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Energy-Optimal Data Collection for WSN-based

Agricultural Monitoring with UAV:

A Clustering Compressed Sampling Approach

Abstract—In this paper, we propose a hierarchical data collec-
tion scheme, towards the realization of unmanned aerial vehicles
(UAV)-aided industrial wireless sensor networks (IWSN). The
particular application is that of agricultural monitoring. For
that, we propose the use of hybrid compressed sampling (CS)
through exact and greedy approaches. With the exact approach
– to model the energy-optimal formulation – it is utilized an
improved linear programming formulation of the minimum cost
flow problem. The greedy approach is based on a proposed
balance factor parameter, consisting of data sparsity and the
distance from the cluster head to the normal nodes. To improve
the node clustering efficiency, a hierarchical data collection
scheme is implemented, by which, the nodes in different layers are
adaptively clustered, and the UAV can be scheduled to perform
energy-efficient data collection. Simulation results show that our
method can effectively collect the data and plan the path for the
UAV at a low energy cost.

Index Terms—artificial intelligence, unmanned aerial vehicles
(UAV), industrial wireless sensor network (IWSN), agricultural
monitoring system, intelligent signal processing.

I. INTRODUCTION

THE agricultural industry plays a vital role in global

economy growth and contributes to the employment of

significant sections of the population. According to a survey

from the United Nations-Food and Agriculture Organisations,

worldwide food production will increase by 70% in 2050 –

due to the human population expansion [1]. However, the

decline in the quality of arable land, freshwater resources

shortage, environmental degradation and natural disasters have

exacerbated the already existing challenges in the development

of agriculture. Simultaneously, our natural environment is

undergoing unpredictable dramatic changes, making the prof-

itability of future crop seasons very challenging to forecast;

agricultural outputs are highly dependent on the soil condition,

water quality, temperature, etc [2].

New technology advances in robotics and artificial intelli-

gence open new ways to attempt to tackle the shortcomings

in the prediction of complex systems – by collecting and

analysing multi-sensor data with networks of sensors and

intelligent signal processing [3], [4]. In open environments

such as agricultural fields, unmanned aerial vehicles (UAV)

present a feasible and cost effective opportunity to implement

intelligent data collection [5].

In addition, by way of parallel rapid developments in infor-

mation and communications technology (ICT), the Internet of

Things (IoT) – especially industrial IoT (IIoT) technologies

– has emerged as a catalyst towards the realization of the

Industry 4.0 framework [6], [7]. The IIoT technology – e.g.,

industrial wireless sensor networks (IWSN) – has been widely

promoted in various fields, ranging from smart mine, smart

city, smart ocean, smart factory, and even in the area of

intelligent agriculture [8], [9]. What characterizes an IWSN is

its ability to coordinate all the units towards a common goal;

that of maximizing the amount of data and its consistency. For

agricultural industry purposes, an IWSN essentially consists

on a multiplicity of sensors that collect information, such

as soil components, temperature, PH, etc. The data are then

transferred to a centralized computing unit (an edge computing

platform), so that agriculture management policies can be

effectively determined [10].

Thus UAVs open a new path for gathering the data from the

sensors in IWSN, upgrading the IWSN to UAV-aided IWSN,

i.e., UAV-IWSN. Instead of recording data based on active

data routing, UAV units can fly through each sensing field

and collect data from the sensors, thus minimizing the infras-

tructure needed for implementing intelligent farming methods.

UAV-IWSNs are aimed to be deployed over the extension

of latifundia, where the dedicated sensors are far from each

other, but still act as coordinated data sensing components. The

UAVs perform specific data collection missions by flying over

planned paths. Utilizing UAV to collect data benefits from

the following advantages: i) compared with the vehicles on

the ground, UAVs can collect data at some special places

where the normal collector cannot reach to [11]; ii) UAVs

typically displace faster than autonomous ground vehicles,

and can return to base in case of adverse weather promptly,

so that the expensive equipment is not damaged. iii) UAVs

are normally equipped with a high-performance computing

unit and large battery capacity, and can sometimes provide

the ability of lightweight data computation. iv) UAVs can be

easily adapted for tasks they were not designed for, such as the

detecting the incidence of wildfires and rural crime. v) UAVs

do not interfere with the livestock.

A challenge of UAV-IWSN are the deployment costs. As

a consequence not all sensor units may be equipped with

all the available sensing and computing capacities. It may be

more beneficial to distribute the capabilities optimally among

the units, so that some units may have high-performance

computing or battery-UAV communication, while others just

perform the task of basic data collectors [12]. Hence, the

concept of node clustering can be employed to improve the

applicability and energy efficiency of UAV-IWSNs, where the

cluster head (CH) is in charge of gathering the sensed data, and

then transferring them to the UAV – while the other units are

only performing data sensing tasks. Further, to improve the

data gathering performance, the signal processing efficiency

needs to be considered [8].
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Succinctly, in order to perform energy-efficient data col-

lection in UAV-IWSN, an intelligent data collection scheme

integrating a node clustering algorithm, intelligent signal

processing methods together with path planning policies is

advantageous. With this goal in mind, in this article, the

compressed sampling (CS) technique [13], [14] is employed,

and we propose a hierarchical data collection scheme for

an UAV-IWSN based agricultural monitoring system. Our

contribution can be summarized as follows:

i) We introduce the concept of cluster-based CS and pro-

pose a hybrid CS-based node clustering model. Based

on the model, we propose a hierarchical data collection

scheme integrating an exact approach and a greedy

approach;

ii) For the exact approach, an improved version of the

minimum cost flow problem – to model the energy-

optimality – is utilized. This can be formulated as an

improved linear programming (LP) method;

iii) In the greedy approach, we introduce a balance factor

parameter, accounting for both, data sparsity and the

distance from the cluster head to the sensing nodes;

iv) The proposed scheme is tuned through an ant colony

optimization (ACO) algorithm-based path planning pol-

icy.

The remainder of this paper is organized as follows. Related

work is surveyed in Sec. II. Sec. III introduces the prob-

lem statement of this work. Sec. IV presents our proposed

approach, while Sec. V shows some evaluation results for

demonstrating and validating the scheme. In Sec. VI conclu-

sions are drawn.

II. RELATED WORK

In this section, a review of the current research progress

in IoT and IIoT-based agricultural monitoring systems is pro-

vided. As stated, the concept of IIoT is becoming ubiquitous

in a wide range of industrial environments. For agricultural

applications, the motivation towards using IIoT technology

is the need to embed industrial sensors into farming spaces

– to monitor the irrigating system, crop, weather, soil in-

formation. For instance, in [15] the authors used industrial

WSN technology to design crop field monitoring systems; by

considering three categories of industrial sensors that survey

temperature, humidity and crop images. By analyzing these

parameters, the informed decisions for maintaining the crop’s

health can be made. Their proposal also contains a remote

monitoring/controlling platform, more suitable for areas where

the water is scarce. In [16], the authors proposed an in-

telligent agriculture monitoring system based on GSM, to

enable automatic deployment of some important agriculture

missions. By way of a GSM module, the centralized data

analysis system can gather the sensed data from the sensors,

and transmit the analysis result to the irrigating system to

perform automatic irrigation. Their proposal is very significant

to the design of cellular network-based or online agricultural

monitoring systems. In [17], the authors focused on a real-

time and clock-shared rainfall agricultural monitoring system

for IWSN, which also served the purpose of protecting the

crop from animal attacks.

In [18], novel sensors for monitoring the leaf area index

(LAI) of the crops were introduced. Due to the advantages of

energy-efficient, scaled-down and low cost sensor technology,

the theoretical principles behind the IEEE 802.15.4 protocol

towards IWSN can be deployed in a realistic scenario,

such as a large-scale cornfield. In particular, the authors

showcased a project for designing a feasible, low-cost

modification of commercial off-the-shelf photosynthetically

active radiation (PAR) sensors, which can be deployed in

the LAI monitoring system. In [19], the authors propose

a clustering routing algorithm based on Dijkstra algorithm

(C.R.D.A). We note that, in the clustering phase, the C.R.D.A

divides the clusters by following the ELBOW method, and

utilizes K-means to allocate each node to the cluster, according

to the length from the normal nodes to the cluster heads,

through a greedy approach. Their work gives a compressing

clustering algorithm from the aspect of relative distance

between the normal nodes and the cluster heads, ignoring the

transmitted data among the nodes. In [20], to measure the

long-term evolutionary trend of daily average soil temperature

within a specified period, the authors introduced an IWSN-

based monitoring system to acquire the spatio-temporal

variation of daily soil temperature. However the maximum

monitoring duration or the techniques to improve the lifetime

of the monitoring network were not highlighted. In [21],

the authors respectively utilize RFID, QR code technology,

and cameras to build an IWSN-based irrigation facilities

management system. Their proposal can provide extremely

rewarding information to assist the facilities manager with

irrigation policy determination. In [22], the authors focused

on the analysis of the agronomic variables of the cassava

crops, and proposed an IWSN technology-based agricultural

system. In particular, each sensor in IWSN was equipped

with advanced soil moisture and temperature modules, and

the network performance is capable of automatic checking

by evaluating the received signal strength indicator (RSSI),

link quality indicator (LQI), and network convergence time.

In [23] low-altitude remote sensing, bio-sensors, chlorophyll

meter, multispectral/near-infrared camera and fluorescence

spectrometer were used. to build an IWSN-based monitoring

system to study the relative canopy chlorophyll content in

citrus orchards – by generating spatial distribution maps. It

should be noted about that the authors utilized the univariate

and multiple linear regressions together with the partial least

squares method to propose a leaf soil and plant analyzer

development (SPAD) value predictive model. In [24], the

authors focus on the energy consumption efficiency issue

and propose an adaptive energy consumption model for the

IWSN-based agricultural monitoring system. Their proposal

can be referred to compute the optimal number of the nodes

in the network, while the connectivity and coverage of the

entire network are guaranteed.

Recently, some scholars have proposed the use of UAV

to assist with the agricultural information collection. For

instance, UAVs can be deployed to obtain spectral or infrared

images of plants to perform farmland of large scale monitoring

or hazard/irrigation prediction. In [25], the authors utilize

UAVs equipped with infrared and visible sensors to perform
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remote water stress monitoring, and compare its monitoring

information with the data collected from the sensors on the

ground, such that joint analysis result can be achieved. In

[26], the authors propose a agricultural monitoring system

integrating IWSN and solar powered UAV to monitor CO2

and CO4 at the greenhouse. The UAV measures the data by

hovering above the monitoring field, while the sensors of

IWSN are collecting the data on the ground, leading to a 3D

monitoring environment.

To further extend the applicability of UAV-IWSN based

agricultural monitoring systems, we introduce the data-driven

node clustering policy especially from the aspect of data CS,

enabling an UAV-assisted data collection framework.

III. PROBLEM STATEMENT

A. Network Model

Fig. 1: Conceptual diagram of the studied UAV-IWSN scheme.

To enable intelligent, automatic, and informative industrial

agriculture, we adopt an IIoT framework perspective to in-

troduce a scheme for an UAV-IWSN based intelligent farm.

In Fig. 1, the proposed UAV-IWSN is shown, consisting of

an UAV and a series of wireless monitoring sensors divided

by different clusters. The sensors are deployed for different

agricultural monitoring purposes, e.g., soil moisture/acidity,

temperature, air components, energy status, etc. Instead of

using active data routing to collect and monitor the data at the

base station, a pre-configured rechargeable UAV is scheduled

to fly through each sensing field. Then, the UAV uploads

the data to the data center, where the data are automatically

computed/analyzed, and the agricultural management policy

is adaptively adjusted, e.g., irrigation levels and adequate feed

nutrient content.

As discussed, in the proposed network architecture, we

divide the sensors into different clusters, each of which is

managed by a CH. The q normal nodes of the UAV-IWSN are

denoted as v1, v2,..., vq , while the p CHs as ch1, ch2,...,chp

– which are related to clusters the C1, C2,..., Cp respectively.

We utilize the notation

S(vi) = Cx, (1)

to indicate that the normal node vi belongs to the cluster Cx.

And

W (Cx) = {vi|S(vi) = Cx}, (2)

to denote all the nodes in the cluster Cx or the node set of

cluster Cx. To summarize, the architecture for UAV-IWSN

presents the following properties:

i) The CH is equipped with a high-performance battery,

data storing, communication components, and is more

expensive than the normal node. As a result, in the pro-

posed network architecture, the number of CH accounts

for a very small percentage;

ii) Each normal node is assigned to a dedicated cluster for

performing data collection, under the management of

the CH. To improve the energy consumption efficiency,

all the normal nodes forward their collected data to the

CHs, instead of communicating directly with the UAV;

iii) The CHs store the gathered data and wait for the data

uploading scheduling. The UAV performs non-real-time

data collection from the CHs, based on a pre-configured

data collection policy;

iv) The features (e.g., the location, the CH of each node)

of each cluster are kept constant once the clusters are

determined and deployed.

In a cluster Cx, the communication range among the sensors

is imposed by a threshold r (determined when both of the

energy consumption, packet loss rate, etc. are concurrently

taken into account). And, the data can be forwarded to the

chx by utilizing multi-hop routing algorithm based on the

spanning tree Gx(Vx, Ex) derived from Cx. In Gx(Vx, Ex),
Vx = W (Cx) ∪ chx, and eij =< vi, vj >∈ Ex is a

corresponding edge if the distance between vi and vj does

not exceed r.

B. Energy Consumption Model

We refer to the energy consumption model in [27] and

respectively use Eq. 3 and Eq. 4 to compute the energy

consumption, when n bits of data is sent and received.

Cs(n, r) =

{

n(θfsr
2 + Ca) r < R

n(θmpr
4 + Ca) r ≥ R,

(3)

Cr(n) = nCa. (4)

In Eq. 3, both θfs and θmp represent the sending power

coefficients; θfsr
2 and θmpr

4 respectively denote the con-

sumed energy by the transmit amplifier for sending one bit

of data within communication range r, when the transmit

amplifier works in different modes. We notice that this mainly

depends on both the communication range and the accepted

bite error bit; R denotes the distance threshold in the free

space model. Ca, both Eq. 3 and Eq. 4, denotes the consumed

energy to activate the sending or receiving circuit. Both of
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the aforementioned variables are determined based on the real

features of the physical electronic components.

C. Problem Definition

Given an UAV-IWSN, represented as graph G(V,E), that is

deployed in an open area of an intelligent farm, where V is the

set of nodes (including both normal nodes and CHs) and E is

the potential edge set. Based on the aforementioned network

model in Sec. III-A, the proposed optimal data collection

(ODC) problem aims at defining a suitable clustering method,

together with a signal acquisition approach, to minimize

the total energy consumption. Then, the ODC problem also

requires to find a path planning algorithm to schedule the data

gathering path for the UAV, such that the energy consumption

for UAV is minimized.

The studied ODC problem is very common in real industrial

agricultural monitoring systems, due to the wide deployment

of the monitoring sensors, the un-rechargeable features of the

sensors, etc.

IV. DATA COLLECTION SCHEME
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Fig. 2: Proposed cluster-based data compression model.

A. The Proposed Hybrid CS-based Cluster Model

In this paper, to improve the data collection efficiency and

decrease the energy consumption, we employ the compressed

sampling technology and propose to utilize the novel hybrid

CS approach to address the signal acquisition problem. By

hybrid CS technology, in a cluster, the normal sensing nodes

can be divided into un-compressed and compressed nodes. In

particular, as the intermediate nodes, the compressing nodes

cannot only transmit the collected data following the routing

algorithm, but also compress the data traversing them. To

clearly explain our idea, we use the instance in Fig. 2 to

clarify our cluster-based data compression model. Assuming

the nodes in a given cluster-based spanning tree are uniformly

distributed in a N × N squared region, where the CH is

located in the lower-right corner, and the nodes in green are the

compressing nodes. The data is forwarded along the shortest

path (in hops), i.e., following the sequence of blue arrows.

Each node will produce one data unit, and the values in the

blue arrows in Fig. 2 represent the total number of the data

traversing the link. For instance, nodes v1,1, v1,2, and v2,1 each

transfer one unit of data to v2,2, and v2,2 transfers 4 units of

data to v3,3. Assuming the hybrid CS mechanism is carried

out from vi,i, i2 units of compressed data will be acquired at

CH. The compressing result depends on the compression ratio

or the sparsity of the data.

In this paper, we focus on the optimal energy consumption-

based clustering problem based on the model in Sec. III-B.

Therefore, we ignore the procedure of data compressing.
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Fig. 3: Hierarchical node clustering process.

B. The Exact Approach

For a given cluster Cx, γx, Dx denote the data compression

ratio of Cx and the scale of the gathered data respectively.

Thus, the scale of the compressed data can be expressed by

σx =
Dx

γx
. (5)

According to the depiction for the ODC problem, we can

infer that different node clustering schemes will result in

different spanning trees with different compression ratios.

In the following, we will present the exact expression for

addressing the ODC problem.

Let eij be a potential link between the nodes vi and vj in the

spanning tree Gx(Vx, Ex), and nij the data to be transmitted

over eij . Following Eq. 3 and Eq. 4, the energy costs for

transferring nij units of data over link eij can be computed

as

C(eij) = Cs(nij , dij) + Cr(nij), (6)

while the energy consumption for Cx is expressed as

C(Cx) =
∑

eij∈Ex

C(eij). (7)

Thus, the entire consumed energy for the entire network is

Call =

p
∑

x=1

C(Cx). (8)

By following the hybrid CS theory, we acquire the following

LP formulation to express the optimization model:
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minCx
Call =

p
∑

x=1

C(Cx),

s.t
∑

j:eij∈Ex

nij ≥
∑

k:eki∈Ex

(|δCx| − σx) + δ, ∀vi ∈ Cx,

∑

j:eij∈Ex

nij ≥
∑

k:eki∈Ex

(σx − δ)ξi + δ, ∀vi ∈ Cx,

∑

j:eij∈Ex

nij ≥
∑

k:eki∈Ex

nki +
1

|Cx|
, ∀vi ∈ Cx,

mij ≥ nij , ∀eij ∈ Ex,
∑

eij∈Ex

mij = |Cx| − 1,

nij ≥ mij , ∀eij ∈ Ex,

mij ≥ σ−1
x nij , ∀eij ∈ Ex,

S(vi) = Cx, i = 1, 2, · · · , q;x = 1, 2, · · · , p,

W (Cx) = {vi|S(vi) = Cx}.
(9)

In Eq. 9, mij ∈ {0, 1} indicates whether eij in Gx(Vx, Ex)
represents the last link connecting a normal node and chx;

ξi ∈ {0, 1} is an indicator variable for an intermediate node

vij ; |Ci| denotes the number of the nodes in cluster Ci; nij or

nki denotes the flow over visual link (indicating the connec-

tivity of two adjacent nodes). Eq. 9 is actually an extension of

the minimum-cost flow problem. The optimization in Eq. 9 is

aimed at seeking node clustering together by way of spanning

tree construction – i.e., Cx, x = 1, 2, · · · , p, to minimize

the entire energy consumption. In particular, the constraints

present the rules for building Gx for Cx, x = 1, 2, · · · , p.

More in detail, the first two constraints guarantee the flow

conservation at the intermediate node, where the data com-

pressed sampling occurs. Constraints three to seven ensure the

flow over each link in the network is non-negative. The last

two constraints prevent the nodes (vi, i = 1, 2, · · · , q) from

belonging to more than one of the clusters Cx, x = 1, 2, · · · , p.

Furthermore, from Eq. 9, we can see that the proposed

exact approach is an integer LP-based solution, that cannot be

run in polynomial time. In the following sub-section, we will

present a greedy approach – an approximate optimal solution,

to efficiently address the ODC problem.

C. The Greedy Approach

From Eq. 5, the smaller γx the larger the required Dx

– i.e., more data collection is required. As a result, more

data requires to be forwarded to the CH, resulting in more

energy consumption. Furthermore, following Eq. 3, larger data

transfer distances result in the increase of energy consumption.

Therefore, the energy consumption of cluster Cx depends on

two factors: the compression factor γx and the distance rix
between the normal node vi and chx.

To improve the energy consumption efficiency, rix should

be minimized while improving the compression ratio γx of

cluster Cx, which involves a multi-objective trade-off. To

allocate vi into an approximate optimal cluster, we define the

balance factor B(i, x), which quantify the effect of allocating

vi into a existing cluster Cx:

B(i, x) = Bs(i, x)ρ+Bc(i, x)(1− ρ), (10)

where Bs(i, x) is to compute the difference of data sparsity

when vi is allocated to cluster Cx, Bc(i, x) is to compute the

normalized distance between vi and Cx, and ρ ∈ [0, 1] aims at

specifying the weight of Bs(i, x)/Bc(i, x) in B(i, x).
In particular, Bs(i, x) and Bc(i, x) can be respectively

computed by Eq. 11 and Eq. 12.

Bs(i, x) =
DD(i, x)

max{|DD(:, :)|}
; (11)

Bc(i, x) =
rix

max{rαβ , α = 1, 2, · · · , q, β = 1, 2, · · · , p}
.

(12)

In Eq. 11, DD(i, x) represents the difference of data sparsity

based on discrete cosine transform (DCT) algorithm and data

compressed sampling, and {|DD(:, :)|} denotes the set of the

difference value when vi is allocated to different clusters. In

Eq. 12, {rαβ , α = 1, 2, · · · , q, β = 1, 2, · · · , p} re the set of

distance value between each vα and each chβ .

In Eq. 10, ρ specifies the slope of vi, when vi is allocated

to a cluster Cx. The higher the value of ρ, the more inclined

vi is to be allocated to the cluster with a higher compression

ratio, else the cluster that is closer to vi is more inclined.

After ρ is determined, the Cx that minimizes B(i, x) is

selected as the candidate cluster. Thus, this leads to a greedy

approach which can cluster one node at a time, until the

clustering problem of the ODC task addressed. However, as

an approximate optimal scheme, the optimal approach based

on computing B(i, x) can sometimes acquire multiple locally

optimal solutions.

In the following sub-section, we propose a hierarchical

data collection scheme based on a proposed hybrid cluster-

ing scheme, integrating both the proposed exact and greedy

approaches.

D. The Hybrid Clustering-based Data Collection Scheme

In the proposed UAV-IWSN, all the computing operations

(e.g., data sparsity computation based on DCT algorithm,

constructing spanning tree, etc.) are performed onboard in the

UAV, since it is equipped with high-performance computing

and data storing capabilities. We propose Alg. 1, a hybrid

optimal approach, to perform node clustering. In line 1 of Alg.

1, Vu represents the set of un-clustered nodes. Alg. 1 executes

node clustering individually for vi ∈ Vu, as shown in lines 2
to 11; first, lines 3−7 compute a set chmin of optimal solution

greedily. In particular, ithe LEACH algorithm [28] is invoked

to execute the node clustering for data collection in the first

round, such that the data compression ratio of each cluster can

be computed. Then, in line 9, the proposed exact approach is

utilized to select a solution that can minimize Eq. 9.

From Alg. 1, we can see that the DCT algorithm requires to

be frequently invoked, which takes most of the running time.

By Eq. 10, vi ∈ Vu is preferentially allocated to Cx, when rix
is very small, or smaller than a given threshold.
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parameter description value

|V | the number of nodes 100

θfs sending power coefficient 11 pJ/bit/m2

θmp sending power coefficient 0.00145 pJ/bit/m2

Ca consumed energy to activate the sending or receiving circuit 65 nJ/bit

r communication range of each node 200m

p number of cluster [5, 6, · · · , 24]
h number of layer in total [5, 6, · · · , 24]
R distance threshold in the free space model 240 m

µ number of layer leading to a node re-clustering phase [5, 6, 7, 8, 9]
nij scale of the forwarded data on each node 40
γx compression ratio of each cluster 50

TABLE I: Parameter setting during model evaluation.

Algorithm 1 Node Clustering(Vu)

1: Initialize Vu.

2: for vi ∈ Vu do

3: for Cx, x = 1, 2, · · · , p do

4: Following Eq. 10, Eq. 11, and Eq. 12, computing

rix, DD(i, x), max{|DD(:, :)|}, and max{rαβ , α =
1, 2, · · · , q, β = 1, 2, · · · , p}, respectively.

5: Compute Bs(i, x), Bc(i, x), and B(i, x).
6: end for

7: Compute a set chmin of CHs minimizing B(i, x).
8: if |chmin| ≥ 2 then

9: Allocating vi to the Cm with chm ∈ chmin, leading

Eq. 9 to be minimized.

10: end if

11: end for

12: Return the computed node clustering policy.

With this property, in the following Alg. 2, we introduce

a hierarchical data collection scheme to improve the data

collection efficiency. In Alg. 2, after the initialization phase

in lines 1 − 2, line 4 constructs the sequence Sqi of chx

for vi. Note that the sequence is in the ascending order of

rix, x = 1, 2, · · · , p. For instance, Fig. 3a shows the construc-

tion for the sequence Sq2 of chx (i = 1, 2, · · · , p) for v2. Then,

following line 5 of Alg. 2, allocate vi to the cluster whose CH

is marked in Sqi[0], i.e., C3 in Fig. 3a. After that, we present

a hierarchical node classification scheme shown in lines 8−9.

Line 8 groups the nodes in Cx into h layers of equal range

from 1 to rmax (Eq. 13). For instance, in Fig. 3b, the nodes

in Cx are divided into h parts: C1
x, C2

x, · · · , Ch
x . By specifying

µ based on the practical scenario, allocating the nodes in Cµ
x ,

Cµ+1
x , · · · , Ch

x (1 < µ < h) to the node set Vu. This leads to

a node re-clustering phase for the nodes in Vu by invoking

Alg. 1, as shown in line 11 of Alg. 2. Thus, the running

efficiency of the node clustering phase will be improved. Then,

line 12 constructs Gx(Vx, Ex), x = 1, 2, · · · , p by evoking

MECDA GREEDY algorithm [29], and the data in each

cluster follows the specified hybrid CS policy and is forwarded

along the spanning tree to the CH. In our work, we assume the

consumed power of the UAV is proportional to the path length,

take the shortest possible route (that the UAV starts from the

source, traverses each cluster head, and then goes back to the

source) into account, and treat the path planning optimization

problem as a travelling salesperson problem. Hence, in line

13, the ACO algorithm [30] can be selected as a candidate

approach, to schedule the data collection path for the UAV

when the energy consumption efficiency is taken into account.

Algorithm 2 Hierarchical Data Collection(µ, h)

1: UAV collects the status of vi ∈ V .

2: Initialize Vn.

3: for vi ∈ Vn do

4: Construct the sequence Sqi for vi.
5: Allocate vi to the cluster whose CH is marked in Sqi[0].
6: end for

7: for Cx, x = 1, 2, · · · , p do

8: Based on rmax, dividing the nodes in Cx into h layers

of equal range: C1
x, C2

x, and Ch
x .

9: Allocate the nodes in Cµ
x , Cµ+1

x , · · · , Ch
x (1 < µ < h)

to the node set Vu.

10: end for

11: Evoke Node Clustering(Vu) algorithm to re-cluster the

nodes in Vu.

12: Build Gx(Vx, Ex), x = 1, 2, · · · , p by evoking

MECDA GREEDY algorithm.

13: Based on the clustering information, evoking ACO algo-

rithm to schedule the data collection path.

rmax = max{rix, i = 1, 2, · · · , q}. (13)

V. EVALUATIONS

In this section, we present simulation results to evaluate

the performance of the proposed approach for tackling the

ODC problem. We first test the performance of the proposed

hierarchical clustering algorithm, and then we present some

comparison results for demonstrating our proposal. Further,

we survey some normal path planning schemes to demonstrate

the data collection efficiency for the UAV, when the proposed

data collection scheme is performed1.

1The simulations were conducted on an Intel(R) Core i7-8565U 1.8 GHz
machine with 8 Gb RAM.
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(a) Energy consumption with h/µ

(b) Running time with h/µ
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Fig. 4: Test for the studied scheme.

The simulations were implemented in Python 3.7 over a 2
dimensional array representing a 2000 m2 area, and where 100
nodes with p CHs were randomly distributed. The communica-

tion among the nodes follows the Zigbee protocol [31], and the

scale of each frame is limited to be 108 bytes. The forwarded

data on each node is in float (4 bytes for each unit). All the

clusters are with the same compression ratio. The simulation

parameters are summarized in Table I.

Fig. 4a, displays the relationship between the energy con-

sumption and h/µ, when the 100 nodes are divided into 10
clusters by our approach. From Fig. 4a, we can see that
h/µ is not correlated to energy consumption when the cluster
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(b) Running time comparison

Fig. 5: Comparisons about the energy consumption and run-

ning time

number is fixed. As shown in Fig. 4b, different from the

energy consumption test, the running time of the proposed

scheme increases with h/µ, especially µ. This is due to the

fact that larger µ increases the complexity of Alg. 1. In order

to demonstrate the necessity of our proposal, we also test

the probability of the greedy procedure in acquiring multiple

locally optimal solutions – when the greedy approach is

iterated at most 80 times. Then 200 are repetitions executed.

when the nodes are divided into 5 − 24 clusters. The ratio

of acquiring multiple locally optimal solutions is shown in

Fig. 4c; we can see that the ratio increases with the number

of clusters – i.e., a larger number of clusters the greater the

number of potential options.

Furthermore, to evaluate our approach, we also make com-

parisons with the other four schemes: DSNO, DDS, EXNO,

HNO, and the scheme proposed in [19]. In particular, DSNO

is the scheme that does not take the data compression into

account; DDS is a scheme that only considers the distance

between the normal node and CHs; EXNO is an approach

that ignores the exact approach-based decision procedure;

HNO is a method that is irrespective of the hierarchical node

clustering procedure. In particular, we refer to the clustering

scheme in [19] as the k-CL which ignores as well the

data compression. We first test the energy consumption for

the various algorithms. The result in Fig. 5a demonstrates
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Fig. 6: Comparison among the ACO, SA, and SOM algo-

rithms.
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Fig. 7: Path planning test

that the here proposed scheme benefits from the hierarchical

hybrid clustering scheme and displays improved performance

as compared to the other methods. In addition, we can see

that the data compression skill in the proposed hierarchical

hybrid clustering scheme has a maximum impact on the energy

consumption result during our evaluation. Furthermore, the

execution time results in Fig. 6b demonstrate that the pro-

posed hierarchical node clustering framework can improve the

running efficiency of the algorithm, and the exact approach-

based decision procedure takes most of the running time in

the proposed scheme.

Finally, we utilize our proposal to plan the path for the

data collecting UAV after the monitoring nodes are clustered.

To understand why the ACO algorithm is selected to plan

the path for the UAV in our proposed scheme, we compare

ACO algorithm-based approach with the other two normal

schemes: the simulated annealing (SA) algorithm [32] and

the self-organizing-map (SOM) algorithm-based path planning

schemes [33], especially in the aspect of path length and

running efficiency. We select the coordinates in the first

footnote as the CH coordinates that are distributed in a 8000

m*8000 m area 1. In Fig. 6, we select 12 − 48 CHs and

respectively use the aforementioned schemes to plan the data

collecting path and compute the path length together with the

running time. In particular, all the results in Fig. 6 are the

mid-values based on 1000 runs. As the test results for the

path planning length shown in Fig. 6a, the ACO algorithm-

based path planning scheme performs the best and is closest to

the optimal solution. Meanwhile, in Fig. 6b, we also note that

the running time of the ACO algorithm-based path planning

scheme increases with the number of the CH and performs the

best when the number of the CH is less than 18. From Fig. 6b,

we can as well see that the performance of ACO is between

SA and SOM. To summarized, we select ACO algorithm as

the candidate approach to plan the data collecting path for the

UAV in our scheme.

Besides, in Fig. 7, we also show a path planning

case with 48 CHs based on the ACO algorithm-based

approach. Assuming the data collection is started

from CH 24, the path along the red arrow, i.e., <
24, 10, 42, 5, 48, 39, 32, 21, 13, 25, 14, 23, 11, 12, 33, 46, 15, 40,
9, 1, 8, 38, 31, 44, 18, 7, 28, 36, 6, 37, 19, 27, 43, 17, 30, 20, 47,
3, 22, 16, 41, 34, 29, 2, 26, 4, 35, 45 > can be selected as an

approximate-optimal path. The result in Fig. 7 demonstrates

as well that our scheme can accurately guarantee an efficient

data collection with no duplicate path, leading the ODC

problem to be accurately addressed.

VI. CONCLUSION

In this paper, we have employed the paradigm of intelligent

agriculture to improve farming automation digitalization, and

proposed a hierarchical data collection scheme to perform

energy-optimal data collection in UAV-IWSN based agricul-

tural monitoring systems. To improve the energy efficiency

of data gathering from the UAV-IWSN nodes, the concept

of data compressed sampling and node clustering have been

1CH 1: (6734, 1453); CH 2: (2233, 10); CH 3: (5530, 1424); CH 4: (401,
841); CH 5: (3082, 1644); CH 6: (7608, 4458); CH 7: (7573, 3716); CH
8: (7265, 1268); CH 9: (6898, 1885); CH 10: (1112, 2049); CH 11: (5468,
2606); CH 12: (5989, 2873); CH 13: (4706, 2674); CH 14: (4612, 2035); CH
15: (6347, 2683); CH 16: (6107, 669); CH 17: (7611, 5184); CH 18: (7462,
3590); CH 19: (7732, 4723); CH 20: (5900, 3561); CH 21: (4483, 3369); CH
22: (6101, 1110); CH 23: (5199, 2182); CH 24: (1633, 2809); CH 25: (4307,
2322); CH 26: (675, 1006); CH 27: (7555, 4819); CH 28: (7541, 3981); CH
29: (3177, 756); CH 30: (7352, 4506); CH 31: (7545, 2801); CH 32: (3245,
3305); CH 33: (6426, 3173); CH 34: (4608, 1198); CH 35: (23, 2216); CH
36: (7248, 3779); CH 37: (7762, 4595); CH 38: (7392, 2244); CH 39: (3484,
2829); CH 40: (6271, 2135); CH 41: (4985, 140); CH 42: (1916, 1569); CH
43: (7280, 4899); CH 44: (7509, 3239); CH 45: (10, 2676); CH 46: (6807,
2993); CH 47: (5185, 3258); CH 48: (3023, 1942)
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introduced. For that a hybrid compressed technique for clus-

tering has been implemented. Based on the proposed model,

we introduce a hierarchical data collection scheme integrating

an exact approach and a greedy approach. By dividing the

nodes into different layers, the exact approach and greedy

approach can be intelligently matched. Particularly, for the

exact approach, an improved version of the minimum cost

flow problem – that can be expressed by LP formulation to

model the energy-optimal problem – is designed. The greedy

approach is based on a balance factor parameter, consisting

of both, data sparsity and the distance from the cluster head to

the normal nodes. The proposed scheme is tuned with an ant-

colony-optimization path planning policy. Simulation results

show that this method can efficiently gather the data than

several normal schemes, especially in energy consumption,

and plan the path for the UAV at a low energy cost.

For future work we plan to expand network architecture

aspects. For instance, we intend to utilize software-defined

networking (SDN) technology to improve the scalability of

the monitoring network, such that the network status can be

intensively monitored and surveyed, and the network operation

can be uniformly deployed.
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