor gives the “correct” integrated expressions.
neither diffeomorphism nor gauge invariant. At the same time, in all instances one Noether
or a gauge transformations on gauge connections. Finally observe that our expressions are
tions, whether the coordinate invariance is viewed as diffeomorphisms of geometrical variables
currents may be derived, depending on whether one uses Einstein-Hilbert or Palatini formula—

the divergence of an antisymmetric tensor. Moreover, as we have seen, a variety of conserved
a total derivative, 6£ = 8,,X“, leaves an undetermined contribution to X ", which also is
method, which requires recognizing that the symmetry variation of a Lagrange density is

erating, the symmetry current is a divergence of an antisymmetric tensor.6 But the N oether
However, the Noether procedure-is not without ambiguity. Since a local symmetry is op

a gauge current from which energy and angular momentum can be reconstructed.
that are also gauge theories, as is possible for low dimensionality, the Noether method yields

ing the variety of possible manipulations on the equations of motion.8·1° In gravity theories
of motion, and which is motivated a posteriori, even while a variety of results emerges, reflect
problem, in contrast to the conventional construction, which relies on manipulating equations
various gravity theories. This allows for an a priori, symmetry-motivated approach to the
method, which in particular may be used to derive energy-momentum (pseudo) tensors in
Noether’s procedure for constructing conserved symmetry currents provides a universal

VI. DISCUSSION

solution (75), one gets a diverging result.
[as we did in the 2+1 dimensional gauge gravity theory] and calculates the energy using the

Finally note that if one talces 9 to be a constant along the P0 direction for defining energy

black hole configuration contrary to what is usually argued.****
in the solution (75b) and expressions (73) and (81) vanish, thus giving no mass to the ‘pure’
from the field or from the source. We remark that without matter there is no step function
these two expressions reflects energy balance: the same total energy can be computed either
the solution (75), Em = p,,c“,,e'}, + Aw;) + Bao, again takes the value E (76). The equality of
procedure the constant of motion Cm = p,e",,9° + Aa + B and the corresponding energy on

lt can be shown that if we use the gauge invariancew of Im, we get by the Noether
which coincides with the expression (73) with the help of (79). Thus E agrees with E A D M.

free free
(81)4¤G EADM = (n..¢“I + nzwol +Bnz¤o ) l free _O°

Therefore the ADM energy is
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= a, M0A + M**"’a,aA - 0. MW 0**,[;;§,
(A7) OCR Output

sc = a,,(M;;0A) + M§;*">a,,a,aA - a,,a,Mf;*"’ 0A
a symmetry.

which shows that 6iC can be presented as a total derivative, since the transformation (A2) is

(A6)**”MA = 0,,M;; T a,,a,M§,

parts. Using the Noether identity, one easily finds the relation,

In the last equation M QV is decomposed into its symmetric [Mff] and antisymmetric [—.7·`Q”]w

5?$V u V U Mg = -AA;Mf,*‘ )-fj;

88¤¢
A (M" =-—A" -— QA" 6"A A A+(8 A+oz A)

8L OE

8¢ 8804)
M = ——A ·—--8 A A A + a A

GL GL
where

(A4)6L = MAOA + Mf,8,,6A + Mf{”8,,6,,0

the transformation (A2) with arbitrary GA. 6C for arbitrary OA reads
été)where % = gg- -80, (;. Eq. (A3) is a consequence of the invariance of the action against

(M6
A (3),, -. -.. = AA 8,,A0

61 6I <¢A>
identity

where AA may depend on 45, and HA is a gauge parameter function. First we note the Noether

(A2)6¢ = AAGA + A';,8,,9

which is invariant under a local transformation,

(A1)I = I d¤>£(¢, @45)

Let us consider an action for a field multiplet 45,

functions.

variation of the Helds does not depend on second or higher derivatives of the parameter
case that the Lagrange density contains at most first derivatives of fields and the symmetry
in terms of the Lagrange density is not given. Here we present the current explicitly for the
that is identically conserved. This theorem is proved in Ref. [6], but the form of the current

The Noether current associated with a local symmetry can always be brought in a form
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For the Maxwell Lagrangian, (A9) reproduces

(A9) OCR Outputj" = 8., (.7*`;"9A)

of motion % = 0, we get the desired expression for j
Inserting 645 in (A2) into (A8), and after a little algebra, wherein use is made of the equation

(A8)·u u A (uv) A (uv) A 3 =—i6¢—MA9 +MA 6,,9 -6,,MA 9[88,,¢
at

Therefore, the Noether current is



-17OCR Output

229.

15. D. Cangemi and R. Jackiw, Phys. Lett. B 299 (1993) 24; Ann. Phys. (NY) 225 (1993)

14. R. Jackiw, Phys. Rev. Lett. 41 (1978) 1635.

13. P. de Sousa. Gerbert, Nucl. Phys. B 346 (1990) 440.

12. R. Wald, Phys. Rev. D 48 (1993) R3427.

11. P. G. Bergmann, in Encyclopedia of Physics IV (Springer-Verlag, Berlin, 1962) p. 238.

S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, New York, 1972) p. 165.

23.

mar, Phys. Rev. 113 (1959) 934; R. D. Sorkin, Contemporary Mathematics 71 (1988)
A. Einstein, Berlin Ber. (1915) 778; C. Moller, Ann. Phys. (NY) 4 (1958) 347; A. Ko

1980) p. 280.
L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, New York,

F. J. Belinfante, Physica VII (1940) 449.

32 (1960) 65; R. Wald, J. Math. Phys. 31 (1990) 2378.
E. Noether, Nachr. Ges. Wiss. Gottingen 2 (1918) 235; J. G. Flecher, Rev. Mod. Phys.

COLO—HEP—309 (August 1993).
122 (1961) 997; A. Bilal and I. I.'Kogan, Phys. Rev. D 47 (1993) 5408; S. P. de Alwis,
R. Arnowitt, S. Deser and C. W. Misner, Phys. Rev. 116 (1959) 1322 and Phys. Rev.

T. Nakamura., eds., (World Scientific, Singapore, 1992)).
1005; H. Verlinde, in Marcel Grossmann Meeting on General Relativity, H. Sato and
C. Callan, S. Giddings, J. A. Harvey and A. Strominger, Phys. Rev. D 45 (1992)

(1993), 229.
D. Cangemi and R. Jackiw, Phys. Rev. Lett. 69 (1992) 233; Ann. Phys. (NY) 225

B 311 (1988/89) 46.
A. Achucarro and P. Townsend, Phys. Lett. B 180 (1986) 89; E. Witten, Nucl. Phys.

R. Jackiw, Ann. Phys. (NY) 153 (1984) 405.
S. Deser, R. Jackiw and G. ’t Hooft, Ann. Phys. (NY) 152 (1984) 220; S. Deser and

REFERENCES




