
Energy-Optimal Software Partitioning in Heterogeneous
Multiprocessor Embedded Systems

Michel Goraczko
Microsoft Research
One Microsoft Way

Redmond, WA 98052
michelg@microsoft.com

Jie Liu
Microsoft Research
One Microsoft Way

Redmond, WA 98052
liuj@microsoft.com

Dimitrios Lymberopoulos
Electrical Engineering

Yale University
New Haven, CT, 06511

dimitrios.lymberopoulos@yale.edu
Slobodan Matic

Dept. of EECS
Univ. of California

Berkeley, CA, 94720
matic@eecs.berkeley.edu

Bodhi Priyantha
Microsoft Research
One Microsoft Way

Redmond, WA 98052
bodhip@microsoft.com

Feng Zhao
Microsoft Research
One Microsoft Way

Redmond, WA 98052
zhao@microsoft.com

ABSTRACT
Embedded systems with heterogeneous processors extend the en-
ergy/timing trade-off flexibility and provide the opportunity to fine
tune resource utilization for particular applications. In this paper,
we present a resource model that considers the time and energy
costs of run-time mode switching, which considerably improves
the accuracy of existing models. Given an application, the soft-
ware partitioning problem then becomes an optimization over en-
ergy cost given deadline constraints, which can be formulate as
an integer linear programming (ILP) problem. We apply the re-
source modeling and software partitioning techniques to a multi-
module embedded sensing device, the mPlatform , and present a
case study of configuring the platform for a real-time sound source
localization application on a stack of MSP430 and ARM7 proces-
sor based sensing and processing boards.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms
Design

Keywords
Multi-processor scheduling, energy-aware, real-time systems

1. INTRODUCTION
Heterogeneous multi-processors (HMP) are used in embedded

systems for several reasons. For example, DSPs, GPUs, or network
processors are used to improve system performance by speeding
up particular instructions. In other cases, IP providers package
an entire system functionality, such as an 802.11b or GSM radio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM ACM 978-1-60558-115-6/08/0006 ...$5.00.

protocol, into a module that is then integrated into a final sys-
tem. The module usually contains an embedded microcontroller
and application-specific circuits. Recently, platforms with multi-
ple heterogeneous embedded processors are exploited for the pur-
poses of saving energy consumption and extending system life-
time. For this reason, some newly developed wireless embedded
sensor platforms, such as the Pasta sensor node [13], the LEAP
system [11], and the mPlatform [9], all incorporate heterogeneous
multi-processors.

Power savings when using heterogeneous platforms can be sig-
nificant. There are large families of embedded processors with dif-
ferent power and speed characteristics, ranging from 8-bit micro-
controllers that consume several milliwatts to 32-bit microproces-
sors that consume several watts. Their sleep current and wake up
transition energy are also very different. These differences can be
exploited in embedded sensing applications. Take patient monitor-
ing as an example. When there is no interesting event happening,
one wants to use minimum power in low duty cycle sensing and
processing for event detection so that the system life time is long.
However, when there is an interesting event, one may need orders
of magnitude more processing power to quickly analyze and react
to it. Dynamic voltage or frequency scaling (DVS/DFS) may not
be sufficient to cover the range. Having low cost, power efficient
microcontroller reserved for the “quiet” time can lead to big energy
saving.

In HMP platforms, the energy-optimal software partitioning prob-
lem asks how to assign parts of an application to each processors
to achieve maximum system lifetime without sacrificing applica-
tion performance. Due to simplicity in design and implementation,
software partitioning approaches are more practical than dynami-
cal scheduling approaches where each task is allocated to one of
the processors at run time. Here we focus on the partition problem.

Energy saving in computing can be achieved by two means: dy-
namic power management(DPM) and dynamic voltage/frequency
scaling (DVFS). Noting the non-trivial cost of waking up a pro-
cessor from a standby (a.k.a. sleep) mode, with duty cycled work-
load, when the processor has no active job, one needs to decide
whether to simply keep the processor idle or pay the wake up cost
and put the processor into the standby mode. For single proces-
sors, when only active, idle, and standby modes are considered,
a simple notion of break-even time is sufficient to optimize sys-
tem sleep time [4]. With DVFS, one can select the best proces-
sor frequency and supply voltage to meet application performance



requirements with minimum energy consumption [8, 6]. Multipro-
cessor energy-aware scheduling starts to gain more attention as em-
bedded systems use more processor cores. However, multiproces-
sor energy aware scheduling is considerably more complicated than
single processor cases, even for homogeneous multi-processors and
independent tasks. Several heuristics has been proposed for task al-
location problems for rate monotonic scheduling [3] and with vari-
able execution time [15]. Recent works such as [17] use efficient al-
gorithms to assign processor speed even for complex models where
worst-case execution cycle count of a task depends on CPU fre-
quency.

Heterogeneous processors, duty cycled workload, and tasks de-
pendencies are the main challenges to achieve optimal software
task partitioning. For example, is it more energy efficient to use
a low speed processor all the time, or use a high speed processor
and pay the wake up cost? To meet end-to-end application dead-
line, shall one increase the clock frequency of an existing processor
or add another processor to execute in parallel?

In this paper, we propose a comprehensive energy, performance
model and an optimization framework that computes optimal task
partitions for heterogeneous multiprocessors with duty-cycled in-
terdependent real-time tasks. Note that the execution time of a
task cannot be scaled easily across heterogeneous processors. In
fact, they cannot be linearly scaled across different operation fre-
quencies for a single processor due to CPU/memory/IO speed mis-
match [14]. In addition, the wake up time and energy cost also
depend on which destination DVFS setting a processor is waked up
into [10]. These factors motivate us to use discrete operation modes
to model different DVFS settings and sleeping states. This can be
viewed as an extension of the power state machine model in [4].

Software tasks are modeled as acyclic dataflow graphs that cap-
tures task dependencies. This is common in sensing and signal
processing applications. The dataflow graph can be further nested
with state machines to achieve further expressiveness. Each task
(actor) in the dataflow graph can be assigned to a processor un-
der a DVFS mode. We show that the optimal software partition-
ing problem can be formulated as an integer linear programming
(ILP) problem. The solution gives both the optimal number of pro-
cessors needed, task-to-processor assignments, task-to-processor-
mode assignments, and computation and communication schedule,
all within the resource, precedence and timing constraints. Note
that a similar latency minimization (i.e., throughput maximization)
under energy constraints is also tractable in our framework with
some modifications. For clarity reasons, we ignore the energy cost
and latency of communication between processors. These costs and
constraints can be easily incorporated in our model. A full-scale
ILP formulation and solution is given in [7].

We apply our resource model and scheduling algorithm to a sound
source localization (SSL) application on an extensible multi-processor
platform, called mPlatform [9], provided by Microsoft Research.
SSL uses an array of microphones to estimate the direction of sound
sources. It is a computational and memory intensive application
that involves FFT and massive hypothesis testing. The mPlatform
we used in this study consists of one ARM7-based board and four
MSP430-based boards each with a microphone attached. The
SSL application stresses the platform in almost all dimensions:
memory, execution time, and power consumption. Thus, it is an
ideal candidate for verifying our resource model and scheduling
algorithm.

The paper is structured as follows. Section 2 introduces the de-
sign flow for HMP software partitioning and resource and appli-
cation models. Section 3 presents the ILP problem formulation
and solution. Section 4 applies the resource model and schedul-

ing algorithm to an extensible multiprocessor embedded platform
and explores resource optimization for a sound source localization
application.

2. APPLICATION AND RESOURCE MOD-
ELING

This section describes the software partitioning process and gives
a formal specification of the application and resource models that
are used in the configuration optimization presented in the next sec-
tion. Throughout the paper, the lower-case, upper-case, and upper-
case Gothic denote constants, variables, and sets of models respec-
tively.

2.1 Design Flow
We solve the software partitioning problem in two steps, as shown

in Figure 1.

Partitioning
(ILP)

Processor
modes

Timing
Analysis

Tasks

Executio
n time

Power 
state 

machine

App. 
requirements

Task-proc.-
modes

assignments

Figure 1: The design flow for energy optimal software parti-
tioning.

The first step performs application and sleep schedule indepen-
dent timing analysis for individual tasks. In this step, the execu-
tion time for each task on each feasible processor mode is obtained
through either application module profiling or timing simulation
such as using instruction set simulators.

Depending on application requirements, the execution time can
either be worst-case execution time (WCET) for hard real-time ap-
plications, or median execution time for soft real-time applications.
For example, table 2 shows the execution time for individual tasks
in the sound source localization application.

The second step takes the results of step one and takes into ac-
count the relationship between processor power modes, dependency
among tasks, and application performance constraints. These rela-
tionships are converted into ILP constraints as describe further in
section 3. In the rest of this section, we focus on the models that
feed into the second step partitioning problem.

2.2 Application Model
We use a dependent task model for application specification. In

this model, an application is a set of asynchronous components in-
teracting with messages. We call these components tasks. The ben-
efit of using asynchronous message passing is that the tasks may
be mapped to different processors transparent to users. The tasks
respond to input events, process them, and may generate output
events. So, an application is a directed graph of tasks linked by
data precedence dependencies. We call this graph a task graph.
In the following discussion, we restrict ourselves to acyclic task
graphs executed periodically.

Tasks are our basic granularity of configuration mapping. Each
task is mapped to a processor running in a particular power mode.
The communication between two tasks are either local, if the two
tasks are on the same processor; or across the communication bus,



if the two tasks are on different processors. We assume tasks are
atomic, and communication only happens between the execution of
tasks.

Formally,

• An application is a directed acyclic task graph G = (T , E)
with a set of tasks T and E ⊆ T 2. Let τ ∈ T denote a
task, and let a pair (τi, τj) ∈ E denote data dependency, i.e.,
precedence between two tasks τi and τj .

• Let π be a period of the execution of the task graph. Here
we present the procedure for a single-rate application. In a
multi-rate case, different task subgraphs may have different
periods, the constraints are written for multiple instances of
subgraphs, and π is defined as the least common multiple of
all subgraph periods.

• The model also consists of a release time rτ for each source
node τ ∈ Src(G), and a deadline time dτ for each sink node
of τ ∈ Dst(G). We assume rτ ≥ 0 for each source, and
dτ ≤ π for each sink node τ .

An application is associated with a set of user specified con-
straints, such as total energy budget, end-to-end real time require-
ments, and some task-specific mapping. In the paper, we assume
that the structure of a task graph is static. For more complex ap-
plications where the structure changes over time, tasks may be mi-
grated at run time. In those cases, multiple optimal assignments
may be computed offline and applied dynamically online.

2.3 Power State Machine
We formulate a realistic power model for each processor as a

state machine, where each state corresponds to a DVFS setting or
a standby mode. Energy and timing cost of mode switching are
labeled on the transitions.

We consider a set of processors P communicating through a set
of buses. We ignore bus contention issue by assuming a TDMA-
based bus protocol or dedicated buses between every pair of proces-
sors. More general processor communication models are possible
within the formalism, but are not included in this paper for simplic-
ity of the presentation. In fact, we completely removed communi-
cation cost in this paper.

The power model for processor p ∈ P , is a finite state machine,
called power state machine (PSM), consisting of

• A set of active power modes M. The power consumption
under mode m ∈ M is pp,m . A mode is captured by all
parameters that define the power consumption of the node,
such as voltage and frequency scaling, as well as memory
and peripheral configurations.

• In addition to active power modesM, there are typically two
sleep modes S = {I, S}, with IDLE mode I and STBY
mode S. In the IDLE mode (sometimes also called a halt
mode), the CPU simply runs NOP with no memory or pe-
ripheral access. The internal clock is not stopped, but most
other internal components are. For p ∈ P , IDLE mode is
specified with pp,I, the power consumed on component p in
IDLE mode I.

In the STBY mode the internal oscillator is completely stopped
but it can be maintained outside the chip, e.g., through a real-
time clock. For p ∈ P , STBY mode is specified with: pp,S
- the power consumed on processor p in STBY mode S.

• Mode transition costs are captures on the mode transitions in
the power state machine. We use p′p,m to denote the power

consumed during waking up from STBY to mode m ∈M,
and t ′p,m the wake-up time to mode m ∈ M. The costs of
waking up from the IDLE and the transition between active
modes are often considerably smaller than the the same costs
for the STBY mode [10], and thus will be ignored in the
model.

Figure 2 shows the PSM for an ARM7 based-processor OKI
ML675003 with power performance measured in [10].

STBY
Power: ~0 mW

IDLE
Power: 0.25mW

60MHz
Power: 141 mW

30MHz
Power: 72 mW

7.5MHz
Power: 20 mW

negligible
negligible

negligible

1.53 mJ
24.5 ms

0.1 mJ
1.4 ms

1.47 mJ
23.8 ms

Figure 2: Power state machine for ARM7.

2.4 Performance model
Through timing analysis, we obtain the performance for each

task such as execution time on each processor mode. In addition,
some tasks may be pre-mapped to certain processors due to mem-
ory, IO, and other hardware constraints. Formally,

• For each task τ , processor p and mode m , the task execution
time is tτ,p,m . This value can be measured or estimated by
computing the number of cycles a task execute. Note that we
can use worst-case execution time for hard real-time appli-
cation, or use average (or percentile) execution time for soft
real-time applications.

• An optional allocation mapping a of tasks in T̄ ⊆ T to pro-
cessors: aτ,p = 1 if task τ ∈ T̄ is preallocated to proces-
sor p ∈ P , otherwise aτ,p = 0. Depending on a problem
instance, for a subset T̄ of tasks T allocation may be deter-
mined directly by the problem specification.

3. INTEGER LINEAR PROGRAMMING FOR-
MALISM

With the above models, we formulate the energy-optimal soft-
ware problem as a (mixed) integer linear programming (ILP) prob-
lem. The complete solution of the problem consists of allocation
(task-to-processor, task-to-bus) and operation mode (task-to-mode,
bus-to-mode) mappings, but also of a static time schedule for the
tasks. Since the number of processors and power modes is finite
and relatively small, the mappings could be encoded with binary
variables. However, this is generally not true for the schedule part
of the solution and, therefore, one approach for the problem is
(mixed) integer linear programming (ILP). In principle, a correct
ILP solver will always find an optimal solution, whenever there ex-
ists a feasible schedule that satisfies all constraints.

3.1 ILP Variables
We first present the variables of the ILP problem that form the

output of the entire procedure. The set of core variables consists
of: for each task τ ∈ T , each processor p ∈ P and each mode
m ∈M:

• Binary task-to-component allocation variable A. Aτ,p = 1
iff task τ is allocated to processor p.



• Binary task-to-mode and bus-to-mode variable M . Mτ,m =
1 iff task τ is to execute in mode m .

• Binary task transition variable X . Xτ = 1 iff, on a processor
to which τ is allocated, the execution of task τ starts after a
wake-up from standby mode S.

• Integer task execution and communication start time-instant
variables Se and Sc. Let Seτ denote the time instant when τ
starts executing, and let Scτ denote the time instant when τ
starts communicating its output.

Since some constraints cannot be represented as linear expres-
sions of core program variables, additional variables are needed for
the linear form of the formalism. Typically, such variables are de-
termined once the values for the core variables are set. We use the
following binary derived variables to model task dependencies:

• Task allocation variables Uτ,p,m = 1 iff task τ is allocated
to processor p and executes in mode m .

• Task transition variables Kτ,p,m = 1 iff Uτ,p,m = 1 and τ
starts after a wake-up from standby mode S.

• Vτ,τ ′,p = 1 iff τ and τ ′ are both allocated to p.

• Nτ,τ ′,p = 1 iff Vτ,τ ′,p = 1 and τ ′ immediately follows τ ,
not necessarily within the the same period iteration.

• Bτ,τ ′,p = 1 iff Vτ,τ ′,p = 1 and τ ′ immediately follows τ
across period boundaries, i.e., τ ′ is the first and τ the last
executing on p in an iteration.

• Rτ,τ ′,p = 1 iff Nτ,τ ′,p = 1 and between the two tasks the
processor p is in the standby mode S. Let Hτ,τ ′,p represent
the time spent in the standby mode between τ and τ ′.

In general, if the ILP problem variables are bounded, as in our
case, the decision problem is NP-hard. However, many problems
with thousands of variables and constraints can efficiently be solved
with modern ILP tools typically using branch and bound heuristics.
The complexity of ILP solving is determined by the number of both
core variables and derived variables. Let nτ , np and nm be the
sizes of the sets T , P and M respectivelly. The number of core
binary variables is O(nτ · (np + nm)) and the number of core
integer variables isO(nτ ). The number of derived binary variables
is O(nτ · np · (nτ + nm)).

3.2 ILP Constraints
The ILP problem is defined with the following set of constraints.

To make this section concise, we list all constraints considerations
but omit most formulas. A full formalism can be found in [7].

• System assumptions. A task is allocated to a single proces-
sor and a single mode.

• Execution and communication time. These constraints de-
scribe the relationship between core variables Aτ,p and Mτ,m

and derived variables Uτ,p,m .

• Wake-up time. These constraints describe the relationship
between core variables Xτ and derived variables Kτ,p,m .

• Release, deadline and utilization. Each source task τ ∈
Src(G) cannot start execution before its release time instant
Seτ . Similarly, each sink task τ ∈ Dst(G) has to complete
execution before its deadline time instant dτ . Each proces-
sor p ∈ P cannot be utilized above its maximum allowed
utilization up .

• Ordering. These constraints express the periodicity rela-
tions among the tasks. When task periods are not the same,
extra constaints are necessary to capture task ordering across
period boundaries.

• Precedence. A task may be scheduled for execution only
after all its predecessor tasks complete.

• Non-overlaping. A task can begin its execution anytime but
its execution cannot overlap with the execution of other tasks.

• Standby time. These constraints relate the standby time to
the execution time.

• Predetermined variables. The preallocation of tasks T̄ are
specified as equivalent constraints.

3.3 Objective function
We minimize the system power while satisfying timing and de-

pendency constraints described above. Recall that pp,m denotes the
power consumed on processor p ∈ P in mode m ∈ M ∪ S, and
p′p,m denotes the power consumed on p during a wake-up from the
standby mode S ∈ S to mode m ∈ M. Let Tp,m be the total time
in a single period spent on component p ∈ P in mode m ∈M∪S,
and T ′

p,m the time spent in waking up from standby mode to mode
m ∈ M. The system energy consumed in a period π is given with
the linear expression

J =
∑
p∈P

(
∑

m∈M∪S

pp,m · Tp,m +
∑

m∈M

p′p,m · T ′
p,m)

All power data is considered to be known, and all time variables
can be represented through following linear expressions of the ILP
problem variables defined previously:

Tp,m =
∑
τ∈T

tτ,p,m ·Uτ,p,m (for m ∈M)

T ′
p,m =

∑
τ∈T

t ′p,m ·Kτ,p,m (for m ∈M)

Tp,S =
∑
τ∈T

∑
τ ′∈T

Hτ,τ ′,p

Tp,I = π −
∑

m∈M

(Tp,m + T ′
p,m)− Tp,S

4. SSL EXAMPLE ON MPLATFORM
We have built a software tool that automatically generates input

to the CPLEX ILP solver, i.e., the constraints and objective func-
tion, from the high-level application and resource specification. We
experimented with different models and task graphs containing up
to 30 tasks. In most cases the optimization procedure takes 0-20
seconds on a 2GHz server. On larger graphs it may take up to a
couple of minutes, but a user may specify cutoff time after which
the solver outputs the best solution found. We next apply the opti-
mization method to a sound source localization (SSL) application
on mPlatform.

Sound source localization (SSL) is a classical sensing applica-
tion that uses a microphone array to detect the direction of a sound
source. They are used in teleconference, intelligent lecture/class
rooms[12], human-computer interactions, and target tracking. The
basic principle is to use the time differences of arrival from the
sound source to different microphones to triangulate the sound source
location. There are many algorithms proposed for the application



[16]. In this paper, we use a SRP-PHAT algorithm [5] with four
microphones placed at the four corners of a square. The length of
the sides is 20cm.

FFT SC

FFT SC

FFT SC

FFT SC

VOTE

S

S

S

S

2Ns

2Ns

2Ns

2Ns

2Ns

2Ns

2Ns

2Ns

Ns

HT
8Ns

S      – Audio Sampling

FFT  – Fast Fourier Transform

SC    – Noise Estimation &

Signal classification

HT    – Hypothesis Testing

VOTE – Sound detection voting

Figure 3: Task graph of an SSL application.

Application specification. Fig. 3 shows the task graph of the
SRP-PHAT algorithm. The FFT task applies Fourier transform to
the sampled sound signals. The SC task performs noise power esti-
mation. If more than two channels decide that their blocks contain
voice samples, the HT task is executed to determine source loca-
tion through correlation maximization. HT task performs hypoth-
esis testing to find the most likely angle of sound source. For this
discussion, we ignore the cost of VOTE. We used the following
algorithm parameters in our SSL implementation: sampling fre-
quency fs = 8KHz; FFT block size NFFT = 512; number of
hypotheses Nh = 12; sliding window size Nw = 240 samples;
and the number of microphones Nm = 4.

Hardware Platform and PSM. We implemented SSL on a mPlat-
form with two sets of processors ARM7 processors (thereon re-
ferred as ARM) and MSP430 microcontroller (thereon referred
as MSP). Each of the MSP can connect up to 2 omni-directional
microphones. Given that we need 4 microphone channels, we con-
sider a maximum of 1 ARM board and 4 MSP boards. We use a
24-bit wide parallel bus that connects to the local processor through
a programmable bus, implemented using Complex Programmable
Logic Device (CPLD). The CPLD bus is shared using a TDMA-
like protocol. The CPLD bus is fast enough that the communication
latency can be ignored in comparison with task execution time.

TheARM7 processor in our implementation is OKI ML675003
microcontroller with 512K of Flash ROM, and 32K RAM [2]. It
runs at a maximum clock frequency of 60MHz. The clock can
be scaled down by 2 and 8, resulting in 3 different modes corre-
sponding to different operating frequencies. The TI MSP430F1611
microcontroller used in the mPlatform sensor boards operates at 4
different frequencies: 6MHz, 3MHz, 1.5MHz, and 0.75MHz [1].
None of the processors has voltage scaling features.

Table 1 shows the key parameters in the processor PSM, most of
which were obtained by direct measurements on our experimental
setup. We observe that for ARM, there is a non-trivial cost, in terms
of both time and energy, to wake up from a standby mode.

Performance Model We prototyped each software module in SSL
and measured their execution time under various processor modes,
as shown in 2. Since HT requires more storage space that a MSP420
can provide, it can only be implemented on ARM7. This further
becomes a preallocation constraint in the ILP.

It is interesting to observe that although execution time scales
linearly on MSP, it is not so at the low frequency for ARM. For
example, comparing ARM at 60MHz and 7.5MHz, the clock speed
reduced by a factor of 8, but the execution time only increase by a

Parameter ARM7 @2.5V MSP430 @3V
Active power at full speed (mW) 141 @60MHz 10.8 @6MHz
Active power at 1/2 speed (mW) 72 5.4
Active power at 1/4 speed (mW) — 2.7
Active power at 1/8 speed (mW) 20 1.4

Idle power (mW) 0.25 0.005
Standby power (mW) negligible negligible

Wakeup energy (to full speed) (mJ) 1.5 negligible
Wakeup energy (to lowest speed) (mJ) 0.1 negligible

Wakeup time (to full speed) 24.5ms 6µs
Wakeup time (to lowest speed) 1.4ms < 6µs

Table 1: Processor power consumption at different operating
modes.

Processor Mode FFT (ms) SC (ms) HT (ms)
ARM7, 60MHz 7.8 4.4 111
ARM7, 30MHz 15.6 9.0 222
ARM7, 7.5MHz 39.6 23.3 567
MSP430, 6MHz 99.2 37.2 —
MSP430, 3MHz 196 76 —

MSP430, 1.5MHz 394 152 —
MSP430, 0.75MHz 792 300 —

Table 2: The execution time of tasks under different processor
modes.

factor of 5. Combining this with about 7 times power consumption
reduction at the lowest speed, we find that 7.5MHz is a sweet spot
for ARM. We believe this is due to the performance mismatch be-
tween the CPU and flash memory. This verifies our choice of using
explicit power states in the modeling.

Software Partitioning Exploration We used the ILP procedure
presented in Sec. 3 to explore the optimal resource management
assuming the samples are processing with larger period: 130ms,
256ms, and 1s. Note that we only process the last 512 samples
taken in a period, and treat the period boundaries as deadlines.
Depending on the number of preallocated tasks and preassigned
modes the number of variables and constraints varies, but typically
the number of core variables is about one hundred and the number
of constraints several thousands.

Figure 4 shows task allocation results obtained from the ILP
solver:

A. When period D = 130ms, the optimal schedule is shown
in Figure 4(a). Both ARM and 4 MSP have to run at full
speed in order to meet the stringent timing constraints. The
scheduling result clearly shows the pipelining among the tasks
cross the period boundary. That is, FFT and SC executed on
MSP provide data for HT in the next period. Even after ARM
finishes its active task, it cannot go to the STBY mode since
the next iteration is coming up. The total energy for one it-
eration is 21.7mJ, corresponding to 166.7mW average power
consumption. There is a 300mW fixed power cost on ARM
and 0.4mW on MSP boards.

B. When period D = 256ms, the optimal schedule is shown in
Figure 4(b). Notice that only two of the four MSP boards are
necessary. Although the schedule in [A] is still feasible, the
wakeup energy cost prevents ARM to get into the standby
mode. The optimal schedule assign ARM to 30MHz, with
34ms of idle mode. The total energy for one iteration is
22.1mJ, corresponding to 86.4mW average power consump-
tion due to the longer period. Note that were we still use



50 100 150

50 100 150

50 100 150

50 100 150

50 100 150

50 100 150

ARM7

60MHz

MSP4

6MHz

MSP3

6MHz

MSP2

6MHz

MSP1

6MHz

CPLD

VOTE&HT

STBY

IDLE

ACTIVE

COMM

FFT SC

FFT SC

FFT SC

FFT SC

130
50 100 150 200 256

50 100 150 200 256

50 100 150 200 256

50 100 150 200 256

50 100 150 200 256

50 100 150 200 256

ARM

30MHz

MSP4

6MHz

MSP3

6MHz

MSP2

6MHz

MSP1

6MHz

CPLD

VOTE&HT

STBY

IDLE

ACTIVE

COMM

FFT SC

FFT SC

FFT SC

FFT SC

(a) (b)

200 400

200 400

200 400

200 400

200 400 600 800 1000

200 400 600 800 1000

ARM7

7.5MHz

MSP4

6MHz

MSP3

6MHz

MSP2

6MHz

MSP1

6MHz

CPLD

4FFT VOTE&HT

STBY

IDLE

WAKE

COMM

SC

600 800 1000

600 800 1000

600 800 1000

600 800 1000

SC

SC

SC

(c)

Figure 4: Optimal task scheduling results: (a)period=130ms (b) period=256ms (c) period=1000ms

schedule A, ARM7 would go to standby and the total dy-
namic energy use would be 22.7mJ.

C. When period D = 1000ms, the optimal schedule is shown
in Figure 4(c). The very relaxed timing constraints, together
with the negligible communication cost, leads to an assign-
ment of tasks only by their corresponding processor energy
efficiency. In fact, we need to pre-allocate Sampling tasks
with 0 cost to the MSP boards to enforce the hardware con-
straints that each MSP can only support up to two micro-
phones. This permits ARM to use the slowest mode of 7.5MHz,
which is the most energy efficient. Since the wakeup energy
is also low, ARM can get into standby mode between com-
putations. The optimal schedule also assigns FFT to ARM,
but leaves SC on MSP, since it is more energy efficient to run
SC on MSP at 6MHz. The total energy consumption for one
iteration is 16.2mJ, corresponding to 16.2mW on average.

From the resource optimization results, we can see that with in-
creasing iteration periods, we can improve power performance and
lower hardware cost by properly selecting the number of proces-
sors, their modes and task assignments. The cost to pay is an in-
crease in the application response time. In comparison to the ILP
results, we measured 575 mW average power consumption for the
entire application running schedule A. Therefore, the scheduling
experiments capture about 28% of the total power consumption.
With about 400 mW consumed by voltage regulators, microphones,
LEDs, memory, I/O, etc., there is a large space to exploit in terms
of controlling peripherals.

5. CONCLUSION
We tackle the challenge of resource modeling and software par-

titioning in heterogeneous multiprocessor embedded systems. Our
model does not assume linear execution time nor power consump-
tion with respect to clock frequencies. It is based on a more generic
notion of PSM with the cost of mode switching. With an ILP for-
malism, we solve the optimal hardware configuration, processor
mode selection, and task-to-processor assignment to achieve min-
imum energy consumption given end-to-end time constraints. Us-
ing a sound source localization application as an example, we show
fine-grained resource trade off based on application quality require-
ments. When the number of tasks in an application is huge, ILP

solutions become challenging. Fast and suboptimal heuristics are
necessary as a future work.

6. REFERENCES
[1] MSP430: Ultra-Low Power Microcontrollers. http://www.ti.com.
[2] OKI ML67Q5003: ARM7TDMI Processor. http://www.okisemi.com.
[3] T. A. AlEnawy and H. Aydin. Energy-aware task allocation for rate monotonic

scheduling. In RTAS ’05: Proceedings of the 11th IEEE Real Time on
Embedded Technology and Applications Symposium, pages 213–223,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques for
system-level dynamic power management. IEEE Trans. Very Large Scale Integr.
Syst., 8(3):299–316, 2000.

[5] M. Brandstein and H. Silverman. A robust method for speech signal time-delay
estimation in reverberant rooms. In ICASSP, page 375. IEEE Computer Society,
1997.

[6] D. Li, P. H. Chou, and N. Bagherzadeh. Mode selection and mode-dependency
modeling for power-aware embedded systems. In vlsid, ASP-DAC/VLSI Design
2002, pages 697–705, 2002.

[7] J. Liu and S. Matic. mplatform: A flexible and efficient architecture for sharing
data in stack-based sensor network platforms. In Microsoft Research, Technical
Report MSR-TR-2006-142, 2006.

[8] Y.-H. Lu, L. Benini, and G. D. Micheli. Dynamic frequency scaling with buffer
insertion for mixed workloads. IEEE Trans. on CAD of Integrated Circuits and
Systems, 21(11):1284–1305, 2002.

[9] D. Lymberopoulos, B. Priyantha, and F. Zhao. mplatform: A reconfigurable
architecture and efficient data sharing mechanism for modular sensor nodes. In
Information Processing in Sensor Networks (IPSN), 2007.

[10] D. Lymberopoulos and A. Savvides. Xyz: a motion-enabled, power aware
sensor node platform for distributed sensor network applications. In IPSN,
pages 449–454. IEEE Press, 2005.

[11] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser. The low power
energy aware processing (leap) embedded networked sensor system. In IPSN
’06: Proceedings of the fifth international conference on Information processing
in sensor networks, pages 449–457, New York, NY, USA, 2006. ACM.

[12] Y. Rui, A. Gupta, J. Grudin, and L. He. Automating lecture capture and
broadcast: technology and videography. ACM Multimedia Systems Journal,
10(1):3–15, 2004.

[13] B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and L. Wang. A modular
power-aware microsensor with > 1000x dynamic power range. In Information
Processing in Sensor Networks (ISPN) 2005, SPOTS track, Los Angeles, CA,
April 2005.

[14] D. C. Snowdon, S. Ruocco, and G. Heiser. Power management and dynamic
voltage scaling: Myths and facts. In Proceedings of the 2005 Workshop on
Power Aware Real-time Computing, Sept. 2005.

[15] C. Xian, Y.-H. Lu, and Z. Li. Energy-aware scheduling for real-time
multiprocessor systems with uncertain task execution time. In DAC ’07:
Proceedings of the 44th annual conference on Design automation, pages
664–669, New York, NY, USA, 2007. ACM.

[16] C. Zhang, Z. Zhang, and D. Florêncio. Maximum likelihood sound source
localization for multiple directional microphones. In ICASSP, 2007.

[17] X. Zhong and C.-Z. Xu. Frequency-aware energy optimization for real-time
periodic and aperiodic tasks. In LCTES, pages 21–30, 2007.


