
Energy of the quasi-free electron in argon, krypton and xenon

Xianbo Shi a,b, Luxi Li a,b, C. M. Evans a,b, G. L. Findley c

aDepartment of Chemistry and Biochemistry, Queens College – CUNY, 65-30 Kissena Blvd, Flushing, NY 11367
bDepartment of Chemistry, The Graduate Center – CUNY, New York, NY 10016
cDepartment of Chemistry, University of Louisiana at Monroe, Monroe, LA 71209

Abstract

Recent field ionization measurements of various high-n molecular Rydberg states doped into argon, krypton and xenon perturbers
are presented as a function of perturber number density up to the density of the triple point liquid. These data are modeled to
within ±0.3% of experiment on both critical and noncritical isotherms using a new theoretical treatment that includes: (i) the
polarization of the perturber by the dopant cation, (ii) the polarization of the perturber by the quasi-free electron that arises from
field ionization of the dopant, and (iii) the kinetic energy of the quasi-free electron. The polarization terms are determined by a
standard statistical mechanical treatment. However, the kinetic energy of the quasi-free electron is calculated within a new local
Wigner-Seitz model that contains only one adjustable parameter. This treatment provides an accurate model of the energy of the
bottom of the conduction band (V0) in argon, krypton and xenon from the dilute gas up to the density of the triple point liquid,
on both critical and noncritical isotherms.
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The use of supercritical fluids in environmental remedia-
tion, in the treatment of high-level hazardous wastes and in
tailoring chemical reactions for specific product yields ne-
cessitates a better understanding of density and tempera-
ture effects on the properties of neutral and charged species
solvated in these fluids. We have recently studied the per-
turber induced shift ∆D(ρP) of dopant ionization energy –
and the quasi-free electron energy V0(ρP) – in the rare gases
Ar [1–3], Kr [1,4] and Xe [5] at noncritical temperatures
and on an isotherm near the critical isotherm (i.e., Tr ≡
T/Tc ≤ 1.01). These data show a clear deviation near the
critical density along the critical isotherm of the perturber.
Accurate treatment of V0(ρP) led to the development of a
new local Wigner-Seitz model [1–5], which requires only
a single adjustable parameter to give a fit that is within
±0.3% of experiment. This paper presents a short review
of these results.

Experimental information on the dopants and perturbers
used in these studies and the procedures used to ensure
homogeneous mixing of samples in the gas handling sys-
tem have been described previously [1–6]. The details of
the experimental sample cell, along with procedures for the
determination of a dopant molecule field ionization spec-
trum from two photoionization spectra measured at differ-
ent electric fields, have also been published previously [1–5]

and will not be repeated here.
The quasi-free electron energy V0(ρP) in a dense perturb-

ing gas can be extracted from ∆D(ρP), which is determined
from field ionization studies, using [1–5]

V0(ρP) = ∆D(ρP)− P+(ρP) , (1)

where P+(ρP) is the ensemble average dopant ionic
core/perturber polarization energy, and ρP is the perturber
number density. P+(ρP) is calculated from a standard
statistical mechanical treatment via [1–5]

P+(ρP) = −4πρP

∫ ∞

0

gPD(r) w+(r) r2dr . (2)

In eq. (2) gPD(r) is the perturber/dopant radial distribution
function, and w+(r) is the perturber/ion interaction poten-
tial [1–5]. Since w+(r) incorporates induced dipole interac-
tions in the perturbing medium, the perturber/perturber
radial distribution function gPP(r) is also involved in de-
termining P+(ρP). The radial distribution functions gPD(r)
and gPP(r) are computed from the coupled Percus-Yevick
integro-differential equation method [1,7], with a Lennard-
Jones 6-12 potential used for the perturber/perturber in-
teractions [1,5] and a modified Stockmeyer potential em-
ployed for the dopant/perturber interactions [1,5]. V0(ρP)
extracted from eq. (1) is presented in Fig. 1 for Ar [1–3],
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Fig. 1. The quasi-free electron energy V0(ρP) for (a) Ar [1–3], (b) Kr [1,4] and (c) Xe [5] at noncritical temperatures (solid markers) and on
an isotherm near the critical isotherm of the perturber (open markers), extracted from eq. (1), plotted as a function of perturber number
density ρP. (N [1], M [2,4]) represent data extracted from CH3I field ionization, (• [1], ◦ [3,4]) are data obtained from C2H5I field ionization,
(¥ [5], ¤ [5]) are data determined from N, N -dimethylaniline field ionization, and (H [5], O [5]) represent data from trimethylamine field
ionization. The solid lines are a calculation of V0(ρP) from eq. (6) with the parameters given in Table 1. See text for discussion.

Kr [1,4] and Xe [5]. These data show a striking change in
V0(ρP) near the critical density on an isotherm near the
critical isotherm of the perturber.

The quasi-free electron energy V0(ρP) in a dense gas can
be written as a sum of three terms [1–5]

V0(ρP) = P−(ρP) + Ek(ρP) +
3
2
kBT , (3)

where P−(ρP) is the average polarization energy of the per-
tuber interacting with the quasi-free electron, Ek(ρP) is the
zero-point kinetic energy of the electron, and 3kBT/2 is the
thermal energy of the electron. The average polarization
energy P−(ρP) can be calculated in a manner similar to the
average cation/perturber polarization energy [i.e., eq. (2)],
namely [1–5]

P−(ρP) = −4πρP

∫ ∞

0

gPP(r) w−(r) r2dr , (4)

where w−(r) is the electron/perturber interaction potential
originally proposed by Lekner [1,8].

The local density of atoms ρP(r) at any radial distance
from a given perturber atom can be determined from [1]
ρP(r) = ρP gPP(r). The local Wigner-Seitz radius r`, which
represents one half the average spacing between atoms in
the first solvent shell, is given by [1]

r` = 3

√
3

4 π gmax ρP

, (5)

where gmax is the maximum of the perturber/perturber ra-
dial distribution function. The maximum distance of the
optical electron/perturber interaction in the first solvent
shell is, therefore, given by the difference between the local
Wigner-Seitz radius r` and a hard-sphere radius defined by
Table 1
The zero-kinetic-energy electron scattering length A [6] and the unit-
less parameter a used in eq. (6) to obtain the solid lines in Fig. 1.

Perturber A (Å) a

Ar −0.82± 0.02 0.329± 0.003

Kr −1.60± 0.02 0.133± 0.004

Xe −3.24± 0.04 0.0745± 0.0006

the absolute value of the zero-kinetic-energy electron scat-
tering length A of the perturber at low density. Assuming
that the electron/perturber interaction in the first solvent
shell dominates the zero-point kinetic energy and that this
interaction can be treated simply as a particle in a spheri-
cal well, the quasi-free electron energy V0(ρP) becomes

V0(ρP) = P−(ρP) +
~2 a2

2 me

1
(r` − |A|)2 +

3
2
kBT , (6)

where a is a unitless adjustable parameter determined by
the best fit to the experimental data, ~ is the reduced
Planck constant, and me is the electron mass. The solid
lines shown in Fig. 1 represent eq. (6) with the parameters
given in Table 1. This simple approximation models the
data to within ±0.3% of experiment, and shows the correct
critical point behavior. (The critical point behavior arises
from r`, since r` decreases near the critical density along
the critical isotherm due to density fluctuations.)

A more formal treatment of V0(ρP) begins within the
Springett, Jortner and Cohen (SJC) model [9] modified
by the local Wigner-Seitz radius [1]. Within this treat-
ment [1,9], V0(ρP) is obtained from the solution to the one-
electron Schrödinger equation under the assumption that
the potential V (r) is spherical with an average transla-
tional symmetry of V (r) = V (r + 2r`). The local Wigner-
Seitz model assumes that V (r) = P−(ρP) + Va(r), where
P−(ρP) is a constant for any given density and Va(r) is a
simple hard-sphere potential [i.e., Va(r) = 0 for r > |A|
and Va(r) = ∞ for r ≤ |A|]. Under these assumptions, the
solution to the Schrödinger equation is

ψ0 =
1
r

sin [k0(r − |A|) + δ] , (7)

where the wave-vector k0 is determined from the solution
to the boundary condition equation [1]

tan [k0(r` − |A|) + δ]− k0 r` = 0 , (8)

and δ is a phase shift arising from the polarization of per-
turbers close to the optical electron. This phase shift, which
is density dependent, is necessary since P−(ρP) only ac-
counts for the average polarization of perturbers at a dis-
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Fig. 2. The tangent of the phase shift δ for (a) Ar, (b) Kr, and (c) Xe at noncritical temperatures (solid markers) and on an isotherm near
the critical isotherm of the perturber (open markers), plotted as a function of the wave-vector k0. See the legend to Fig. 1 for the definition
of the markers. The solid lines are a nonlinear least squares analysis of eq. (10). See text for discussion.

tance r À r` [8]. [We should note here that determining
k0 from eq. (8) using a standard bracketing and bisection
method [10] inadvertently converges on the discontinuties
in eq. (8) rather than the actual solutions. However, since
eq. (6) holds for all of the data presented here, this inappro-
priate solution still yields correct numerical values of k0 for
a constant value of δ [1–5], since k0(r`−|A|) is a constant.]
Thus, within the local Wigner-Seitz model, the energy of
the quasi-free electron V0(ρP) is given by

V0(ρP) = P−(ρP) +
~2 k2

0

2 me
+

3
2
kBT , (9)

after the inclusion of the thermal kinetic energy of the
quasi-free electron.

The phase shift for low kinetic energy electron/atom
scattering from effective range theory is given by [11]

tan δ = A1k0 + A2k
2
0 + O(k3

0) . (10)

For very low density atomic gases, A1 = −A and A2 ∝
−αP, where αP is the polarizability of the perturber. Fig. 2
shows tan δ, calculated from the experimental data of Fig. 1
using eqs. (8)-(9), plotted as a function of the wave-vector
k0 for Ar, Kr and Xe. Clearly, the experimental data ob-
tained at noncritical temperatures and those obtained near
the critical isotherm fall on a single curve. Nonlinear least
squares analyses of eq. (10) are provided as solid lines in
Fig. 2, and the coefficients are summarized in Table 2. The
A1 coefficent obtained from this least squares analysis is
close to the zero-kinetic-energy electron scattering length
A (cf. Table 1). The coefficient A2 shows a similar trend to
the polarizability of the rare gas atoms (i.e., αAr < αKr <
αXe). Moreover, the error in the least squares analysis is
small. Thus, the phase shift has the correct form of an elec-
tron/atom scattering phase shift from effective range the-

Table 2
Coefficients A1 and A2 obtained from the nonlinear least squares
analysis of eq. (10).

Perturber A1 (Å) A2 (Å2)

Ar 0.670± 0.001 −0.031± 0.005

Kr 1.58± 0.00 −0.300± 0.008

Xe 3.16± 0.01 −0.577± 0.006

ory. The differences between A1 and A2 observed in the
experimental data as compared to the effective range the-
ory values probably arise from many-body interactions in
dense gases, and we are currently working to develop an
understanding of these relationships for A1 and A2. We are
also attempting to develop a theoretical understanding of
the parameter a in eq. (6) within the local Wigner-Seitz
model. Finally, we are in the process of extending the local
Wigner-Seitz model to dense CH4 [12] at noncritical tem-
peratures and along the critical isotherm.

The experimental measurements reported here were per-
formed at the University of Wisconsin Synchrotron Radia-
tion Center (NSF DMR-0537588). This work was supported
by grants from the Petroleum Research Fund, from the Pro-
fessional Staff Congress - City University of New York, and
from the Louisiana Board of Regents Support Fund.
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