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We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward
Identities (WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing
suitable WIs associated to the Poincaré invariance of the continuum theory. These relations come
forth when the length of the box in the temporal direction is finite, and they take a particularly simple
form if the coordinate and the periodicity axes are not aligned. We implement the method for the
SU(3) Yang–Mills theory discretized with the standard Wilson action in presence of shifted boundary
conditions in the (short) temporal direction. By carrying out extensive numerical simulations, the
renormalization constants of the traceless components of the tensor are determined with a precision
of roughly half a percent for values of the bare coupling constant in the range 0 ≤ g20 ≤ 1.

I. INTRODUCTION

On the lattice the Poincaré group is explicitly broken
into discrete subgroups, and the full symmetry is recov-
ered only in the continuum limit. As a consequence, a
given definition of the energy-momentum tensor needs
to be properly renormalized to guarantee that the asso-
ciated charges are the generators of the Poincaré group
in the continuum limit, and that the trace anomaly is
correctly reproduced.

In order to construct the renormalized energy-
momentum tensor, the way to proceed is to impose suit-
able WIs at fixed lattice spacing that hold up to cutoff
effects which vanish in the continuum limit [1]. This pro-
gram can be realized in practice if the WIs involve corre-
lators which in turn are simple enough to be computed
numerically with good precision.

When the theory is considered in a finite box, the Eu-
clidean Lorentz symmetry is also softly broken by its
shape. If the length in one (temporal) direction L0 is
chosen to be shorter than the typical scale of the theory
(thermal theory), interesting WIs follows [2–4]. They
become particularly simple and of practical use if the pe-
riodicity axes are tilted with respect to the lattice grid,
i.e. if the hard breaking of the Poincaré symmetry due
to the lattice discretization and the soft one due to the
finite temporal direction are not aligned. This set-up has
a natural implementation in the Euclidean path-integral
formulation in terms of shifted boundary conditions [2, 5].

Here we define the renormalized energy-momentum
tensor of the Yang–Mills theory non-perturbatively by
working in this framework. This is achieved by supple-
menting the set of WIs found in Refs [3, 4] with a new
one which guarantees that the correct trace anomaly is
reproduced in the continuum limit.

We implement this strategy for the SU(3) Yang–Mills
theory regularized with the standard Wilson action. We

carry out extensive numerical simulations, and compute
with high precision the renormalization constants of the
traceless components of the tensor. The numerical de-
termination of the renormalization constant of the trace
part requires additional simulations, and it is left for a
forthcoming publication. Over the last year an alterna-
tive method, based on the Yang–Mills gradient flow, has
also been proposed for renormalizing non-perturbatively
the energy-momentum tensor [6–8].

II. WARD IDENTITIES IN PRESENCE OF A
NON-ZERO SHIFT

In this section we consider the SU(3) Yang–Mills the-
ory in the continuum. The definitions of the action and
of the partition function Z are reported in Appendices A
and B together with other conventions. Here we are in-
terested in the thermal theory defined in the path integral
formalism with shifted boundary conditions

Aµ(L0,x) = Aµ(0,x− L0ξ) (1)

along the compact (temporal) direction of length L0 with
shift ξ ∈ R

3. The free-energy density is given by

f(L0, ξ) = −
1

L0V
lnZ(L0, ξ) , (2)

where V is the spatial volume of the box. In the thermo-
dynamic limit, which is always assumed in this section,
the invariance of the dynamics under the SO(4) group
implies [4]

f(L0, ξ) = f(L0

√

1 + ξ2,0) . (3)
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When ξ 6= 0, odd derivatives in ξk do not vanish, and the
following interesting relations hold [2–4] (x0 6= 0):

L0〈 T0k〉ξ =
1

V

∂

∂ξk
lnZ(L0, ξ) ,

∂

∂ξk
〈O〉ξ = L0〈 T 0k(x0)O(0)〉ξ, c , (4)

where Tµν is the energy-momentum tensor, Tµν =
∫

d3xTµν(x), O is a generic gauge invariant operator, and
the subscript c indicates a connected correlation function.
By deriving once with respect to L0 and to ξk one obtains
the relation (no summation over repeated k here) [4]

〈T0k〉ξ =
ξk

1− ξ2k
{〈T00〉ξ − 〈Tkk〉ξ } . (5)

In the equations above and in the rest of this paper we
focus on correlation functions of the energy-momentum
tensor Tµν with gauge-invariant operators inserted at a
physical distance. As reviewed in Appendix C, it is ap-
propriate in those cases to consider the symmetric gauge-
invariant definition of the energy-momentum tensor given
by

Tµν =
1

g20

{

F a
µαF

a
να −

1

4
δµν F

a
αβF

a
αβ

}

. (6)

By deriving two times with respect to the shift compo-
nents and by using Eq. (4), one obtains [4]

〈T0k〉ξ =
L0ξk
2

∑

ij

〈

T 0i T0j

〉

ξ, c

[

δij −
ξi ξj
ξ2

]

(7)

where on the r.h.s. the two fields are inserted at different
times. Analogously one shows that (x0 6= 0)

L0〈 T 0k(x0)Tµµ(0)〉ξ, c =

{

6−
1 + ξ2

ξ2k

}

〈 T0k〉ξ +

L0
1 + ξ2

ξk
〈 T 0k(x0)T0k(0)〉ξ, c , (8)

which can also be put in the more suggestive form

∂

∂ξk
〈Tµµ〉ξ =

1

(1 + ξ2)2
∂

∂ξk

[

(1 + ξ2)3

ξk
〈T0k〉ξ

]

. (9)

A. Finiteness of Tµν and trace anomaly

In dimensional regularization, the energy-momentum
tensor in Eq. (6) is decomposed as

Tµν = τµν + δµντ , (10)

where

τµν =
1

g20

{

F a
µαF

a
να −

1

D
δµνF

a
αβF

a
αβ

}

, (11)

τ =
ǫ

2Dg20
F a
αβF

a
αβ

are two fields transforming as a two-index symmetric and
a singlet irreducible representation of the SO(D) group
respectively, and D = 4− 2ǫ.
The field τµν is a dimension-four gauge invariant op-

erator which is multiplicatively renormalizable. The WI
in Eq. (7) fixes its renormalization constant to 1. This in
turn implies that g20 τµν renormalizes as

{

F a
µαF

a
να −

1

D
δµνF

a
αβF

a
αβ

}R

= Zg

{

F a
µαF

a
να (12)

−
1

D
δµνF

a
αβF

a
αβ

}

,

where Zg is the renormalization constant of the coupling,
see Appendix D. By defining the renormalization group
invariant (RGI) operator as [9]

{

F a
µαF

a
να −

1

D
δµνF

a
αβF

a
αβ

}RGI

=
1

2b0g2

{

F a
µαF

a
να (13)

−
1

D
δµνF

a
αβF

a
αβ

}R

,

we finally arrive to

τµν = τRµν = 2b0

{

F a
µαF

a
να −

1

D
δµνF

a
αβF

a
αβ

}RGI

, (14)

where b0 is the first coefficient of the β-function given in
Eq. (D4). The field τ is also dimension-four and gauge
invariant, but it is a singlet under SO(D). Therefore it
mixes with itself and with the identity operator. The
Eq. (8) fixes the multiplicative renormalization constant
to 1, while a natural prescription for the identity sub-
traction is

τR = τ − 〈τ〉0 (15)

where 〈. . . 〉0 indicates the vacuum expectation value for
L0 → ∞ (zero temperature). This in turn implies that
one can define

{

F a
αβF

a
αβ

}R
= Z−1

E

{

F a
αβF

a
αβ − 〈F

a
αβF

a
αβ〉0

}

, (16)

and Eq. (15) becomes

τR =
ǫZgZE

2Dµ2ǫg2
{

F a
αβF

a
αβ

}R
. (17)

By using the result in Eq. (D12) of Appendix D, one
obtains the well known result for the trace anomaly [10,
11]

Tµµ = 4τR = −
β

2g3
{

F a
αβF

a
αβ

}R
. (18)

By defining the renormalization group invariant operator
as [9]

{F a
αβF

a
αβ}

RGI = −
β

b0g3
{F a

αβF
a
αβ}

R , (19)
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we can finally write

Tµµ = 4τR =
b0
2
{F a

αβF
a
αβ}

RGI . (20)

The WIs in Eqs. (7) and (8) fix unambiguously the renor-
malization constants of the composite fields entering the
energy-momentum tensor definition so that the correct
trace anomaly is reproduced. The Eqs. (18)–(20) hold to
all orders in perturbation theory.

III. THE ENERGY MOMENTUM TENSOR ON
THE LATTICE

We regularize the SU(3) Yang–Mills theory on a finite
four-dimensional lattice of spatial volume V = L3, tem-
poral direction L0, and spacing a. The gauge field sat-
isfies periodic boundary conditions in the three spatial
directions and shifted boundary conditions in the com-
pact direction

Uµ(L0,x) = Uµ(0,x− L0ξ) , (21)

where Uµ(x0,x) are the link variables. The action is
discretized through the standard Wilson plaquette

S[U ] =
β

2
a4

∑

x

∑

µ,ν

[

1−
1

3
ReTr

{

Uµν(x)
}

]

, (22)

where the trace is over the color index, and β = 6/g20
with g0 being the bare coupling constant. The plaquette
is defined as a function of the gauge links, and it given
by

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x) , (23)

where µ, ν = 0, . . . , 3, µ̂ is the unit vector along the di-
rection µ, and x is the space-time coordinate. The gluon
field strength tensor is defined as1 [1]

F a
µν(x) = −

i

4a2
Tr

{[

Qµν(x)−Qνµ(x)
]

T a
}

, (24)

where

Qµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x)

+Uν(x)U
†
µ(x− aµ̂+ aν̂)U †

ν (x− aµ̂)Uµ(x− aµ̂) (25)

+U †
µ(x− aµ̂)U †

ν (x − aµ̂− aν̂)Uµ(x − aµ̂− aν̂)Uν(x − aν̂)

+U †
ν (x− aν̂)Uµ(x− aν̂)Uν(x+ aµ̂− aν̂)U †

µ(x) .

1 We use the same notation for lattice and continuum quantities,
since any ambiguity is resolved from the context. As usual, the
continuum limit value of a renormalized lattice quantity, iden-
tified with the subscript R, is the one to be identified with its
continuum counterpart.

The target energy-momentum tensor in the continuum
is a gauge-invariant operator of dimension 4, which is
a combination of a traceless two-index symmetric and a
singlet irreducible representation of SO(4). When SO(4)
is broken to the hypercubic group SW4, the traceless
two-index symmetric representation splits into a sex-
tet (non-diagonal components) and a triplet (diagonal
traceless components). At finite lattice spacing, the
energy-momentum tensor is thus a combination of gauge-
invariant operators of dimension d ≤ 4 which, under the
hypercubic group, transform as one of those two represen-
tations and the singlet. In the SU(3) Yang–Mills theory
there are only three such operators (no summation over
repeated µ and ν here) [1, 12]:

T [1]
µν = (1 − δµν)

1

g20

{

F a
µαF

a
να

}

T [2]
µν = δµν

1

4g20
F a
αβF

a
αβ (26)

T [3]
µν = δµν

1

g20

{

F a
µαF

a
µα −

1

4
F a
αβF

a
αβ

}

and the identity. The sextet T
[1]
µν and the triplet

T
[3]
µν renormalize multiplicatively, while the singlet T

[2]
µν

mixes also with the identity. The renormalized energy-
momentum tensor can finally be written as

TR
µν = Z

T

{

T [1]
µν + z

T
T [3]
µν + z

S

[

T [2]
µν − 〈T

[2]
µν 〉0

]

}

. (27)

The renormalization constants Z
T
, z

T
and z

S
are finite

and depend on g20 only. At one loop in perturbation
theory their expressions are [1, 12]

Z
T
(g20) = 1 + 0.27076 g20 ,

z
T
(g20) = 1− 0.03008 g20 , (28)

z
S
(g20) =

b0
2
g20 .

A. Non-perturbative renormalization conditions

The renormalization constants Z
T
, z

T
and z

S
can be

determined non-perturbatively by requiring that on the
lattice the WIs in Eqs. (4), (5), and (9) hold up to dis-
cretization effects which vanish in the continuum limit.
The renormalization constant of the sextet is fixed to
be [13] (see also [14])

Z
T
(g20) = −

∆f

∆ξk

1

〈T
[1]
0k 〉ξ

, (29)

where the derivative in the shift in Eq. (4) is discretized
by the symmetric finite difference

∆f

∆ξk
=

1

2aV
ln
[Z(L0, ξ − ak̂/L0)

Z(L0, ξ + ak̂/L0)

]

(30)
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FIG. 1. Left: the derivative of ∆f/∆ξk (normalized to its Stefan–Boltzmann value) with respect to g20 as a function of the

bare coupling. Right: 〈T
[1]
0k 〉ξ normalized to its tree-level expression as a function of g20 . The data are generated on lattices

with L0/a = 3 (blue), 4 (green) and 5 (red), L/a = 48, and ξ = (1, 0, 0). Statistical errors are smaller than symbols.

to ensure that discretization effects start at O(a2). In
the thermodynamic limit, which is always assumed in
this section, the triplet is renormalized by requiring that
Eq. (5) holds up to harmless discretization effects, i.e.

z
T
(g20) =

1− ξ2k
ξk

〈T
[1]
0k 〉ξ

〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ

. (31)

By choosing one possibility of discretizing Eq. (9), the
singlet renormalization constant is fixed to be

z
S
=

1

(1 + ξ2)2

[

(1+ξ
′
2)3

ξ′
k

〈T
[1]
0k 〉ξ′

]

ξ′=ξ+ak̂/L0

−

[

(1+ξ
′
2)3

ξ′
k

〈T
[1]
0k 〉ξ′

]

ξ′=ξ−ak̂/L0

〈T
[2]
µµ〉ξ+ak̂/L0

− 〈T
[2]
µµ〉ξ−ak̂/L0

. (32)

At finite L0, the renormalization constants depend on
the bare coupling constant and on (a/L0)

2 due to dis-
cretization effects. Our prescription is to define them in
the limit2 L0 →∞ at fixed g20 .

IV. NUMERICAL COMPUTATION

In this section we describe how the strategy outlined
above has been implemented in practice to determine
the renormalization constants Z

T
and z

T
. In all simu-

lations the basic Monte Carlo step is a combination of
heatbath and over-relaxation updates of the link vari-
ables using the Cabibbo–Marinari scheme [15]. A sin-
gle sweep is made of 1 heatbath and 3 over-relaxation
updates of all link variables. All lattices have an in-
verse temporal length 1/L0 > Tc, where Tc is the critical
temperature of the theory. We have checked explicitly

2 Notice that in Ref. [13] a different condition was imposed. Since
we were interested in Z

T
(g20) in a limited range of g20 , we defined

Z
T
(g20) as in Eq. (29) but at finite L0.

the autocorrelation times of the primary observables by
profiting from the long Monte Carlo histories, which are
typically made of O(105) sweeps. No long autocorrela-
tions were observed3. For the statistical analysis we have
blocked together the primary observables generated in
several hundreds of consecutive sweeps, a value which is
always much larger than the autocorrelation times mea-
sured. It is important to notice that the determinations
of Z

T
and z

T
require (see below) the computation of ex-

pectation values of single local operators only. Indeed
increasing the spatial size of the lattice does not increase
the computational effort at fixed statistical accuracy.

A. Determination of Z
T

The direct determination of ∆f/∆ξk in Eq. (29) would
involve the computation of the ratio of two partition func-
tions with different shifts at the same value of L0/a and

3 At these values of L0 fluctuations of the topological charge away
from zero are heavily suppressed.



5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
T

L
0
/a=3

L
0
/a=4

L
0
/a=5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
T

fit
a/L

0
-> 0

1 loop PT
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(red). Right: the renormalization factor Z
T
(g20) defined in the limit a/L0 → 0 together with the fit to the formula in Eq. (38)

and the one-loop analytic result in Eq. (28).

g20 . Since the relevant phase spaces in the path inte-
gral of the two systems overlap very poorly, the ratio
cannot be estimated in a single Monte Carlo simula-
tion. A possible way out is to define a series of physical
systems with actions which interpolate between the two
original ones, and then use the Monte Carlo procedure
of Refs. [2, 16, 17]. The calculation, however, becomes
quickly demanding for large lattices since the numerical
cost increases quadratically with the spatial volume.
To bypass this problem we can profit from the fact that

∆f/∆ξk is a smooth function of g20 at fixed values of L0/a
and L/a in the range of chosen values. Its derivative with
respect to g20 can be written as

d

dg20

∆f

∆ξk
=

1

2aL3g20

{

〈S〉
ξ−a/L0k̂

− 〈S〉
ξ+a/L0k̂

}

, (33)

where 〈S〉ξ stands for the expectation value of the ac-
tion in Eq. (22). Although the quantities on the r.h.s.
of Eq. (33) have values which are close to each other,
their difference can be computed at a few permille ac-
curacy with a moderate numerical effort. The differ-
ence {〈S〉

ξ−a/L0k̂
− 〈S〉

ξ+a/L0k̂
} has been computed for

ξ = (1, 0, 0) and L/a = 48 at 63, 59 and 48 values of g20
for L0/a = 3, 4 and 5 respectively. A sample of values is
reported in Table I, while all of them are shown in the
left plot of Fig. 1. At each value of L0/a the points are
interpolated with a cubic spline, and the resulting curve
is integrated over g20 . The free-case value is computed
analytically by using Eq. (E12), and is added to the inte-
gral. The systematics induced by the interpolation and
the numerical integration of the data is negligible with
respect to the statistical error.
To complete the calculation of Z

T
(g20), the expectation

value 〈T
[1]
0k 〉ξ is measured in a dedicated set of simula-

tions. It is computed for ξ = (1, 0, 0) and L/a = 48 at
66, 60 and 38 values of g20 for L0/a = 3, 4 and 5 respec-
tively. A sample of values is reported in Table II, and
all of them are shown in the right plot of Fig. 1. By
interpolating the results with a cubic spline, the renor-

malization constant Z
T
(g20) is finally determined by the

tree-level improved version of Eq. (29) given by

Z
T
(g20) = −

{ ∆f

∆ξk

1

〈T
[1]
0k 〉ξ

− free case
}

. (34)

The results4 for Z
T
(g20) at L/a = 48 and L0/a = 3, 4 and

5 are shown in the left plot of Fig. 2. At the larger value
of L0/a = 5, discretization effects in a/L0 are within
our statistical errors. Those due to the finiteness of a/L
have been checked by computing5 Z

T
at L/a = 16 and

L0/a = 3 in the full range of g20 , and at L0/a = 5 and 6 for
g20 > 0.85. The results at L0/a = 3 for L/a = 16 and 48
are statistically compatible, and their central values differ
at most by 0.5% toward the larger values of g20 . Since on
the lattices with L0/a = 5 and L/a = 48 those effects
are expected to be suppressed at least by an additional
factor of 1/8, we conclude that they are well within the
statistical errors. We thus quote the values of Z

T
(g20)

at L0/a = 5 and L/a = 48 as our best results in the
limit a/L0 → 0, see right plot of Fig. 2. Even if defined
by renormalization conditions which differ from ours by
discretization effects, our values of Z

T
(g20) at g20 > 0.8

agree with those in Refs. [13, 14] which, however, in many
cases have a much larger statistical error.

B. Determination of z
T

The renormalization constant z
T
is computed by im-

posing the tree-level improved version of Eq. (31) given

4 Preliminary results have been reported in Ref. [18]
5 At this small volume we have computed ∆f/∆ξk either with
the method described in this section, or with the Monte Carlo
procedure in Ref. [2]. The numerical results are in agreement
within statistical errors.
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by

z
T
(g20) =

1− ξ2k
ξk

{ 〈T
[1]
0k 〉ξ

〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ

− free case
}

, (35)

with

L ξk
L0(1 + ξ2k)

= q ∈ Z . (36)

The latter condition guarantees that the WI remains
valid at finite volume as it stands [4]. The expectation

values of 〈T
[1]
0k 〉ξ and of the difference 〈T

[3]
00 〉ξ − 〈T

[3]
kk 〉ξ

are measured straightforwardly in the same Monte Carlo
simulation6. The free case is subtracted analytically by
using its expression in Appendix E. In practice we chose
ξ = (1/2, 0, 0) and q = 8 so that the ratio of the spatial
linear size over the temporal one is fixed to be L/L0 = 20.
We simulated 5 values of g20 in the range 0 ≤ g20 ≤ 1 with
temporal length L0/a = 4, 6, 8 and 12. The results for
z
T
(g20) are given in Table III, and they are shown in the

left plot of Fig. 3. Discretization effects turn out to be
quite larger than for Z

T
(g20) at the smaller values of L0/a.

Our best extrapolation to a/L0 = 0 is given by the overall
fit of the data at L0/a = 6, 8 and 12 to the function

z
T
(g20 , a/L0) = z

T
(g20) + b1 g

2
0

(

a

L0

)2

. (37)

The quality of the fit is very good, and it leads to the val-
ues of z

T
(g20) shown by the black points in the same plot.

To check for the systematics associated to the extrapo-
lation, we have performed a variety of different fits: we

6 It is interesting to notice that the difference 〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ

requires roughly 10 times the statistics needed for 〈T
[1]
0k 〉ξ to meet

the same relative statistical error.

have removed the points at L0/a = 6 from our best fit, we
have fit each set of points independently with a quadratic
function in (a/L0)

2, we have amended the combined fit
function by adding a quadratic term in g20 to the coef-
ficient of (a/L0)

2, and we have added a quadratic term
in (a/L0)

2 in Eq. (37). The results of all these fits are
statistically compatible with those obtained in our best
fit to the function in Eq. (37) and the selection of data
points chosen. We take the maximum spread of the cen-
tral values from the various fits as a systematic error due
to the extrapolation, and we add it in quadrature to the
statistical one. The final results are shown in the right
plot of Fig. 3.

V. RESULTS AND CONCLUSIONS

The final results for Z
T
(g20) are shown in the right plot

of Fig. 2. They are very well represented by the expres-
sion

Z
T
(g20) =

1− 0.4457 g20
1− 0.7165 g20

− 0.2543 g40

+ 0.4357 g60 − 0.5221 g80 (38)

in the full range 0 ≤ g20 ≤ 1, a function which coincide
with the expansion in Eq. (28) to order g20 . The deviation
of the curve from the data is smaller than the statistical
accuracy, see right plot of Fig. 2. The error to be at-
tached to Z

T
(g20) computed as in Eq. (38) is 0.4% up to

g20 ≤ 0.85, while it grows linearly from 0.4% to 0.7% in
the range 0.85 ≤ g20 ≤ 1. Within our statistical errors,
the non-perturbative determination starts to deviate sig-
nificantly from the one-loop result at g20 ∼ 0.25.

Our best results for z
T
(g20) are shown in the right plot

of Fig. 3. In the full range 0 ≤ g20 ≤ 1, they are well



7

represented by the expression

z
T
(g20) =

1− 0.5090 g20
1− 0.4789 g20

, (39)

a function which again coincide with the expansion
in Eq. (28) to order g20 . In this case the error to
be attached to the values in Eq. (39) grows linearly
from 0.15% to 0.75% in the interval 0 ≤ g20 ≤ 1.
The one loop result agrees with the non-perturbative
determination up to g20 ∼ 0.4 within our statistical errors.

The above results for Z
T
(g20) and z

T
(g20) clearly show

that in the range of g20 where the Wilson action is fre-
quently simulated, one-loop perturbation theory is not
adequate for computing the renormalization constants of
the traceless components of the energy-momentum tensor
defined as in Eq. (26). Shifted boundary conditions offer
an extremely powerful tool to compute them, and there-
fore to define non-perturbatively the energy-momentum
tensor on the lattice. The strategy implemented here can
be easily generalized to QCD, and to (beyond Standard
Model) QCD-like or supersymmetric theories.
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Appendix A: SU(3) conventions

The Lie algebra of SU(3) may be identified with the
linear space of all hermitian traceless 3 × 3 matrices. In
the basis T a, a = 1 . . . 8, with

Tr[T a] = 0 , T a† = T a , (A1)

the elements of the algebra are linear combinations of
them with real coefficients. The structure constants fabc

in the commutator relation

[T a, T b] = ifabcT c (A2)

are real and totally anti-symmetric in the indices if the
normalization condition

Tr[T aT b] =
1

2
δab (A3)

is imposed.

Appendix B: Continuum notation

In the Euclidean space-time, the path integral of the
SU(3) Yang–Mills theory is defined as

Z =

∫

DADc̄Dc e−S , (B1)

where the measures on gauge and ghost fields are defined
as usual. The action is defined as

S =

∫

d4xL(x) , L = LG + LGF , (B2)

with

LG =
1

2g20
Tr

[

Fµν Fµν

]

, (B3)

LGF =
λ0

g20
Tr

[

∂µAµ ∂νAν

]

+
2

g20
Tr

[

∂µc̄Dµc
]

where g0 is the bare coupling constant, λ0 is the gauge-
fixing parameter, the trace is over the color index and

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (B4)

Dµ c = ∂µ c− i [Aµ, c] , Aµ = Aa
µ T

a .

The ghost fields c and c̄ are in the adjoint representation
of the SU(3) group, i.e. c = caT a and analogously for c̄.

1. BRST transformations

The action (B2) is invariant under the BRST transfor-
mations defined as [19–21]

δAµ = θ Dµc

δc̄ = λ0 θ (∂µAµ) (B5)

δc = iθ c2

where θ is an infinitesimal Grassmann constant. They
are nilpotent up to the equations of motion of the ghost
field c. In fact if we define

δφ = φ′ − φ = θ∆φ , (B6)

where φ is one of the fundamental fields which transforms
as in Eqs. (B5), it is easy to prove that7

∆2Aµ = 0 , ∆2c = 0 , (B7)

while

∆2c̄ = λ0 ∂µDµ c . (B8)

By using Eqs. (B7) and (B8) it is easy to show that the
BRST transformations are nilpotent, up to the equation

7 To this aim it is useful to notice that δ(Dµc) = 0.
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of motion of c, when acting on any product of fundamen-
tal fields at arbitrary space-time points and thus on any
functional of them.

The gauge-invariant part of the Yang–Mills action (B2)
is BRST-invariant because the BRST correspond to in-
finitesimal gauge transformations with parameter θc(x).
The gauge-fixing part of the action turns out to be BRST-
invariant too. It can also be written as a BRST rotation

of a functional plus a term which, after integrating by
parts, is proportional to the equation of motion of c and
serves to cancel the term coming from Eq. (B8).

2. Equations of motion

The equations of motion for the gauge field are given
by

〈{ 1

g20
[DαFαµ]

a +
λ0

g20
∂µ∂αA

a
α +

1

g20
fabc (∂µc̄

b) cc
}

(x)O
〉

= −
〈 δO

δAa
µ(x)

〉

, (B9)

where O represents a generic string of fields, and the co-
variant derivative for the adjoint representation is defined
as in Eq. (B4), i.e.

Dµ Fµν = ∂µ Fµν − i [Aµ, Fµν ] . (B10)

The equations of motion for the ghosts are

〈 1

g20
∂µ[Dµ c]

a(x)O
〉

= −
〈 δ

δc̄a(x)
O
〉

, (B11)

〈 1

g20
[Dµ∂µc̄]

a(x)O
〉

=
〈 δ

δca(x)
O
〉

.

Appendix C: Energy-momentum tensor in the
continuum

The continuum theory is invariant under the group of
space-time translations

x′
µ = xµ − εµ , φ′(x′

µ) = φ(xµ) , (C1)

where φ indicates generically one of the fields Aµ, c, c̄.
The associated WIs can be derived in the usual way by
studying the variation of the functional integral under
local transformations parameterized by εµ(x)

δAµ(x) = ερ(x) ∂ρAµ(x) ,

δc(x) = ερ(x) ∂ρc(x) , δc̄(x) = c̄(x)
←−
∂ ρ ερ(x) .(C2)

The resulting integrated WIs are

∫

d4z εν(z) 〈∂µT
c
µν(z)O〉 = −〈δO〉 , (C3)

where δO is the variation of the string of fields O un-
der the transformation (C2). The canonical energy-
momentum tensor of the theory can be written as

T c
µν = TG,c

µν + TGF,c
µν , (C4)

where

TG,c
µν =

2

g20
Tr

[

Fµα∂νAα

]

− δµν L
G , (C5)

TGF,c
µν =

2λ0

g20
Tr

[

∂αAα∂νAµ

]

(C6)

+
2

g20
Tr

[

(∂µc̄)(∂νc) + (∂ν c̄)(Dµc)
]

− δµν L
FG .

For εν(z) = ǫνδ
(4)(z − x), Eq. (C3) gives

ǫν 〈∂µT
c
µν(x)O〉 = −〈δxO〉 , (C7)

and when all operators of the string O are localized far
away from x, the classical conservation identities

〈∂µT
c
µν(x)O〉 = 0 (C8)

are recovered. The canonical energy-momentum tensor is
neither symmetric nor gauge invariant. To make it both
symmetric and gauge invariant one applies the Belinfante
procedure, and use the equation of motion. The resulting
tensor satisfies the on-shell WIs in Eq. (C8), and it gives
the same conserved charges of the canonical tensor when
inserted in on-shell correlation functions. The ambiguity
left by the use of the equations of motion allows one to
define the energy-momentum tensor as the one derived
by exploiting the re-parameterization transformations of
the theory coupled to an external gravitational field [10,
11, 22]. All definitions related by terms which vanish
by the equation of motion are equivalent provided the
corresponding contact terms are taken into account in
the WIs. The symmetric energy-momentum tensor is
defined as

TB
µν = TG,B

µν + TGF,B
µν , (C9)

where
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TG,B
µν =

2

g20
Tr

[

FµαFνα

]

− δµν L
G , (C10)

TGF,B
µν =

2λ0

g20
Tr

[

−Aµ∂ν∂αAα −Aν∂µ∂αAα + δµν

(1

2
∂αAα∂βAβ +Aα∂α∂βAβ

)

]

+

2

g20
Tr

[

∂µc̄ Dνc+ ∂ν c̄ Dµc
]

− δµν
2

g20
Tr

[

∂αc̄ Dαc
]

.

By comparing Eqs. (C4) and (C9), it is quite easy to show that

∂µT
c
µν = ∂µT

B
µν + ∂µ

{

Aa
ν

[ 1

g20
[DαFαµ]

a +
λ0

g20
∂µ∂αA

a
α +

1

g20
fabc(∂µc̄

b) cc
]

}

, (C11)

i.e. the two four-divergences differ by terms which are
proportional to the equations of motion. If we insert last
equation in the WIs (C7) and we use the the equations
of motion (B9) we arrive to

ǫν〈∂µT
B
µν(x)O〉=−〈δxO〉+ǫν∂µ

〈

Aa
ν(x)

δO

δAa
µ(x)

〉

. (C12)

It is also useful to notice that

TGF,B
µν = ∆Ξµν + δµν

1

g20
Tr

[

c̄ ∂αDα c
]

, (C13)

where ∆ is the BRST variation defined in appendix B
and

Ξµν =
2

g20
Tr

[

−Aµ∂ν c̄−Aν∂µc̄+ (C14)

δµν

(1

2
(∂αAα) c̄+Aα∂αc̄

)]

.

When the interpolating operator O is gauge-invariant, it
is thus appropriate to define a gauge-invariant energy-
momentum tensor

Tµν = TG,B
µν =

1

g20

{

F a
µαF

a
να −

1

4
δµν F

a
αβF

a
αβ

}

(C15)

which satisfies

〈∂µTµν(x)O〉 = 〈∂µT
B
µν(x)O〉 , (C16)

where the term proportional to the equation of motion of
the ghosts is null because a gauge-invariant operator is
independent of the c̄ field. The WIs (C12) applies as well

to Tµν(x) without any modification. It is worth nothing
that the gauge-invariant energy-momentum tensor gen-
erates the very same charges in on-shell correlation func-
tions as all the other definitions in this appendix.

Appendix D: Renormalization of the action density
in dimensional regularization

In this appendix we report the essential formulas in
dimensional regularization which are needed in the paper,
for a recent review see Ref. [23] and reference therein. In
dimensional regularization one replaces

∫

d4x →
∫

dDx,
and renormalizes the coupling constant as

g20 = µ2ǫ g2Z−1
g , (D1)

where D = 4− 2ǫ. The β-function is

β̃(ǫ, g) = µ
∂g

∂µ
= −ǫg

{

1−
g

2

∂

∂g
lnZg

}−1

= −ǫg + β(g) , (D2)

where

β(g) = −g3
∞
∑

k=0

bkg
2k , (D3)

and

b0 =
1

(4π)2
11

3
Nc b1 =

1

(4π)4
34

3
N2

c (D4)

with the number of colours being Nc = 3 in our case.
In presence of shifted boundary conditions it holds

∂

∂g
〈T0k〉ξ =

1

L0

∂g0
∂g

1

2g30

∂

∂ξk
〈F a

αβF
a
αβ〉ξ , (D5)

which can be written as (x0 6= 0)

∂

∂g
〈T0k〉ξ =

1

2

∂g0
∂g

g3

g30
ZE

[

1

g3
〈T 0k(x0) {F

a
αβF

a
αβ(0)}

R〉ξ ,c

]

, (D6)
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where ZE and the renormalized density are defined in
Eq. (16). The expectation values of the renormalized
operators in Eq. (D6) are finite and expandable in powers
of g. By following Ref. [9], see also Ref. [6], the ratio

µ2ǫ ∂g0
∂g

g3

g30
ZE = −ǫg

ZEZg

β̃(ǫ, g)
(D7)

must then have a series in g with no poles in ǫ. In di-
mensional regularization the coefficients of the poles in
ǫ in the renormalization constants start at O(g2), and
therefore

ǫZEZg = ǫ+R , R =

∞
∑

k=1

rkg
2k , (D8)

which implies

− ǫg
ZEZg

β̃(ǫ, g)
=

g(ǫ+R)

ǫg − β(g)
. (D9)

If we expand in g the denominator we obtain

g(ǫ+R)

ǫg − β(g)
=

(

1 +
Rg

β

) ∞
∑

k=0

(

β

ǫg

)k

−
Rg

β
. (D10)

Since this quantity cannot have poles in ǫ

R = −
β

g
, (D11)

and therefore

ǫZEZg = ǫ−
β

g
. (D12)

The renormalization constant of the energy-density oper-
ator is unambiguously fixed from the one of the coupling.

Appendix E: Lattice free theory with shifted
boundary conditions

In this appendix we report the results for the expecta-

tion values of 〈T
[1]
0k 〉ξ, 〈T

[3]
00 〉ξ − 〈T

[3]
kk 〉ξ (no sum over k),

〈T
[2]
µµ〉ξ, and ∆f/∆ξk in the free theory on the lattice8.

In the infinite volume limit the expectation value of the
momentum density is given by [4]

〈T
[1]
0k 〉ξ =

8

L0

L0−1
∑

ℓ=0

∫

BZ

d3p

(2π)3
sin(p0) sin(pk)

∑

α6=0,k cos
2(pα/2)

4 sin2(p0

2 ) + ω2
p

, (E1)

where

φp = p · ξ , ω2
p = 4

3
∑

k=1

sin2(
pk
2
) , p0 =

2πℓ

L0
− φp . (E2)

If we notice that [4]

Σ(φ, ω, x0) =
1

L0

L0−1
∑

ℓ=0

eix0(2πℓ/L0−φ)

4 sin2( πℓ
L0

− φ
2 ) + ω2

=
1

2 sinh ω̂

[

eω̂x0

eiL0φ+L0ω̂ − 1
−

e−ω̂x0

eiL0φ−L0ω̂ − 1

]

, (E3)

where ω = 2 sinh(ω̂/2), and that real and imaginary parts of Σ read

ReΣ(φ, ω, x0) =
sinh(L0ω̂/2) cosh[ω̂(L0/2− x0)]− sin2(L0φ/2) sinh(ω̂x0)

sinh(ω̂) (cosh(L0ω̂)− cos(L0φ))
, (E4)

ImΣ(φ, ω, x0) =
− sin(L0φ) sinh(ω̂x0)

2 sinh(ω̂) (cosh(L0ω̂)− cos(L0φ))
, (E5)

we arrive to

〈T
[1]
0k 〉ξ = 8

∫

BZ

d3p

(2π)3
sin(pk) ImΣ(φp, ωp, 1)

∑

α6=0,k

cos2(
pα
2
) . (E6)

8 The lattice spacing is set to a = 1 in this appendix.
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Analogously, for the traceless diagonal component of the energy-momentum tensor we obtain

〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ =

4

L0

L0−1
∑

ℓ=0

∫

BZ

d3p

(2π)3
1

4 sin2(p0

2 ) + ω2
p

× (E7)

{[

cos(p0)− cos(pk)
]

∑

α6=0,k

sin2(pα)−
[

cos(2p0)− cos(2pk)
]

∑

α6=0,k

cos2(
pα
2
)
}

,

which by summing over l gives

〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ = 4

∫

BZ

d3p

(2π)3

{

ReΣ(φp, ωp, 1)
∑

α6=0,k

sin2(pα)− ReΣ(φp, ωp, 2)
∑

α6=0,k

cos2(
pα
2
)

+ReΣ(φp, ωp, 0)
[

cos(2pk)
∑

α6=0,k

cos2(
pα
2
)− cos(pk)

∑

α6=0,k

sin2(pα)
]}

. (E8)

For the trace part we obtain

〈T [2]
µµ〉ξ = −

16

L0

L0−1
∑

ℓ=0

∫

BZ

d3p

(2π)3

∑

α,β 6=α cos2(pα

2 ) sin2(pβ)

4 sin2(p0

2 ) + ω2
p

, (E9)

which by summing over l gives

〈T [2]
µµ〉ξ = 8

∫

BZ

d3p

(2π)3

{

ReΣ(φp, ωp, 2)
3

∑

k=1

cos2(
pk
2
)− ReΣ(φp, ωp, 1)

3
∑

k=1

sin2(pk)

−ReΣ(φp, ωp, 0)
3

∑

k=1

[

sin2(pk) + cos2(
pk
2
) + 2 cos2(

pk
2
)
∑

q 6=k

sin2(pq)
]}

. (E10)

In the free theory the discrete derivative of the free energy in Eq. (30) is given by

∆f

∆ξk
= 4

L0−1
∑

ℓ=0

∫

BZ

d3p

(2π)3
ln

[

ω2
p + 4 sin2((p0 − pk/L0)/2)

ω2
p + 4 sin2((p0 + pk/L0)/2)

]

, (E11)

which by summing over l gives

∆f

∆ξk
= 2

∫

BZ

d3p

(2π)3
ln

[

cosh(L0 ω̂p)− cos(L0 φp + pk)

cosh(L0 ω̂p)− cos(L0 φp − pk)

]

. (E12)

All previous equations remain valid in finite volume if one makes the substitution

∫

BZ

d3p

(2π)3
→

1

V

∑

p

, (E13)

and defines a prescription for the zero mode.

Appendix F: Numerical results

For a representative sample of values of g20 that we have
simulated we collect the results for the difference of the
average plaquettes entering Eq. (33) in Table I, and the

values of 〈T
[1]
0k 〉ξ at ξ = (1, 0, 0) in Table II. The values of

〈T
[1]
0k 〉ξ and 〈T

[3]
00 〉ξ − 〈T

[3]
kk 〉ξ for ξ = (1/2, 0, 0) are given

in Table III.

[1] S. Caracciolo, G. Curci, P. Menotti, and A. Pelissetto,
The energy momentum tensor for lattice gauge theories,

Annals Phys. 197 (1990) 119.
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β
1

18

∑

µ,ν<µ

[

〈ReTrUµν〉ξ+a/L0k̂
− 〈ReTrUµν〉ξ−a/L0k̂

]

L0/a = 3 L0/a = 4 L0/a = 5

6.0 5.489(10) ×10−4 3.028(7) ×10−4 4.2564(33) ×10−4

6.03 4.886(10) ×10−4 2.443(6) ×10−4 3.8484(38) ×10−4

6.125 3.601(14) ×10−4 1.491(7) ×10−4 1.0016(28) ×10−4

6.5 1.576(11) ×10−4 5.160(37) ×10−5 2.339(20) ×10−5

7.0 7.65(8) ×10−5 2.232(33) ×10−5 8.88(11) ×10−6

8.0 2.96(5) ×10−5 7.08(25) ×10−6 2.43(9) ×10−6

9.0 1.604(38) ×10−5 3.60(17) ×10−6 1.09(11) ×10−6

10.0 1.041(23) ×10−5 2.07(8) ×10−6 6.6(9) ×10−7

11.0 7.77(22) ×10−6 1.49(8) ×10−6 3.8(6) ×10−7

12.0 5.85(25) ×10−6 1.06(6) ×10−6 3.2(5) ×10−7

13.5 4.29(35) ×10−6 7.9(8) ×10−7 2.0(6) ×10−7

17.0 2.39(14) ×10−6 3.8(5) ×10−7 1.3(4) ×10−7

20.0 1.52(12) ×10−6 2.8(4) ×10−7 8.2(28) ×10−8

24.0 1.14(8) ×10−6 2.16(27) ×10−7 4.6(24) ×10−8

30.0 7.5(6) ×10−7 1.48(26) ×10−7 5.5(14) ×10−8

50.0 2.99(23) ×10−7 6.6(8) ×10−8 2.3(7) ×10−8

80.0 1.25(15) ×10−7 2.09(39) ×10−8 0.97(37) ×10−8

TABLE I. Values of the difference of the average plaquettes
measured at bare coupling β = 6/g20 on lattices of size 483 ×
L0/a.

β 〈T
[1]
0k 〉ξ

L0/a = 3 L0/a = 4 L0/a = 5
(×10−3) (×10−3) (×10−4)

6.0 -5.2735(27) -1.3772(13) -2.826(9)
6.03 -5.3921(29) -1.4447(11) -4.047(6)
6.125 -5.6976(29) -1.6064(13) -5.568(5)
6.3 -6.1359(37) -1.7977(12) -6.797(6)
6.5 -6.5124(28) -1.9495(12) -7.610(7)
7.0 -7.1554(29) -2.1899(20) -8.786(7)
8.0 -7.9077(37) -2.4488(20) -9.916(8)
9.0 -8.3673(21) -2.5947(30) -10.550(7)
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