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ENERGY NORM A POSTERIORI ERROR ESTIMATES
FOR MIXED FINITE ELEMENT METHODS

CARLO LOVADINA AND ROLF STENBERG

ABSTRACT. This paper deals with the a posteriori error analysis of mixed
finite element methods for second order elliptic equations. It is shown that a
reliable and efficient error estimator can be constructed using a postprocessed
solution of the method. The analysis is performed in two different ways: under
a saturation assumption and using a Helmholtz decomposition for vector fields.

1. INTRODUCTION

We consider the mixed finite element approximation of second order elliptic
equations with the Poisson problem as a model:

(1.1) —Au = f in QCR",
(1.2) u = 0 ondQ.
The problem is written as the system

(1.3) oc—Vu = 0,
(1.4) dive+f = 0,

which is approximated with the

Mixed method. Find (op,up) € Sp x Vi, C H(div:Q) x L?(Q2) such that
(1.5) (op,7)+ (divr,up) = 0 VreS,,

(1.6) (divep,v)+ (f,v) = 0 YveV,.

In this method the polynomial used for approximating the flux o is of higher degree
than that used for the displacement u, which is counterintuitive in view of ([I3).
As a consequence, the mixed method has to be carefully designed in order to satisfy
the Babuska-Brezzi conditions; cf., e.g., [8]. There are two ways of posing these
conditions, both yielding the same a priori estimates. The more common one is
to use the H(div:Q) norm for the flux and the L?(Q) norm for the displacement.
The other one is to use so-called mesh dependent norms [3] which are close to the
energy norm of the continuous problem.

The a posteriori error analysis of mixed methods has been performed in [IJ,
[10] and [5]. In [I0] the estimate is for the H(div : Q) norm. This is in a way

Received by the editor October 20, 2004 and, in revised form, June 7, 2005.
2000 Mathematics Subject Classification. Primary 65N30.
Key words and phrases. Mixed finite element methods, a posteriori error estimates, post-

processing.
This work has been supported by the European Project HPRN-CT-2002-00284 “New Materials,
Adaptive Systems and their Nonlinearities. Modelling, Control and Numerical Simulation”.

(©2006 American Mathematical Society
Reverts to public domain 28 years from publication

1659

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1660 C. LOVADINA AND R. STENBERG

unsatisfactory since the “div”’ part of the norm is trivially computable and also
may dominate the error; see Remark [3.4 below. In [5] an estimate for the L2-norm
of the flux is derived, but it is, however, not optimal. The reason for this is that
the estimator includes the element residual in the constitutive relation (L3]). As
the polynomial degree of approximation for the displacement is lower than that for
the flux, it is clear that this residual is large.

The purpose of this paper is to point out a simple remedy to this. Since the work
of Arnold and Brezzi [2] it is known that the mixed finite element solution can be
locally postprocessed in order to obtain an improved displacement. Later other
postprocessing was proposed [6, @] [7, [I7, 16]. On each element the postprocessed
displacement is of one degree higher than the flux, which is in accordance with
([T3). Hence, it is natural to use it in the a posteriori estimate. In this paper, we
will focus on the postprocessing introduced in [I'7, [16]. In Section 2] we develop an
a priori error analysis by recognizing that the postprocessed output can be viewed
as the direct solution of a suitable modified method. In Section B we introduce
our estimator based on the postprocessed solution, and we prove its efficiency and
reliability.

Throughout the paper we will use standard notations for Sobolev norms and
seminorms. Moreover, we will denote with C and C; (i = 1,2, ...) generic constants
independent of the mesh parameter h, which may take different values in different
occurrences.

2. A PRIORI ESTIMATES AND POSTPROCESSING

In this section we will consider the mixed methods, their postprocessing, and
error analysis. We will also give the stability and error analysis by treating the
method and the postprocessing as one method. This will be useful for the a poste-
riori analysis.

We will use standard notation used in connection with (mixed) FE methods.
By Ci, we denote the finite element regular partitioning and by I'j, the collection
of edges or faces of Cj,. The subspaces (o, up) € S x Vi, C H(div:Q) x L?(£2)
are piecewise polynomial spaces defined on Cp. In this paper we will consider the
following families of elements. (The results are, however, easily applicable for other
families as well.)

e RTN elements—the triangular elements of Raviart-Thomas [15] and their
tetrahedral counterparts of Nedelec [14];

e BDM elements—the triangular elements of Brezzi-Douglas-Marini [9] and
their tetrahedral counterparts of Brezzi-Douglas-Duran-Fortin [7].

Accordingly, given an integer k > 1, we define
(21) SN — {7 e H(div:Q) | T|x € [Po_1(K)|" ® xPp_1(K) VK € Cy },
(2.2) SPPM — [+ ¢ H(div:Q) | 7|k € [Po(K)]" VK € Ch },
(2.3) VRN — yBPM — 14, ¢ L2(Q)| v|x € Pr_1(K) VK €Cy, },

where Pk_l(K ) denotes the homogeneous polynomials of degree k — 1. For quadri-
lateral and hexahedral meshes there exist a wide choice of different alternatives; cf.
18]

By defining the bilinear form

(2.4) By, w;T,v) = (¢, 7) + (div T, w) + (div e, v),
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the mixed method can compactly be defined as follows.
Find (o, up) € Sp, x V}, such that

(2.5) B(op,up; T,v) + (f,v) =0 V(7,v) € Sp X V.

For the displacement and the flux we will use the following norms:

(2.6) lolif = D> IVolg«+ > hpIRIIG &

KecCy Eely,

and
(2.7) 1715, = I7lI8+ D hellr-nlf g
Eel'y,

where m is the unit normal to E € T'j and [v] is the jump in v along interior
edges/faces and v on edges/faces on 9. By an element-by-element partial integra-
tion we have

(2.8) |(divr, v)| < [[7llo.n

|U||1’h V(T,?)) e Sy x V.
In the FE subspace the norm for the flux is equivalent to the L?-norm

(2.9) C||r

lon < I7llo < [l7llon VT € Sh.
Hence, it also holds that

(2.10) |(divT, v)| < Cf7lollv

e Y(T,0) € Sp X Vi
With this choice of norms the Babuska-Brezzi stability condition is the following.

Lemma 2.1. There is a positive constant C' such that
(divT,v)

(2.11)
res,  ITllo

> CHUHLh Yv € V.

Proof. We first point out that since VTN = V,BPM and SﬁTN C SEDM, the
result for BDM is a consequence of that for RTN. Therefore, we focus on the RTN
family, first recalling that the local degrees of freedom for the flux variable are the

following:
(2.12) (T-n,2)g Vz € Py_1(E), E C 0K,
(2.13) (1,2)K Vz € [Pr—2(K)|".

Above and in the rest of the paper, we use the notation (-, )x and (-, )g for the
L? inner product on the element K and on the edge/face E, respectively.
Hence, given v € V}, we can define 7 € S}, by

(2.14)  (t-n,2)p = hp'(v],2)r Vz€ Py (E), EcTy,
(2.15) (r,2)k = —(Vv,2)k Vz € [Pr—2(K)]", K eCy,.

Noting that Vv g € [Pr—o(K)]", [v]jp € Pr—1(F), from [2.14)-2.I5) we obtain

(2.16) (r-n,[v])e hi 11015 &
(2.17) (1, Vo) = —[|Vol2 -
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1662 C. LOVADINA AND R. STENBERG

It follows that (cf. also (Z.4))

(2.18) (divr,v) = — Z (r,Vu)g + Z (t-n,[v]) e
Kecy, EET,
= D IVolli e+ D hp Il & = IIollF 5
KeChn Eely
Using scaling arguments (2.14)-2I5) imply
(2.19) 7 l[o,n < Cllvl]1,n-
The assertion now follows from (2.I8) and [2I9). O

From this stability estimate, the following full stability result holds.

Lemma 2.2. There is a positive constant C such that

(2.20) ap BlewiTv)

> C(llello + [[wlin) Ve, w) € Sp x V.
(T0)ESKLX V), HTHO + HU ( L) L

[1,n

In our analysis we will exploit the interpolation operator Ry, : H(div : ) N
[L*(2)]™ — Sh, with s > 2, such that

(2.21) (div(T — Rp7),v) =0 Yv €V,

which can be constructed by using the degrees of freedom for Sy; cf. [I5] 14l [ [7].
In addition, we will use the equilibrium property

(2.22) div Sy C V.
When denoting by P, : L?(2) — Vj, the L2-projection, this implies that
(2.23) (divr,u — Pyu) =0 V1T €S
The projection and interpolation operators satisfy the following commuting prop-
erty:
(2.24) div Ry, = Pydiv.
Theorem 2.3. There is a positive constant C such that
(2.25) lo —onllo + | Pru — upll1n < Cllo — Ryo|o.
Proof. By Lemma there is a pair (7,v) € Sy, x V3, with ||7]|o + [|v]1,n < C,
such that
(2.26) lon — Ruollo + ||lun — Prullin < Blon — Ryo,up, — Pru; T,0).
Next, (Z21), (Z23) and 224) give

B(on — Ryo,up — Pru; T,0)
(2.27) = (o — Rpo,7)+ (divT,up — Pyu) + (div (o, — Rpo),v)

= (60— Ruo,7) <|lo - RyollollT]o < Cllo — Ryo|o.

The assertion then follows from the triangle inequality. O

This gives (assuming full regularity):
(2.28) lo—anllo+ |Pou — unllin < ChEFYor|ggn for BDM,
(229) ||0'*0'h||0+ ||Phufuh||17h < Chk|0'|k for RTN.

We note that these estimates contain a superconvergence result for ||Ppu — up||1 5.
This, together with the fact that o, is a good approximation of Vu, implies that
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an improved approximation for the displacement can be constructed by local post-
processing. Below we will consider the method introduced in [I7, [16]. The post-
processed displacement is sought in an FE space V;* D Vj. For our choices, the

spaces are
(2.30) VyBDM - — Ly € L2(Q) | v|k € Poy1(K) VK €Ch },
(2.31) ViBETN - — e L3(Q) ] v|x € Pu(K) VK €Cy }.
Postprocessing method. Find u; € V;* such that

(2.32) Pruj, = up,

and

(2.33) (Vuy, Vu)g = (op, Vo) Yv € (I — P,)Vy k.

The error analysis of this postprocessing is done in [I7, [16]. Here we proceed in
a slightly different way by considering the method and the postprocessing as one
method. To this end we define the bilinear form
B (e, w*;T,v") = (p, ) + (div T, w*) + (div ¢, v*)
(2.34) + Y (V' =, V(I = Py)o*)k.
KeCp
Then we have the following equivalence to the original problem.

Lemma 2.4. Let (o, u}) € Sy, X V¥ be the solution to the problem
(2.35) Br(op,up; m,0") + (Prf,v*) =0 V(r,v") € Sp x Vi,

and set up, = Pyuj € Vi, Then (op,up) € Sp x Vi, coincides with the solution

of (LA)—(LH). Conversely, let (op,up) € Sy, x Vi, be the solution of (LH)—(LH),
and let u} € V. be the postprocessed displacement defined by 232)-233). Then

(on,u}) € Sp x Vi is the solution to ([2.35).
Proof. Testing by (7,0) € S), x V¥ in ([2.30) gives

(2.36) (op, )+ (divr,up) =0 V7 eS8,
The equilibrium property (Z22)) implies
(2.37) (divT,uy,) = (divT,up).

Hence, (LI) is satisfied. Next, for a generic v* € V}* set v = Ppv* € Vj, and
observe that Vj, = P(V}). Testing in (235) with (0,v), and using the fact that
(Pnf,v) = (f,v), we obtain

(2.38) (diven,v)+ (f,v) =0 YveV,
i.e., the equation (L6l). Conversely, let (o, ur) € Sp x V3, be the solution of (LH)-
(6D, and let u;, € V;* be defined by (232)-233)). Splitting a generic v* € V,* as
v* = Ppv* + (I — Pp)v* we have
(2.39)

By (oh,up;m,0") = Bp(on, up; 7, Phv*) + Br(on, up; 0, (I — Pp)v™)

= (o, 7) + (divr,up) + (divey, Pov*) + Z (Vup, —op, V(I — Py)Pyv™)k
KeCyp,

+(divey, (1= Po)v) + Y (Vuj, —on, V(I = Py)(I — Py)v*)k
KecCy
= (op,7) + (divr,up) — (Pof, Ppo*) = —(Puf,v")  V(T,07) € Sp x V.
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1664 C. LOVADINA AND R. STENBERG

Therefore, (oy, uy) € Sy x V* solves (2.35]). O

Next, we prove the stability. In the proof we will use the following norm equiv-
alence.

Lemma 2.5. There are positive constants C, and Cs, such that

(2.40) lw*llin < 1P {ln + [[( = Pr)w”

l1n < Caoljw*

l1,n
and

1/2
@41) Cillwtlun < 1Pt ln+ (3 VU= Bow'lix) " < Callwt .
KeCy,

for every w* € V;*.
Proof. We first prove ([240). The estimate
[w*[[1n < 1 Ppw*{lin + (T = Pr)w™[[1n
follows immediately from the triangle inequality. To continue, we note that
(2.42) [Prw™[[1,n + (I = Po)w™[|1,n < 2[[Pow|l1n + [[w”][15-

We now fix an interior edge/face E, and we consider the elements K7 and K5 such
that E = K; N K5. A scaling argument shows that

2 2
(2.43) W P IR s+ 3 IV P B, < O (A Il lB s+ 3 Ve I3, ).
i=1 i=1
If E C K is an edge/face lying in 01, a similar argument gives
(2.44) hi |1 Phw* |13 5 + IV Paw*|Ig ¢ < C(hZ;le*llg,E + IIVw*II(Q),K)
The estimate
(2.45) [Paw*[[1.n 4+ [[(I = Pr)w™[[1n < Collw®|[1n

easily follows from (2.42)-(2.44) (cf. also (2.6])). Hence, ([2:40) is proved.
To prove (240]) we first note that (Z43]) implies

1/2
(246) P+ (X0 IV Pw i) < Collw

KeCy,

Next, scaling arguments lead to

2
47 W URe + 3 IVe' ik, < C(h5 P TR
i=1

2
+ Y VP g, + IVU = Pow'l x,))

=1

for an interior edge/face E, and to
(2.48) hp' lw'lloe + V' [§x < C(hZ;lHPhw*H%,E

+ VP I + IV = Pow’ I k)
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for a boundary edge/face E. The estimate

* * * (|12 1/2
Cullwll < 1Pl + (2 IV = Pl « )
KeCy,
is a consequence of (Z47)—(2Z48). The proof is complete. O

Lemma 2.6. There is a positive constant constant C' such that

B *, *
(249)  sup  DrlewiiTmet)

") S Clplo+ etln) V(o w®) € Shx V.
B S = ey v el )

Proof. Let (¢, w*) € S), x V¥ be arbitrary. By choosing v* = v € V}, and using the

equilibrium condition ([Z22]), we then get

(2.50) Bu(p,wsT,v) = (@,7)+ (divr,w") + (dive,v)
(CP, T) + (diVTa Phw*) + (le P, U)
= B(p, Pyw*;T,v).

Hence, the stability of Lemma 22 implies that we can choose (7,v) such that

(2.51) Bu(p,w*;7,0) > (llell + [1Prw*[17 )
and
(2.52) I7llo + l[olln < Cr(llello + [1Paw™|l1,n).-

Next, (ZI0) and Schwarz inequality give
(2.53) Bp(p, w*;0, (I — Pp)w")
= (dive, (I = Po)w*) + Y (Vw* — ¢, V(I - P)uw")k

Kecy,
> —Callllol|(I = Pu)w*|[vn+ Y (Vw', V(I — Pw)k
KeCy,
= =Calelloll(I = Po)w*1n+ Y (VPyw*, V(I = Py)w")g
KecCy

+ Y IVU = Pow*[§ x
KeCy,

> —(Callello + [|1Paw*||1,n) I(I — Pr)w*

+ Y IV = Pow[§ -
KeCy,

[1,n

We now note that (I — P,)w* is L2-orthogonal to the piecewise constant functions;
therefore, a scaling argument shows that

1/2
(2.54) (I = Pr)w*[|1,n < Cs ( >V - Ph)w*IIS,K> :

Kecy
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1666 C. LOVADINA AND R. STENBERG

For o > 0, we obtain from (253) and (254
(2.55) Bh (e, w50, (I — Pp)w”)

1 * 2 o *
> 5= (Callllo + [ Pawlln)” = (T = Pa)w’[l7,

+ ) IVU = Pow*|§ x

KeCy,
> — L (Gallgllo + [Pret[0)?
= 20& 2 (P 0 h 1,h
a02 *
+(1-252) T v - PR

KeCy,

Choosing « > 0 sufficiently small, we get
(2.56)

Bi(p,w™; 0, (I = Py)w) = Cy ( D IVU = Po)w*[I§ x = lllls — | Paw® |%,h> :
Kecy,

Combining (251]) and ([2.356), with § > 0 to be chosen, we have

(2.57)  Bu(p,w";T,v+6(I — Pp)w™)
> (1= 38Cs) (llll§ + 1Pww" (17 ) +6Ca Y IV = Pu)w 3 -
= 4 Pllo h 1,h 4 h 0,K

KeCp,
Next, by (Z41]) we have
(2.58) 1Paw* 1, +6 > IV = Po)w*[[§ i > Csllw™[I3 -
KeCh
From (Z52) and (240) we have
[7llo + [lv+ (1 = Pr)w™[|1n
(2.59) <Al + [[ollin 4+ 8I(1 = Pa)w®|[1.n

< Ci(llepllo + 1 Phw*[l1,n) + SI(T = Pr)w 1,
< Cs(lleello + llwl1.n)-
Choosing § = 1/(2C}), estimate ([2:49) is proved by combining (Z57)-(2Z59). O
Theorem 2.7. The following a priori error estimate holds:
lo = anllo +llu—upllin < C(lo = Ruollo + it lu = v*[1,n)-

Proof. From Lemma it follows that there is (p,w*) € S), x V¥, with [|¢llo +
[lw*|l1,n < C, such that

(2.60) (lon = Ruollo + [luj, = v*[l1,n) < Bu(on — Ruo,uj, — v™5 0, w").
Next, from the definition of By and the equations (L3)—(L4) it follows that
(2.61) By (o, u; 0, w™) + (f,w") = 0.

Hence it holds that

(2.62) By (oh — Ryo,uj, —v™; ¢, w")

= By(o — Rpo,u—v*;5p,w") + (f — Pnf,w").
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Writing out the right-hand side we have
By(o — Rpo,u—v*;0,w") + (f — Prf,w")
= (o0 —Ryo, )+ (divep,u—v") + (div (0 — Rpo),w")

+ > (V(u—v*) = (6 — Ryo), V(I - Py)w*)k + (f — Puf,w").
Kecy,

(2.63)

The commuting property (2.24]) gives
(2.64) (div (o — Rpo),w™) = —(f — Ppf,w").

Hence, the third and the last term on the right-hand side of ([263) cancel. The
other terms are directly estimated:

(2.65) (0 — Ruo.¢) < llo — Rucrlollello < Cllo — Ryerlo,
(2.66) (divep,u—v") < Cllellolu = v*[l1n < Cllu = v™[|1,n,
and using (247

> (V(u—v") = (6 — Ryo), V(I - Pp)w*)x

KeCy,
(267 < O(llu=v" 11+ lo = Racllo) o 11

< C(lu=v*l1n + |l = Ruolo)-

The assertion then follows by collecting the above estimate and using the triangle
inequality. O

For our choices of spaces we obtain the estimates (with the assumption of a
sufficiently smooth solution).

Corollary 2.8. There are positive constants C such that

268) o —onllo+llu—uilln < Chulys  for BDM,

(2.69) lo —onllo+ lu—uill1n < ChFlulgsr for RTN.
3. A POSTERIORI ESTIMATES

We define the following local error indicators on the elements:

(3.1) m,x = |Vuy —onllox, m2.x =hillf— Pufllox,

and on the edges,

—1/21
(3.2) ne =hg / ITun]llo.e-

Using these quantities, the global estimator is

(3.3) n= ( Z (i + 15 1) + Z 77%) 1/2'

KecCy Eely

The efficiency of the estimator is given by the following lower bounds, which
directly follow from (L3 using the triangle inequality, and from (32) noting that
[u] = 0 on each edge E.

Theorem 3.1. It holds that

mx < |IV(u—up)llox + o —onllox,
(3‘4) —1/2 *
ne = hg ' “|u—ui]llo.e-
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As far as the estimator reliability is concerned, below we will use two different
techniques.

3.1. Reliability via a saturation assumption. The first technique to prove the
upper bound is based on the following saturation assumption. We let Cj, /5 be
the mesh obtained from Cj, by refining each element into 2™ (n = 2,3) elements.
For clarity all variables in the spaces defined on C; will be equipped with the
subscript h, whereas h/2 will be used for those defined on Cj,/5. Accordingly, we
let (O'h/g,u;;/z) € Spy2 x Vj)5 be the solution to

(3.5)

Bhj2(0hyas Up 2 Thy2s Vo) + (Pryaf, v ) =0 V(Thy2, vy /0) € Shya X Vi)a.

As already done in [5], we make the following assumption for the solutions of

(Z233) and (E3).

Saturation assumption. There exists a positive constant 3 < 1 such that
(3.6) lo —ansello + [lu—uj, jollinsz < B(llo = onllo + [lu — upllin)-
Since it holds that

(3.7) lu = upllin < llu—upllipe,

we also have

(3.8) lo —ansallo + llu—uj olline < B(lo = onllo + llu —ujll1n/2)-

Using the triangle inequality we then get

* 1 * *
(3.9) o —anllo+ llu—uplline < -5 (lonsz = onllo + lluf, o — willing2)-
By again using ([B.7) we obtain
* 1 * *
(3.10)  flo —onlo+ [lu—upflin < 7 (lonse = onllo+ llug )2 = uhllinge)-

We now prove the following result.

Theorem 3.2. Suppose that the saturation assumption ([B.6]) holds. Then there
ezists a positive constant C such that

(3.11) o —anllo+ [lu = upllin < Cn.
Proof. By (BI0) it is sufficient to prove the following bound:
(3.12) lons2 = anllo+ llug 2 — upllipe < Cn.

By Lemma applied to the finer mesh Cj, /5, there is (Th/g,’U;;/2) € Shy2 % Vi /2
with [[74/2/l0 + (|0}, /2 ll1,n/2 < C, such that

(3.13) (lon = ansallo + lluy, — uj, joll1,n/2)
< Bpja(on — o2, up — UZ/Q; Th/z,v;;/z)-

Using the fact that

(3.14) (Oh2, Thy2) + (div Th/g,’LLZ/Q) =0
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we have
* * *
Bh/Z(a-h - a-h/27 Uy, — uh/27 Th/27 /Uh/2)
. * * . *
=(oh —Onj2, Thy2) + (div T o, up — U o) + (div(on — ony2), v /2)

(3.15) + Y (V(uj = thye) = (0h = any2), VI = Poy2)vis) i
KeCh 2

= (oh, Thy) + (div Ty, up) + (div (oh — Ohy2), v /2)

+ Z (Vuy, —on, V(I = Ppj2)vp o) k-
KeCh 2

‘We now note that

(3.16) CllTnse

lo,n < IThy2llo < IThy2llon YThy2 € Shye
holds (cf. (2X9)). Therefore, using (316) and BI)—(B3]), we obtain

(Oh, Thy2) + (div Ty o, up)

= Z (on —Vup, Th2)Kk + Z (Thy2 -, [upl) e

KeCp EcTy,
(3.17) < Y lon = VailloxlTaelox + Y I1Tas2 - nlloslluillos
Kecy, Eely,

<l Thszllon <nCllTh2llo < Cn.

Similarly for the last term in (B.I5]) we get using (2.40) that

(3.18) Z (Vup, —op, V(I — Ph/2)UZ/2)K < COnll(1 - Ph/2)”2/2”1,h/2
KeChyo

< Cnllvgallinge < Cn.
When estimating the term (div (o4 — op/2), v}, 5) in [B.I5) we recall that
divep, = —Pyf and divoye = —Puaf,
and that Py, P/, are L2%-projection operators. Therefore, we have

(3.19)  (div(on —0ons2),vh/2) = (Pujaf — Pufivy2)
= (Ppjaf = frvn2) + (f = Puf,v2)
= (Pnjaf = f,vh)2 = Prjavy)s) + (f = Puf,vh )0 — Pavy o).

Next, we use the following interpolation estimates, which are easily proved by
standard scaling arguments (cf. [5, Lemma 3.1]):

vk 2 = Pavppollo,x < Chic vy olinj2,, VK € Ch,

where

CYEYY Z VU5 1oll5 5, + Z hp! 6.5,

K; E;

[[U;:/Z]]
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Here K; C K are the elements of Cj /o and E; are the edges of I'; /o lying in the
interior of K. This gives

1/2

(3.20) (f = Punf, UZ/Q - PhUZ/z) < O( Z h%{”f - th”g,K) ||UZ/2||1,h/2
KeCy,
1/2
<O( Y Wkl - Pufl3 )" < On.
Kecy,

We also have
(Ph/2f - f U;;/2 - Ph/2v;i/2)
< > = Pujaflloxlivy s = Pujavisllo.x

KeChya

<C Z hi|lf = Prj2fllo,xl[ Vg o

Kéch/g

/2,
(3.21) < C( Z Willf — Ph/Zf”g,K) th/Q”Lh/Z
Kéch/g

<of Z hE||f — Ph/2f||g,K)1/2

KeChya

<C( > hxlf- Ph/2f||(2),K)1/2'

KeCy,

o, K

Since, by the properties of L?-projection operators, it holds that

If = Pujafllox <|If = Pufllox VK €Ch,
and from (321 we obtain

* * 1/2
(3.22) (Prjaf = f, Uhy2 — Ph/ZUh/2) < C( Z h%{“f - th”g,K) / < Cn.

KeCy,
By collecting the estimates BI7)—(B20) and B.22)), from BIT) we get
(3.23) Byjo(on — oh 2, up — UZ/Z;Th/Q’U;;/Q) <Cn.
The assertion now follows from (313)). O

We have presented the above proof since this is rather general and can be used
for other problems as well. In [I3] we use it for a plate-bending method.

3.2. Reliability via a Helmholtz decomposition. Now, let us give another
proof of the estimator reliability, not relying on the saturation assumption.

Theorem 3.3. Suppose that Q C R? is a simply connected domain. Then there
exists a positive constant C' such that

(3.24) llo = anllo + llu = upllin < Cn.
Proof. We use the techniques of [I1] and [I0]. We first note that

(3.25) lo—onllo= sup T=Ime)
eecL?(Q) llllo
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For a generic ¢ € L*(Q), we consider the L*-orthogonal Helmholtz decomposi-
tion (see, e.g., [12])

(3.26) ¢ = Vi + curlg, b e HYQ), ge H'(Q)/R,
with
) N\ 172
(3.27) llello = (IIV9II3 + [lcurl gl })
Therefore, from [B25)—-([B.27) we see that
- \Y — 1
(328)  |lo—onllo< sup TZomVY) o, [lgZoncurlg
YEHL(Q) W)\l qeEHY(Q)/R |(1|1
holds. Given v € H}(Q2), from ([4) and (L6) it follows that
(3.29) (div (o — a4), Puty) = 0.

Hence, we have

(U — Oh, VW = (le (0. - o-h)7w)
=—(div(o —on), ¥ — Put))

1/2
(3.30) <C(' Y Milldiv(e —on)lidx) " ek
KeCy,
1/2
<c(Y WkIf - PufliR) ol
KeCy,

As a consequence, we get (cf. (B10))

(3.31)
(U 0'h7V7/1 1/2 ) 1/2
c B2 _c |
weslg(ﬁm [¥h = (K;h Kllf = Pufll3 K) (K%C:h 772,1()

To continue, let I;q be the Clément interpolant of ¢ in the space of continuous
piecewise linear functions (see [4], for instance) satisfying

B 1/2
(3.32) la—Ingli+ (Y h5'lla—Inalidz) < Clals.
Eely,

Noting that curl I;,q € Sy, and divcurl I;,¢g = 0, from (3] and (L) we get

(3.33) (o — oy, curll;q) = 0.
Therefore, using ([332)), one has
(3.34)

(0 — op,curlg) = (0’ — oy, curl(qg — I;Lq))
:(Vu —op,curl(qg — I;Lq)) = —(o-h7 curl(q — I;Lq))
=— Z (O'h — Vuj, ,curl(q — Ihq))K + Z (Vu;; ,curl(q — Ihq))K

KeCy, KeCp,
1/2
<O llow—Vuillx) lai+ Y (Vui,curl(g - [g))
Kecy KeCp,
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1672 C. LOVADINA AND R. STENBERG

Furthermore, an integration by parts and standard arguments and (3.32]) give

Z (Vuj,, curl(q — Ihq))K =— Z (Vup, - t,q — Inq)ox

KeCy, KeC,
== Z ([Vuj, - t],q — Ing) e
Eely
(3.35) ” »
<(32 melltvus-AiRe) (X hetlla - fuale)
E€Ty, Fery
-1 *7112 1/2
SC( Z hp ||[[uh]]||OE) g1
Eely

From 334) and (338) we obtain (see (B1]) and [B.2]))

(3.36)
(o0 — op,curlq) . 3 . 1/2
sup T IREEL < o3 flow - VR + > kil g)
geH (@) /R lals Ko, Pty
1/2
(Y e+ YowE)
KeCy, Eely,
Using (331 and (336) we deduce that
1/2
(3.37) lo=onllo < C(( Y hx+nde)+ Y. nk) -
KeCy Eely,

We now estimate the term ||u — uj||1,,. We first recall that

B . 1/2
(338)  lu—uillin=( 3 IV@—wi)l3x+ 3 hpllu—willde)

KecCy, Eely
and we note that (cf. (32)))

39 (3 netle—willds)” = (2 minis) = (3 )"

EeTy, EcTy, EcTy,
We have
IV (u—ui) g,k = (Vu— Vi, Viu—up)) o = (0 = Vg, V(u—up))
(3.40) = (0 —on V(u—up)), + (on = Vuy, V(u—uj))

< (Ilo = ulloc + llon = Ve llo.x )1V (= wi)lo.xc
by which we obtain
(3.41) IV (= ui)lox < llo = anllouse + low — Vuillo.x.

Hence we infer

N 1/2 . 1/2
(342) (Y IV@-uw)ldx)  <llo—onllo+( Y llow—Vuillix) -
KeCp KeCp

Using B31) and recalling (31), from B42) we get
. 1/2 1/2
(343) (Y IV@-uw)Bx) <C( X M tmde)+ D nE)

Kecy, Kecy Eely
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Therefore, joining ([39) and (343]) we obtain

1/2
(3.44) lu=willn < (S @i+ + > )
KeCy, Eerly,

From (337) and 344) we finally deduce (see ([33]))

1/2
Lh < C( Z (n? x +77§,K) + Z 77125) =Cn.
KeCy, Eely

(3.45) [lo —onllo + [[u —uj

We end the paper by the following

Remark 3.4. On the estimate in the H(div : Q)-norm. In this paper we have
repeatedly used the fact that by the equilibrium property ([2:22)) we have div (o—op,)
= P,f — f, and hence ||div (o — o)|lo = ||f — Prfllo is a quantity that is directly
computable from the data to the problem. For the BDM spaces, furthermore, for a
general loading and a smooth solution it holds that || f — P, f|lo = O(h*), whereas
lo — anllo = O(R¥*1), and hence this trivial component in the H (div : () norm
can dominate the whole estimate. g
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