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Abstract 

Four generalisations of results appearing in a previous paper, referred to as I, are here 
produced. (I) Formulas for the field strengths of the evanescent wave generated inside a 
vacuum sandwiched between two identical refracting media propagating symmetrical 
incident plane waves; the classical exponential damping factor being then replaced by 
hyperbolic cosines or sines (according to the field components), an extremely close 
approximation to a plane tachyon wave is thus obtained; (2) Compact formulas for the 
case where the evanescent wave is generated by a superposition of plane incident waves 
with propagation vectors k parallel to a common incidence plane; (3) Compact formulas 
for the other typical case where the dispersion on k is parallel to the reflecting plane; 
(4) Formulas for refraction and total reflection of a photon with a non-zero rest mass. 

We take the opportunity of this paper to review briefly various articles that had escaped 
us, where a transverse energy flux inside Fresnel's evanescent wave was discussed, and 
also some recent papers dealing with quantisation of the evanescent wave or related 
topics. 

1. Introduction 

Before in t roduc ing  our  present  subject  ma t t e r  we shall  review briefly 
some articles tha t  had  escaped us, where  the quest ion o f  a t ransverse energy 
flux inside Fresne l ' s  evanescent  wave is discussed, and  also some recent  
papers  deal ing with quant i sa t ion  o f  the Fresnel  evanescent  wave or  re la ted 
topics.  

I t  seems tha t  Boguslawski  (1912) was the first to ment ion  the existence 
o f  a t ransverse  energy flux inside an  absorb ing  med ium suppor t ing  two 
interfer ing inhomogeneous  p lane  waves. Soon  af ter  Wiegrefe (1914, 1916) 
discussed the much  more  interest ing case o f  the Fresnel  evanescent  wave 
excited by a p lane  incident  wave with a l inear  po la r i sa t ion  obl ique on the 
incidence plane.  However  the fact  tha t  the t ransverse energy flux is very 

Copyri'ght ~ 1973 Plenum Publishing Company Limited. No part  of  this publication may be reproduced, 
s t o r e a  in a retrieval system, or transmitted, in any  form or by any means, electronic, mechanical, photo- 
copying, microfilming, recording or otherwise, without written permission of  Plenum Publishing Company 
Limited. 

9 129 



130 o. COSTA DE BEAUREGARD 

much stronger when the polarisation of the incident plane wave is elliptical, 
and is indeed maximal (given the incidence angle) when the evanescent 
wave is circularly polarised, escaped him. Rose & Wiegrefe (1916) have 
attempted to prove experimentally the existence of the transverse energy 
flux but, in the light of subsequent work on this subject, it is clear that their 
approach was not the best one. 

Fedorov (1955) drew attention to Wiegrefe's paper, and produced com- 
pact formulas for the case of a general elliptic polarisation of both the 
incident plane wave and the evanescent wave. He mentioned that the 
existence of the transverse energy flux should entail a transverse shift of 
the reflected beam, just as the existence of the classical longitudinal energy 
flux (Kristoffel, 1956; Renard, 1964) entails the longitudinal Goos- 
H/inchen shift (Goos & H/inchen, 1947, 1949); however he produced no 
formula for the transverse shift. 

None of these authors had related the existence of the transverse energy 
flux to the absence of a component of the photon momentum normal to 
the incidence plane; this seems queer, as the momentum of the photon is 
known since 1905. In 1964-5, not aware of the previous writings, we 
(de Beauregard, 1964a, 1965b) called attention to this phenomenon as a 
striking instance of non-collinearity of velocity and momentum of spinning 
particles. Calculations were produced for both the spinning electron 
(de Beauregard, 1964b, 1965a) and the spinning photon (de Beauregard, 
1964a, 1965b), the latter case being retained as more interesting for experi- 
mental tests, due to the much larger values attainable for the wavelength. 

Schilling (1965), using a stationary phase argumentation similar in spirit 
to Noether's (1931) explanation of the Goos-H/inchen shift, produced 
formulas for both the longitudinal and the transverse shifts in total reflection 
of an elliptieally polarised incident wave. In the light of subsequent work, 
it turns out that SchiUing's formula for the transverse shift should be 
corrected by a factor cos 2 i, where i denotes the incidence angle. 

Imbert (1968), unaware of Schilling's paper, calculated the transverse 
shift by using an energy flux conservation argument analogous to 
Kristoffel's (1956) and Renard's (1964) calculation of the Goos-H/inchen 
shift. His value is cos2i times larger than Schilling's, and is quite un- 
ambiguously supported by the experimental measurements he performed 
in 1969-70 (Imbert, 1969, 1970a, b). 

So much for the energy flux inside Fresnel's evanescent wave. 
A complementary facet of our problem is the study of the energy- 

momentum quanta inside Fresnel's evanescent wave. Let us first recall in 
this respect that absorption of the energy quanta inside Fresners evanescent 
wave is experimentally known since long ago (Hall, 1902). 

Due to the imaginary character of the component of the propagation 
vector normal to the reflecting plane (Hall, 1902), the component of this 
vector parallel to the reflecting plane is (in units such that c -- 1) larger than 
the angular frequency co. This should entail remarkable 'tachyon properties' 
for the energy-momentum quanta inside Fresnel's evanescent wave, which 
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would be testable in appropriate absorption or stimulated emission experi- 
ments. Unfortunately, for practical reasons, the most striking of these 
experiments, afirst order photoelectric effect on electrons shot parallel to 
both the incidence and the reflecting planes with just the right velocity, is 
only a thought experiment. However Glass & Mendlowitz (1968) have 
drawn our attention to the fact that their theory of the Smith-Purcell (1953) 
effect uses a quite similar concept for electrons travelling parallel to the 
surface of a metallic light diffracting grating. 

Finally Carniglia & Mandel (1971), simultaneously to our writings on 
tachyon photons, have quantised the Fresnel evanescent wave in an 
authoritative paper. They insist that 'evanescent photons' do not existper se, 
but only as quanta of a complex comprising an incident and a reflected 
plane wave together with the associated evanescent wave. Unquestionable 
as it stands, this assertion certainly does not preclude the experimental 
possibility of joined absorption or stimulated emission of the energy co and 
the momentum kx quanta inside the evanescent wave; all the more so that 
Carniglia & Mandel's commutation formulas for the emission and absorp- 
tion operators in the k representation are exactly those compatible with 
our own energy-momentum conservation formulas. 

So much for energy momentum quanta inside Fresnel's evanescent wave. 
As for the content of the present paper, it is exactly characterised by the 

content of the abstract. Therefore nothing is added here except reference 
to a previous paper (de Beauregard et aL, 1971), hereafter labelled I, to 
which this one is a natural sequel. 

For simplicity units such that c = 1 and h = 1 will be used throughout. 

2. Quasi Plane Taehyon-Photon Wave Generated by 
Double Total Reflectional 

(1) The idea underlying the following calculation (de Beauregard & 
Ricard, 1970) and the device it defines is that, by replacing the exponential 
exp(-by) which damps the field strengths in the direction orthogonal to 
the reflecting surface either by cosh(by) and sinh(by) (depending on the 
field components), an extremely close approximation to a plane tachyon 
wave is obtained at the height y = 0 where cosh(by) = 1 and sinh(by) = 0. 
Obviously such a wave is generated between the parallel plane interfaces 
y = :ka separating a vacuum from two identical isotropic media of index n, 
by two incoming symmetrical plane waves (Fig. 1). 

At this point a close parallelism between the formulas that will be 
produced and those for the wave guide consisting of two parallel plane 
conductors y = +a enclosing a vacuum is expected, because, as is well 
known, the field strengths are then functions of cos (Nzcy/a) and sin (Nrcy/a). 
The formulas corresponding to the two cases will now be displayed. 

t The content of this section results from work in collaboration with J. Ricard 
(de Beauregard & Ricard, 1970). 
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Figure 1. 

(2) Evanescent wave. Denot ing xOy the incidence plane c o m m o n  to the 
two symmetrical  incoming plane waves (Fig. 1), and setting 

P ~ e x p { f l o ( t - a x ) } ,  ~=--nao> 1 (2.1) 

where So denotes the incidence angle inside the two media of  index n, and 

___ (~2 _ 1),/2 (2.2) 

we write the general evanescent wave subject to our symmetry  prescriptions 
as a superposi t ion of  a transverse electric 

8~ = EP cosh (k~y), ,:/g~ =jEP~ sinh (k~y), 

and a transverse magnet ic  wave 

,Ygz= Hecosh(k~y) ,  e~,=-jHP~sinh(k[3y),  

�9 YYr = -EP~ cosh (k[3y) 

(2.3) 

~ = +HPo~ cosh (k'[Jy) 

(2.4) 

E and H denote  complex constants,  and all non-wri t ten field strengths are 
zero. The Fresnel-like formulas  for the t ransmission and reflection co- 
efficients pertaining to this case have been explicitly calculated (de Beaure- 
gard & Ricard,  1970). 

(3) z independent guided wave. The phase factor  corresponding to (2.1) 
is now 

P = exp {jm(t - ex)}, r < 1 (2.5) 

and the transverse electric wave must  assume the fo rm # ,  = EPgi.~ IkByt 
with 

/3 ---- (1 - ~2)t/2 (2.6) 

and be zero for  y = +a.  Thus,  Ndeno t ing  an integer, the condit ion k/~ = NTt/a 
must  be fulfilled which, in the case N = 1, yields for the sine type wave 

g= = EPsin(kjSy), ~.~ =jEPBcos(k~Sy), Yt~y = -EPotsin(ktSy) 

(2.7) 
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Similarly, the transverse magnetic wave must  be such that  gx = 0 for  
y = +a  so that, for N = 1, it assumes the form 

.r a, = n P c o s ( k f l y ) ,  8 x  = j n P f l s i n ( k f l y ) ,  ~y  = H P o t c o s ( k f l y )  (2.8) 

As was expected, formulas (2.4) and (2.8) are isomorphic,  while formulas 
(2.3) and (2.7) are less similar. 

(4) Group ve loc i ty  in the  x direct ion,  k denoting the propagat ion vector 
inside the sandwiched vacuum - a  < y < +a,  and assuming in both cases 
that  there is no dispersion o f  the ky component ,  the Rayleigh formula yields 

v~, = d k / d k x  = k x / k  = ~ (2.9) 

with a < 1 for  the guided wave and a > 1 for the evanescent wave. The 
latter result is o f  course completely consistent with the fact that for y ~ 0, 
formulas (2.1), (2.2), (2.3), (2.4) approximate very closely those of  a plane 
tachyon wave with k ~ / k  > 1. 

(5) E n e r g y  f l u x ,  energy  a n d  m o m e n t u m  densi t ies .  We will satisfy ourselves 
with a calculation o f  the components  M ~ * =  M 4~ and M 4. o f  the (sym- 
metric) Maxwell -Minkowski  tensor, that  is, o f  the Poynt ing vector and the 
classical energy density, and of  the components  T 4~, T ~4 and T 44 of  the 
de Broglie (1949) asymmetric energy-momentum tensor kAff[0 t] H ~ + c.c. 

One easily obtains for the sandwiched evanescent wave 

w = M** = �88 2 cosh 2 ( k f l y ) ( E *  E + H *  H )  

S ~ = i M  4~ = i T  4x = �89 cosh 2 ( k f l y ) ( E *  E + H *  H )  

S y = i M  4y = i T  4y = 0 

S z = i M  4~ = i T  "~ = � 8 8  H - E H * )  s i n h 2 ( k f l y )  

= T 44 = �89 8 = �88 E + H *  H + 

+ [E* E + H *  H(2~ 2 - 1)] cosh 2Kf ly ) }  

~ = i T  ~* = ~ wi th  o~ > 1  

~ Y  = i T  y4 = 0 

~ z  = i T Z 4  = 0 

and for the guided wave 

tv = M 4.  = �89 2 COS 2(k f l y ) (  H *  H - E *  E )  + E *  E + H *  H }  

S ~ = i M  4~ = i T  4~ = �89 Es in  2 ( k f l y )  + H *  H c o s  2 (k f ly ) )  

S y = i M  *~ = i T  4y = 0 

S ~ = i M  4~ = i T  4~ = �88 f l ( E *  H -  E H * )  cos 2(k f l y )  

= T .4 = �89 = �88 E + H *  H + 

+ [H* H(2~ 2 - 1) + E*  E]  cos 2(k f ly ) }  

~ = i T  ~4 = ~ wi th  ~ < 1  

~ Y  = i T  y4 = 0 

~ z  = i T Z 4  = 0 
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It should be noted that the (asymmetric) G6h6niau--de Broglie energy 
momentum tensor yields locally the same ratios N~/w = ~, g~r/w = g~'/w = O, 
between the momentum densities and the energy density, as exist between 
the momentum quanta and the energy quanta in the wave: k~/w = c~, 
k r / w = U / w = O .  Moreover, e >  1 for the tachyon-photons inside the 
evanescent wave, while e < 1 inside the guided wave. 

(6) Concluding this section. The sandwiched evanescent wave we have 
defined approximates very closely a guided tachyon wave having (in units 
such that c = 1) a group velocity e > 1 and a ratio between momentum and 
energy quanta k~/w = a > 1. 

3. Evanescent Wave with a Dispersion o f  the Propagation Vector 
Either Parallel to the Incidence Plane or to the Reflecting Plane 

(1) It is certainly desirable to produce formulas describing more realistic 
situations than the highly idealised case of the evanescent wave generated 
by a pure plane incident wave. We display in this section compact formulas 
for the two cases where a dispersion of the propagation vector either 
parallel to the incidence plane or to the reflecting plane exists. 

(2) Dispersion parallel to the incidence plane (de Beauregard, 1971b). We 
consider an electromagnetic field in vacuo such that the 10 wave amplitudes 
~v" = (E, H, A, V) are z independent, so that the photon has no momentum 
in the z direction, the time dependence being through a common factor 
exp(flot). 

The 10 functions 

3e'o(X, y) = ~ exp (-riot) (3.1) 

are thus by hypothesis solutions of the Helmholtz equation 

(0~ z + 0r z + co z) ~/'o(X, y) = 0 (3.2) 

We then superpose a transverse electric 

Ez ==- Ez(x, y), 

and a transverse magnetic 

Hz =- H,(x ,  y), 

H~ =jo~ -~ arEz, H r = -jco -I OxE: (3.3) 

E~ = -jo~ -~ O r H~, E r =rio -1 O~ Hz (3.4) 

solution with the same angular frequency co, and calculate the Poynting 
vector 

S =�88 • H + E  x H*) (3.5) 

We obtain, [a] - a - 0 denoting the Schr6dinger or Gordon operator, 

s~,r = 4J-g~ (E:* lax,r] E~ + H:* [0x.r] H~) (3.6) 
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that is, a Schr~Sdinger-like energy flux inside the x, y plane, with no inter- 
ference terms between E~ and Hz, and 

Sz = ~-~(OxEz* OyH~ - Ox Hz* OrEs) + c.c. (3.7) 

Thus, although the z component of  the photon momentum is identically 
zero, there is a non-zero energy flux through the plane z = 0, the value of  
which depends critically on the phase relation between E. and H~. 

One easily verifies the relation 

OxS~-O~Sx=j-~(O~,Ez*OyEz+OxH~*OyH~)+c.c. (3.8) 

I f  the boundary conditions are such as to allow that 

H~(x,y) =jaE~(x,y) (3.9) 

where a denotes a real constant, then 

1 
S~ (a+a_l)~o(OxSy-OySx) (3.10) 

follows from (3.7) and (3.8). In integral form 

1 f (Sxdx+S ,  dy) (3.11) f f  S~clxdy (a+a_l)eo 

By definition, left or right circular polarisation (that is, pure positive or 
negative helicity) correspond respectively to a = 4-1. 

Now, the Fresnel evanescent wave is indeed such that the condition (3.9) 
is fulfilled. Also, it is such that the double integral (3.11), extended either 
to the semi plane z = 0, y < 0, or to the whole plane z = 0, is non-zero 
(Imbert, 1969, 1970a, b). 

The preceding formulas hold in the case where the evanescent wave is a 
Fourier superposition of pure Fresnel evanescent waves, with the dispersion 
on the complex propagation vector k lying inside the plane z = 0. This 
clearly allows a more general derivation of the new Imbert transverse shift 
(Imbert, 1969, 1970a, b) than had been initially given (Imbert, 1968). 

(3) Dispersion parallel to the reflecting plane (de Beauregard, 1971a). 
Denoting y = 0 the reflecting plane separating the vacuum y < 0 from the 
medium of index n,y > 0, we consider the vacuum solutions of the Helmholtz 
equation 

(02 + ax2 + n z ~z 092) "f/'(x, z) = 0 (3.12) 

such that n~ = const. > 1 ; they represent a Fourier superposition of  pure 
Fresnel evanescent waves, the dispersion on the complex propagation 
vector being now parallel to the reflecting plane. Setting 

q ~ (n2~X 2 -  1) I/2, "r~= l/n2 cr 2 (3.13) 
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and denoting E~ = E,(x, z), By =--- H,(x,z) two solutions of (3.12), we write 
the solution of Maxwell's equations inside the vacuum y < 0 as 

E,- E~,, E,='r(qa=E~,-jaxHj,), Ex=z(qa=E, +jO~H,,) 

H y -  Hy, H==z(qa~Hy +ja=Ey), Hx=~(qaxHr-ja~Ey) 

(3.14) 

(3.15) 
and calculate the Poynting vector (3.5) as 

Sx = (2n~) -z co-l{j(E,*[O=] E, + Hy* [Ox] H,) + q(E,*[a~] H, - Hy*[Oz] E,)} 

(3.16) 
Sz = (2na) -z co-1{j(E~,*[a=] Ey + H,* [az] H,) - q(E,* [a=] H, - H,*[ax] E,)} 

and 
S, = (2nczog)-2(0= E,* 3x H, - O= E,* 02 H,,) + c.c. (3.17) 

The relation 

a=Sx - axSz = 2j(2n~)-2 og-l(azE, * axE, + az H,* axH,. ) + c.c. (3.18) 

is easily verified, so that, if 

H,(x, z) =jaE,(x, z) (3.19) 
with a denoting a constant, one has 

1 
S, (a + a -1) o9 (a, S,, - a x S~) (3.20) 

or, in integral form, 

1 ~ ( s x a x + s ,  az) (3.21) : :  S, dxdz= (a + a_~)o9 

Formulas (3.16) express the vector (Sx, S,,0) as the sum of two vectors. 
The first one is an ordinary longitudinal Schr6dinger-like current with no 
interference terms between E~ and H r The second one is in the form of a 
transverse Schr6dinger current and depends critically on the phase relation 
between E~ and H.~; it is maximal when the condition (3.19) is fulfilled, with 
a -- -4-I, that is, left or right circular polarisation inside the evanescent wave. 

Formula (3.21) yields the energy flux through an arbitrary element of 
the reflecting plane when the condition (3.19) holds. 

4. The Fresnel Evanescent Wave in the Case where the 
Photon has a Rest Mass 

(1) We have shown in I that, inside the vacuum of Fresnel's evanescent 
wave, the asymmetric de Broglie (1949) or canonical energy-momentum 
tensor, rather than the symmetric Maxwell-Minkowski one, rightly 
encodes the information pertaining to the energy fluxes (as measured in the 
longitudinal Goos-H/inchen (Goos & H~inchen, 1947, 1949) and in the 
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transverse Imbert (Imbert, 1969, 1970a, b ) sh i f t s  in total reflection) 
and the momentum densities. Then, as the de Broglie energy-momentum 
tensor, which contains the 4-potential A i ( i =  1 , 2 , 3 , 4 ; A 4 = i V )  is not 
gauge invariant in this case, we have shown that it is only the gauge that is 
transverse in the rest frame of the refracting medium (V_= 0, A. k = 0, with 
k complex) that yields the preceding result. We thus conclude that this 
gauge is selected as the only physically significant one in this case. 

We will now prove that if we endow the photon with a non-zero (but 
exceedingly small) rest mass m, the Fresnel evanescent wave is necessarily 
a pure spatially transverse wave in the rest frame of the refracting medium. 

As for the longitudinal waves which can exist i fm ~ 0, we wilt prove that 
they are not refracted by the medium, and thus cannot contribute as a third 
degree of freedom of the evanescent wave. 

(2) Refracting indexes o f  the transcerse and longitudinal waves inside a 
medium o f  electric and magnetic susceptibilities e and p. We are not aware 
that the (generalised) Maxwell equations for the case m ~0,  ~ r 1, # # 1, 
have ever been written (not even in the well-known Bass & SchrOdinger 
(1955) article). 

We take (de Beauregard, 1972) the homogeneous set of equations in 
exactly the Maxwell form (for the case of a homogeneous, k real, or inhomo- 
geneous, k complex plane wave): 

k • A ~- - j p H ,  o h  - k V = j E  (4.1) 
entailing 

k • E + ita~H =_ O, k . H  -= 0 (4.2) 
and 

E . H - = 0  (4.3) 

and the inhomogeneous set of equations in the Proca-de Broglie form 
(de Broglie, 1934a, b, c; Proca, t936) 

k • H - ecoE =jm2A, ek .E = - j m  2 V (4.4) 
entailing 

k .A  - coY= 0 (4.5) 

In (4.4) the Proca-de Broglie vacuum current and charge densities stand 
in the place of the usual current and charge densities, but the situation is 
very different from the classical one in that both the (4.I)'s and the (4.4)'s 
are coupling the field strengths to the potentials. As the magnetic suscepti- 
bility # is present only in the (4.1)'s and the electric susceptibility e only in 
the (4.4)'s, a condition implying e, p, k, ~o, m is necessary for the compati- 
bility of  the (4.1)'s and the (4.4)'s. 

In order to find it we first eliminate A between (4.1)1 and (4.4), by apply- 
ing the operator k• to (4.4)1 and using the (4.2)'s, thus obtaining 

(k 2 - epco 2 + #mZ)H = 0 
whence the option 

H = 0  or k2=gpcOZ-- l tm2 (4.6) 
10 
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Now, if we eliminate E between (4.1)2 and (4.4)2 by applying to the latter the 
operator k. and using (4.4), we obtain 

(o~ 2 - k s - m ~ l ~ )  V = 0 

whence the option 
V = O  or k 2=a~ 2 - m 2 / ~  (4.7) 

In the limit e -+ I,/x -+ 1, both conditions (4.6)2 arid (4.7)2 reduce to the 
vacuum propagation condition k 2 =  co 2 -  m 2. Here we find two different 
propagation modes for plane waves in the medium, one with index 

n ,  - k , l ~  = {,,:.#~(i - m~l~o2)) '/2 ~- (ev) '/2 ( 4 . 8 )  

and the other one with index 

n, = kl/o~ = (1 - m2/~oj2) U2 ~ 1 (4.9) 

Moreover, as the formula (4.7)2 does not contain # and that p appears in 
the (4.2)'s only as a factor of H, we conclude that the condition (4.7)1 entails 
the condition (4.6). 

Now we show that the condition (4.6)1 entails the condition (4.7)2 and 
characterises longitudinal waves. H - 0 entails, via equations (4.2) to (4.5), 

k • A = 0, A = ak, V = ak2/o~ (4.10) 

E =ja(k2/co)(k  2 - r 2) k (4.11) 

with a denoting a (complex) constant. Applying the operator ek. to (4.11) 
and using (4.4)2 we obtain (as a :~ 0 if A :P 0) formula (4.9). Incidentally, 
we have proved that conditions (4.6)1 and (4.7)2 are equivalent, so that 
our dilemma can be written as 

H=-0 or V - O  (4.12) 

Finally we verify that the condition (4.7)1 entails the condition (4.6)2 and 
characterises the transverse waves. V- -0  entails, via equations (4.2) to 
(4.5), the formulas 

V -- 0, E = -jcoA, H = - j k  • A (4.13) 

and (4.3) characterising the transverse waves, and, through (4.2)1 and (4.4)1, 

k E  = po3H, k H  = (aa~ - m2/03) E 

whence (as E =~ 0 and H -~ 0 if A ~ 0) formula (4.7)2. 
To conclude, if the photon has a non-zero (but exceedingly small) rest 

mass m, ordinary isotropic refracting media can support two different 
modes of  plane propagating waves: the ordinary transverse waves character- 
ised by 

V=-- 0 and nt = {e#(1 -- m2i8r 112 ~ (~,u) 1/2 
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and the longitudinal waves characterised by 

H =- 0 and n z -  (1 - m2/~oJ2) ~12 N I 

(they are thus not appreciably refracted). 
In other words, ordinary isotropic refracting media must be thought o f  as 

poIarisation state filters f o r  the massive photon: they will throw incoming 
photons either in the (twofold) locally transverse state k. A = 0 or in the 
(simple) locally longitudinal state A = ak, V = ak2/o~. If, for instance, the 
surface through which the photons enter the medium is a plane oblique on 
the incoming propagation vector, the two beams will be divergent (like in 
the case of ordinary birefringence). 

Consider for instance the (highly arbitrary) assumption that the incoming 
beam is made of a 'natural' light where the three independent degrees of 
freedom have equivalent weights. Then, in terms o f  numbers o f  photons per 
see cm 2, the (locally) longitudinal and transverse beams filtered by the 
medium will have 'intensities' in the (very high) ratio 1/2. However, in 
terms ofe lectr ie f ieM strengths the corresponding intensity ratio will be the 
(exceedingly small) m2/2co 2. The idea that, if the photon does have a non- 
zero rest mass, streams of longitudinal photons might be flowing undetected 
through the universe certainly sounds like good science fiction .... 

Coming back to our problem of the (pure) Fresnel evanescent wave 
characterised by a well-defined complex propagation vector, it is clear from 
above that (1) it contains rigorously no contribution from the spin zero 
state, and (2) that the index n for building it is not quite exactly the classical 
~e#  but rather the n defined by (4.8) (which makes practically no 
difference). 

(3) Fresnel evanescent wave for  m ~ O. Using the same coordinates and 
conventions as in I together with the refracting index n = nt defined by 
(4.8)7 we write the complex propagation vector inside the evanescent wave as 

kx = new, k ,  = -jog(n z ~2 _ 1 + o9 -2 m2) 1/2, k, = 0 (4.14) 

so that 
k:, z + Icy 2 = co z - m 2 (4.15) 

and kx and kz are continuous through the plane y = 0. The common phase 
factor is thus 

P = E x p { j o ~ ( t - n c t x ) - o g ( n Z e  2 -  1 + o9-2m2) ~/z} (4.16) 

As there is no admixture of spin 0 state, we must retain only solutions such 
that the (4.13)'s hold. However, when the vector potential enters the 
picture (as is necessarily the case if m ~ 0), the presence of the reflecting 
plane and the existence of the corresponding boundary condition entails 
some dissimilarity between the two linear polarisation 'states described as 
'transverse electric' and 'transverse magnetic'. 

Transverse electric wave. By hypothesis 

Ax=0,  A t = 0 ,  Az=jco- IE~,  V = 0  (4.17) 
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entailing 
k . A = 0  

and, through (4.1), 

E~=O,  E,=O,  E z = E z  

h~ = -j(n2 a 2 - 1 + og-2m2)l/2Ez, 

Transverse magnetic wave. By hypothesis 

A~ a~2 J'~kmz H=, A, o~/~X-m2Hz, 

entailing (4.18) and, through (4.1), 

j (n  z ~z _ 1 + 072 m2) 1/z 
Ex  1 - -  ( o - 2 m  z Hz, E ,  

Hx=O,  H , = O ,  

Hy = -no~E z, 

(4.18) 

(4.19) 

H= = 0 (4.20) 

& = 0 ,  v = 0  (4.21) 

H z ,  E ,  = 0 ( 4 . 2 2 )  
1 - a)  - 2  m 2 

/4"= - H ,  ( 4 . 2 3 )  

in both cases the homogeneous Maxwell and the inhomogeneous Proca-  
de Broglie equations are satisfied, as the (space-time) formulas (i,j  = 1,2, 3, 4; 
x 4 = it) 

j B i J = k ~ A J - k J A  ~, k~k~ + m  2 =0 ,  k ~ A i = O  
entail 

j k j B ~ J = m 2 A  ~, ~ k i B S k = O  
clrc 

regardless of the real or complex character of the space vector k = (= = 1,2, 3). 
Formulas (4.8) and (4.14) to (4.23) are either identical to, or differing only 

by corrective terms of order m2/o) 2 from those given in I for the two polarisa- 
tion states of the evanescent wave. 

Finally we must derive the formulas for the continuity or discontinuity 
of the field strengths through the reflecting plane y = 0. The de Broglie- 
Proca equations read, in the case of a harmonic and transverse solution, 

curl E +j/~a)H = 0, div H = 0 
curl H - j (eoo  - m2/~o) E = 0, div E = 0 (4.24) 

They are isomorphic to the Maxwell equations in the case of a harmonic 
solution and an imaginary conduction coefficient 

a = -joo -1 m z (4.25) 

so that a simple transcription of the well-known continuity formulas for the 
field strengths through a discontinuity surface yields 

Ha T = 1-12 T, E1T = E2 T (4.26) 

~lHlU=I22H2 N, ( e l - o o - 2 m Z ) E ~ N = ( e a - c o - 2 m 2 ) E 2  N (4.27) 

where the suffixes T and N hold for the tangential and normal components 
respectively. 
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The field strengths inside the incident (i) and reflected (r) wave for 
y = + 0 ,  and inside the evanescent (e) wave for y = - 0 ,  must satisfy these 
conditions. First we notice that  (4.1)1 entails (n = n,) 

n E  ~,r = p H  ~,r (4.28) 

The transverse electric  triplet. Setting 

E.. e = a, Ez'  = �89 + b), Ez r = �89 - b) (4.29) 

we satisfy (4.27)2. Then from (4.20) 

H 7 = -ncca, Hx  e = _ j ( n  z ~2 _ 1 + (0 -2 n'~2) 1/2 a (4.30) 

and from (4.28) 

Hy ~ = - n ~ ( a  + b)/2/t,  Hx '  = - n f l ( a  + b) /2# (4.31) 

H 7 = -nc~(a - b)/2p,  nx"  = nfl(a - b)/21.t (4.32) 

F rom (4.30)1, (4.31)1 and (4.32)1 we deduce, in accord with (4.27)~, 

H 7 = p (HJ  + HT) (4.33) 

F rom (4.30)2, (4.31)2, (4.32)2, (4.27)1 and the obvious relation c~ 2 + f12 = 1 
we deduce 

b = j # n _ l ( n  2 ~ 2 -  1__+__(0-2 m2] 1/2 
1 - c~ 2 ] a (4.34) 

that  is, the phase shifts in total reflection. 
The transverse magnet ic  triplet. Setting 

H J  = a', n~'  = �89 + b'), H~' = �89 - b') (4.35) 

we satisfy (4.27). Then from (4.22) 

n~ _ ~ (n 2 ~2 _ 1 + e) -2 m2) 1/2 a' (4.36) 
E re=  1 - - f D - 2 m  2a' '  Ex = j  1 - - ( 0 - 2 m 2  

and from (4.28) 

Ey' = I~c~(a' + b') /2n,  Ex '  = I~fl(a' + b') /2n (4.37) 

Ey" = pct(a' - b')/2n, Ex ~ = I2fl(b" - a ') /2n (4.38) 

F rom (4.36)1, (4.37)1, (4.38)1 and (4.8) we deduce, in accord with (4.27)2, 

(1 -- (0-2 m 2) Eye = (e -- (0-2 m2)(Ej + E7 ) (4.39) 

From (4.36)2, (4.37)2, (4.38)2 and (4.26)2 we deduce the phase shift formula 

b' = j # - i  n ( n2 ~2 _ 1 + co -2 m2~ 112 
i Z ~ -  ] (1--(0-2m2) -1 a' (4.40) 

Thus, contrary to Bass & Schr~Sdinger's (1955) conclusion for the metallic 
reflection, we find that  the total vitreous reflection of  a massive photon 
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(either in the transverse electric or the transverse magnetic mode) goes on 
without any interference with the longitudinal mode. 

In the limit m ~ 0 all the preceding formulas (4.26) to (4.40) reduce to 
the classical ones. 

5. Concluding Remarks 

We have given four very natural extensions to the contents of a previous 
paper (de Beauregard et al., 1971) referred to as I: 

(1) Formulas for a sandwiched evanescent wave generated by two sym- 
metrical plane waves incident inside two identical refracting media; the 
Fresnel exponential damping factor being then replaced by hyperbolic 
cosines or sines (depending on the field strengths components) an extremely 
close approximation to a tachyon plane wave (with propagation vector k 
longer, in units such that c = 1, than the angular frequency co) is thus 
obtained. This is not to say that the physical device thus defined would in 
fact be more convenient than the simple plane interface, for experimentally 
testing the tachyon-like quanta inside an evanescent wave. Our main 
motivation when producing these formulas has been to add physical 
credibility to the concept of the tachyon photons. 

(2) We have also produced very similar compact formulas for the two 
cases where the evanescent wave can be thought of as a Fourier type super- 
position of elementary evanescent waves characterised by complex propa- 
gation vectors k, the dispersion of which is either parallel to the incidence 
plane or to the reflecting plane. In both cases the existence of the transverse 
energy flux when the evanescent wave is elliptically polarised is quite 
conspicuous in the formulas. 

(3) Finally we have written down the formulas for plane waves of massive 
photons inside a refracting medium, thus showing that the corrected index 
for the transverse waves is ~/[e/~(1 - m 2 / • c o 2 ) ] ,  where m denotes a photon 
(very small) rest mass, and that the index for the longitudinal waves is 
V'[1 - mZ/eco2]. Thus an ordinary refracting medium should be birefringent 
with respect to the ordinary transverse photons on the one hand, and for 
the longitudinal photons on the other hand. Then (as no longitudinal 
evanescent waves are produced under such conditions) we have calculated 
the transverse electric and transverse magnetic types of evanescent waves 
for the massive photon, producing formulas which, in the limit m--~ 0, 
transform into the well-known ones we have used in paper I. As was 
expected, the potential's gauge for the massive photons corresponds 
exactly to the transverse gauge we had selected in I for physical reasons. 
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