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The product of gauge fields generated by the Yang–Mills gradient flow for positive flow times
does not exhibit the coincidence-point singularity and a local product is thus independent of
the regularization. Such a local product can furthermore be expanded by renormalized local
operators at zero flow time with finite coefficients that are governed by renormalization group
equations. Using these facts, we derive a formula that relates the small flow-time behavior of cer-
tain gauge-invariant local products and the correctly-normalized conserved energy–momentum
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1. Introduction

Although lattice regularization provides a very powerful non-perturbative formulation of field the-
ories, it is unfortunately incompatible with fundamental global symmetries quite often. The most
well-known example is chiral symmetry [1,2]; supersymmetry is another infamous example [3], as
is, needless to say, translational invariance. When a regularization is not invariant under a symme-
try, it is not straightforward to construct the corresponding Noether current that is conserved and
generates the symmetry transformation through Ward–Takahashi (WT) relations. This makes the
measurement of physical quantities related to the Noether current in a solid basis very difficult. To
solve this problem, one can imagine at least three possible approaches.

The first approach is an ideal one: One finds a lattice formulation that realizes (a lattice-modified
form of) the desired symmetry. If such a formulation comes to hand, the corresponding Noether
current can easily be obtained by the standard Noether method. The best successful example of this
sort is the lattice chiral symmetry [4–11], which can be defined with a lattice Dirac operator that
satisfies the Ginsparg–Wilson relation [12]. Although this is certainly an ideal approach, it appears
that such an ideal formulation does not always come to hand, especially for spacetime symmetries
(see, e.g., Ref. [13] for a no-go theorem for supersymmetry).

The second approach is to construct the Noether current by tuning coefficients in the linear
combination of operators that can mix with the Noether current under lattice symmetries.1 For
example, for the energy–momentum tensor—the Noether current associated with the translational

1 Here, we assume that fine tuning of bare parameters to the target (symmetric) theory is done.
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invariance and rotational and conformal symmetries [14,15]—one can construct a conserved lattice
energy–momentum tensor by adjusting coefficients in the linear combination of dimension 4 opera-
tors [16,17]2; the overall normalization of the energy–momentum tensor has to be fixed in some other
way.3 Although this method is in principle sufficient when the energy–momentum tensor is in “isola-
tion”, i.e., when the energy–momentum tensor is separated from other composite operators, as in the
on-shell matrix elements, it is not obvious a priori whether one can control the ambiguity of possible
higher-dimensional operators that may contribute when the energy–momentum tensor coincides with
other composite operators in position space. This implies that it is not obvious whether the energy–
momentum tensor constructed in the above method generates correctly-normalized translations
(and rotational and conformal transformations) on operators through WT relations. (If the energy–
momentum tensor generates correctly-normalized translations, it is ensured [21] (see also Sect. 7.3
of Ref. [22]) that the trace or conformal anomaly [23,24] is proportional to the renormalization group
functions [25–27].)

The third possible approach is to utilize some ultraviolet (UV) finite quantity. Since such a quantity
must be independent of the regularization adopted (in the limit in which the regulator is removed),
there emerges a possibility that one can relate the lattice regularization and some other regular-
ization that preserves the desired symmetry. This methodology can be found e.g. in Ref. [28] (see
also Ref. [29]), where an ultraviolet finite representation of the topological susceptibility is derived.
Although the derivation of the representation itself relies on a lattice regularization that preserves the
chiral symmetry [4–11], one can use any regularization (e.g., the Wilson fermion [30]) to compute
the representation because it must be independent of the regularization.

In the present paper, we consider the above third approach for the energy–momentum tensor, by
taking the pure Yang–Mills theory as an example. For this, we utilize the so-called Yang–Mills gradi-
ent flow (or the Wilson flow in the context of lattice gauge theory) whose usefulness in lattice gauge
theory has recently been revealed [31–39]. A salient feature of the Yang–Mills gradient flow is its
robust UV finiteness [33]. More precisely, any product of gauge fields generated by the gradient flow
for a positive flow time t is UV finite under standard renormalization. Such a product, moreover, does
not exhibit any singularities even if some positions of gauge fields coincide. The basic mechanism for
this UV finiteness is that the flow equation is a type of diffusion equation and the evolution operator
in the momentum space ∼e−tk2

acts as an UV regulator for t > 0. This property of the gradient flow
implies that the definition of a local product of gauge fields for positive flow times is independent of
the regularization. In our present context, there is a hope of relating quantities obtained by the lattice
regularization and the dimensional regularization with which the translational invariance is manifest.

As noted in Ref. [33], on the other hand, a local product of gauge fields for a positive flow time
can be expanded by renormalized local operators of the original gauge theory with finite coefficients.
Those coefficients satisfy certain renormalization group equations that, combined with the dimen-
sional analysis, provide information on the coefficients as a function of the flow time. Because of the
asymptotic freedom, one can then use the perturbation theory to find the asymptotic behavior of the
coefficients for small flow times.

By using the above properties of the gradient flow, one can obtain a formula that relates the
small flow-time behavior of certain gauge-invariant local products and the energy–momentum

2 A somewhat different approach on the basis of the N = 1 supersymmetry has been given in Refs. [18,19].
3 It might be possible to employ “current algebra” for this, as for the axial current [20].

2/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/8/083B03/1592174 by guest on 21 August 2022



PTEP 2013, 083B03 H. Suzuki

tensor defined by the dimensional regularization. Since the former can be computed by using the
Wilson flow with lattice regularization [31–39] and the latter is conserved and generates correctly-
normalized translations on composite operators, our formula provides a possible method to compute
the correlation functions of a correctly-normalized conserved energy–momentum tensor by using
Monte Carlo simulation.

In the present paper, we follow the notational convention of Ref. [33] unless otherwise stated.

2. Yang–Mills theory and the energy–momentum tensor

2.1. The energy–momentum tensor with dimensional regularization

In the present paper, we consider the SU (N ) Yang–Mills theory defined in a D dimensional
Euclidean space. The action is given by

S = 1

4g2
0

∫
d Dx Fa

μν(x)Fa
μν(x), (2.1)

from the Yang–Mills field strength

Fμν(x) = ∂μ Aν(x) − ∂ν Aμ(x) + [Aμ(x), Aν(x)]. (2.2)

We set

D = 4 − 2ε, (2.3)

and then the mass dimension of the bare gauge coupling g0 is ε.
Assuming that the theory is regularized by the dimensional regularization (for a very nice expo-

sition, see Ref. [40]), one can define the energy–momentum tensor for the system (2.1) simply by
(see, e.g., Ref. [41])

Tμν(x) = 1

g2
0

[
Fa

μρ(x)Fa
νρ(x) − 1

4
δμν Fa

ρσ (x)Fa
ρσ (x)

]
, (2.4)

up to terms attributed to the gauge fixing and the Faddeev–Popov ghost fields, which are irrelevant
in correlation functions of gauge-invariant operators. Note that the mass dimension of the energy–
momentum tensor is D.

The advantage of dimensional regularization is its translational invariance. Because of this prop-
erty, the energy–momentum tensor naively constructed from bare quantities, Eq. (2.4), is conserved
and generates correctly-normalized translations through a WT relation,∫

d Dx
〈
∂μTμν(x)O〉 = − 〈∂νO〉 , (2.5)

where it is understood that the derivative on the right-hand side is acting all positions in a gauge-
invariant operator O. Used in combination with dimensional counting and gauge invariance, this WT
relation implies that the energy–momentum tensor Tμν(x) is finite [26,42] and thus, in the minimal
subtraction (MS) scheme,4

Tμν(x) − 〈
Tμν(x)

〉 = {
Tμν

}
R (x). (2.6)

The finiteness of the energy–momentum tensor (2.4) provides further useful information on the
renormalization of dimension 4 gauge-invariant operators. The gauge coupling renormalization with

4 Here, we define the renormalized operator by subtracting its vacuum expectation value. In the perturbation
theory using dimensional regularization, this subtraction is automatic.
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dimensional regularization is defined by

g2
0 ≡ μ2εg2 Z , (2.7)

where μ is the renormalization scale and Z is the renormalization factor. In the MS scheme,

Z = 1 − 1

ε

[
b0g2 + 1

2
b1g4 + O(g6)

]
+ O

(
1

ε2

)
, (2.8)

and

b0 = 11N

48π2 , b1 = 17N 2

384π4 . (2.9)

From the rotational invariance that the dimensional regularization keeps, we see that the operator-
renormalization possesses the following structures:5

Fa
μρ(x)Fa

νρ(x) − 〈
Fa

μρ(x)Fa
νρ(x)

〉 = ZT
{

Fa
μρ Fa

νρ

}
R

(x) + Z Mδμν

{
Fa

ρσ Fa
ρσ

}
R

(x), (2.10)

and

Fa
ρσ (x)Fa

ρσ (x) − 〈
Fa

ρσ (x)Fa
ρσ (x)

〉 = ZS
{

Fa
ρσ Fa

ρσ

}
R

(x). (2.11)

Substituting the above relations into Eqs. (2.4) and (2.6), we have

{
Tμν

}
R (x) = 1

g2 μ−2ε Z−1
[

ZT
{

Fa
μρ Fa

νρ

}
R

(x) − 1

4
(ZS − 4Z M)δμν

{
Fa

ρσ Fa
ρσ

}
R

(x)

]
. (2.12)

Since the left-hand side is finite for ε → 0, in the MS scheme in which only pole terms are subtracted,
we infer (by considering the cases μ �= ν and μ = ν) that

ZT = Z = 1 − b0g2 1

ε
+ O(g4) (2.13)

and

ZS − 4Z M = Z . (2.14)

2.2. Implications of the trace anomaly

Another important property of the energy–momentum tensor (2.4) is the trace anomaly [25–27],

δμν

{
Tμν

}
R (x) = − β

2g3

{
Fa

ρσ Fa
ρσ

}
R

(x). (2.15)

By Eq. (2.6), this relation is equivalent to

δμν

[
Tμν(x) − 〈

Tμν(x)
〉] = ε

1

2g2
0

Fa
ρσ (x)Fa

ρσ (x) −
〈
ε

1

2g2
0

Fa
ρσ (x)Fa

ρσ (x)

〉

ε→0−−→ − β

2g3

{
Fa

ρσ Fa
ρσ

}
R

(x). (2.16)

In Eqs. (2.15) and (2.16), β denotes the β function for D = 4, defined by

β ≡
(

μ
∂

∂μ

)
0

g = −1

2
g

(
μ

∂

∂μ

)
0

ln Z , (2.17)

5 Here again, we define renormalized operators by subtracting their vacuum expectation values.
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where the subscript 0 implies that the derivative is taken while the bare quantities are kept fixed.
Equations (2.8) and (2.7) yield

β = −b0g3 − b1g5 + O(g7). (2.18)

Then, substituting Eqs. (2.12) into Eq. (2.15) and using Eqs. (2.13) and (2.14), we observe that

δρλ

{
Fa

ρσ Fa
λσ

}
R

(x) =
(

1 − β

2g

){
Fa

ρσ Fa
ρσ

}
R

(x), (2.19)

i.e., the contraction with the metric and the minimal subtraction, the subtraction of 1/ε poles, do not
commute; this is a peculiar but legitimate property of the dimensional regularization [40].

Also, substituting Eqs. (2.7) and (2.11) into Eq. (2.16), we see

ε
ZS

Z
ε→0−−→ −β

g
. (2.20)

In the MS scheme in which only pole terms are subtracted, this implies

ZS =
(

1 − β

g

1

ε

)
Z = 1 + O(g4), (2.21)

and Eq. (2.14) then shows

Z M = − β

4g
Z

1

ε
= b0

4
g2 1

ε
+ O(g4). (2.22)

We thus observe that all the renormalization constants in Eqs. (2.10) and (2.11), ZT , Z M , and ZS ,
in the MS scheme can eventually be expressed by the gauge coupling renormalization constant Z
in Eq. (2.7).

3. Yang–Mills gradient flow and the small flow-time expansion

The Yang–Mills gradient flow defines a D + 1 dimensional gauge potential B(t, x) along a fictitious
time t , according to the flow equation

∂t Bμ(t, x) = DνGνμ(t, x) + α0 Dμ∂ν Bν(t, x), (3.1)

where the D + 1 dimensional field strength and the covariant derivative are defined by

Gμν(t, x) = ∂μBν(t, x) − ∂ν Bμ(t, x) + [Bμ(t, x), Bν(t, x)] (3.2)

and

Dμ = ∂μ + [Bμ, ·], (3.3)

respectively. The initial condition for the flow is given by the D dimensional gauge potential in the
previous section:

Bμ(t = 0, x) = Aμ(x). (3.4)

In Eq. (3.1), the last term is introduced to suppress the evolution of the field along the direction
of gauge degrees of freedom. Although this term breaks the gauge symmetry, it does not affect the
evolution of any gauge-invariant operators [31]. Note that the mass dimension of the flow time t is −2.

Now, from the field strength extended to the D + 1 dimension (3.2), we define a D + 1 dimensional
analogue of the energy–momentum tensor by

Uμν(t, x) ≡ Ga
μρ(t, x)Ga

νρ(t, x) − 1

4
δμνGa

ρσ (t, x)Ga
ρσ (t, x). (3.5)

Although this is similar in form to the original energy–momentum tensor (2.4), it is not obvious a
priori how this D + 1 dimensional object and Eq. (2.4) are related (or not). To find the relationship
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between them is the principal task of the present paper. We also use the density operator studied
in Ref. [31]:

E(t, x) ≡ 1

4
Ga

μν(t, x)Ga
μν(t, x). (3.6)

Now, as shown in Ref. [33], for t > 0, any correlation function of Bμ(t, x) is UV finite after stan-
dard renormalization in the D dimensional Yang–Mills theory. This property holds even for any
local products of Bμ(t, x) such as Eqs. (3.5) and (3.6). Also, for small flow times, a local product
of Bμ(t, x) can be regarded as a local field in the D dimensional sense because the flow equation (3.1)
is basically the diffusion equation along the time t and the diffusion length in x is

√
8t . These prop-

erties allow us to express, as explained in Sect. 8 of Ref. [33], Uμν(t, x) and E(t, x) as an asymptotic
series of D dimensional renormalized local operators with finite coefficients. Considering the gauge
invariance and the index structure, for D = 4, we can write

Uμν(t, x) = cT (t)
{
Tμν

}
R (x) + cS(t)δμν

{
1

4
Fa

ρσ Fa
ρσ

}
R

(x) + O(t), (3.7)

where abbreviated terms are the contributions of operators with a mass dimension higher than or
equal to 6. For Eq. (3.6), we similarly have

E(t, x) = 〈E(t, x)〉 + cE (t)

{
1

4
Fa

ρσ Fa
ρσ

}
R

(x) + O(t). (3.8)

We note that, when the renormalized gauge coupling is fixed, Uμν(t, x) (3.5) is traceless for D = 4,

δμνUμν(t, x) = 2εE(t, x)
ε→0−−→ 0, (3.9)

because E(t, x) (3.6) is finite [31] and does not produce a 1/ε singularity (this explains why there is
no c number expectation value term in Eq. (3.7)). Thus, considering the trace part of Eq. (3.7), we
see that the coefficients cT (t) and cS(t) are not independent and are related by, for D = 4,

cS(t) = β

2g3 cT (t), (3.10)

because of the trace anomaly (2.15).
By eliminating the renormalized action density from Eqs. (3.7) and (3.8), we have

{
Tμν

}
R (x) = 1

cT (t)
Uμν(t, x) − cS(t)

cT (t)cE (t)
δμν [E(t, x) − 〈E(t, x)〉] + O(t). (3.11)

This expression relates the energy–momentum tensor (2.6) and the short flow-time behavior of gauge-
invariant local products defined by the gradient flow. Thus, once the coefficients are known, one
can extract the energy–momentum tensor from the t → 0 behavior of the combination on the right-
hand side.

4. Renormalization group equation and the asymptotic formula

4.1. Renormalization group equation for the coefficients

We now operate (
μ

∂

∂μ

)
0
, (4.1)

on both sides of Eq. (3.7). Since the left-hand side of Eq. (3.7), i.e., Eq. (3.5), is entirely expressed
by bare quantities through the flow equation (3.1) and the initial condition (3.4), the action of (4.1)

6/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/8/083B03/1592174 by guest on 21 August 2022



PTEP 2013, 083B03 H. Suzuki

on the left-hand side identically vanishes. On the right-hand side, this vanishing must hold in each
power of t . Thus we infer that (

μ
∂

∂μ

)
0

cT (t)
{
Tμν

}
R (x) = 0, (4.2)

(
μ

∂

∂μ

)
0

cS(t)

{
1

4
Fa

ρσ Fa
ρσ

}
R

(x) = 0. (4.3)

For the first relation (4.2), we recall that the energy–momentum tensor is not renormalized
as Eq. (2.6). Then, by expressing the operation (4.1) in terms of renormalized quantities, we have(

μ
∂

∂μ
+ β

∂

∂g

)
cT (t) = 0. (4.4)

For Eq. (4.3), on the other hand, from Eq. (2.11),(
μ

∂

∂μ
+ β

∂

∂g
+ γS

)
cS(t) = 0, (4.5)

where

γS ≡ −
(

μ
∂

∂μ

)
0

ln ZS. (4.6)

Equations (2.21), (2.7), and (2.17) yield

γS = −g3 d

dg

(
β

g3

)
= 2b1g4 + O(g6). (4.7)

Similarly, for Eq. (3.8), we have(
μ

∂

∂μ
+ β

∂

∂g

)
〈E(t, x)〉 = 0, (4.8)

(
μ

∂

∂μ
+ β

∂

∂g
+ γS

)
cE (t) = 0, (4.9)

and thus (
μ

∂

∂μ
+ β

∂

∂g

)
cS(t)

cE (t)
= 0. (4.10)

By the standard argument and from the fact that dimensionless quantities can depend on the renor-
malization scale μ only through the dimensionless combination

√
8tμ, the above renormalization

group equations imply that

cT (t)(g; μ) = cT (t0)(ḡ(−ξ); μ0), (4.11)

cS(t)(g; μ) = exp

[∫ −ξ

0
dξ ′ γS

(
ḡ(ξ ′)

)]
cS(t0)(ḡ(−ξ); μ0), (4.12)

t2 〈E(t, x)〉 (g; μ) = t2
0 〈E(t0, x)〉 (ḡ(−ξ); μ0), (4.13)

cS(t)

cE (t)
(g; μ) = cS(t0)

cE (t0)
(ḡ(−ξ); μ0), (4.14)

where the dependence on the renormalized gauge coupling and on the renormalization scale has been
explicitly written. In these expressions, the running coupling ḡ(ξ) is defined by

dḡ(ξ)

dξ
= β (ḡ(ξ)) , ḡ(0) = g, (4.15)
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and we introduce a variable

ξ ≡ ln

√
8tμ√

8t0μ0
. (4.16)

In the one-loop order, the running coupling (4.15) is given by

ḡ(−ξ)2 = 1

2b0

1

−ξ + 1/(2b0g2)
= 1

2b0

1

− ln(
√

8t�) + ln(
√

8t0μ0)
, (4.17)

where � is the � parameter in the one-loop level,

� = μe−1/(2b0g2), (4.18)

and the integral appearing in Eqs. (4.12) is∫ −ξ

0
dξ ′γS

(
ḡ(ξ ′)

) = b1

b0

[
g2 − ḡ(−ξ)2

]
. (4.19)

In the small flow-time limit t → 0, −ξ → +∞ and the running coupling ḡ(−ξ) (4.17) becomes
very small thanks to the asymptotic freedom. Thus, the right-hand sides of Eqs. (4.11)–(4.14) allow
us to compute the small flow-time behavior of the coefficients by using the perturbation theory.

4.2. Lowest-order approximation and the asymptotic formula

By substituting the solution of the flow equation (3.1) (see Ref. [33]) in the tree-level approximation
to Eq. (3.7), we have

cT (t) = g2
0, (4.20)

simply because our energy–momentum tensor (2.4) is proportional to 1/g2
0 . If we apply the right-

hand side of Eq. (4.11) to this expression by substituting Eq. (4.17), however, it depends on
√

8t0μ0,
while the left-hand side of Eq. (4.11) does not. This shows that cT (t) should depend on g2 and

√
8tμ

through a particular combination as (for D = 4)

cT (t) = g2
{

1 + 2b0g2
[
ln(

√
8tμ) + c1

]
+ O(g4)

}
, (4.21)

where c1 is a constant. Similarly, since the lowest-order approximation in Eqs. (3.7) and (3.8) yields

cE (t) = 1, cS(t) = −b0

2
g2

0μ−2ε, (4.22)

where the latter follows from Eq. (3.10), from Eq. (4.14) we have

cS(t)

cE (t)
= −b0

2
g2

{
1 + 2b0g2

[
ln(

√
8tμ) + c2

]
+ O(g4)

}
, (4.23)

where c2 is another constant.6

6 Using Eq. (4.21) in Eq. (3.10), we have

cS(t) = −b0

2
g2

{
1 + 2b0g2

[
ln(

√
8tμ) + c1 + b1

2b2
0

]
+ O(g4)

}
, (4.24)

and then using Eq. (4.23),

cE (t) = 1 + 2b0g2

(
c1 − c2 + b1

2b2
0

)
+ O(g4). (4.25)
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Applying Eqs. (4.11) and (4.14) to the above expressions and using Eq. (4.17), we finally have the
asymptotic behaviors of the coefficients in Eq. (3.11):

1

cT (t)
t→0+∼ −2b0

[
ln(

√
8t�) + c1

]
(4.26)

and
cS(t)

cE (t)
t→0+∼ −b0

2

1

−2b0

[
ln(

√
8t�) + c2

] , (4.27)

and hence
cS(t)

cT (t)cE (t)
t→0+∼ −b0

2

[
1 − c1 − c2

− ln(
√

8t�)

]
. (4.28)

That is,

{
Tμν

}
R (x)

t→0+∼
{

− 2b0

[
ln(

√
8t�) + c1

]
Uμν(t, x)

+ b0

2

[
1 − c1 − c2

− ln(
√

8t�)

]
δμν [E(t, x) − 〈E(t, x)〉]

}
. (4.29)

This is the relation that we were seeking: One can obtain the correctly-normalized conserved energy–
momentum tensor from the small flow-time behavior of gauge-invariant products given by the
Yang–Mills gradient flow. It is interesting to note that the leading t → 0 behavior is completely inde-
pendent of the detailed definition of the gradient flow; the structure and coefficients follow solely
from the finiteness of the local products and the renormalizability of the Yang–Mills theory. The
sub-leading corrections in the asymptotic form, i.e., the coefficients c1 and c2, depend on the detailed
definition of the gradient flow; in the Appendix, we compute the constants c1 and c2 and we have

c1 = ln
√

π + 7

16
� 1.009 86, (4.30)

c2 = ln
√

π + 3

44
− 1

4
+ b1

2b2
0

� 0.812 034. (4.31)

Finally, a possible method to determine the factor ln(
√

8t�) in Eq. (4.29), i.e., the flow time t in
the unit of the one-loop � parameter (4.18), for small flow times is to use the expectation value of the
density operator, Eq. (3.6). For this quantity, by applying Eqs. (4.13) and (4.17) to the result of the
one-loop calculation, Eqs. (2.28) and (2.29) of Ref. [31] (specialized to the pure Yang–Mills theory),
we have the asymptotic form,

t2 〈E(t, x)〉 t→0+∼ 3(N 2 − 1)

128π2

1

−2b0

[
ln(

√
8t�) + c

] , (4.32)

where

c ≡ ln(2
√

π) + 26

33
− 9

22
ln 3 � 1.603 96. (4.33)

One may use this asymptotic representation for ln(
√

8t�) in Eq. (4.29).7

7 In practice, one will use Eq. (4.29) to compute t2{Tμν}R(x) from t2Uμν(t, x) and t2 E(t, x). Then, from
the value of

√
8t�, one can deduce {Tμν}R(x)/�4.
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5. Conclusion

In the present paper, we have derived a formula that relates the short flow-time behavior of
some gauge-invariant local products generated by the Yang–Mills gradient flow and the correctly-
normalized conserved energy–momentum tensor in the Yang–Mills theory. Our main result is
Eq. (4.29). The right-hand side of Eq. (4.29) can be computed by the Wilson flow in lattice gauge
theory with appropriate discretizations of operators, Eqs. (3.5) and (3.6) (see, e.g., Refs. [31,34]).
Here, the continuum limit a → 0 must be taken first and then the t → 0 limit is taken afterwards;
otherwise our basic reasoning does not hold.

Although the formula (4.29) should be mathematically correct, the practical usefulness
of Eq. (4.29) is a separate issue and has to be carefully examined numerically.8 Since the lattice
spacing a must be sufficiently smaller than the square-root of the flow time

√
8t for our reasoning to

work, the reliable application of Eq. (4.29) will require rather small lattice spacings. One also worries
about contamination by higher-dimensional operators (i.e., the O(t) terms in Eqs. (3.7) and (3.8))
and the finite-size effect, which we have not taken into account in the present paper. If our strat-
egy turns out to be practically feasible, it provides a completely new method to compute correlation
functions containing a well-defined energy–momentum tensor. It is clear that the present approach
to the energy–momentum tensor on the lattice is not limited to the pure Yang–Mills theory, although
the treatment might be slightly more complicated with the presence of other fields. The application
will then include the determination of the shear and bulk viscosities (see, e.g., Refs. [43,44]), the
measurement of thermodynamical quantities (see Ref. [45] and references cited therein), the mass
and the decay constant of the pseudo Nambu–Goldstone boson associated with the (approximate)
dilatation invariance (see Ref. [46] and references cited therein), and so on.

It is also clear that our basic idea, that operators defined with lattice regularization and in the
continuum theory can be related through the gradient flow, is not limited to the energy–momentum
tensor. For example, it might be possible to construct an ideal chiral current or an ideal supercurrent
on the lattice, from the small flow-time limit of local products. It would be interesting to pursue
this idea.
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Appendix A. One-loop calculation of coefficient functions

For calculational convenience, we define the coefficient functions F(t) and G(t) by

Ga
μρ(t, x)Ga

νρ(t, x) − 〈
Ga

μρ(t, x)Ga
νρ(t, x)

〉
= F(t)

{
Fa

μρ Fa
νρ

}
R

(x) + G(t)δμν

{
Fa

ρσ Fa
ρσ

}
R

(x) + O(t). (A1)

8 We hope to return to this problem in the near future.
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Equation (3.5) then becomes (for D = 4)

Uμν(t, x) = F(t)

[{
Fa

μρ Fa
νρ

}
R

(x) − 1

4
δμνδρλ

{
Fa

ρσ Fa
λσ

}
R

(x)

]
+ O(t)

= F(t)

[{
Fa

μρ Fa
νρ

}
R

(x) − 1

4
δμν

(
1 − β

2g

) {
Fa

ρσ Fa
ρσ

}
R

(x)

]
+ O(t), (A2)

where we have used Eq. (2.19). Rewriting this in favor of the energy–momentum tensor (2.12) with
Eqs. (2.13) and (2.14), we have

Uμν(t, x) = F(t)

[{
Fa

μρ Fa
νρ

}
R

(x) − 1

4
δμνδρλ

{
Fa

ρσ Fa
λσ

}
R

(x)

]
+ O(t)

= F(t)

[
g2 {

Tμν

}
R (x) + β

8g
δμν

{
Fa

ρσ Fa
ρσ

}
R

(x)

]
+ O(t). (A3)

Comparison with Eq. (3.7) then shows

cT (t) = g2 F(t), cS(t) = β

2g
F(t). (A4)

Similarly, for Eq. (3.8),

E(t, x) = 〈E(t, x)〉 + 1

4
F(t)δρλ

{
Fa

ρσ Fa
λσ

}
R

(x) + G(t)
{

Fa
ρσ Fa

ρσ

}
R

(x) + O(t)

=
[(

1 − β

2g

)
F(t) + 4G(t)

]{
1

4
Fa

ρσ Fa
ρσ

}
R

(x) + O(t), (A5)

and therefore

cE (t) =
(

1 − β

2g

)
F(t) + 4G(t). (A6)

This implies, for the ratio (4.23),

cS(t)

cE (t)
= β

2g

1

1 − β
2g + 4G(t)/F(t)

= −b0

2
g2

{
1 + 2b0g2

[
−1

4
+ b1

2b2
0

]
− 4G(t) + O(g4)

}
. (A7)

To find the coefficient functions F(t) and G(t) in Eq. (A1), we consider the correlation function

〈
Ga

μρ(t, x)Ga
νρ(t, x)Ai

κ(w)A j
ω(v)

〉
. (A8)

For O(g2
0), there are 17 flow-line Feynman diagrams (Figs. A1–A17) that contribute to this correla-

tion function. In the figures, gauge potentials at the flow time t , Bμ(t, x), are represented by small
filled squares; the open circle denotes the flow-time vertex and the full circle is the conventional
vertex in the Yang–Mills theory. We refer the reader to Ref. [33] for the details of the Feynman rules
for flow-line diagrams.
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Fig. A1. Fig. A2.

Fig. A3. Fig. A4.

Fig. A5. Fig. A6.

Fig. A7. Fig. A8.

Fig. A9. Fig. A10.

Fig. A11. Fig. A12.
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Fig. A13. Fig. A14.

Fig. A15. Fig. A16.

Fig. A17.

To read off the coefficient functions F(t) and G(t) in Eq. (A1) from the correlation function (A8),
we consider the vertex functions, i.e., amputated diagrams in which the external propagators of
the original Yang–Mills theory are truncated. Therefore, Figs. A10, A12, and A17, which provide
only the conventional wave function renormalization, should be omitted in the computation of F(t)
and G(t).9 On the other hand, the flow-line propagators [33], the arrowed straight lines in the dia-
grams, should not be truncated because these are not propagators in the quantum field theory but
instead represent time evolution along the flow time.

The tree-level contribution to the vertex function is

Fig. A1 = δρσ

[∫
p,q

ei(p+q)x Ãa
ρ(p) Ãa

σ (q)e−tp2
e−tq2

i pμiqν ± (μ ↔ ρ, ν ↔ σ)

]

= Fa
μρ(x)Fa

νσ (x) + O(t), (A9)

where

Aμ(x) =
∫

p
eipx Ãμ(p),

∫
p

≡
∫

d D p

(2π)D
, (A10)

and, here and in what follows, the alternating-sign symbol implies

tμρνσ ± (μ ↔ ρ, ν ↔ σ) ≡ tμρνσ − tρμνσ − tμρσν + tρμσν. (A11)

9 More precisely, these diagrams are different from conventional Feynman diagrams in that the propaga-
tors carry an additional factor e−tp2

(in the Feynman gauge), where p is the external momentum. This factor
is, however, irrelevant in the present computation of the coefficients of operators with the lowest number of
derivatives.

13/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/8/083B03/1592174 by guest on 21 August 2022



PTEP 2013, 083B03 H. Suzuki

This tree-level result was used in obtaining Eq. (4.20).
The vacuum expectation value in the lowest order is

Fig. A2 = g2
0δaaδρσ

[∫
�

1

�2 e−2t�2
�μ�νδρσ ± (μ ↔ ρ, ν ↔ σ)

]

= 3

128π2 (N 2 − 1)g2
0

1

t2 δμν. (A12)

Now, as an example of the computation of one-loop flow-line Feynman diagrams, we briefly illus-
trate the computation of Fig. A13. A straightforward application of the Feynman rules in Ref. [33] in
the “Feynman gauge”, in which the gauge parameters are taken as λ0 = α0 = 1, yields the expression

Fig. A13 = Ng2
0δρσ

(∫
p,q

ei(p+q)x Ãb
α(p) Ãc

β(q)

∫
�

1

(p + �)2

1

�2

1

(q − �)2 e−t (p+�)2
e−t (q−�)2

× i(p + �)μi(q − �)ν
[
δρλ(−p − 2�)α + δλα(� − p)ρ + δαρ(2p + �)λ

]
× [

δλσ (−2� + q)β + δσβ(−2q + �)λ + δβλ(q + �)σ
] ± (μ ↔ ρ, ν ↔ σ)

)
. (A13)

To find the coefficients F(t) and G(t) in Eq. (A1), we write this vertex function as∫
p,q

ei(p+q)x Ãa
α(p) Ãa

β(q)Mμν,αβ(p, q), (A14)

and find the coefficients of

− pμqνδαβ (A15)

and

− 2p · qδμνδαβ, (A16)

respectively, in Mμν,αβ(p, q). For this, we first exponentiate the denominators in Eq. (A13) by using

1

(p + �)2

1

(q − �)2 =
∫ ∞

0
dξ

∫ ∞

0
dη e−ξ(p+�)2

e−η(q−�)2
. (A17)

We then simply expand the integrand with respect to the external momenta p and q to O(p, q).
The flow-time evolution factor e−2t�2

in the integrand makes the integral (A13) UV finite for any
dimension D. On the other hand, there always exists a complex domain of D such that the integral
is infrared finite; this provides the analytic continuation of the integral such that∫

�

1

�2 e−α�2 = 1

(4π)D/2

1

D/2 − 1
α−D/2+1, (A18)∫

�

1

�2 e−α�2
�μ�ν = 1

(4π)D/2

1

D
α−D/2δμν, (A19)∫

�

1

�2 e−α�2
�μ�ν�ρ�σ = 1

(4π)D/2

1

2(D + 2)
α−D/2−1 (

δμνδρσ + δμρδνσ + δμσ δνρ

)
, (A20)∫

�

1

�2 e−α�2
�μ�ν�ρ�σ �α�β = 1

(4π)D/2

1

4(D + 4)
α−D/2−2 (

δμνδρσ δαβ + 14 permutations
)
.

(A21)

Then it is straightforward to find the coefficients of Eqs. (A15) and (A16), which directly make a
contribution to the functions F(t) and G(t).
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Table A1. The contributions of each flow-line Feynman diagram (in the Feynman gauge) to the coefficients
of Eqs. (A15) and (A16), respectively, in the unit of Eq. (A22). These correspond to the coefficient functions
F(t) and G(t) in Eq. (A1).

F(t) G(t)

Fig. A3 0 0

Fig. A4 −3
1

ε
− 3 ln(8π t) − 1 0

Fig. A5 − 7

36
− 49

144

Fig. A6 2
1

ε
+ 2 ln(8π t) − 1

2
0

Fig. A7
19

288

121

384

Fig. A8
47

96

53

128

Fig. A9 −25

8
0

Fig. A11
1

3

1

ε
+ 1

3
ln(8π t) − 17

36

7

12

1

ε
+ 7

12
ln(8π t) + 1

144

Fig. A13 −5

3

1

ε
− 5

3
ln(8π t) + 25

36
−3

2

1

ε
− 3

2
ln(8π t) − 29

16

Fig. A14 3
1

ε
+ 3 ln(8π t) + 3 0

Fig. A15 3
1

ε
+ 3 ln(8π t) + 5

2
0

Fig. A16
7

4

31

24

Z factors −11

3

1

ε

11

12

1

ε

In Table A1, we summarize the contribution of each diagram computed in the above method in the
unit of

1

16π2 Ng2
0 . (A22)

In the last line of the table, “Z factors” implies the contributions of the one-loop operator renormal-
ization factors, ZT (2.13) and Z M (2.22), through the tree-level diagram, Eq. (A9) (recall Eq. (2.10)).
We see that these operator renormalization factors precisely cancel the residues of 1/ε and make the
coefficients F(t) and G(t) finite; this is precisely what we expect from the general argument. From
the results in the table, we then have

F(t) = 1 + 2b0g2
[

ln(
√

8tμ) + ln
√

π + 7

16

]
, (A23)

G(t) = −1

2
b0g2

[
ln(

√
8tμ) + ln

√
π + 3

44

]
. (A24)

Finally, comparison with the formulas (A4), (A7), (4.21), and (4.23) shows the results quoted in
Sect. 4, Eqs. (4.30) and (4.31). Note that the coefficients of ln(

√
8tμ) in the explicit one-loop cal-

culation (Eqs. (A23) and (A24)) are in agreement with those by the general argument on the basis
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of the renormalization group equations and the trace anomaly (Eqs. (4.21) and (4.23)). This agree-
ment provides a consistency check for our one-loop calculation and supports the correctness of our
reasoning.
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