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Abstract

We compute all the gravitational form factors in the scalar diquark model at the one-loop level using two different
regularization methods. We check explicitly that all the Poincaré sum rules are satisfied and we discuss in detail
the results for the trace of the energy-momentum tensor. Finally we discuss the spatial distributions of energy and
pressure in two and three dimensions.
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1. Introduction

Recent years have seen a rich discussion on the energy-momentum tensor (EMT) in QCD. Specific focus has been
put on the decomposition of the proton mass in QCD, see e.g. [1–9], and the relation with the trace of the EMT,
which contains a well-known anomalous contribution. Beside the question of the proton spin decomposition, see
e.g. [10–16], the EMT is also used in the literature to define the notions of pressure and shear distributions inside
hadrons [17–23]. More generally, the EMT is a central object in the physics case of the future electron-ion collider in
the US [24].

Our aim in this letter is to present a simple model computation for the proton respecting full Poincaré covariance.
Specifically, we are going to present the one-loop results in the scalar diquark model. Some work based on the
light-front wave function representation already exists for the EMT in some variant of this model [25], but lacks full
covariance. We are going to present the complete one-loop results, including the counterterms for the proton field
in the model, using two different types of regularization. The first is dimensional regularization, which has been
used in similar works for QED and QCD. The second is Pauli-Villars regularization. In this second regularization
scheme, the emergence of the anomalous contribution to the trace is conceptually different compared to dimensional
regularization. We will highlights the key aspects of the comparison between the two regularization schemes. We will
also derive the pressure and shear distributions in Fourier-conjugate space. However, they show distinct pathological
features characteristic of perturbative computations.

2. Scalar diquark model

Different versions of the scalar diquark model exist. The main differences concern the inclusion of different flavors
for the quark field, the inclusion of electromagnetic and color degrees of freedom for the quark and diquark fields.
Since at one-loop level for external proton states all the differences amount to at most a global irrelevant factor, we
choose to work with the simplest version of the model. The Lagrangian reads

L = Ψ̄

(
i
2

↔

/∂ − M
)
Ψ + q̄

(
i
2

↔

/∂ − m
)

q + 1
2

(
∂µφ∂µφ − m2

sφ
2
)

+ gφ
(
Ψ̄q + q̄Ψ

)
, (1)
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where Ψ is the proton field, q the quark field and φ the diquark field, and
↔

∂ =
→

∂ −
←

∂ .
We will use two main regularization schemes. The first one is standard dimensional regularization (DR) with D =

4 − 2ε, for which no modification of the Lagrangian is needed. The second one is Paulli-Villars (PV) regularization.
Specifically, we introduce a ghost field c for the scalar diquark only, for which the Lagrangian reads

LPV = − 1
2

(
∂µc∂µc − M2

PVc2
)

+ gc
(
Ψ̄q + q̄Ψ

)
. (2)

Notice that the kinetic term has opposite sign compared to the normal scalar, but the interaction term is identical.
For convenience, we report the equations of motion (EOM) for the theory:

i/∂S = MS , S̄ i
←

/∂ = −S̄M,
(
� + m2

s

)
φ = gS̄σ1S ,

(
� + M2

PV

)
c = −gS̄σ1S (3)

with

S =

(
Ψ
q

)
, σ1 =

(
0 1
1 0

)
, M =

(
M −g(φ + c)

−g(φ + c) m

)
. (4)

We then derive the symmetric energy-momentum tensor (EMT) via the variation of the action
∫

d4x
√
−g (L + LPV)

with respect to a general metric, evaluated afterwards for the Minkowski metric gµν = diag(+,−,−,−). After applica-
tion of the EOM, we obtain

T µν = S̄ γ{µ i
2

↔

∂ν}S + ∂µφ∂νφ − ∂µc∂νc − 1
2 gµν

(
∂αφ∂

αφ − m2
sφ

2
)

+ 1
2 gµν

(
∂αc∂αc − M2

PVc2
)
, (5)

where a{µbν} = (aµbν + aνbµ)/2. Evidently, in the case of DR the ghost sector is not present.
We are going to investigate the proton matrix elements of Eq. (5) up to the one-loop level. For this, we will isolate

the gravitational form factors, defined by the parametrization

〈p′, s′|T µν
i |p, s〉 = ū′

[
Ai(∆2)

PµPν

M
+

(
Ai(∆2) + Bi(∆2)

) P{µiσν}ρ∆ρ
2M

+ Di(∆2)
∆µ∆ν − gµν∆2

4M
+ C̄i(∆2)gµνM

]
u, (6)

where u ≡ u(p, s) is the usual free Dirac spinor, P = (p′ + p)/2 and ∆ = p′ − p. Notice that the index i labels three
different contributions, namely i = Ψ for the proton operators, i = q for the quark operators and i = d for the diquark
operators. In the case of PV regularization, we will merge the diquark and ghost contributions.

3. Loop results

Figure 1: Relevant diagrams up to order g2 for the proton matrix elements of the EMT operator. The black dot represents the EMT insertion into
the Green’s function, the white crossed dot represents the counterterm diagram. Solid, double solid and dashed lines represent the quark, proton
and diquark fields, respectively.

In this section we report the main results of this work. First, we present the relevant Lagrangian counterterms in
the two chosen regularization schemes. Then we proceed with the results for the EMT insertion in a quark line and in
a diquark line, depicted in the second row of Fig. 1.
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3.1. Lagrangian counterterms

The only necessary counterterms are the ones associated to the proton wave function ZΨ = 1 + δZΨ and the proton
mass ZM = 1 + δZM . We computed them in the on-shell scheme for the proton field. In general, the sum of the
counterterm diagrams and the diagrams in which the loops are confined to one of the external legs is independent of
the choice of renormalization scheme for the Lagrangian counterterms (individual diagrams though might naturally
differ). Since here we are only interested in the total contribution from the proton operator, we can pick any scheme
and the results will be unaffected.

For convenience, let us define

x̄ = 1 − x, as =
g2

16π2 , Θ0(x) = xm2
s + x̄m2 − xx̄M2. (7)

In the on-shell scheme we find

δZR
Ψ = −

as

2
s

R + asf
R
Ψ + as

∫ 1

0
dx x

[
log

(
Θ0(x)
µ̄2

)
− 2x̄M

m + xM
Θ0(x)

]
, (8)

δZR
M = as

(
1
2

+
m
M

)
s

R + asf
R
M − as

∫ 1

0
dx

(
x +

m
M

)
log

(
Θ0(x)
µ̄2

)
, (9)

where the singular and finite factors are given by

s
R =


1
ε

for R=DR

log
(

M2
PV
µ̄2

)
for R=PV

, f
R
Ψ =

0 for R=DR
1
4 for R=PV

, f
R
M =

0 for R=DR
−

(
1
4 + m

M

)
for R=PV

. (10)

For DR we defined the typical MS scale µ̄2 = 4πe−γEµ2. In the case of PV regularization, the scale µ̄2 is a dummy
scale for the sole purpose of having well-defined arguments for the logarithms and, at the same time, isolating the
singularity.

At this point, we already have all the ingredients to deduce the gravitational form factors for the proton operator,
namely

AR
Ψ = 1 + δZR

Ψ , BΨ = 0, DΨ = 0, C̄Ψ = 0. (11)

3.2. quark vertex

To express the results in a somewhat compact form, let us introduce the short-hand notation τ2 = −∆2/4 and the
following definitions

Σ0(x, τ) =
√
τ2 + Θ0(x), Λ0(x, τ) = log

(
Σ0(x, τ) + τ

Σ0(x, τ) − τ

)
. (12)

In this way the gravitational form factors for the quark operator simply read

AR
q =

as

6
s

R + asf
R
A − as

∫ 1

0
dx xx̄

[
log

(
Θ0(x)
µ̄2

)
+
Σ0(x; x̄τ)

x̄τ
Λ0(x, x̄τ)

]
+

as

2τ

∫ 1

0
dx x

Θ0(x) + (m + xM)2

Σ0(x, x̄τ)
Λ0(x, x̄τ), (13)

Bq =
asM
τ

∫ 1

0
dx xx̄

m + xM
Σ0(x, x̄τ)

Λ0(x, x̄τ), (14)

Dq = −
asM2

τ2

(
1
3

+
m
M

)
+

asM2

τ3

∫ 1

0
dx

(
x +

m
M

)
Σ0(x, x̄τ)Λ0(x, x̄τ), (15)

C̄R
q = −

as

2

(
1
3

+
m
M

)
s

R + asf
R
C̄ + as

∫ 1

0
dx x̄

(
x +

m
M

)
log

(
Θ0(x)
µ̄2

)
, (16)
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where the singular factor sR is the same as in Eq. (10) and the finite factors are here given by

f
R
A =

0 for R=DR
1

36 for R=PV
, f

R
C̄ =

0 for DR
5
36 + 3m

4M for PV
. (17)

We see that, depending on the regularization scheme, the finite part of the gravitational form factors may vary. It
appears that the Aq gravitational form factor does not vanish when τ → ∞. In the case of C̄q, we observe that the
whole gravitational form factor is actually τ-independent. Interestingly, the same observation has been made for the
electron gravitational form factor C̄e at one-loop in QED [26, 27].

3.3. diquark vertex
For the insertion of the EMT operator on the diquark line, everything proceeds in the same way. We obtain

AR
d =

as

3
s

R + as

(
2
3
− 10fRA

)
− 2as

∫ 1

0
dx xx̄ log

(
Θ0(x̄)
µ̄2

)
+

as

τ

∫ 1

0
dx x

[
xM(m + x̄M)
Σ0(x̄, x̄τ)

− 2Σ0(x̄, x̄τ)
]
Λ0(x̄, x̄τ), (18)

Bd = −
asM
τ

∫ 1

0
dx x2 m + x̄M

Σ0(x̄; x̄τ)
Λ0(x̄, x̄τ), (19)

Dd = −
asM2

τ2

(
2
3

+
m
M

)
+

asM2

τ3

∫ 1

0
dx

(
x̄ +

m
M

)
τ2(x̄2 − 1) + Θ0(x̄)

Σ0(x̄, x̄τ)
Λ0(x̄, x̄τ), (20)

C̄R
d =

as

2

(
1
3

+
m
M

)
s

R − asf
R
C̄ − as

∫ 1

0
dx x

(
x̄ +

m
M

)
log

(
Θ0(x̄)
µ̄2

)
. (21)

4. Renormalization

It is straightforward to see that all the gravitational form factors, once summed over the proton, quark and diquark
contributions, are free from UV divergences. This means that the total symmetric EMT is finite and therefore does
not require the introduction of additional counterterms beside the Lagrangian ones. The same observation has been
made for an electron state in QED [28], and is consistent with the general arguments given in Ref. [29] in the context
of non-abelian gauge theories.

In an MS scheme, limiting ourselves to external proton states, the subtraction of divergences can be performed by
trivially removing the singular contribution from the individual proton, quark and diquark gravitational form factors.
In Fig. 2 we show the contributions of order as to the A, B and D gravitational form factors based on the results of the
previous section. For simplicity, we chose to illustrate the case m = 0 and ms = M in the MS renormalization scheme.

5. Sum rules

A number of constraints on the gravitational form factors can be derived from Poincaré symmetry [11, 30–35]. In
particular, four-momentum conservation implies∑

i

Ai(0) = 1,
∑

i

C̄i(∆2) = 0, (22)

and (generalized) angular momentum conservation implies in addition∑
i

Bi(0) = 0. (23)

These contraints should hold at any order in perturbation theory. Let us then write the gravitational form factors as

Xi = X(0)
i + asX

(1)
i + · · · , (24)

4



0

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.50

1.00

1.50

0 2.0 4.0 6.0 8.0 10.0

A
(1

)

τ / M

quark

diquark

proton

total

0

-0.80

-0.60

-0.40

-0.20

0.20

0.40

0.60

0.80

0 2.0 4.0 6.0 8.0 10.0

B
(1

)

τ / M

quark

diquark

proton

total

0

-2.00

-1.50

-1.00

-0.50

0.50

1.00

1.50

2.00

2.50

0.01 0.10 1.00

D
(1

)

τ / M

quark

diquark

proton

total

Figure 2: Gravitational form factors as functions of the dimensionless variable τ/M for the case m = 0, ms = M. The thick black solid lines
represent the total contributions. For all the panels, the thin solid lines, medium- and short-dashed lines represent the proton, quark and diquark
contributions, respectively. All the results are shown in the MS renormalization scheme. Note that in the case of the D form factor, we used a log
scale for the variable τ/M.

where the upper label indicates the order in as.
At tree level the Poincaré constraints are trivially satisfied since all the gravitational form factors vanish except

A(0)
Ψ

(∆2) = 1. Let us now check the O(as) contributions. Comparing Eqs. (16) and (21), it is clear after a change of
variable x 7→ x̄ in the integral that

C̄(1)
d (∆2) = −C̄(1)

q (∆2). (25)

Combined with the result C̄(1)
Ψ

(∆2) = 0 from Eq. (11), we see that the second momentum sum rule in Eq. (22) is
satisfied.

For the gravitational form factors Ai, we find in the limit of vanishing momentum transfer

A(1)
Ψ

(0) = −
1
2
s

R + fRΨ +

∫ 1

0
dx x

[
log

(
Θ0(x)
µ̄2

)
− 2x̄M

m + xM
Θ0(x)

]
,

A(1)
q (0) =

1
6

(
s

R − 1
)

+ fRA −

∫ 1

0
dx xx̄

[
log

(
Θ0(x)
µ̄2

)
−

(m + xM)2

Θ0(x)

]
,

A(1)
d (0) =

1
3
s

R − 10fRA − 2
∫ 1

0
dx xx̄

[
log

(
Θ0(x)
µ̄2

)
− x̄M

m + xM
Θ0(x)

]
.

(26)

Owing to first momentum sum rule in Eq. (22), it is expected that the sum of these three contributions should vanish.
We find indeed [

A(1)
Ψ

+ A(1)
q + A(1)

d

]
(0) = −

1
6

+

∫ 1

0
dx

[
(3x2 − 2x) log

(
Θ0(x)
µ̄2

)
+ xx̄

m2 − x2M2

Θ0(x)

]
= 0, (27)
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where in the last step we integrated by parts and used the relation
(
1 − x d

dx

)
Θ0(x) = m2 − x2M2.

Finally, since we have

B(1)
Ψ

(0) = 0, B(1)
q (0) = −B(1)

d (0) = 2
∫ 1

0
dx xx̄2M

(m + xM)
Θ0(x)

, (28)

it follows automatically that the (generalized) angular momentum sum rule in Eq. (23) is also satisfied.

6. D-term

The last gravitational form factor is not constrained by Poincaré symmetry. It provides information about the
spatial distribution of forces inside the system, and its value at vanishing momentum transfer is known as the D-
term [17, 18, 36].

To order as in the scalar diquark model, only the quark and diquark sectors contribute to the D-term

Dq(0) =
2as

3

∫ 1

0
dx x̄3M

(m + xM)
Θ0(x)

, Dd(0) =
2as

3

∫ 1

0
dx x(x2 − 3)M

(m + xM)
Θ0(x)

. (29)

They are both finite and non-zero. If we assume massless diquark and demand the validity of the stability condition
M < m + ms, we find that

Dd(0) ≈
8Mas

3(m − M)
log(ms). (30)

Notice that, in line with the common expectation that D(0) is negative for a stable bound state, we observe that
D(0) → −∞ as ms → 0 with M < m. On the other hand, if we assume that M = m and send the scalar diquark mass
to zero, we find that the most singular behavior is of the form

Dd(0) ≈
4Masπ

3ms
. (31)

This is identical to the scaling behavior found for an electron state in QED with photon mass regularization [26]. We
incidentally note that the situation is different for Dq(0). In fact, in the limit of vanishing quark mass and for M < ms,
we find a finite value for Dq(0). In the case m→ 0 and ms = M we find a divergence in Dq (but not in Dd, as illustrated
by fig. 2). Specifically, we have

Dq(0) ≈ −
2as

3
log(m). (32)

Let us stress that the two cases m = M, ms → 0 and ms = M, m → 0 present different scaling behaviours: the former
is power-like 1/ms, the latter is logarithmic log(m).

The asymptotic behaviour in the large-τ limit is more cumbersome to extract. For this, let us work with ms = M
and m = 0. We obtain

Dq ≈
τ�M
−

M2

6τ2

[
2 − log

(
4τ2

M2

)]
+ O

(
log τ2

τ4

)
,

Dd ≈
τ�M
−

2M2

3τ2

[
1 + log

(
4τ2

M2

)]
+ O

(
log τ2

τ4

)
.

(33)

Changing the values of the masses leads to different numerical factors, but the overall structure remains always

D ∼
c1 + c2 log τ2

τ2 . (34)

This has implications for the pressure and shear distributions, which we will address in sec. 8.
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7. Trace

From the definition of the EMT we can easily see that in DR (hence without ghost fields) the traces of the proton,
quark and diquark EMTs are given by

T µ
Ψ µ

= MΨ̄Ψ − 1
2 gφ

(
Ψ̄q + q̄Ψ

)
,

T µ
q µ = mq̄q − 1

2 gφ
(
Ψ̄q + q̄Ψ

)
,

T µ
d µ = ∂µφ∂

µφ − (2 − ε)
(
∂µφ∂

µφ − m2
sφ

2
)
.

(35)

So, as in QED, the anomaly emerges in DR from the bosonic sector

Anomaly = ε
(
∂µφ∂

µφ − m2
sφ

2
)
. (36)

The off-forward matrix elements of the relevant scalar operators are

〈MΨ̄Ψ〉

ū′u
= M (1 + δZM + δZΨ ) , (37)

〈 1
2 gφ

(
Ψ̄q + q̄Ψ

)
〉

ū′u
= M δZM , (38)

〈mq̄q〉
ū′u

= −asm
(

1
ε

+ 1
)

+ 2asm
∫ 1

0
dx x̄ log

(
Θ0(x)
µ̄2

)
(39)

+ asm
∫ 1

0
dx

(
(m + xM)2 + x̄2τ2

2τΣ0(x, x̄τ)
+

3Σ0(x, x̄τ)
2τ

)
Λ0(x, x̄τ),

〈∂µφ∂
µφ〉

ū′u
= −as (M + 2m)

(
1
ε

+ 2
)

+ 2as

∫ 1

0
dx x̄ [2(m + x̄M) − xM] log

(
Θ0(x̄)
µ̄2

)
(40)

+ as

∫ 1

0
dx

 (m + x̄M)
(
M2x2 + τ2(x2 − 1)

)
τΣ0(x̄, x̄τ)

+
[5(m + x̄M) − 2xM]Σ0(x̄, x̄τ)

τ

Λ0(x̄, x̄τ),

〈m2
sφ

2〉

ū′u
= asm2

s

∫ 1

0
dx

m + x̄M
τΣ0(x̄, x̄τ)

Λ0(x̄, x̄τ). (41)

These results are consistent with the expression for the trace of the general parametrization in Eq. (6)

〈T µ
i µ〉 = M ū′u

[
Ai + 4C̄i +

∆2

4M2 (Bi − 3Di) + 2ε
(
∆2

4M2 Di − C̄i

)]
. (42)

In particular, the matrix element of the trace anomaly reads

〈p′, s′|ε
(
∂µφ∂

µφ − m2
sφ

2
)
|p, s〉 = −as (M + 2m) ū′u (43)

and arises purely from the kinetic term. Since the tree-level matrix element of the EMT between proton states already
gives the total proton mass, we expect in the forward limit τ → 0 that the anomaly is exactly compensated by the
O(as) contribution to the classical EMT trace:

(T µ
µ)class = S̄MS + ∂µφ∂

µφ − 2
(
∂µφ∂

µφ − m2
sφ

2
)
. (44)

This is indeed what is found.
In PV regularization we find for the trace of the total EMT

T µ
µ = S̄MS + ∂µφ∂

µφ − 2
(
∂µφ∂

µφ − m2
sφ

2
)
− ∂µc∂µc + 2

(
∂µc∂µc − M2

PVc2
)
. (45)

In this case, the anomalous part comes from the ghost sector, even though it is not as transparent as DR. We cannot
however isolate the anomalous operator in PV since the ghost sector is also needed to regulate the integrals in the
physical sector.
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8. Fourier transform

Fourier transforms of the gravitational form factors can be interpreted in terms of spatial distributions of energy,
linear/angular momentum, and forces inside the target [14, 17–20]. Three- and two-dimensional Fourier transforms
are respectively defined as

F̂(r) =

∫
d3∆

(2π)3 e−i∆·rF(−∆2) =

∫ ∞

0

dκ
2π2 κ

2F(−κ2) j0(κr), (46)

F̃(b⊥) =

∫
d2∆⊥

(2π)2 e−i∆⊥·b⊥F(−∆2
⊥) =

∫ ∞

0

dκ
2π

κF(−κ2)J0(κb⊥), (47)

where j0 and J0 are the spherical and cylindrical Bessel functions of the first kind. The explicit expressions for the
gravitational form factors are given in Appendix A. Any constant term in the gravitational form factors has singular
Fourier transformation, contributing as δ3(r) or δ2(b⊥). We will discard any such contributions in the following
discussion, since they emerge as pathological features of the perturbative nature of the presented results.

To study the physics in position space, we introduce the tangential and radial pressures pt,r in three dimensions
and σt,r in two dimensions. We also introduce the energy densities ε in three dimensions and ρ in two dimensions.
The definitions in terms of the gravitational form factors are [19]

pt(r)/M =
1

4M2r
d
dr

(
ρ

d
dr

D̂(r)
)
,

pr(r)/M =
1

2M2r
d
dr

D̂(r),

ε(r)/M = Â(r) +
1

4M2r2

d
dr

[
r2 d

dr

(
B̂(r) − D̂(r)

)]
,

σt(b⊥)/M =
1

4M2

d2

db2
⊥

D̃(b⊥),

σr(b⊥)/M =
1

4M2b⊥

d
db⊥

D̃(b⊥),

ρ(b⊥)/M = Ã(b⊥) +
1

4M2b2
⊥

d
db⊥

[
b2
⊥

d
db⊥

(
B̃(b⊥) − D̃(b⊥)

)]
.

(48)

The C̄ form factors being constant, their contributions have been discarded in the above expressions. We stress that
the D form factors have non-singular Fourier transforms D̃ and D̂, but their derivatives present singular behaviors.
Since derivatives in the radial variable of order n are related to Fourier transforms of κnD(−κ2), it is trivial to conclude
that the fall-off of D(−κ2) for large values of κ = 2τ given in Eq. (34) is not fast enough to guarantee the absence
of singular contributions to pressure and shear in two and three dimensions. The singular contributions are however
fundamental to ensure the von Laue condition for mechanical equilibrium [37]∫ ∞

0
dr r2(pr + 2pt) = 0. (49)

Interestingly, the combination of singular and regular contributions resemble the definition of +-distributions com-
monly used in QCD [

f (z)
1 − z

]
+

≡
f (z)

1 − z
− δ(1 − z)

∫ z

0
dy

f (y)
1 − y

. (50)

Similar considerations apply to the derivatives of the B form factor.
While the perturbative approach ensures that Poincaré symmetry is preserved, which is the focus of this work,

we cannot however consider that the one-loop results for the gravitational form factors provide a realistic picture of a
bound state, and even less of the nucleon structure. For this reason, we refrain from interpreting in detail our results
in position space.
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9. Conclusions

In this work we studied in detail the symmetric energy-momentum tensor of the scalar diquark model to one-loop
level in perturbation theory. Contrary to the light-front wave function overlap formalism, the perturbative approach
allows us to maintain exact Poincaré symmetry throughout the calculations. We extracted the perturbative expressions
of all the gravitational form factors using two different regularization methods, namely dimensional and Pauli-villars
regularizations. We checked explicitly that including Lagrangian counterterms are sufficient to make the energy-
momentum tensor finite, in agreement with general arguments given in the literature. We also showed that all the
Poincaré constraints on the gravitational form factors are satisfied, and demonstrated the consistency of our results
with expectations based on the trace anomaly. Finally, since Fourier transforms of the gravitational form factors can
be used to define spatial distributions of energy, pressure and shear, we provided explicit expressions for the regular
parts. Like in the QED case, it appeared however that some contributions to the gravitational form factors do not
decrease sufficiently fast at large momentum transfer, which is a common pathological feature of the perturbative
approach.

Appendix A. Explicit results for Fourier transforms

For the B form factors we find in two and three dimensions(
B̃q

B̂q

)
=

2asM
π

∫ 1

0
dx x(m + xM)

(
K2

0 (ζq)
1
r K0(2ζq)

)
, (A.1)(

B̃d

B̂d

)
= −

2asM
π

∫ 1

0
dx

x2

x̄
(m + x̄M)

(
K2

0 (ζd)
1
r K0(2ζd)

)
, (A.2)

where we defined

ζq =

√
Θ0(x)

x̄

(
b⊥
r

)
, ζd =

√
Θ0(x̄)

x̄

(
b⊥
r

)
. (A.3)

For the A form factors, we isolate and remove the constant contribution (in the momentum transfer) that leads to
singular Fourier transforms

AR,const
q =

as

6

(
s

R − 1
)

+ asf
R
A − as

∫ 1

0
dx xx̄ log

(
Θ0(x)
µ̄2

)
, (A.4)

AR,const
d =

as

3
s

R − 10fRA − 2as

∫ 1

0
dx xx̄ log

(
Θ0(x)
µ̄2

)
. (A.5)

Subtracting these constant terms, we find(
Ãq

Âq

)
=

as

π

∫ 1

0
dx

x
x̄

[
(m + xM)2

(
K2

0 (ζq)
1
r K0(2ζq)

)
+ Θ0(x)

(
K2

1 (ζq)
1
r K2(2ζq)

)]
, (A.6)(

Ãd

Âd

)
=

2as

π

∫ 1

0
dx

x
x̄

[
xM(m + x̄M)

(
K2

0 (ζd)
1
r K0(2ζd)

)
+ Θ0(x̄)

(
K2

1 (ζd) − K2
0 (ζd)

1
r K2(2ζd) − 1

r K0(2ζd)

)]
. (A.7)

For the D form factors we find(
D̃q

D̂q

)
=

4asM
π

∫ 1

0
dx x̄(m + xM)

∫ 1

0
dz

√
1 − z2

z

 K0

(
2
z ζq

)
1
2r exp

(
− 2

z ζq

) , (A.8)

(
D̃d

D̂d

)
= −

4asM
π

∫ 1

0
dx

m + x̄M
x̄

∫ 1

0
dz

1 − x̄2(1 − z2)

z
√

1 − z2

 K0

(
2
z ζd

)
1
2r exp

(
− 2

z ζd

) . (A.9)

The integral

F(y) =

∫ 1

0
dz

√
1 − z2

z

 K0

(
y
z

)
exp

(
−

y
z

) (A.10)
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is a solution of the differential equation (
1 − y

d
dy

)
F(y) =

( 1
2 K2

0

(
y
2

)
K0 (y)

)
. (A.11)
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[23] C. Lorcé, Q.-T. Song (2023).
[24] R. Abdul Khalek, et al., Nucl. Phys. A 1026 (2022) 122447. doi:10.1016/j.nuclphysa.2022.122447.
[25] D. Chakrabarti, C. Mondal, A. Mukherjee, S. Nair, X. Zhao, Phys. Rev. D 102 (2020) 113011. doi:10.1103/PhysRevD.102.113011.
[26] A. Metz, B. Pasquini, S. Rodini, Phys. Lett. B 820 (2021) 136501. doi:10.1016/j.physletb.2021.136501.
[27] A. Freese, A. Metz, B. Pasquini, S. Rodini, Phys. Lett. B 839 (2023) 137768. doi:10.1016/j.physletb.2023.137768.
[28] S. Rodini, A. Metz, B. Pasquini, JHEP 09 (2020) 067. doi:10.1007/JHEP09(2020)067.
[29] N. K. Nielsen, Nucl. Phys. B 120 (1977) 212–220. doi:10.1016/0550-3213(77)90040-2.
[30] X.-D. Ji, Phys. Rev. D 58 (1998) 056003. doi:10.1103/PhysRevD.58.056003.
[31] O. V. Teryaev (1999).
[32] S. J. Brodsky, D. S. Hwang, B.-Q. Ma, I. Schmidt, Nucl. Phys. B 593 (2001) 311–335. doi:10.1016/S0550-3213(00)00626-X.
[33] P. Lowdon, K. Y.-J. Chiu, S. J. Brodsky, Phys. Lett. B 774 (2017) 1–6. doi:10.1016/j.physletb.2017.09.050.
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[35] C. Lorcé, P. Lowdon, Eur. Phys. J. C 80 (2020) 207. doi:10.1140/epjc/s10052-020-7779-z.
[36] M. V. Polyakov, C. Weiss, Phys. Rev. D 60 (1999) 114017. doi:10.1103/PhysRevD.60.114017.
[37] M. Laue, Annalen Phys. 340 (1911) 524–542. doi:10.1002/andp.19113400808.

10

http://dx.doi.org/10.1103/PhysRevLett.74.1071
http://dx.doi.org/10.1103/PhysRevD.52.271
http://dx.doi.org/10.1140/epjc/s10052-018-5561-2
http://dx.doi.org/10.1103/PhysRevLett.121.212001
http://dx.doi.org/10.1103/PhysRevLett.121.212001
http://dx.doi.org/10.1007/JHEP12(2018)008
http://dx.doi.org/10.1103/PhysRevD.102.114042
http://dx.doi.org/10.1007/s11467-021-1065-x
http://dx.doi.org/10.1007/JHEP11(2021)121
http://dx.doi.org/10.1103/PhysRevD.104.076010
http://dx.doi.org/10.1016/0550-3213(90)90506-9
http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1016/j.physrep.2014.02.010
http://dx.doi.org/10.1142/S0217751X14300129
http://dx.doi.org/10.1016/j.physletb.2017.11.018
http://dx.doi.org/10.1038/s42254-020-00248-4
http://dx.doi.org/10.1140/epjc/s10052-021-09207-4
http://dx.doi.org/10.1016/S0370-2693(03)00036-4
http://dx.doi.org/10.1142/S0217751X18300259
http://dx.doi.org/10.1140/epjc/s10052-019-6572-3
http://dx.doi.org/10.1103/PhysRevD.103.094023
http://dx.doi.org/10.1038/s41586-018-0060-z
http://dx.doi.org/10.1016/j.nuclphysa.2022.122447
http://dx.doi.org/10.1103/PhysRevD.102.113011
http://dx.doi.org/10.1016/j.physletb.2021.136501
http://dx.doi.org/10.1016/j.physletb.2023.137768
http://dx.doi.org/10.1007/JHEP09(2020)067
http://dx.doi.org/10.1016/0550-3213(77)90040-2
http://dx.doi.org/10.1103/PhysRevD.58.056003
http://dx.doi.org/10.1016/S0550-3213(00)00626-X
http://dx.doi.org/10.1016/j.physletb.2017.09.050
http://dx.doi.org/10.1103/PhysRevD.100.045003
http://dx.doi.org/10.1140/epjc/s10052-020-7779-z
http://dx.doi.org/10.1103/PhysRevD.60.114017
http://dx.doi.org/10.1002/andp.19113400808

	1 Introduction
	2 Scalar diquark model
	3 Loop results
	3.1 Lagrangian counterterms
	3.2 quark vertex
	3.3 diquark vertex

	4 Renormalization
	5 Sum rules
	6 D-term
	7 Trace
	8 Fourier transform
	9 Conclusions
	Appendix  A Explicit results for Fourier transforms

