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Abstract. In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous

Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error

measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local

mesh sizes and approximation orders. A series of numerical experiments illustrate the performance of the proposed

estimators within an automatic hp-adaptive refinement procedure.
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1. Introduction. In this article, we derive hp-version energy norm a posteriori error

bounds for discontinuous Galerkin discretizations of the following elliptic model problem:

find u such that

−∆u = f in Ω, (1.1)

u = g on Γ. (1.2)

Here, we take Ω to be a polygonal Lipschitz domain in R
2 with boundary Γ = ∂Ω, f is a

given source term in L2(Ω) and g is a Dirichlet boundary datum in H1/2(Γ). The standard

weak formulation of (1.1)–(1.2) is to find u ∈ H1(Ω) such that u|Γ = g and

A(u, v) :=

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx (1.3)

for all v ∈ H1
0 (Ω).

It is well-known that solutions of elliptic problems in polygons may exhibit corner sin-

gularities. This lack of smoothness typically results in degraded convergence rates of h- and

also p-version finite element methods used for the discretization of such problems. However,

it has been shown that hp-version finite element methods, which are based on locally refined

meshes and variable approximation orders, can achieve exponential rates of convergence de-

spite the presence of singularities; for details, we refer the reader to [5, 16, 17, 37] and the

references cited therein.

Discontinuous Galerkin methods (DG, for short) are particularly well-suited for the ap-

plication within hp-version algorithms. Indeed, within a DG approach, non-matching grids

containing hanging nodes and non-uniform polynomial approximation degrees can easily be

handled. For a recent survey on DG methods, we refer the reader to the articles [11, 12, 13].

The a priori error analysis of DG methods for elliptic problems is relatively well understood

by now and a large body of literature is available; in the context of the hp-version of the

DG method, we mention here the articles [10, 15, 23, 31, 32, 34, 35, 36, 39] and the refer-

ences cited therein. However, there are considerably fewer papers that are concerned with
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the a posteriori error estimation for DG methods applied to elliptic boundary-value problems.

Regarding L2-norm or functional error estimation for the h-version of the DG method, we

refer the reader to [7, 27, 33] and the references therein. An extension to hp-adaptive DG

methods was considered in [18]; see, also, [25] for a recent review of goal-oriented a posteri-

ori error estimation for both conforming and DG finite element methods. Energy norm error

estimation for h-version DG methods for diffusion problems has been studied in [6, 7, 8, 28].

Finally, mixed DG approximations to the time-harmonic Maxwell operator and the Stokes

equations are considered in [20, 21], respectively.

While the proof of the energy norm a posteriori error bounds in [7] hinges on a satura-

tion assumption on the finite element spaces, the analyses in [6, 8, 20] are based on exploiting

suitable Helmholtz decompositions of the error, together with the local conservation prop-

erties of the underlying DG method (see [9] and the references therein for closely related

a posteriori error estimation techniques for nonconforming methods). Yet another approach

was developed in [28]; it crucially relies on the approximation of discontinuous finite element

functions by conforming ones. A similar idea was then used in the recent article [21], where

energy norm a posteriori error bounds are derived for the mixed h-version DG approximation

of the Stokes problem. Indeed, the approach in [21] employs a norm equivalence property

for discontinuous finite element spaces (see [19, Theorem 5.3]), which is a consequence of

the approximation results in [28, Section 2.1]. However, in contrast to the analysis in [28],

the proof of the bound in [21] is based on rewriting the method in a non-consistent manner

using lifting operators in the spirit of [1], see also [32]. Thereby, it is possible to derive DG

a posteriori error bounds under minimal regularity assumptions on the underlying analytical

solution. Here, we emphasize that all the work above is concerned with the h-version of DG

methods only.

In this paper, we extend the technique proposed in [21] to the hp-version of the DG

method and derive reliable upper bounds on the error measured in terms of a natural (mesh-

dependent) energy norm for the DG approximation of the elliptic boundary-value problem

(1.1)–(1.2); we refer to our recent conference paper [22] for the extension of this analy-

sis to the hp-DG approximation of the Stokes equations. In particular, we generalize the

crucial norm equivalence result in [21] to hp-DG finite element spaces consisting of either

triangular or quadrilateral elements, under the assumption that the computational mesh is

conforming. With this result, the upper (reliability) bounds are then obtained using the argu-

ments from [21] and the hp-version Scott-Zhang interpolant from [29]. Additionally, lower

(efficiency) bounds will also be derived; they follow with only minor modifications from the

techniques presented in [30]. As in the case of the conforming hp-finite element methods con-

sidered there, reliability and efficiency of our error bounds cannot be established uniformly

with respect to the polynomial degree, since the proof of efficiency relies on employing in-

verse estimates which are suboptimal in the spectral order. Finally, numerical experiments

highlighting the performance of the proposed estimator within an hp-adaptive mesh refine-

ment algorithm will also be undertaken.

The outline of this article is as follows. In Section 2, we introduce the hp-DG method

for the numerical approximation of the boundary-value problem (1.1)–(1.2). In Section 3,

our a posteriori error bounds are presented and discussed; here both upper and lower energy

norm bounds will be derived. The proofs of these results will be presented in Section 4;

Section 5 will be devoted to the proof of the norm equivalence property for hp-DG spaces.

In Section 6, we present a series of numerical experiments to illustrate the performance of

the proposed error estimators within an automatic hp-mesh refinement algorithm. Finally, in

Section 7 we summarize the work presented in this paper and draw some conclusions.

Throughout the paper, we use the following standard function spaces. For a polygonal
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Lipschitz domain D ⊂ R
2 or an interval D = (a, b) we denote by Hk(D) the Sobolev

space of order k ∈ N0, endowed with the semi-norm | · |k,D and norm ‖ · ‖k,D. For k ≥ 0
non-integer, we define Hk(D) and ‖ · ‖k,D by the K-method of interpolation; see [38]. We

denote by Hk(D)2 the space of vector fields with components in Hk(D); for simplicity,

the standard product norm in Hk(D)2 is also denoted by ‖ · ‖k,D. Furthermore, we set

L2(D) = H0(D) and write H1
0 (D) for the subspace of H1(D) of functions with vanishing

trace on D. The space H1/2(∂D) is the space of traces of functions in H1(Ω); we denote its

usual norm by ‖·‖1/2,∂D. Finally, for an interval D = (a, b), let H
1/2
00 (D) be the interpolation

space (L2(D), H1
0 (D))1/2 defined by the K-method of interpolation. We endow it with the

interpolation norm ‖ · ‖1/2,00,D. It is well-known that this norm is equivalent to the following

expression:

‖v‖2
1/2,00,D ≈ ‖v‖2

1/2,D +

∫ b

a

v(x)2

(x − a)(x − b)
dx, v ∈ H

1/2
00 (D).

If D is a straight bounded line segment in R
2, the space H

1/2
00 (D) can be defined straightfor-

wardly by mapping D onto an interval.

2. The hp-version interior penalty method. In this section, we introduce the hp-

version interior penalty discontinuous Galerkin method for the approximation of (1.1)–(1.2).

2.1. Finite element spaces. We consider shape-regular conforming meshes Th that par-

tition Ω ⊂ R
2 into open triangles and parallelograms {K}K∈Th

. Each element K ∈ Th can

then be affinely mapped onto the generic reference element K̂ which is either the triangle

T̂ = { (x, y) : −1 < x < 1, 0 < y <
√

3min(1 + x, 1 − x) } or the square Ŝ = (−1, 1)2,

respectively.

The diameter of an element K ∈ Th is denoted by hK . Due to our assumptions on the

meshes, these diameters are of bounded variation, that is, there is a constant ρ1 ≥ 1 such that

ρ−1
1 ≤ hK/hK′ ≤ ρ1, (2.1)

whenever K and K ′ share a common edge. We store the elemental diameters in the mesh size

vector h given by h = {hK : K ∈ Th}. Similarly, we associate with each element K ∈ Th

a polynomial degree kK ≥ 1 and define the degree vector k = {kK : K ∈ Th}. We assume

that k is of bounded variation as well, that is, there is a constant ρ2 ≥ 1 such that

ρ−1
2 ≤ kK/kK′ ≤ ρ2, (2.2)

whenever K and K ′ share a common edge. Additionally, we suppose that there exists a

constant ρ3 > 0 such that

|kK − kK′ | ≤ ρ3, (2.3)

for all pairs of boundary elements K, K ′ ∈ Th with ∂K ∩ ∂K ′ ∩ Γ 6= ∅. The technical

assumption (2.3) is required in Lemma 4.6 where we recall the hp-Scott-Zhang interpolation

result from [29, Theorem 2.4] for the approximation of H1-functions with inhomogeneous

boundary conditions.

For a partition Th of Ω and a degree distribution k, we define the hp-version discontinu-

ous Galerkin finite element space Vh by

Vh = { v ∈ L2(Ω) : v|K ∈ SkK
(K), K ∈ Th }. (2.4)

Here, SkK
(K) is the space PkK

(K) of polynomials of total degree≤ kK , if K is a triangle, or

the space QkK
(K) of polynomials of degree ≤ kK in each variable, if K is a parallelogram.
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2.2. Trace operators. Next, we define the trace operators that are required for the in-

terior penalty method. To this end, we denote by EI(Th) the set of all interior edges of the

partition Th of Ω, and by EB(Th) the set of all boundary edges of Th. Furthermore, we define

E(Th) = EI(Th) ∪ EB(Th). The boundary ∂K of an element K and the sets ∂K \ Γ and

∂K ∩ Γ will be identified in a natural way with the corresponding subsets of E(Th).
Let K+ and K− be two adjacent elements of Th, and x an arbitrary point on the interior

edge κ ∈ EI(Th) given by κ = ∂K+ ∩∂K−. Furthermore, let v and q be scalar- and vector-

valued functions, respectively, that are smooth inside each element K±. By (v±,q±), we

denote the traces of (v,q) on κ taken from within the interior of K±, respectively. Then, the

averages of v and q at x ∈ κ are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ κ are given by

[[v]] = v+ nK+ + v− nK− , [[q]] = q+ · nK+ + q− · nK− ,

respectively, where we denote by nK± the unit outward normal vector of ∂K±, respectively.

On a boundary edge κ ∈ EB(Th), we set {{v}} = v, {{q}} = q and [[v]] = vn, with n

denoting the unit outward normal vector on the boundary Γ.

2.3. Interior penalty discretization. For a mesh Th on Ω and a polynomial degree

vector k, let Vh be the hp-version finite element space defined in (2.4). We consider the

interior penalty discretization of (1.1)–(1.2): find uh ∈ Vh such that

Ah(uh, v) = Fh(v) (2.5)

for all v ∈ Vh, where

Ah(u, v) =
∑

K∈Th

∫

K

∇u · ∇v dx −
∑

κ∈E(Th)

∫

κ

(
{{∇hv}} · [[u]] + {{∇hu}} · [[v]]

)
ds

+
∑

κ∈E(Th)

∫

κ

c [[u]] · [[v]] ds,

Fh(v) =

∫

Ω

fv dx −
∑

κ∈EB(Th)

∫

κ

g∇hv · n ds +
∑

κ∈EB(Th)

∫

κ

cgv ds.

Here, ∇h denotes the elementwise gradient operator. Moreover, the function c ∈ L∞(E(Th))
is the discontinuity stabilization function that is chosen as follows: we define the functions

h ∈ L∞(E(Th)) and k ∈ L∞(E(Th)) by

h(x) :=

{
min(hK , hK′), x ∈ κ ∈ EI(Th), κ = ∂K ∩ ∂K ′,

hK , x ∈ κ ∈ EB(Th), κ ∈ ∂K ∩ Γ,

k(x) :=

{
max(kK , kK′), x ∈ κ ∈ EI(Th), κ = ∂K ∩ ∂K ′,

kK , x ∈ κ ∈ EB(Th), κ ∈ ∂K ∩ Γ,

and set

c = γk2
h
−1, (2.6)

with a parameter γ > 0 that is independent of h and k.

It can be shown that there is a parameter γmin > 0 independent of h and k such that

for γ ≥ γmin the DG method in (2.5) is stable and possesses a unique solution; cf. [39,

Proposition 3.8], for example.
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3. Energy norm a posteriori error estimation. In this section, we present our main

results.

3.1. A reliable a posteriori error bound. We first state and discuss an energy norm

hp-a posteriori error estimate which provides a reliable upper bound on the approximation

error for the DG method (2.5). To this end, we introduce the space

V (h) = Vh + H1(Ω),

and endow it with the norm

‖v‖2
1,h =

∑

K∈Th

∫

K

|∇v|2 dx +
∑

κ∈E(Th)

∫

κ

γk2
h
−1|[[v]]|2 ds; (3.1)

we shall refer to ‖ · ‖1,h as the energy norm.

Next, in order to define our a posteriori error indicators, we let gh be a piecewise polyno-

mial approximation in H1/2(Γ) of the Dirichlet datum g. That is, gh is the trace of a function

in H1(Ω) and satisfies

gh|κ ∈ PkK
(κ), κ ∈ EB(Th), κ ∈ ∂K ∩ Γ, K ∈ Th. (3.2)

For example, if g belongs to C0(Γ) and is smooth on each edge, it is possible to construct an

approximation gh such that gh(P ) = g(P ) at the end points of each edge κ ∈ EB(Th) and

such that ‖g−gh‖1/2,00,κ is optimally convergent in the mesh size and the polynomial degree

(up to a logarithmic loss in the polynomial degree). This leads to an optimal approximation

of g in H1/2(Γ); we refer the reader to [4] and the references cited therein for details.

For each element K ∈ Th, we then introduce the local error indicator ηK which is given

by the sum of the three terms

η2
K = η2

RK
+ η2

EK
+ η2

JK
. (3.3)

The first term ηRK
is the interior residual defined by

η2
RK

= k−2
K h2

K‖Πhf + ∆uh‖2
0,K , (3.4)

where Πhf denotes the elementwise L2(K)-projection of f onto the space SkK−1(K) of

polynomials of degree kK − 1. The second term ηEK
is the edge residual given by

η2
EK

=
1

2

∑

κ∈∂K\Γ

‖k−1/2
h
1/2[[∇huh]]‖2

0,κ. (3.5)

Finally, the third term ηJK
measures the jumps of the approximate solution uh and is defined

by

η2
JK

=
∑

κ∈∂K\Γ

γ
1

2
‖kh−1/2[[uh]]‖2

0,κ +
∑

κ∈∂K∩Γ

γ‖kh−1/2(uh − gh)‖2
0,κ, (3.6)

with gh denoting the approximation of g in (3.2).

The following theorem states that, up to standard data approximation terms, the error

indicators in (3.3)–(3.6) give rise to a reliable energy norm a posteriori error bound.



6 P. HOUSTON, D. SCHÖTZAU, T.P. WIHLER

THEOREM 3.1. Let u be the analytical solution of (1.1)–(1.2) and uh ∈ Vh its DG

approximation obtained by (2.5) with γ ≥ max(1, γmin). Let the local error indicators be

defined by (3.3)–(3.6). Then, the following a posteriori error bound holds

‖u − uh‖1,h ≤ CEST

(
∑

K∈Th

η2
K

)1/2

+ CAPP A(f − Πhf, g − gh), (3.7)

with positive constants CEST and CAPP which are independent of γ, h, and k. Here, A(f −
Πhf, g − gh) is the data approximation term given by

A(f − Πhf, g − gh)2 =
∑

K∈Th

k−2
K h2

K‖f − Πhf‖2
0,K + ‖g − gh‖2

1/2,Γ

+
∑

κ∈EB(Th)

γ‖kh−1/2(g − gh)‖2
0,κ.

REMARK 3.2. We emphasize that the assumption γ ≥ max(1, γmin) implies that CEST

and CAPP are independent of γ.

REMARK 3.3. The weight kh−1/2 in the jump estimators (as well as in the jump con-

tribution in the energy norm ‖ · ‖1,h) is slightly suboptimal in k with respect to standard

hp-approximation properties. This is a notorious difficulty for DG methods which is caused

by the fact that the interior penalty stabilization function c in (2.6) has to be chosen subop-

timally in k in order to ensure stability. The same problem shows up in the a priori error

analysis of DG methods; see, e.g., [23, 32] and the references cited therein.

REMARK 3.4. As has been previously pointed out, the proof of Theorem 3.1 is based

on the technique developed in [21] for h-version DG approximations of the Stokes equations,

together with the hp-interpolation results of [29]. To this end, we extend the norm equivalence

result of [21] to hp-version DG finite element spaces. This crucial result will be established

in Section 5 and is the main reason why we restrict our analysis to conforming meshes. While

the extension to irregular meshes with no additional loss in the polynomial approximation

order remains an open problem, the numerical results in Section 6 clearly indicate that the

proposed estimator works equally well on 1-irregularly refined quadrilateral meshes.

3.2. Efficiency. The estimator in Theorem 3.1 cannot be shown to be efficient uniformly

in the polynomial degree. Indeed, as for conforming hp-methods, estimators that are both

reliable and efficient in the polynomial degree are not currently available within the literature;

cf. [30] and the references therein. The main reason for this is that deriving efficiency bounds

involves the use of inverse estimates which are suboptimal in the polynomial degree.

In order to minimize the dependence on the polynomial degree in the efficiency bounds,

the use of weighted versions of the local error indicators ηK for conforming hp-methods was

recently proposed in [30]. Following that approach, we generalize our estimators ηK for the

DG method to a family of weighted estimators ηα;K , with α ∈ [0, 1]; here, η0;K coincides

with ηK and is reliable, whereas the best efficiency bounds are obtained for ηα;K , with α = 1.

As for conforming hp-methods, simultaneous reliability and efficiency cannot be achieved for

any fixed α ∈ [0, 1].

On the reference element K̂ , we define the weight function Φ bK(x) = dist(x, ∂K̂).

For an arbitrary element K ∈ Th, we set ΦK = cKΦ bK ◦ F−1
K , where FK : K̂ → K

is the elemental transformation and cK is a scaling factor chosen such that
∫

K ΦK dx =

meas(K). Similarly, we define on the reference interval Î = (−1, 1), the weight function

ΦbI(x) = 1− x2. For an interior edge κ, the weight Φκ is then defined by Φκ = cκΦbI ◦F−1
κ ,
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where Fκ is the affine transformation that maps (−1, 1) onto κ and cκ is chosen such that∫
κ Φκ ds = length(κ).

As in [30], for each element K ∈ Th and α ∈ [0, 1], we introduce the weighted local

error indicator ηα;K , which is given by

η2
α;K = η2

α;RK
+ η2

α;EK
+ η2

JK
, (3.8)

where the terms ηα;RK
and ηα;EK

are defined, respectively, by

η2
α;RK

= k−2
K h2

K‖(Πhf + ∆uh)Φ
α/2
K ‖2

0,K , (3.9)

η2
α;EK

=
1

2

∑

κ∈∂K\Γ

‖k−1/2
h
1/2[[∇huh]]Φα/2

κ ‖2
0,κ. (3.10)

The third term ηJK
in (3.8) is left unchanged and is given by (3.6).

Clearly, for α = 0, the estimator ηα;K coincides with our original estimator ηK in (3.3),

that is, ηK = η0;K ; Theorem 3.1 then shows that η0;K is reliable.

From the inverse estimates in [30, Lemma 2.4 and Theorem 2.5], it can be seen that

η0;RK
≤ Ckα

Kηα;RK
, η0;EK

≤ Ckα
Kηα;EK

, K ∈ Th,

with a constant C that is independent of the local mesh sizes and the polynomial degrees.

Thereby, we deduce the following result.

COROLLARY 3.5. Let α ∈ [0, 1]. Under the assumptions of Theorem 3.1, we have

‖u−uh‖1,h ≤ C′
EST

(
∑

K∈Th

k2α
K η2

α;RK
+ k2α

K η2
α;EK

+ η2
JK

)1/2

+CAPP A(f−Πhf, g−gh),

with a constant C ′
EST that is independent of α, γ, h, and k. The constant CAPP is the same

as in Theorem 3.1.

In Corollary 3.5, we see that the best reliability bounds are obtained for α = 0, that is,

for the original estimator ηK in Theorem 3.1.

Next, we discuss the efficiency of the error indicator ηα;K .

THEOREM 3.6. Let u be the analytical solution of (1.1)–(1.2) and uh ∈ Vh its DG ap-

proximation obtained by (2.5). Writing ηα;K to denote the weighted error indicators defined

in (3.8), we have the following bounds:

(i) Let α ∈ [0, 1]. For any ε > 0, there is a constant Cε, independent of α, h, k, and

K ∈ Th, such that

η2
α;RK

≤ Cε

[
k

2(1−α)
K ‖∇(u − uh)‖2

0,K + k
max(1+2ε−2α,0)
K k−2

K h2
K‖f − Πhf‖2

0,K

]
.

(ii) Let α ∈ [0, 1]. For any ε > 0, there is a constant Cε, independent of α, h, k, and

K ∈ Th, such that

η2
α;EK

≤ Cεk
max(1+2ε−2α,0)
K

[
kK‖∇h(u−uh)‖2

0,δK
+k2ε

K k−2
K h2

K‖f −Πhf‖2
0,δK

]
,

where δK =
⋃{K ′ ∈ Th : K ′ and K share a common edge }.

(iii) There is a constant C, independent of h, k, and K ∈ Th, such that

η2
JK

≤ C
[ ∑

κ∈∂K

γ
1

2
‖kh−1/2[[u − uh]]‖2

0,κ +
∑

κ∈∂K∩Γ

γ‖kh−1/2(g − gh)‖2
0,κ

]
.
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The proof of Theorem 3.6 follows immediately from the results in [30]; for sake of

completeness, we present the main steps in Section 4.5.

We emphasize that the constants in Theorem 3.6 are independent of the mesh size for

any α ∈ [0, 1]. Hence, the estimators ηα;K , and in particular the estimator ηK = η0;K in

(3.3), are both reliable and efficient in the mesh size.

On the other hand, Corollary 3.5 and Theorem 3.6 indicate that simultaneous reliability

and efficiency, with respect to the polynomial degree, cannot be achieved for any α ∈ [0, 1].
While the best reliability bounds are the ones for the estimator ηK = η0;K in (3.3), the

best efficiency bounds are obtained for ηα;K with α = 1. For the estimators ηK in (3.3)

the efficiency bound is suboptimal in the polynomial degree by one order. Nevertheless,

our numerical results in Section 6 confirm that the reliable estimator η0;K works fairly well

and accurately in combination with hp-refinement. In particular, we show that adaptive hp-

refinement based on ηK = η0;K leads to exponential convergence of the approximations,

indicating that the poor dependence on the polynomial degree of the efficiency bound is not

significant in this situation.

4. Proofs. In Sections 4.1–4.4, we prove the a posteriori error bound stated in The-

orem 3.1; the derivation of this result follows the h-version approach developed in [21].

Finally, in Section 4.5, the proof of Theorem 3.6 is presented.

4.1. Extension of the discontinuous Galerkin forms. We begin by suitably extending

the forms Ah and Fh to the continuous level using the lifting operators introduced in [1]; see

also [32].

To this end, we introduce the auxiliary space

Σh = {q ∈ L2(Ω)2 : q|K ∈ SkK
(K)2, K ∈ Th },

and define the operator L : V (h) → Σh by

∫

Ω

L(v) · q dx =
∑

κ∈E(Th)

∫

κ

[[v]] · {{q}} ds ∀q ∈ Σh.

For a function g̃ ∈ H1/2(Γ), we further define the lifting Ueg ∈ Σh by

∫

Ω

Ueg · q dx =
∑

κ∈EB(Th)

∫

κ

g̃ q · n ds ∀q ∈ Σh.

Since the analytical solution u of (1.1)–(1.2) belongs to H1(Ω), we have that [[u]] = 0

on EI(Th), and hence there holds

L(u) = Ug, (4.1)

where g is the Dirichlet boundary datum in (1.2).

We are now ready to introduce the following auxiliary forms

Ãh(u, v) =
∑

K∈Th

∫

K

∇u · ∇v dx −
∑

K∈Th

∫

K

(
L(u) · ∇v + L(v) · ∇u

)
dx

+
∑

κ∈E(Th)

∫

κ

c [[u]] · [[v]] ds,

F̃h(v) =

∫

Ω

fv dx −
∑

K∈Th

∫

K

Ug · ∇v dx +
∑

κ∈EB(Th)

∫

κ

cgv ds.
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We observe that

Ãh = Ah on Vh × Vh, F̃h = Fh on Vh.

Hence, we may rewrite the discrete problem (2.5) in the following equivalent form: find

uh ∈ Vh such that

Ãh(uh, v) = F̃h(v) ∀v ∈ Vh. (4.2)

Furthermore, taking into account (4.1), the definition of Ãh and F̃h, and the weak formulation

in (1.3), it can be readily seen that the analytical solution u of (1.1)–(1.2) satisfies

Ãh(u, v) = F̃h(v) ∀v ∈ H1
0 (Ω). (4.3)

4.2. Stability. We now discuss some crucial stability properties. We begin by reviewing

the following stability results for L and Ueg; see [32] for details.

LEMMA 4.1. There exists a constant CL > 0 such that

‖L(v)‖2
0,Ω ≤ CLγ−1

∑

κ∈E(Th)

∫

κ

γk2
h
−1|[[v]]|2 ds, v ∈ V (h),

‖Ug1
− Ug2

‖2
0,Ω ≤ CLγ−1

∑

κ∈EB(Th)

∫

κ

γk2
h
−1|g1 − g2|2 ds, g1, g2 ∈ H1/2(Γ).

The constant CL is independent of γ, h, and k, but depends solely on the shape-regularity of

the mesh.

REMARK 4.2. The constant CL in Lemma 4.1 is independent of the constants ρ1, ρ2,

and ρ3 in (2.1), (2.2), and (2.3), respectively.

In the next two lemmas, we recall the basic stability properties of the form Ãh. The proof

of the first lemma follows immediately from Lemma 4.1, the definition of the norm ‖ · ‖1,h

and the Cauchy-Schwarz inequality; cf. [32, Proposition 3.1].

LEMMA 4.3. For any u, v ∈ V (h), we have

|Ãh(u, v)| ≤ CC‖u‖1,h‖v‖1,h,

where CC = max(2, 1 + CLγ−1) and CL is the constant arising in Lemma 4.1.

We remark that CC can be bounded independently of γ provided that γ ≥ 1.

The second lemma is an immediate consequence of the definition of Ãh.

LEMMA 4.4. For any u ∈ H1
0 (Ω), the following identity holds

Ãh(u, u) = ‖u‖2
1,h.

Proof. For u ∈ H1
0 (Ω), we have that [[u]] = 0 over all edges. This implies that L(u) = 0

and Ãh(u, u) =
∫
Ω
|∇u|2 dx = ‖u‖2

1,h, as required.

Next, we state an hp-version decomposition result for discontinuous finite element spa-

ces. To this end, let V c
h = Vh∩H1

0 (Ω). The orthogonal complement in Vh of V c
h with respect

to the norm ‖ · ‖1,h is denoted by V ⊥
h , such that

Vh = V c
h ⊕ V ⊥

h . (4.4)

The following equivalence result holds; it is an extension to hp-version DG spaces of the

corresponding h-version decomposition result derived in [19, Theorem 5.3]; see also [28,

Section 2.1].
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PROPOSITION 4.5. Assume that γ ≥ max(1, γmin). The expression

v 7→




∑

κ∈E(Th)

∫

κ

γk2
h
−1|[[v]]|2 ds




1/2

is a norm on V ⊥
h . This norm is equivalent to the norm ‖ · ‖1,h and there is a constant CP > 0

such that

‖v‖1,h ≤ CP




∑

κ∈E(Th)

∫

κ

γk2
h
−1|[[v]]|2 ds




1/2

≤ CP ‖v‖1,h

for all v ∈ V ⊥
h . The constant CP is independent of γ, h, and k, but depends solely on the

shape-regularity of the mesh and the constants ρ1 and ρ2 in (2.1) and (2.2), respectively.

The proof of Proposition 4.5 will be given in Section 5.

4.3. hp-Interpolation of Scott-Zhang type. Next, we recall the (conforming)hp-Scott-

Zhang interpolation result obtained in [29, Theorem 2.4]. To this end, we introduce the space

H1
B(Ω) = { u ∈ H1(Ω) : u|κ ∈ PkK

(κ), κ ∈ EB(Th), κ ∈ ∂K ∩ Γ, K ∈ Th }.

With this notation, the following result holds.

LEMMA 4.6. There exists a linear operator Ih : H1
B(Ω) → Vh ∩ H1

B(Ω) satisfying

Ihv|κ = v|κ, for all κ ∈ EB(Th), and

∑

K∈Th

(
k2

Kh−2
K ‖v−Ihv‖2

0,K+‖∇(v−Ihv)‖2
0,K+‖k1/2

h
−1/2(v−Ihv)‖2

0,∂K

)
≤ C2

I ‖∇v‖2
0,Ω,

with an interpolation constant CI , which is independent of h and k, and depends solely on

the shape-regularity of the mesh and the constants ρ1, ρ2, and ρ3 in (2.1), (2.2), and (2.3),

respectively.

Moreover, for the a posteriori error analysis in Section 4.4, we will need the following

auxiliary result.

PROPOSITION 4.7. Let v ∈ H1
0 (Ω) and vh = Ihv ∈ V c

h its Scott-Zhang interpolant

from Lemma 4.6. Moreover, let uh be the DG approximation defined by (2.5). Then,

∣∣∣F̃h(v − vh) − Ãh(uh, v − vh)
∣∣∣ ≤ CA

( ∑

K∈Th

η2
K + A(f − Πhf, g − gh)2

)1/2

‖∇v‖0,Ω.

Here, CA =
√

2CI max(1, CLγ−1)1/2, with CI and CL being the constants from Lemma 4.6

and Lemma 4.1, respectively.

Again, we remark that, for γ ≥ 1, the constant CA in Proposition 4.7 can be bounded

independently of γ.

Proof. Let zgh
∈ H1

B(Ω) such that zgh
= gh on Γ. It can then be readily seen that

L(zgh
) = Ugh

in Σh. Furthermore, we set ξ = v−vh ∈ H1
0 (Ω) and T = F̃h(ξ)−Ãh(uh, ξ).

Using the conformity of ξ, integration by parts and the definition of the lifting operator L, we
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obtain

T =
∑

K∈Th

(∫

K

(f + ∆uh)ξdx −
∫

∂K

∇huh · (ξnK)ds

)

+
∑

K∈Th

∫

K

L(uh) · ∇ξ dx −
∑

K∈Th

∫

K

Ug · ∇ξ dx

=
∑

K∈Th

∫

K

(Πhf + ∆uh)ξ dx −
∑

κ∈EI(Th)

∫

κ

[[∇huh]]ξ ds

+
∑

K∈Th

∫

K

L(uh − zgh
) · ∇ξ dx −

∑

K∈Th

∫

K

(Ug − Ugh
) · ∇ξ dx

+
∑

K∈Th

∫

K

(f − Πhf)ξ dx.

Here, nK denotes the unit outward normal vector on the boundary ∂K of an element K ∈ Th.

Employing the first bound from Lemma 4.1, combined with the fact that [[zgh
]] = 0 on interior

edges and [[zgh
]] = ghn on boundary edges, we deduce that

‖L(uh − zgh
)‖2

0,Ω ≤ CLγ−1
∑

K∈Th

η2
JK

.

In addition, using the second estimate from Lemma 4.1 with g1 = g and g2 = gh, results in

‖Ug − Ugh
)‖2

0,Ω ≤ CLγ−1A(0, g − gh)2. (4.5)

Thus, the Cauchy-Schwarz inequality yields

|T | ≤
√

2

(
∑

K∈Th

η2
RK

+ η2
EK

+ CLγ−1η2
JK

+ CLγ−1A(0, g − gh)2 + A(f − Πhf, 0)2

)1/2

×
(
∑

K∈Th

(
k2

Kh−2
K ‖ξ‖2

0,K + ‖∇ξ‖2
0,K

)
+

∑

κ∈EI(Th)

‖k1/2
h
−1/2ξ‖2

0,κ

)1/2

.

Noting that

∑

κ∈EI(Th)

‖k1/2
h
−1/2ξ‖2

0,κ ≤ 1

2

∑

K∈Th

‖k1/2
h
−1/2ξ‖2

0,∂K ,

and exploiting the approximation properties in Lemma 4.6 leads to

|T | ≤
√

2CI max(1, CLγ−1)1/2

(
∑

K∈Th

η2
K + A(f − Πhf, g − gh)2

)1/2

‖∇v‖0,Ω.

This completes the proof.

4.4. The a posteriori bound in Theorem 3.1. In this section we complete the proof of

Theorem 3.1.
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To this end, let gh be the approximation of the boundary datum g. We denote by ugh
the

solution of the following problem

−∆ugh
= f in Ω, (4.6)

ugh
= gh on Γ. (4.7)

Since solutions of the Laplace equation depend continuously on their data, we readily obtain

that

‖∇(u − ugh
)‖0,Ω ≤ CS‖g − gh‖1/2,Γ, (4.8)

for a stability constant CS > 0.

Next, using the decomposition (4.4) of the space Vh into Vh = V c
h ⊕ V ⊥

h , we write

uh − Ihugh
= uc

h + u⊥
h ,

with Ih denoting the Scott-Zhang interpolation operator from Lemma 4.6. By the triangle

inequality, the error e = u − uh of the hp-DG approximation can then be estimated as

follows:

‖u − uh‖1,h ≤ ‖u − ugh
‖1,h + ‖ugh

− Ihugh
− (uh − Ihugh

)‖1,h

≤ ‖u − ugh
‖1,h + ‖ugh

− Ihugh
− uc

h‖1,h + ‖u⊥
h ‖1,h. (4.9)

Employing (4.8), the first term on the right-hand side of (4.9) may be bounded by the error in

the approximation of g; thereby,

‖u − ugh
‖2
1,h = ‖∇(u − ugh

)‖2
0,Ω +

∑

κ∈EB(Th)

∫

κ

γk2
h
−1|g − gh|2 ds

≤ C2
S‖g − gh‖2

1/2,Γ +
∑

κ∈EB(Th)

∫

κ

γk2
h
−1|g − gh|2 ds

≤ (C2
S + 1)A(0, g − gh)2. (4.10)

Using the equivalence result in Proposition 4.5 and noting that, in view of the conformity

properties of Ih, we have that [[u⊥
h ]] = [[uh]] on interior edges and [[u⊥

h ]] = (uh − gh)n on

boundary edges, the third term in (4.9) can be bounded as follows

‖u⊥
h ‖1,h ≤ CP




∑

κ∈E(Th)

∫

κ

γk2
h
−1|[[u⊥

h ]]|2 ds




1/2

≤ CP

(
∑

K∈Th

η2
JK

)1/2

. (4.11)

Hence, we obtain

‖u − uh‖1,h ≤ ‖ugh
− Ihugh

− uc
h‖1,h + (C2

S + 1)1/2A(0, g − gh) + CP

(
∑

K∈Th

η2
K

)1/2

.

To bound the term ‖ugh
− Ihugh

− uc
h‖1,h, we first note that ugh

− Ihugh
− uc

h ∈ H1
0 (Ω).

We then set

v =
ugh

− Ihugh
− uc

h

‖ugh
− Ihugh

− uc
h‖1,h

∈ H1
0 (Ω).
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With this definition, employing the coercivity result from Lemma 4.4, results in

‖ugh
− Ihugh

− uc
h‖1,h = Ãh(ugh

− Ihugh
− uc

h, v), ‖v‖1,h = ‖∇v‖0,Ω = 1. (4.12)

We note that

Ãh(ugh
− Ihugh

− uc
h, v) = Ãh(ugh

− uh, v) + Ãh(u⊥
h , v)

= Ãh(u − uh, v) + Ãh(ugh
− u, v) + Ãh(u⊥

h , v)

= F̃h(v) − Ãh(uh, v) + Ãh(ugh
− u, v) + Ãh(u⊥

h , v);

(4.13)

here, we have used the weak formulation in (4.3). Furthermore, from (4.2), we recall that

Ãh(uh, vh) − F̃h(vh) = 0 ∀vh ∈ Vh.

Combining this with the estimates from (4.12) and (4.13), we deduce that

‖ugh
− Ihugh

− uc
h‖1,h = F̃h(v − vh) − Ãh(uh, v − vh) + Ãh(ugh

− u, v) + Ãh(u⊥
h , v),

for any vh ∈ Vh. Choosing vh = Ihv ∈ V c
h to be the Scott-Zhang interpolant from

Lemma 4.6 yields

‖ugh
− Ihugh

− uc
h‖1,h

≤ |F̃h(v − vh) − Ãh(uh, v − vh)| + |Ãh(ugh
− u, v)| + |Ãh(u⊥

h , v)|

≤ CA

(
∑

K∈Th

η2
K + A(f − Πhf, g − gh)2

)1/2

‖v‖1,h

+ CC‖u − ugh
‖1,h‖v‖1,h + CC‖u⊥

h ‖1,h‖v‖1,h

≤ CA

(
∑

K∈Th

η2
K

)1/2

‖v‖1,h + CAA(f − Πhf, g − gh)‖v‖1,h

+ CC(C2
S + 1)1/2A(0, g − gh)‖v‖1,h+ CCCP

(
∑

K∈Th

η2
JK

)1/2

‖v‖1,h.

Here, we have applied the auxiliary result from Proposition 4.7, the continuity of Ãh from

Lemma 4.3, and the bounds in (4.10) and (4.11).

Using the fact that ‖v‖1,h = 1, we conclude that

‖ugh
− Ihugh

− uc
h‖1,h ≤ (CA + CCCP )

(
∑

K∈Th

η2
K

)1/2

+ (CA + CC(C2
S + 1)1/2)A(f − Πhf, g − gh).

Combining the above estimates gives

‖u − uh‖1,h ≤ (CA + (CC + 1)CP )

(
∑

K∈Th

η2
K

)1/2

+ (CA + (CC + 1)(C2
S + 1)1/2)A(f − Πhf, g − gh),

which completes the proof of Theorem 3.1.

Note that, for γ ≥ max(1, γmin), all the constants can be bounded independently of γ.
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4.5. Proof of Theorem 3.6. We present the proofs of the three assertions in Theorem 3.6

separately. The proofs of (i) and (ii) are analogous to the corresponding bounds derived in [30,

Lemma 3.4 and Lemma 3.5]; however, for sake of completeness, we present the main steps.

Assertion (i): We first consider the case α > 1/2. To this end, we set vK = (Πhf +
∆uh)Φα

K . Then, using that −∆u = f in L2(K), we obtain by elementary manipulations

‖vKΦ
−α/2
K ‖2

0,K =

∫

K

(Πhf + ∆uh)vK dx

=

∫

K

(−∆u + ∆uh)vK dx +

∫

K

(Πhf − f)vK dx

=

∫

K

∇(u − uh) · ∇vK dx +

∫

K

(Πhf − f)vK dx

≤ ‖∇(u − uh)‖0,K‖∇vK‖0,K + ‖(f − Πhf)Φ
α/2
K ‖0,K‖vKΦ

−α/2
K ‖0,K .

From the proof of [30, Lemma 3.4], we have

‖∇vK‖2
0,K ≤ Ck

2(1−α)
K k2

Kh−2
K ‖vKΦ

−α/2
K ‖2

0,K .

Since ‖vKΦ
−α/2
K ‖0,K = kKh−1

K ηα;RK
, we readily obtain that

ηα;RK
≤ C

[
k1−α

K ‖∇(u − uh)‖0,K + k−1
K hK‖f − Πhf‖0,K

]
. (4.14)

This shows the assertion for α > 1
2 . For α ∈ [0, 1/2], we first use that

ηα;RK
≤ Cεk

β−α
K ηβ;RK

, for β = 1/2 + ε with ε > 0, and apply the bound in (4.14) to ηβ;RK
.

Assertion (ii): We again first consider the case α > 1/2 and let κ be an edge shared by

two elements K1 and K2. Set δκ := (K1 ∪ K2)
◦; Lemma 2.6 of [30] ensures the existence

of a function wκ ∈ H1
0 (δκ) with wκ|κ = [[∇uh]]Φα

κ , wκ|∂δκ
= 0 and

‖∇wκ‖2
0,δκ

≤ Ch−1
K

(
σk

2(2−α)
K + σ−1

)
‖[[∇uh]]Φα/2

κ ‖2
0,κ,

‖wκ‖2
0,δκ

≤ ChKσ‖[[∇uh]]Φα/2
κ ‖2

0,κ,
(4.15)

for any σ ∈ (0, 1]. Using that [[∇u]] = 0 on interior edges and that −∆u = f on each element

K , it can be readily seen that

‖[[∇uh]]Φα/2
κ ‖2

0,κ =

∫

κ

[[∇uh]]wκ ds =

∫

κ

[[∇(uh − u)]]wκ ds

=

∫

∂K1

∇(uh − u) · nK1
wκ ds +

∫

∂K2

∇(uh − u) · nK2
wκ ds

=

∫

δκ

∇h(uh − u) · ∇wκ dx +

∫

δκ

(f + ∆uh)wκ dx

≤ ‖∇h(u − uh)‖0,δκ
‖∇wκ‖0,δκ

+
(
‖Πhf + ∆uh‖0,δκ

+ ‖f − Πhf‖0,δκ

)
‖wκ‖0,δκ

.

Here, nK1
and nK2

denote the unit outward normal vectors on the boundaries ∂K1 and ∂K2,

respectively. By summing up this estimate over all edges of a given element K , invoking the
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bounds for ‖∇wκ‖0,δκ
and ‖wκ‖0,δκ

from (4.15), and using assertion (i), we obtain

η2
α;EK

≤ C
(
k−1

K (σk
2(2−α)
K + σ−1) + k3

Kσ
)
‖∇h(u − uh)‖2

0,δK

+ Cσk
2(1+ε)
K k−2

K h2
K‖f − Πhf‖2

0,δK
.

Setting σ = k−2
K proves the assertion for α > 1/2. For α ∈ [0, 1/2], we have that ηα;EK

≤
Ckβ−α

K ηβ;EK
and use the above argument for ηβ;EK

with β = 1/2+ε to obtain the assertion.

Assertion (iii): This is a simple consequence of the fact that the jump of u vanishes over

interior edges and the triangle inequality which gives, for any boundary edge κ ∈ ∂K ∩ Γ,

‖kh−1/2(uh − gh)‖2
0,κ ≤ 2‖kh−1/2(uh − u)‖2

0,κ + 2‖kh−1/2(g − gh)‖2
0,κ.

This completes the proof of Theorem 3.6.

5. Norm equivalence. In this section, we prove the norm equivalence property stated

in Proposition 4.5. This result is an hp-extension of the approximation result in [28, Sec-

tion 2.1]; see also [19, Theorem 5.3] and [21, Proposition 4.1]

5.1. Preliminaries. First, we introduce some additional notation and definitions.

Polynomial spaces. For an interval I = (a, b), we write Pk(I) to denote the space of all

polynomials of degree less than or equal to k. Furthermore, we set Ik
00(I) = { q ∈ Pk(I) :

q(a) = q(b) = 0 }.
Meshes. A node P of a finite element mesh Th is the vertex of an element K ∈ Th.

P is called an interior node if P 6∈ Γ; similarly, it is a boundary node if P ∈ Γ. We

denote by NI(Th), NB(Th) the sets of interior and boundary nodes, respectively, and set

N (Th) = NI(Th) ∪ NB(Th). For an element K ∈ Th, we write E(K) and N (K) to denote

the sets of its edges and nodes, respectively. Moreover, for an edge κ ∈ E(Th), let N (κ) be

the set of the nodes that belong to κ, and Th(κ) the set of elements in Th that share the edge κ.

Finally, for a node P ∈ N (Th), we define E(P ) and Th(P ) as the sets of edges and elements

that share P , respectively.

5.2. Piecewise linear approximation. We begin by considering the conforming ap-

proximation of piecewise linear DG functions. To this end, we define the linear discontinuous

Galerkin finite element space Ṽh by

Ṽh = { v ∈ L2(Ω) : v|K ∈ S1(K), K ∈ Th },

as well as the conforming subspace Ṽ c
h ⊂ Ṽh by Ṽ c

h = Ṽh ∩ H1
0 (Ω). Furthermore, we

introduce an operator Ã : Ṽh → Ṽ c
h , where, for v ∈ Ṽh, Ãv ∈ Ṽ c

h is given by prescribing its

nodal values as

Ãv(P ) =





|Th(P )|−1
∑

K∈Th(P )

v|K(P ) if P ∈ NI(Th),

0 if P ∈ NB(Th).

Here, |Th(P )| denotes the number of elements in the set Th(P ).
From [28, Theorem 2.2], the following approximation property holds.

LEMMA 5.1. The approximant Ã : Ṽh → Ṽ c
h satisfies

‖∇h(v − Ãv)‖2
0,Ω ≤ C

∑

κ∈E(Th)

‖h−1/2[[v]]‖2
0,κ ∀v ∈ Ṽh,

with a constant C > 0 that is independent of the mesh size.
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5.3. Approximation over edges. Next, we consider the conforming approximation of

higher-order DG functions over edges. To this end, we make use of the following extension

result:

PROPOSITION 5.2. Let K̂ be the reference triangle or the reference square, and k ∈ N.

Furthermore, consider an edge κ̂ ∈ E(K̂). Then, there is a linear extension operator Êbκ
k :

Ik
00(κ̂) → Sk(K̂) such that for any q̂ ∈ Ik

00(κ̂), there holds Êbκ
k (q̂) = q̂ on κ̂, Êbκ

k (q̂) = 0

on ∂K̂ \ κ̂, and ‖Êbκ
k (q̂)‖1, bK ≤ C‖q̂‖1/2,00,κ. Here, C > 0 is a constant independent of the

polynomial degree k.

Proof. See [3, Theorem 7.4 and Theorem 7.5], [2, Theorem 7.4 and Theorem 7.5], or [29,

Theorem B.4].

For an arbitrary element K ∈ Th and an edge κ ∈ E(K), let FK be the elemental

mapping that maps K̂ onto K , and κ̂ the edge of K̂ such that FK(κ̂) = κ. The extension

operator Eκ
k,K : Ik

00(κ) → Sk(K) is then defined by

Eκ
k,K(q) =

[
Êbκ

k (q ◦ FK)] ◦ F−1
K , q ∈ Ik

00(κ). (5.1)

We are now ready to prove the following technical result.

LEMMA 5.3. Let the two elements K1, K2 ∈ Th share the interior edge κ ∈ EI(Th). Set

δκ := (K1 ∪ K2)
◦ and let v1 ∈ Pk1

(κ) and v2 ∈ Pk2
(κ) with k1, k2 ≥ 1. By vn

1 ∈ P1(κ)
and vn

2 ∈ P1(κ) we denote the nodal interpolants of v1 and v2, respectively. Then there is

a conforming approximation W c ∈ H1
0 (δκ) such that W c

1 := W c|K1
∈ Sk1

(K1), W c
2 :=

W c|K2
∈ Sk2

(K2), and

∑

i=1,2

∣∣Eκ
ki,Ki

(vi − vn
i ) − W c

i

∣∣2
1,Ki

≤ C max(k1, k2)
2‖h−1/2(v1 − v2)‖2

0,κ

+ C‖h−1/2(vn
1 − vn

2 )‖2
0,κ,

with a constant C > 0 independent of the polynomial degrees and the element sizes.

Similarly, let K be the element that contains the boundary edge κ ∈ EB(Th). Then, for

v ∈ Pk(κ) with k ≥ 1 and its nodal interpolant vn ∈ P1(κ), there is an approximation

W c ∈ Sk(K) such that W c = 0 on ∂K \ κ and

∣∣Eκ
k,K(v − vn) − W c

∣∣2
1,K

≤ Ck2‖h−1/2v‖2
0,κ + C‖h−1/2vn‖2

0,κ.

Again, the constant C > 0 is independent of the polynomial degree and the element size.

Proof. Let κ be an interior edge shared by K1 and K2. It is sufficient to consider the

case where K1 and K2 are of reference size; the general case follows by a simple scaling

argument. Without loss of generality, we may further assume that k1 ≥ k2.

In order to construct W c in this case, we first note that v1 − vn
1 ∈ Ik1

00 (κ) and v2 − vn
2 ∈

Ik2

00 (κ). Furthermore, on κ, we introduce

ϕ = 1/2
(
Π00

κ,k2
(v1 − vn

1 ) + (v2 − vn
2 )
)
∈ Ik2

00 (κ),

with Π00
κ,k2

denoting the H
1/2
00 (κ)-projection onto Ik2

00 (κ). We then define W c by

W c =

{
W c

1 := Eκ
k1,K1

(ϕ) on K1,

W c
2 := Eκ

k2,K2
(ϕ) on K2.

By construction and Proposition 5.2, the function W c vanishes on ∂δκ . Moreover, W c
1 ∈

Sk1
(K1), W c

2 ∈ Sk2
(K2) and W c

1 |κ = ϕ = W c
2 |κ on κ. Therefore, W c ∈ H1

0 (δκ). From
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the linearity of Eκ
k1,K1

and the stability in Proposition 5.2, we obtain

∣∣Eκ
k1,K1

(v1 − vn
1 ) − W c

1

∣∣
1,K1

≤ C‖(v1 − vn
1 ) − 1/2 Π00

κ,k2
(v1 − vn

1 ) − 1/2 (v2 − vn
2 )‖1/2,00,κ

≤ C‖1/2(I − Π00
κ,k2

)(v1 − vn
1 ) + 1/2 ((v1 − vn

1 ) − (v2 − vn
2 ))‖1/2,00,κ

≤ C‖(I − Π00
κ,k2

)(v1 − vn
1 )‖1/2,00,κ + C‖(v1 − v2) − (vn

1 − vn
2 )‖1/2,00,κ.

Since Π00
κ,k2

(v2−vn
2 ) = v2−vn

2 and I−Π00
κ,k2

is stable in H
1/2
00 (κ), we can bound the second

term in the above inequality as follows:

‖(I − Π00
κ,k2

)(v1 − vn
1 )‖1/2,00,κ = ‖(I − Π00

κ,k2
)((v1 − vn

1 ) − (v2 − vn
2 ))‖1/2,00,κ

≤ ‖(v1 − v2) − (vn
1 − vn

2 )‖1/2,00,κ.

We conclude that

∣∣Eκ
k1,K1

(v1 − vn
1 ) − W c

1

∣∣
1,K1

≤ C(‖v1 − v2‖1/2,00,κ + ‖vn
1 − vn

2‖1/2,00,κ). (5.2)

A similar argument shows that

∣∣Eκ
k2,K2

(v2 − vn
2 ) − W c

2

∣∣
1,K2

≤ C(‖v1 − v2‖1/2,00,κ + ‖vn
1 − vn

2‖1/2,00,κ). (5.3)

From the inverse inequalities in [37, Corollary 3.94] and interpolation, we readily obtain that

‖v1 − v2‖1/2,00,κ ≤ Ck1‖v1 − v2‖0,κ.

Furthermore, a simple h-version norm equivalence property on P1(κ) shows that

‖vn
1 − vn

2‖1/2,00,κ ≤ C‖vn
1 − vn

2‖0,κ.

This completes the proof for an interior edge; for a boundary edge, the result is obtained

analogously.

5.4. Approximation of DG functions. We consider the DG space defined in (2.4) and

introduce the conforming subspace V c
h given by

V c
h = Vh ∩ H1

0 (Ω).

The following approximation result holds.

PROPOSITION 5.4. There is an approximant A : Vh → V c
h that satisfies

‖∇h(v −Av)‖2
0,Ω ≤ C

∑

κ∈E(Th)

∫

κ

k
2
h
−1|[[v]]|2 ds, v ∈ Vh,

with a constant C > 0 that is independent of h and k.

Proof. Let v ∈ Vh. For any K ∈ Th, set vK := v|K ∈ SkK
(K). We now proceed in the

following steps.

Decomposition of v: We begin by decomposing v into a nodal part, an edge part, and

an interior part. To this end, let vn
K ∈ S1(K) be the nodal interpolant of vK , K ∈ Th.

Furthermore, for K ∈ Th and an edge κ of E(K), we denote by V κ
K = Eκ

kK ,K(vK − vn
K) the
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lifting of vK − vn
K that was constructed in (5.1). By construction, (vK − vn

K)−∑κ∈E(K) V κ
K

vanishes on ∂K and hence, we can define the interior part vi
K of vK by

vi
K = (vK − vn

K) −
∑

κ∈E(K)

V κ
K , K ∈ Th.

Thus, we may decompose v into

v = vn + ve + vi.

Here, vn is the piecewise linear function in Ṽh given by vn|K = vn
K for any K ∈ Th.

Moreover, ve is the function given by

ve|K =
∑

κ∈E(K)

V κ
K , K ∈ Th.

Finally, vi is given by vi|K = vi
K , K ∈ Th; by construction, vi ∈ V c

h .

Construction of the approximant: Next, we define the approximant Av. To this end, let

wn = Ãvn ∈ Ṽ c
h ⊂ V c

h be the conforming piecewise linear approximation of vn constructed

in Lemma 5.1. Thereby,

‖∇h(vn − wn)‖2
0,Ω ≤ C

∑

κ∈E(Th)

‖h−1/2[[vn]]‖2
0,κ. (5.4)

In addition, for each edge κ ∈ EI(Th), shared by the two elements K1 and K2, we let W κ

be the conforming approximation in H1
0 (δκ) constructed in Lemma 5.3. This satisfies the

following properties: W κ|K1
∈ SkK1

(K1), W κ|K2
∈ SkK2

(K2), and

|V κ
K1

− W κ|21,K1
+ |V κ

K2
− W κ|21,K2

≤ C‖kh−1/2[[v]]‖2
0,κ + C‖h−1/2[[vn]]‖2

0,κ. (5.5)

Similarly, for a boundary edge κ ∈ EB(Th), contained in the element K , we denote by

Wκ ∈ Sk(K) the conforming approximation in Lemma 5.3; this satisfies W κ = 0 on ∂K \κ
and

|V κ
K − W κ|21,K ≤ C‖kh−1/2[[v]]‖2

0,κ + C‖h−1/2[[vn]]‖2
0,κ. (5.6)

We now set

we =
∑

κ∈E(Th)

Wκ.

By construction, we ∈ V c
h and we conclude from the above estimates in (5.5) and (5.6) that

‖∇h(ve − we)‖2
0,Ω ≤ C

∑

κ∈E(Th)

‖kh−1/2[[v]]‖2
0,κ + C

∑

κ∈E(Th)

‖h−1/2[[vn]]‖2
0,κ. (5.7)

Finally, we set wi = vi ∈ V c
h and define

Av = wn + we + wi.

Then, v−Av = vn−wn +ve−we. The triangle inequality and the bounds in (5.4) and (5.7)

give

‖∇h(v −Av)‖2
0,Ω ≤ C

∑

κ∈E(Th)

‖kh−1/2[[v]]‖2
0,κ + C

∑

κ∈E(Th)

‖h−1/2[[vn]]‖2
0,κ. (5.8)
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Bound of the nodal jumps: The desired estimate follows now from (5.8), provided that

‖h−1/2[[vn]]‖2
0,κ ≤ C‖kh−1/2[[v]]‖2

0,κ, (5.9)

for any edge κ ∈ E(Th). To show this, we note that

‖h−1/2[[vn]]‖2
0,κ ≤ C

∑

P∈N (κ)

[[vn]](P )2 ≤ C
∑

P∈N (κ)

[[v]](P )2.

Here, we have used the nodal exactness of vn, that is, v(P ) = vn(P ) for all P ∈ N (κ).
Hence, from the inverse estimate in [37, Theorem 3.92], we obtain

‖h−1/2[[vn]]‖2
0,κ ≤ C‖[[v]]‖2

L∞(κ) ≤ C‖kh−1/2[[v]]‖2
0,κ.

This shows (5.9) and completes the proof.

5.5. Proof of Proposition 4.5. The norm equivalence result, Proposition 4.5, follows

now directly from Proposition 5.4 and from the fact that V ⊥
h is orthogonal to V c

h with respect

to the norm ‖ · ‖1,h.

6. Numerical Experiments. In this section we present a series of numerical examples

to illustrate the practical performance of the proposed a posteriori error estimator derived

in Theorem 3.1 within an automatic hp-adaptive refinement procedure which is based on 1-

irregular quadrilateral elements. The hp-adaptive meshes are constructed by first marking the

elements for refinement/derefinement according to the size of the local error indicators ηK ;

this is done by employing the fixed fraction strategy, with refinement and derefinement frac-

tions set to 25% and 10%, respectively. Once an element K ∈ Th has been flagged for

refinement or derefinement, a decision must be made whether the local mesh size hK or

the local degree kK of the approximating polynomial should be adjusted accordingly. The

choice to perform either h-refinement/derefinement or p-refinement/derefinement is based on

estimating the local smoothness of the (unknown) analytical solution. To this end, we em-

ploy the hp-adaptive strategy developed in [26], where the local regularity of the analytical

solution is estimated from truncated local Legendre expansions of the computed numerical

solution; see, also, [24].

Here, the emphasis will be to demonstrate that the proposed a posteriori error indicator

converges to zero at the same asymptotic rate as the energy norm of the actual error on a

sequence of non-uniform hp-adaptively refined meshes. For simplicity, as in [6], we set the

constant CEST arising in Theorem 3.1 equal to one and ensure that the corresponding effec-

tivity indices are roughly constant on all of the meshes employed; here, the effectivity index

is defined as the ratio of the a posteriori error bound and the energy norm of the actual error.

In general, to ensure the reliability of the error estimator, CEST must be determined numeri-

cally for the underlying problem at hand, cf. [14], for example. In all of our experiments, the

data approximation terms in the a posteriori bound (3.7) from Theorem 3.1 will be neglected.

6.1. Example 1. In this example, we let Ω be the unit square (0, 1)2 in R
2; further, we

set g ≡ 0 on Γ and select f so that the analytical solution to (1.1)–(1.2) is given by

u(x, y) = x(1 − x)y(1 − y)(1 − 2y)e−σ(2x−1)2 ,

where σ is a positive constant, cf. [30]. Throughout this section we set σ = 25; we note that

a value of σ = 2.5 was employed in [30].

In Figure 6.1(a) we present a comparison of the actual and estimated energy norm of the

error versus the third root of the number of degrees of freedom in the finite element space
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FIG. 6.1. Example 1. (a) Comparison of the actual and estimated energy norm of the error with respect to the

(third root of the) number of degrees of freedom; (b) Effectivity indices.

Vh on a linear-log scale, for the sequence of meshes generated by our hp-adaptive algorithm.

Here, numerical experiments are presented for different values of the parameter γ arising in

the definition of the discontinuity stabilization function c, cf. (2.6). We remark that the third

root of the number of degrees of freedom is chosen on the basis of the a priori error analysis

carried out in [39]; cf., also, [36]. For each value of γ, we observe that the error bound

over-estimates the true error by a (reasonably) consistent factor; indeed, from Figure 6.1(b),

we see that the computed effectivity indices oscillate around a value of approximately 6.

Moreover, we observe that both the actual error in the underlying computed solution and the

corresponding a posteriori error bound are relativity insensitive to changes in γ as predicted

in Theorem 3.1. Finally, from Figure 6.1(a) we observe that the convergence lines using

hp-refinement are (roughly) straight on a linear-log scale, which indicates that exponential

convergence is attained for this smooth problem.

In Figure 6.2 we show the mesh generated using the proposed a posteriori error indicator

with γ = 10 after 9 and 16 hp-adaptive refinement steps. Here, we observe that some h-

refinement of the mesh has been performed in the vicinity of the base of the exponential

‘hills’ situated in the left- and the right-hand sides of the domain, where the gradient/curvature

of the analytical solution is relativity large. Once the h-mesh has adequately captured the

structure of the solution, the hp-adaptive algorithm increased the degree of the approximating

polynomial within the interior part of the domain containing these hills.

6.2. Example 2. In this section we let Ω be the L-shaped domain (−1, 1)2 \ [0, 1) ×
(−1, 0], and select f = 0. Then, writing (r, ϕ) to denote the system of polar coordinates, we

impose an appropriate inhomogeneous boundary condition for u so that

u = r2/3 sin(2ϕ/3);

cf. [39]. We note that u is analytic in Ω \ {0}, but ∇u is singular at the origin; indeed, here

u 6∈ H2(Ω). This example reflects the typical (singular) behavior that solutions of elliptic

boundary value problems exhibit in the vicinity of reentrant corners in the computational

domain.

Figure 6.3(a) shows the history of the actual and estimated energy norm of the error on

each of the meshes generated by our hp-adaptive algorithm for γ = 10, 100, 1000. As in the

previous example, we observe that, for each γ, the a posteriori bound over-estimates the true

error by a consistent factor; for γ = 10, the effectivity index tends to a value of just under
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FIG. 6.2. Example 1. hp-mesh after: (a) 9 adaptive refi nements, with 426 elements and 5392 degrees of

freedom; (b) 16 adaptive refi nements, with 2088 elements and 34426 degrees of freedom.

3, while for γ = 100, 1000, this quantity tends to a value just below 4, cf. Figure 6.3(b).

Additionally, from Figure 6.3(a) we observe exponential convergence of the energy norm of

the error using hp-refinement; indeed, for each γ, on a linear-log scale, the convergence lines

are on average straight.

In Figure 6.4 we show the mesh generated using the local error indicators ηK after 13 hp-

adaptive refinement steps with γ = 10. Here, we see that the h-mesh has been largely refined

in the vicinity of the re-entrant corner located at the origin; from the zoom, we see that this

refinement occurs in the diagonal direction x = y. In the other diagonal direction, x = −y,

p-refinement is employed as the solution is deemed to be smooth here. Additionally, we see
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FIG. 6.3. Example 2. (a) Comparison of the actual and estimated energy norm of the error with respect to the

(third root of the) number of degrees of freedom; (b) Effectivity indices.
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FIG. 6.4. Example 2. hp-mesh after 13 adaptive refinements, with 138 elements and 5335 degrees of freedom.

that the polynomial degrees have been increased away from the origin, since the underlying

analytical solution is smooth in this region.

7. Concluding Remarks. In this paper, we have presented the first hp-version en-

ergy norm a posteriori error analysis for discontinuous Galerkin discretizations of elliptic

boundary-value problems. The analysis is based on employing a non-consistent reformu-

lation of the DG scheme, together with a new hp-version norm equivalence result for the

underlying discontinuous finite element space. Although our analysis is restricted to con-

forming meshes consisting of triangles and quadrilaterals, the numerical tests presented in

this article clearly demonstrate that, in practice, the proposed a posteriori estimator works

equally well on 1-irregularly refined meshes with hanging nodes. The derivation of a poste-
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riori error bounds on such nonconforming meshes with no additional loss of powers of the

approximation degree remains an open problem.

We emphasize that our analysis can be extended with only minor modifications to more

general second-order diffusion-dominated problems. Similarly, the proposed estimator can be

readily generalized to problems with Neumann and/or mixed boundary conditions. Further-

more, although here we have used the interior penalty approach to discretize the boundary-

value problem (1.1)–(1.2), our results remain valid for any other DG formulation whose un-

derlying primal form Ah is both coercive and continuous, such as, e.g., the local discontin-

uous Galerkin method; for details, we refer the reader to [1]. Finally, we mention that the

extension of our hp-version a posteriori error analysis to the Stokes equations of incompress-

ible fluid flow can be found in the recent conference paper [22].

Future work will be devoted to extending our approach to convection-diffusion problems,

where the convection dominates, as well as to problems in three space dimensions.
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