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Abstract 

The water supply industry is a very important element of a modern economy; it 

represents a key element of urban infrastructure and is an integral part of our modern civilization. 

Billions of dollars per annum are spent internationally in pumping operations in rural water 

distribution systems to treat and reliably transport water from source to consumers. 

In this dissertation, a new multi-objective optimization approach referred to as energy 

optimization strategy is proposed for minimizing electrical energy consumption for pumping, the 

cost, pumps maintenance cost, and the cost of maximum power peak, while optimizing water 

quality and operational reliability in rural water distribution systems. Minimizing the energy cost 

problem considers the electrical energy consumed for regular operation and the cost of maximum 

power peak. Optimizing operational reliability is based on the ability of the network to provide 

service in case of abnormal events (e.g., network failure or fire) by considering and managing 

reservoir levels. Minimizing pumping costs also involves consideration of network and pump 

maintenance cost that is imputed by the number of pump switches. Water quality optimization is 

achieved through the consideration of chlorine residual during water transportation. 

An Adaptive Parallel Clustering-based Multi-objective Particle Swarm Optimization 

(APC-MOPSO) algorithm that combines the existing and new concept of Pareto-front, operating-

mode specification, selecting-best-efficiency-point technique, searching-for-gaps method, and 

modified K-Means clustering has been proposed. APC-MOPSO is employed to optimize the 

above-mentioned set of multiple objectives in operating rural water distribution systems.  

Saskatoon West is, a rural water distribution system, owned and operated by Sask-Water 

(i.e., is a statutory Crown Corporation providing water, wastewater and related services to 

municipal, industrial, government, and domestic customers in the province of Saskatchewan). It is 

used to provide water to the city of Saskatoon and surrounding communities. The system has six 

main components: (1) the pumping stations, namely Queen Elizabeth and Aurora; (2) The raw 

water pipeline from QE to Agrium area; (3) the treatment plant located within the Village of 

Vanscoy; (4) the raw water pipeline serving four major consumers, including PCS Cogen, PCS 

Cory, Corman Park, and Agrium; (5) the treated water pipeline serving a domestic community of 

Village of Vanscoy; and (6) the large Agrium community storage reservoir. 
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In this dissertation, the Saskatoon West WDS is chosen to implement the proposed 

energy optimization strategy. Given the data supplied by Sask-Warer, the scope of this 

application has resulted in savings of approximately 7 to 14% in energy costs without adversely 

affecting the infrastructure of the system as well as maintaining the same level of service 

provided to the Sask-Water’s clients. 

The implementation of the energy optimization strategy on the Saskatoon West WDS 

over 168 hour (i.e., one-week optimization period of time) resulted in savings of approximately 

10% in electrical energy cost and 4% in the cost of maximum power peak. Moreover, the results 

showed that the pumping reliability is improved by 3.5% (i.e., improving its efficiency, head 

pressure, and flow rate). A case study is used to demonstrate the effectiveness of the multi-

objective formulations and the solution methodologies, including the formulation of the system-

operational optimization problem as five objective functions. Beside the reduction in the energy 

costs, water quality, network reliability, and pumping characterization are all concurrently 

enhanced as shown in the collected results. The benefits of using the proposed energy 

optimization strategy as replacement for many existing optimization methods are also 

demonstrated. 
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Chapter 1 

Introduction 

1.1 Preface 

Globally, the overall water demand (i.e., residential, commercial, and industrial) is 

increasing while the sources (e.g., rivers, lakes, wells, etc.) are more limited. Water demand 

forecasting and management are therefore increasingly more important. In water distribution 

systems, water is routinely pumped from a source to supply nodes in a network in which water is 

stored in reservoirs and then consumed. In water distribution systems, pumping operations are 

expensive as they usually consume electrical energy. 

Water quantity and quality vary depending on the physical characteristics of pipeline, 

reservoirs, and, pumps as well as the level of technology and expertise applied for their control. 

With today’s high water production and supply costs, many researchers have been developing 

new strategies to optimize the operation of water distribution systems that may lead to reduce 

energy consumption. 

During the last two decades, researchers have been developing various strategies for 

optimizing pump operations. The problem of pump scheduling (i.e., as an optimization problem) 

is difficult to solve because of the large search space, computational complexity, and the 

nonlinear and discontinuous nature of the problem. 

Classical optimization techniques (e.g., gradient-based methods) are useful in finding the 

optimum solution of continuous and differentiable functions. Therefore, these methods are 

limited in scope as most practical applications involve objective functions that are not continuous 

and/or differentiable, [1]. Unlike classical optimization techniques, heuristic techniques (free 

derivative-based methods) have continuously shown competency and proficiency in solving 

multi-objective optimization problems (MOOPs). In particular, heuristic algorithms that mimic 

nature’s evolutionary pattern have been proposed, including: 

 Evolutionary Computation (EC): based on biological evolution, [2]; 
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 Genetic Algorithms (GAs): based on imitating the natural evolution (e.g., mutation, selection, 

and crossover), [3,4]; 

 Deferential Evolution (DE): based on intelligent use of evolution strategy (e.g., differential 

mutation), [5]; 

 Ant Colony (AC): based on swarm intelligence theory, [6]; and 

 Particle Swarm Optimizer (PSO): based on individual and social behavior using 

communication among agents, [7]. 

Multi-objective optimization relies on Pareto optimality and its aim is to find the Pareto-

optimal front. A tentative solution (i.e., a vector of decision variables) is referred to as non-

dominated or Pareto-front (PF), if it cannot be replaced by another solution which improves an 

objective without worsening another one. This concept usually does not give a single solution, but 

rather a set of quantitative solutions called the Pareto-front set that can be used for qualitative 

comparison. Finding such Pareto-front set is the goal when solving a multi-objective optimization 

problem. 

There are two common conflicting forces in all multi-objective heuristics, particularly 

those that are population-based: exploration and exploitation. Hence, every good heuristic 

technique needs to maintain the right balance between the extent of exploration in the search 

space and the extent of exploitation of the information obtained up until the current searching 

iteration. Such a trade-off between the ability of maintaining diversity of the obtained solutions 

(i.e., globally searching the entire feasible region) and the ability of achieving convergence (i.e., 

locally searching promising sub-regions) will allow the heuristic techniques to have an adequate 

and effective search property, [8,9,10,11]. 

Furthermore, excessive exploitation will induce premature convergence and depress 

diversity. On the other hand, excessive exploration will result in slow convergence and arbitrary 

long computational time. Thus, in most advanced heuristic algorithms, these issues are controlled 

by suggesting an appropriate switching mechanism between exploration and exploitation during 

the search for better performing and flexible searching ability. 

Despite the difference of heuristic techniques in their exploitation and exploration 

capability, they all share the common purpose of searching for an optimal, well-extended, and 

uniformly distributed Pareto-front for a given MOOP. 

1.2 Problem Statement 

Pumping cost and energy consumption are very large in water supply operations. Billions 

of dollars are yearly spent in pumping across water utilities worldwide. Hence, improving the 

operation of pumps can have large economic implications. Pumping optimization entails not only 

minimizing energy costs of Water Distribution Systems (WDS) without changing their basic 

elements, but also planning their operations within physical and operational constraints. 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

3 

Saskatoon West WDS is a model for rural WDS that is chosen to implement the proposed 

Energy Optimization Strategy (EOS). This system supplies water to farmers, villages, residential 

areas, and large industrial users near the City of Saskatoon. This system is owned and operated by 

Sask-Water, which is interested in implementing the outcome of this research. In 2007, this 

network delivered 990 million gallons of water to five major customers across 36 kilometers of 

pipelines. 

Pumping operation and energy optimization can be implemented without adversely 

affecting the supply capability and infrastructure of the WDS. The challenge ahead is to develop 

an energy optimization strategy, which is accurate, safe, and applicable to a wide range of WDS 

applications. 

1.3 Dissertation Objectives 

Pumping systems (e.g., water distribution systems, power plants, manufacturing factories, 

wastewater treatment facilities, etc.) consume nearly 25% of the energy consumed by electric 

motors, and on average account for approximately 30% of the total electrical energy usage in 

many industrial sectors, processes, and applications, [12]. Therefore, improving the design, 

retrofitting, and operating practices of pumping systems can have a large impact and would lead 

to significant opportunities to reduce operating costs. 

In water distribution systems (WDS), pumps run continuously and require the heavy use 

of energy. Pumps are usually oversized and operated in a mode that is inefficient (i.e. they often 

operate away from their Best Efficiency Point (BEP)). Therefore, a considerable amount of 

energy is wasted. There are significant opportunities to operate pumps more effectively in a more, 

reliable, efficient, and economic manner through optimization. 

This research considers the application of heuristics algorithms for minimizing the cost of 

electricity in pumping operations in rural water distribution systems while maintaining their 

safety and reliability. Most of the published works in optimizing the operations of pumps in WDS 

use empirical results combined with a bi-objective cost function including electricity (energy 

consumed) cost and pump scheduling (switching pumps ON or OFF). More recently, researchers 

have begun to consider other objectives, such as water quality and network reliability, [13,14,15]. 

1.3.1 Dissertation Hypothesis 

The method proposed in this dissertation for energy optimization involves a combination 

of the proposed method of Particle Swarm Optimization (PSO) and the concept of Pareto-

dominance, as well as new techniques such as: 
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 Adaptive Parallel- Clustering-based Multi-objective PSO (APC-MOPSO): a multi-objective 

heuristic algorithm that is proposed to optimize the energy consumption and system operation 

of the Saskatoon West WDS. 

 Operating-Mode Pointer (OMP): a technique that encodes the pumping operation into 

operating-modes that capture the pump scheduling, operational conditions, and system’s 
settings and constraints. The operating modes are a set of feasible solutions (i.e., candidate 

solutions) that can be used by the optimization technique, 

 Searching-for-Gaps (SFG): a technique that can enhance the performance of multi-objective 

heuristic techniques in terms of improving their diversity property, 

 Selecting-Best-Operating Point (SBOP): a technique that utilizes the relationships between 

the pump’s head, flow rate, speed, and efficiency to obtain an operating point that is closer to 

the Best Efficiency Point (BEP), and 

 Modified K-Means: a technique that uses a modified version of K-Means as a clustering tool 

to improve the performance of the optimization technique. 

The Energy Optimization Strategy (EOS) is applied to the Saskatoon West WDS. The 

implementation objective is to obtain savings of approximately 7 to 14% in electricity 

consumption without adversely affecting the service provided to Sask-Water’s clients. 

1.4 Novelty and Contributions 

The main contribution of this dissertation is the development of a novel Energy 

Optimization Strategy (EOS) and its application to rural water distribution systems. The novel 

EOS generates new sets of operating-modes that enhance not only the network performance but 

also reduces the energy costs and in maintaining a high level of network reliability. The EOS 

method includes: 

 A comprehensive literature review is presented on Multi-objective Particle Swarm 

Optimization (MOPSO) and their applications in the last two decades. 

 A novel Multi-objective Particle Swarm Optimization algorithm, namely Adaptive 

Parallel Clustering-based Multi-objective Particle Swarm Optimization (APC-MOPSO). 

 A novel Operating-Mode Pointer (OMP). 

 A novel Searching-for-Gaps technique (SFG). 

 A novel Selecting-Best-Operating Point technique (SBOP). 

The energy optimization strategy (EOS) has unique properties: 

 The APC-MOPSO is derivative free. Its application to fifteen well-established 

benchmark problems indicates that the ACP-MOPSO provides the closest known Pareto-

optimal front for all the problems considered. 
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 Most remarkably, its application to the real-world systems (e.g., pumping systems that 

are complex, non-linear and have multiple peaks). 

Finally, the proposed energy strategy has been applied to the Saskatoon West WDS. This 

application has entailed the following. 

 A hydraulic model has been developed for the Saskatoon West WDS that considers both 

hydraulic operation as well as water quality. 

 A new C++ interface has been developed for the hydraulic simulator (EPANET) and 

MATLAB. 

1.5 Organization of the Dissertation 

This dissertation is organized into seven chapters. 

 Chapter 2 reviews the literature on Multi Objective Particle Swarm Optimization (MOPSO) 

algorithms. This comprehensive review is discussed under two broad headings. In the first 

part, the Particle Swarm Optimization’s taxonomy, background, and state-of-the-art 

algorithms are comprehensively reviewed. These include modified, hybrid, parallel, cluster-

based, and dynamic environment PSO versions that have been developed during the last two 

decades. The second part provides a survey of PSO applications, trends for future PSO 

applications, and ideas for new PSO algorithms. 

 Chapter 3 investigates the physical structure (i.e., elements) of the Saskatoon West WDS as 

well as its dynamic behavior. A physical interpretation of the network’s parameters is 
provided. A validated hydraulic model is developed to determine the flow of water in each 

pipe, the pressure at each node, the elevation of the water level in each tank, and the chlorine 

concentration throughout the network by simulation. A detailed discussion about the physical 

constraints (i.e., network limitations and operating restrictions) as well as the procedure used 

in modeling the network delivery profile is also given. The simulation results are compared 

with measured network data (provided by Sask-Water) for both steady-state and extend 

simulation period cases. 

 Chapter 4 represents the new Adaptive Parallel Clustering-based Multi-objective Particle 

Swarm Optimization (APC-MOPSO) algorithm. This algorithm is developed for constrained 

discrete-time nonlinear multi-modal multi-objective problems. It uses the following concepts: 

(i) Pareto-front, (ii) parallel computing (iii) modified K-Means clustering, (iv) external 

repository, and (v) dynamic model for updating the particle velocities and positions. The 

computational complexity of the APC-MOPSO is also considered. Its implementation on 

well-known benchmark test problems of APC-MOPSO is presented and comprehensively 

discussed. The APC-MOPSO is then compared with other well-known multi-objective 

optimization algorithms. 
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 Chapter 5 presents three new methods that augment the APC-MOPSO. These are the 

Searching-for-Gaps (SFG), Operating-Mode Pointer (OMP) and the Selecting-Best-Operating 

Point (SBOP). The new Searching-for-Gaps technique is used to enhance APC-MOPSO’s 

exploration and exploitation abilities. The Operating-Mode Pointer and the Selecting-Best-

Operating Point are designed to address the importance of obtaining a set of pumping 

operations that can be implemented on a real WDS in a safe and reliable manner. 

 Chapter 6 amalgamates the new concepts and strategies considered in Chapters 4 and 5. The 

Adaptive Parallel Clustering-based Multi-objective Particle Swarm Optimization (APC-

MOPSO) algorithm is developed and used to optimize the Saskatoon West WDS. Hydraulic 

simulation for the network dynamics is directly integrated with the proposed APC-MOPSO 

algorithm to investigate both the steady-state and quasi steady-state (or called as extent period 

simulation) of the network behavior. Finally, a case study is used to evaluate the performance 

of the proposed energy optimization strategy when applied to the Saskatoon West WDS. The 

application considers energy consumption and cost, maintenance cost, water quality, network 

safety, and network reliability. 

 Chapter 7 provides the concluding remarks. 
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Chapter 2 

Literature Review 

This chapter reviews a variety of methods for optimization problems that are often 

complex and involve functions with multiple peaks and multiple constraints. These methods often 

require a large computational power. In the past two decades, powerful heuristic algorithms have 

been developed in line with increasing power of computers. Promising new concepts that have 

emerged based on swarm intelligence theory, notably the Particle Swarm Optimization (PSO). A 

growing body of researchers in the optimization community is increasingly drawing on PSO to 

tackle hard optimization problems. The reasons behind the rising popularity of PSO is that it 

offers better searching efficiency (i.e. exploring and exploiting capabilities) for finding the global 

optimal solution, while providing fast convergence and reduced computational complexity. 

This chapter provides the PSO’s taxonomy, background, and state-of-the-art algorithms. 

These include the six categories that most of the PSO algorithms belong in modified, hybrid, 

parallel, clustering-based, and dynamic environment that have been developed during the last two 

decades. Furthermore, this chapter reviews different PSO applications and a variety of PSO 

numerical experiments. 

2.1 Introduction 

In 1858, Charles Darwin pieced together his evolutionary theory of natural selection. 

Evolution theory is originally defined as cumulative events occurring consequently and resulting 

in small genetic variations in the whole population. These variations usually result in organisms 

that are better adapted to their environment. Natural selection can be defined as variations in the 

genotype that increase an organism’s likelihood of survival and reproduction. Organisms 
therefore prevail from generation to generation sometimes at the expense of others, [16]. Hence, 

evolutionary theory is still today one of the bedrocks of modern biology. 

While Evolutionary Algorithms (EAs) are known as optimization tools that mimic the 

competitiveness of nature (i.e., reflect the nature and the theory of natural evolution or selection). 

Particle Swarm Optimization (PSO), originally proposed by Kennedy J. and Eberhart R.C. [7], 
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and Ant Colony Systems (ACS), proposed by Colorni et al. [6], both are classified as advanced 

forms of cooperative heuristic optimization that imitate the swarm intelligence theory. PSO is 

known as a search tool using a set of cooperating (interacting) particles flying through the search 

domain each with a fitness level or factor. These particles are naturally controlled by forces that 

direct them in a direction that would improve their “fitness”, eventually leading to the global 
optimum. 

PSO is a population-based heuristic technique that involves a swarm of particles that fly 

around the search space looking for “better” solutions. There is increasing evidence that Particle 
Swarm Optimization outperforms Genetic Algorithms (GA) and other Evolutionary Algorithms 

(EAs) proposed in the past decade in solving difficult Multi Objective Problems (MOPs), [17]. 

Accordingly, PSO is one of the more popular heuristic techniques. 

2.2 Heuristic Optimization Techniques 

Several heuristic optimization techniques have been developed in the last five decades 

that enable solving optimization problems that were considered as impossible or hard to solve. 

One of the most famous definitions of heuristic optimization is that of Osman et al. in 1996, [18]. 

The given definition introduces heuristic optimization as an iterative population-based process. It 

uses memory combined with different methods such as artificial intelligence, biological 

evolution, and natural/physical sciences for exploring and exploiting the search spaces to obtain 

better near-optimal solutions. According to this definition, heuristics are flexible techniques that 

can be reformed to fit any specific problem. The well-known heuristic techniques that are 

inspired from nature include: 

 Simulated Annealing (SA) based on artificial intelligence [19], 

 Tabu Search (TS) based on memory skill [20], 

 Evolutionary Computation (EC) based on biological evolution [2], 

 Genetic Algorithms (GAs) based on natural and physical sciences [3,4], 

 Deferential Evolution (DE) based on evolution strategy [5], and 

 Ant Colony (AC) and Particle Swarm Optimizer (PSO) based on individual and social 

behavior using communication among agents [7,6]. 

In recent years, researchers have focused on new/other heuristic techniques, such as 

Shuffled Frog-Leaping Algorithm (SF-LA) [21], Harmony Search (HS) [22], Cross Entropy (CE) 

[23], and Scatter Search (SS) [24]. These approaches interestingly showed great capabilities in 

solving Non-deterministic Polynomial (NP) problems, [25]. 

The basic techniques of heuristic are provided as follows, [26]: 

 Trajectory method: current solution slightly modified (i.e., its search direction or state) by 

searching within the neighborhood in the search space. Notably examples are Simulated 

Annealing (SA) and Tabu-Searching (TS), 
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 Discontinuous method: exploit the full search space for new solutions. Discontinuity is 

induced by generating starting solutions which correspond to jumps in the search space. 

Examples include Genetic Algorithm (GA), Ant Colony (AC), and Particle Swarm 

Optimization (PSO), 

 Single agent method: one single solution per iteration is processed. This is typically the case 

in Simulated Annealing (SA) and Tabu-Searching (TS), 

 Multi-agent or population based method: a group of solutions (i.e., population) is used to 

explore in the search space. They constitute the algorithm’s collective experience. Genetic 

Algorithms (GA), Ant Colony (AC), and Particle Swarm Optimization (PSO) are examples 

of the multi-agent method. 

 Guided search or search with memory usage method: incorporates extra rules on where to 

explore in the search space. Examples are PSO whereas a swarm represents memory of the 

previously and recent flight experience, GA whereas a population represents memory of 

recent search experience, and AC whereas a pheromone matrix represents an adaptive type 

of memory of previously visited solutions in the search space, and 

 Unguided search or memory-less method: relies completely on the search heuristic. 

A comparison of heuristic techniques listed above and their features is provided in     

Table 2.1. 

 

Table 2.1: Common Heuristic Techniques and their Features 

The symbol √means that the feature is present, (√) means that the feature is partially present 

while no means not present. 

Features SA TS EC GA DE AC PSO 

Trajectory √ √ √ (√) no (√) (√) 
Discontinuous no no √ √ √ √ √ 

Single agent √ √ no no no no no 

Population based no no √ √ √ √ √ 

Guided search no √ √ √ √ √ √ 

Unguided search √ no no no no no no 

 

Heuristic techniques have the following advantages: 

1. Most algorithms mimic nature, 

2. Easy to implement, 

3. Very flexible, 

4. Readily handle constraints at low additional computational cost, 

5. Robust to problem size, and 

6. Solve hard non-deterministic polynomial (NP) problems. 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

10 

On the other hand, heuristic techniques have the following disadvantages: 

1. Require problem knowledge, 

2. Convergence may not be, 

3. Repeated searches may not guaranteed yielding the same solutions to the same problem, and 

4. Computational complexity. 

Classical optimization paradigms are preferable for problems that are simple, continuous, 

and differentiable. They fail to find a global optimum in problems that involve discrete-

continuous or mixed variables, multiple competing objectives, discontinuity, and non-convex 

region. The disadvantages of heuristic optimization paradigms in terms of availability and 

efficiency are comparatively less pronounced. 

In the early 1908s, “Meta-Heuristics” have developed and widely used to tackle several 

practical and difficult optimization problems. These families of approaches guide a subordinate 

heuristic by intelligently combining different concepts for exploring and exploiting the search 

space using a variety of learning strategies to effectively find near-optimal solutions, [18]. 

Recently, a new term in the optimization community is the “Hybrid Meta-Heuristic” 

technique; this refers to new approaches obtained by assembling different heuristics components 

in order to improve the robustness and performance of the search. 

2.3 Multi-Objective Optimization Problems: Basic Concept 

This section presents the basic concept and definitions used in Multi-objective 

Optimization Problems (MOOPs) (also known as multi-criteria, multi-dimensions, or vector 

optimization). MOOPs differ from the Single-objective Optimization Problems (SOOPs) by 

having not only one but a number of objective functions. These objective functions are usually in 

competition or in conflict with each other. Thereby, in solving such problems, many solutions can 

be obtained rather than having one optimum solution as in the SOOPs. 

In real-world applications, optimization problems often need to consider many objectives 

and are thus better suited to a multi-objective optimization problem. The MOOPs can be utilized 

to provide multiple high-quality solutions. A decision maker can then select from a range of 

alternative solutions (e.g., Pareto-front), an option that would best fulfill the decision-makers 

preferences. 

The general form of MOOP is as follows: 

Minimize / Maximize  ( )     ( )   ( )     ( )  
While the goal is to: 

Find a solution   that optimizes  (  )                   

Subject to   ( )                                                    ( )                                                  
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where:                  is the vector of decision variables that is mapped in the decision space;                     are the objective functions;                        are the mathematical inequality constraint functions in the decision space;                        are the mathematical equality constraint functions in the decision space;                                  are called decision variable bounds that restrict each decision 

to be within the lower and upper bounds. 

The aim of solving a multi-objective optimization problem is to trade-off between 

objectives, as seldom can all objectives be simultaneously satisfied. The concepts of dominance, 

Pareto optimality, Pareto-front set, and Pareto ranking are the powerful tools for qualitative and 

quantitative assessment of optimal solutions. These are presented as follows. 

Definition 1: Pareto Dominance 

In the context of multi-objective optimization, a solution candidate    is said to dominate 

another candidate solution    (denoted by      ) if and only if  (  ) is partially less than  (  ) such as:    {       }           (  )    (  )         {       }       (  )    (  )  
Based on the Dominance notion, it can be said that    is preferable to    when solution    dominates solution   . 

To illustrate the concept of Pareto-dominance, Figure 2.1 shows a set of candidate 

solutions for a minimizing bi-objective problem. In this figure, candidate solution 1 (  ) 

dominates solutions {5, 6, 8, 9, 13, 14}, and four non-dominated solutions that are 1, 2, 3, and 4. 

 

 

                                     

                         

                   

Figure 2.1: Example for the Dominance Relation in a Two-objective Minimization Function 
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Definition 2: Pareto Optimality 

A feasible solution      (where F denotes the feasible region of the problem) is 

Pareto-optimal, if and only if there is no feasible solution      such that:      . 

According to this definition,    is referred to as Pareto-optimal, if and only if there does 

not exist any other feasible solution    that would improve some objectives without causing a 

simultaneous degradation in at least one other objective. Therefore, the solution to a multi-

objective optimization problem (MOOP) considering Pareto optimality is a set of feasible, non-

dominated solutions that is referred to as the Pareto-optimal set. 

Definition 3: Pareto-optimal Set 

For a given multi-objective problem,  ( ), the Pareto-optimal set (  ) is defined as:    {    |                     } 
When the solutions in the Pareto-optimal set are plotted in the objective space (as 

illustrated in Figure 2.1), they are collectively called a Pareto-front. 

Definition 4: Pareto-front 

For a given multi-objective problem  ( ) and its Pareto-optimal set (  ), the Pareto-

front (   ) is defined as:     { ( )  (  ( )   ( )     ( )|        )} 
Figure 2.2 depicts the Pareto-front of a bi-objective optimization problem. 

 

 

Figure 2.2: Pareto-front for Minimizing a Bi-objective Function 

Definition 5: Pareto Ranking 

An individual’s rank corresponds to the number of individuals in the current population 
by which it is dominated. One of the simplest methods for computing fitness values is to let the 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

13 

individuals directly reflect the Pareto-dominance relation. Figure 2.1 and Table 2.2 illustrate the 

Pareto-dominance relations in a population of 14 individuals for minimizing a bi-objective 

problem. 

 

Table 2.2: The Pareto Domination Relation of the Individuals depicted in Figure 2.1 

Solution Is Dominated to Is Dominated by Rank 

1 {5,6,8,9,13,14} {} 0 

2 {6,7,9,10,12,13,14} {} 0 

3 {11,12,13,14} {} 0 

4 {} {} 0 

5 {8,14} {1} 1 

6 {8,9,13,14} {1,2} 2 

7 {9,10,13,14} {2} 1 

8 {14} {1,5,6} 3 

9 {13,14} {1,2,6,7} 4 

10 {13,14} {2,7} 2 

11 {12,13,14} {3} 1 

12 {} {2,3,11} 3 

13 {14} {1,2,3,6,7,9,10,11} 8 

14 {} {1,2,3,5,6,7,8,9,10,11,13} 11 

Definition 6: Global and Local Pareto-optimal (see Figure 2.3) 

Like global and local optimal solutions in the single-objective optimization, there will be 

global and local Pareto-optimal sets in multi-objective optimization (MOOP). Therefore, in the 

MOOP case, the concept of a globally optimal solution infers that an improvement in one 

objective results in deterioration in another. Similarly, local optima’s may exist when a non-

dominated set within a neighborhood is obtained. 

Let  ́    be a set of decision vectors 

i. The set  ́ is denoted as a local Pareto-optimal set if and only if    ́       ́     ∄              ́   ‖   ́‖         ‖ ( )   ( ́)‖     

where ‖    ‖ is the corresponding distance metric and        . 

ii. The set  ́ is called a global Pareto-optimal set if and only if  ∄   ́       ́     ∄                ́ 
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2- dimensional Representation 3-dimensional Representation 

Figure 2.3: Local/Global Maxima/Minima are represented in the diagram 

 

To illustrate the concept of Pareto-front set, Figure 2.4 shows many cases in which 

different set of non-dominated solutions are formed into different shapes based on their 

convergence and diversity. Figure 2.4.a shows the Pareto-optimal front (i.e., true Pareto-front) of 

a minimizing multi-objective optimization problem. Figure 2.4.b depicts a case in which the 

Pareto-front set has a good diversity but it lies far away from the Pareto-optimal front (i.e. poor 

quality). Figure 2.4.c shows another set of non-dominated solutions in which they are very close 

to the Pareto-optimal front (i.e. high-quality solutions) but have not covered the entire region in 

the objective space. Finally, Figure 2.4.d has a set of non-dominated solutions that are superior in 

both convergence and diversity. 

According to the nature of the Multi Objective Problems (MOPs), Pareto-front sets can 

have different shapes. Figure 2.5 illustrates some examples of Pareto-front sets such as non-

convex (concave), disconnected, linear, and non-uniformly distributed respectively. 

The last comment in this section is that not all global Pareto-optimal sets necessarily 

contain the Pareto-optimal solutions. A Pareto-optimal set refers to the entirety of the Pareto-

optimal solutions. Hence, the set of objective vectors may be denoted as Pareto-optimal front. 

 

  

a. Pareto-front Set for MOP b. Bad Convergence & Good Diversity 
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c. Good Convergence & Bad Diversity d. Good Convergence & Diversity 

Figure 2.4: Examples of Approximate Pareto-front Set [27] 

 

  

a. Non-Convex (Concave) Pareto-front b. Disconnected Pareto-front 

  

c. Linear Pareto-front d. Non-Uniformly Distributed Pareto-front 

Figure 2.5: Examples of Pareto-front Set 

 

For more details on the concepts of global and local Pareto-optimal sets, Pareto 

dominance, Pareto-front and other theories, definitions, and lemmas in regards to multi-objective 

optimization, the readers are referred to [28]. 
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2.4 Particle Swarm Optimization: Taxonomy 

An Evolutionary Algorithm (EA) is an iterative stochastic process that is derived from 

the concept of natural evolution and ruled by the survival of the fittest principle. The standard 

Particle Swarm Optimization (PSO) is a global search technique that has its roots in two main 

methodologies; it originates from the notions of swarm intelligence and evolutionary 

programming, [7]. However, there is an apparent difference between standard PSO and other EA 

methods. Many EA techniques are drawn to the path of competition and commonly use some 

form of decimation (destruction) of the weak (worse) individuals and replace them by new 

(stronger) offsprings that can be generated from the genetic crossover between other individuals. 

In contrast, the standard PSO is modeled on the path of cooperation over competition in which 

the individuals are influenced by the best performance of their neighbors. They are never 

substituted or replaced during the run. These results in greater diversity and the PSO will tend to 

converge towards the Pareto-optimal front in a more stable manner compared with other EA 

approaches. 

To understand the underlying differences between Swarm Intelligence (SI) and 

Evolutionary Algorithms (EAs), a comparative study that addresses some of their architectural 

differences is presented in Table 2.3 for which Particle Swarm Optimization (PSO) is used as a 

representative to the SI. Although Table 2.3 shows that PSOs and EAs share many common 

features, PSOs are obviously not considered a part of the EA family of algorithms in terms of 

their theoretical base, search strategy and evolution of their population. Preserving population 

diversity is essential for locating a global optimum, but is also crucial for coping with time-

varying problems and tasks. 

 

Table 2.3: Underlying Differences between PSO and EAs 

The symbol  means that the feature is present and  means that the feature is not present 

Features PSO* EAs 

Heuristics in concept   

Evolutionary computation style   

Swarm intelligence style   

Nature-inspired    

Deterministic in solving   

Stochastic in solving   

Global search   

Memory-based technique   

Ignoring worst individuals   

Population-based technique   
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Table 2.3: Underlying Differences between PSO and EAs (continue) 

Features PSO* EAs 

Leaders guide scheme   

Parent representation scheme   

Selection scheme   

Mutation scheme **  

Off-spring production   

Single-objective problems   

Multi-objective problems   

Constraint optimization   

Clustering scheme    

Parallelism scheme   

Pareto optimality concept   

Premature convergence ***   

Discrete decision variables   

Continuous decision variables   

Implicit-model representation (IR)   

* This study is carried out considering standard and modified PSOs but not the hybrid ones. 

** These features are incorporated in the hybrid versions of PSO and MOPSOs. 

*** Both methods cannot guarantee the convergence into global optimum. 

2.5 Particle Swarm Optimization: Basic Concepts 

In the original PSO algorithm, each potential solution, called a particle, is compared to a 

bird flying across the objective space aiming to land on a global optimum region. In the context 

of PSO, a group of those particles is known as a swarm. Each particle in the swarm is assigned a 

fitness value, which is determined by the fitness function. Furthermore, each particle has the 

opportunity to adjust its trajectory, i.e. flying direction, towards the global region in the search 

space by adapting its velocity and position. Moreover, PSO is a memory-based technique, in 

which each particle is capable of recalling the instantaneous best position it ever visited as well as 

the swarm’s best position. Each particle is biased towards its best previous position and towards 
the swarm best position. In general, there are two forms of PSO: continuous PSO and discrete 

PSO. The continuous version uses a real-valued multi-dimensional space to describe its 

trajectories. While the discrete uses binary values, i.e. either 0 or 1, with a certain probability 

scheme to describe its trajectories. 
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Problems can be formulated as either single objective or multiple objective functions. 

Accordingly, PSO can be formulated as Single Objective PSO (SOPSO), [7], or Multi Objective 

PSO (MOPSO), [29]. 

2.5.1 Basic PSO Terminologies 

The term swarm used in PSO has its roots in the optimization literature; Millonas [30] 

used the “swarm” term when he developed his swarm intelligence model for applications in 

artificial life. Furthermore, he stated five main principles for swarm intelligence: 

1. The proximity principle: the population (i.e., group of particles or individuals) should 

be able to perform searching in less computational time. 

2. The quality principle: the population should be able to react to the quality factors in 

the environment. 

3. The diversity principle: the population should not restrict its activities along 

extremely narrow channels. 

4. The stability principle: the population should not alter its behavior every time the 

environment changes. 

5. The adaptability principle: the population should be able to adjust its behavior 

whenever it needs in accordance with the expense of the computational complexity. 

It is important to mention here that both principles 4 and 5 are in contradiction to one 

another. A brief explanation of the basic terminologies used in PSO algorithms is provided next. 

 Exploration: 

In any population-based optimization algorithm, exploration means the temptation of an 

individual (i.e. candidate solution or particle) in searching for or discovering new regions of the 

search space which has not been visited before. Further, the exploration process is applied with 

the aim of finding Pareto-optimal front or a better solution. 

 Exploitation: 

In any optimization algorithm, exploitation means the process of improving and 

combining the traits of the currently known particle(s) with the aim of gaining the utmost benefit 

from it. 

 Convergence: 

In any optimization algorithm, the search process is said to be converged if and only if 

there will be no further improvement to the candidate solution. 
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 Premature Convergence: 

In any optimization algorithm, the search process is said to be prematurely converged 

into a local optimum if and only if there will be no further exploration of new areas of the 

decision space while there exists another region that contains a better solutions [31,32]. Figure 

2.6 shows an example of premature convergence as the search process is trapped into a local 

minimum. 

 

 

Figure 2.6: Example of Premature Convergence in Minimization Function [33] 

 Preserving Diversity: 

While solving a multi-objective problem with any population-based optimization 

algorithm, one of the main goals is diversity that is preserving a set of non-dominated solution 

candidates as widespread as possible. Furthermore, preserving diversity provides a balance 

between exploration and exploitation [34]. Interested readers can refer to the related publications 

on how diversity can be measured, including R.D. Routledge [35], A.E. Magurran [36], Morrison 

et al. [37], Paenke et al [34], and Wilke et al. [38]. 

As a measure of population (swarm) diversity, a parameter D(t) called the population 

average distance amongst particles is defined by Krink et al. [39]. The population average 

distance is expressed in Eq. (2.1): 

 ( )      ∑√∑(      ̅ )  
   

 
    2.1  

where L denotes the length of the longest diagonal in the search space; M the size of the 

population; N the dimension of the solution space;      is the d-th dimension coordinate values of 

the i-th particle at t-th time step;  ̅  the average value of the d-th dimension coordinate values of 

all particles  

The population average particle distance quantifies the degree of distribution between the 

particles in the population. The smaller D(t) is, the more focused the population will be. Note that 
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this diversity measure is dependent on the swarm size, the dimensionality of the problem, and the 

search range in each dimension. 

2.5.2 Single PSO Algorithm 

The original Particle Swarm Optimizer (PSO) algorithm was proposed by Kennedy and 

Eberhart, [7], and is mainly used to obtain optimal solutions for complex, non-linear, and non-

convex problems. In PSO, individuals (so-called particles) that represent candidate or potential 

solutions for an optimization problem will be gathered in a set referred to as the swarm in which 

the behavior of each particle is governed by two adaptive physical properties that are velocity and 

spatial position. Hence, the particles fly throughout the search space towards possible regions of 

best solutions using an iterative technique. The equations that guide the particles’ velocity and 

spatial position during their search are expressed as:  ⃗             ( ⃗    ⃗ )        ( ⃗    ⃗ ) 2.2  ⃗     ⃗   ⃗    2.3 

 

Many modifications have been made to the original PSO algorithm, an example of that is 

the work done by Shi et al. [40]. In their work, a new additional design parameter, known as 

inertia weight factor (w) is introduced in order to adjust the balance between exploration 

(quantitative) and exploitation (qualitative) abilities within the searching technique (as expressed 

in Eqs. (2.4) and (2.5). The greater w is, the more iteration between particles is needed to attain 

convergence.  ⃗               ( ⃗    ⃗ )        ( ⃗    ⃗ ) 2.4  ⃗     ⃗   ⃗    2.5 

The second term of Eq. (2.4) called “cognitive” component, represents the exploration 
experience of each particle, i.e., the cognitive component that encourages the particles to move 

toward their own best positions found so far. The third term of Eq. (2.4) known as the “social” 
component that represents the collaborative influence of the individuals in a population in 

searching for global optimal solutions, i.e. social component draws the particles toward the 

swarm’s best particle found so far. 
It is obvious that in the case where the cognitive component is higher in value than the 

social component, there will be an excessive exploration of individuals through the search space. 

On the contrary, a relatively high social component’s value may draw particles prematurely 
toward a local optimum. Figure 2.7 depicts the flight of a particle in the search space. 
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Figure 2.7: New Flying Direction for a Particle in the Search Space 

2.5.3 Multi-Objective PSO Algorithm 

When PSO was developed to solve multiple optimization problems, there were initially 

many concerns in the optimization community and even amongst the researchers that developed 

variant MOPSO algorithms. The concerns were based on the way that PSO could deal with the 

following: 

 conflict objectives; 

 quality of solutions; 

 criteria of choosing the leader; 

 memory strategy for non-dominant solutions; 

 diversity along Pareto-front set; and 

 premature convergence. 

MOPSO algorithms have now evolved and have addressed the above concerns. They are 

capable of solving multi-objective optimization problems with high efficiency, accuracy, 

robustness, and stability. Pseudo-code 1 depicts the outline of a general MOPSO algorithm 

proposed by Reyes-Sierra et al. [41]. 

 

Pseudo-code 1: General MOPSO Algorithm 

Initialize: swarm size (N), maximum iterations (Maxiter), iter = 0 

Task: find Pareto-front set 

for i =1:N 

      DO 

      Initialize randomly the position within the feasible region  

      Initialize randomly the velocity within the feasible region 
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end for 

Initialize randomly the leaders in a repository 

Initialize randomly the leaders for the swarm 

Repeat 

for i = 1:N 

      DO 

      Select leaders 

      Update Position (Flight) 

      Assess the fitness functions 

       Mutation 

       Update pbest 

end for 

Update leader in the repository 

Update leaders for the swarm 

iter = iter + 1 

If (iter  < Maxiter) or (stopping criterion is NOT satisfied) 

    return 

end if 

Obtain the results 

2.5.4 Classical Social Structures in PSO 

Although not all topologies used in computer networks can be directly implemented in 

the PSO’s social structure. Nonetheless, this section highlights some well-known classical social 

topologies that have shown significant impact on the PSO’s performance along the searching 

process that are star, ring, fully connected, and tree topologies. 

For the ring topology, each particle updates its position according to the best solution 

found by its n closest neighbors. Figure 2.8.a shows the case in which each particle connects with 

two nearby neighbors (n = 2). The lower the value of n, the larger number of iterations required to 

achieve convergence of the swarm. The greater the value of n, the larger is the portion of the 

search space that is explored. 

The fully connected social structure is another topology that can be used in a PSO 

algorithm and it is a special case of the ring topology in which n = swarm size - 1. Figure 2.8.b 

depicts the fully connected structure. This network presents the highest degree of connectivity 

among the particles in the swarm as all particles are connected to each other. In other words, all 

particles know each other’s position and can adjust their own position according to the best 

position in the swarm. Therefore, all particles tend to follow a unique leader in the search for the 

global optimum. However, one of the major disadvantages of this topology is that the number of 

connections grows quadratically with the number of particles making it impractical for large 
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populations. Maderio et al. [42] concluded that the fully connected topology is more appropriate 

for single-objective optimization problems (SOOPs). 

Star structure is one of the most common social topologies used in a PSO algorithm. It is 

a special case of the ring topology in which n = 2 except the central particle, in other words, each 

particle connects with two closest neighbors except the central particle that is connected to all 

other particles in the swarm as shown in Figure 2.8.c. In its simplest form, a star topology 

consists of one central particle that acts as means to broadcast the particles’ best positions as well 
as the best position found in the swarm so far. When applied to a PSO, it enhances the chance of 

the swarm to search towards the global optimal regions (opportunity to obtain the best possible 

solutions). As in the fully connected type of social connectivity, a star topology is a preferable 

structure in the case of single-modal problems. 

Kennedy et al. [43] presented the first comprehensive study on the performance of 

different sociomatric (i.e. this term is used by Kennedy to indicate the social communication 

channels between the particles in the swarm, it is also called as social network, topology). Von 

Neumann topology is defined as a two-dimensional grid (square lattice) in which the neighbors 

above, below, and on each side were connected. Figure 2.8.d depicts the shape of the social 

network. 

A tree social structure in PSO is formed by dividing the whole swarm into several 

clusters (groups) in which each cluster can hold any number of particles, in other words, it is not 

necessary to have a uniform distribution of particles among the clusters. The connection of each 

cluster is chosen to be a fully connected topology while each cluster communicates with each 

other through a randomly chosen particle. This sole particle is acting as a messenger between 

clusters, thus, the information about better solutions found by a particular cluster conveys to the 

other clusters through that informant. To demonstrate how the information is transmitted and 

dealt with in a tree topology, Figure 2.8.e illustrates the tree topology in a case where there are 

four clusters. According to this figure, if the information, i.e., better global position found in a 

cluster by far, transmitted from one informant of cluster c1 to the other informant of cluster c2 is 

better than that in cluster c2, the particles in c2 would adapt their positions according to that new 

information. 

Even though a Clan topology is proposed as being a new topology proposed by Carvalh 

et al, [44], it closely resembles the tree structure and should be classified as such [44]. The Clan 

topology is only differentiated from the tree topology by the mechanism that is used to select the 

informant particle in each cluster. In a tree structure, this occurs randomly whereas in the Clan 

topology the best solution amongst the cluster particles is chosen. Figure 2.8.f depicts the 

interconnections of the particles of four clan clusters. The idea of having a smaller group of 

leaders is to improve the PSO search performance wherein all particles in the swarm would adjust 

their positions according to the position of the best leader to be found in a sort of leaders group. 

Once those leaders update their positions, they convey the newly acquired information to their 
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corresponding clans. The results of the global search are then distributed locally to the other 

members of the clan. 

 

 

Figure 2.8: Classical Social Topologies 
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2.6 Particle Swarm Optimization: State-of-the-Art Algorithms 

The following are the significant categories of the PSO methodologies proposed to date: 

Modified PSO approaches; Pareto-based PSO approaches; Clustering-based PSO approaches; 

Parallel-based PSO approaches; Hybrid-based PSO approaches; and Dynamic Environment PSO 

approaches. A literature review of PSO is presented based on the above categories. 

2.6.1 Modified PSO 

The standard PSO still plays a key role in the optimization process as it has strong global 

search ability and shows a fast convergence speed. The limitation of the original (standard) PSO 

is that it might produce inefficient (e.g., poor-quality) solutions with low probability of escaping 

from local optima at the end of the run, [45]. Numerous modified forms of PSO techniques have 

therefore been proposed since the original work of Kennedy and Eberhart in 1995, [7]. The 

modifications tackle problems involving many local optima and hard Non-deterministic 

Polynomial (NP) problems. A representative sample of the modified PSO approaches is presented 

next. 

Zhang et al. [46], proposed a new modified MOPSO algorithm that employed a new 

selection mechanism in nominating the leaders that directs the swarm towards the Pareto-front set 

for multi-objective optimization problems. In this approach, the selecting mechanism involved 

determining the distance between the best pair of particles and the distance between the best pair 

of swarm-best for each of the objectives. These distances are then used in updating the particles’ 
velocity and position for the next iteration. Many experiments are conducted to validate the 

proposed MOPSO algorithm using a set of benchmark problems commonly used in the 

optimization literature. The numerical results showed a comparable performance against NSGA, 

[47], and MOPSO, [40], algorithms. The outline of the proposed MOPSO algorithm and the 

procedure of a new selection mechanism are shown in Pseudo-code 2. 

 

Pseudo-code 2: Multi-objective PSO Algorithm 

Initialize: population size N, maximum iteration (Maxiter), iter = 1 

Task: find set of non-dominated solutions that covered the entire Pareto-front 

Repeat  1                            (for each particle) 

            Randomly generate particle’s speed vi  

            Randomly generate particle’s position xi 

Return  

Repeat 1                            (for each particle) 

             Repeat 2                (for each objective function) 

                       Evaluate the fitness of each objective function Fitness1[ i ] and Fitness2[ i ] 
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                      Calculate the best individual solutions pBest1[ i ] and pBest2[ i ]. 

            Return 2 

           Calculate the best global solutions gBest [1] and gBest [2]. 

           Calculate the average of the two best global solutions  

           Evaluate gBest from gBest [1] and gBest [2]. 

            Evaluate the distance dgBest between gBest [1] and gBest [2]. 

           Calculate the distance dpBest [i] between pBest [1,i] and pBest [2,i] 

           Calculate the best individual solution pBest [i], 

            if (dpBest [i]< dgBest) 

               Select e pBest [i] randomly between pBest [1,i] and pBest [2,i], 

            else 

                   Evaluate pBest [i]  

           end if 

           Update the velocity vi using gbest i, pbest i 

 

            if (position xi  IS NOT  in the quasi solution area) 

               Update the position xi      

           end if    

           iter = iter +1 

           if (iter <= Maxiter) 

               Return 1 

           end if    

Obtain the Pareto-front set 

 

Pulido et al. [48], presented a new Efficient MOPSO referred to as E-MOPSO. The 

novelty of the E-MOPSO algorithm is represented by the new mechanism that preserves the 

distribution of the solutions along all global regions of the search space. This is achieved by: 

1. Adopting a new parameter called the turbulence operator to avoid premature convergence. 

2. Employing a constraint-handling scheme to limit exploration within the feasible regions 

only. 

3. Deploying a self-adaptation mechanism to automatically fine-tune the values of the design 

parameters for the MOPSO algorithm. 

4. Introducing a new hyper-plane-distribution scheme to scatter the non-dominated solutions 

over the optimum regions. 

Many well-known benchmark functions are used to validate the performance of the 

proposed algorithm. The numerical results showed competitive and promising approximated 

Pareto-optimal fronts compared to MOEA algorithms. The authors stated that the EMOPSO 

required the least number of fitness evaluations in solving multi-objective optimization problems. 
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Nebro et al. [49], presented a new MOPSO algorithm called Speed-constrained MOPSO 

(SMOPSO) that incorporated a new control scheme to narrow down the flying zone of the 

particles in the search space. The aim of the SMOPSO is to encourage the particles in the swarm 

to rely on their own-experiences (local best) in exploring the search space than the leaders-

experiences (global best). This is important at the end of the searching process when the swarm 

comes close to the global regions. Furthermore, the proposed approach also employed the concept 

of polynomial mutation to enrich the swarm and used an external archive to store the leaders 

found during the search. Experiments on the SMOPSO are conducted against well-known 

multiple optimization test problems, and the results are comparable in terms of both convergence 

and quality. 

Yang et al. [50], presented an improved form of PSO algorithm, namely an Improve 

Particle Swarm Optimization (IPSO), in order to solve problems with many local optima. In this 

work, a chaotic mutation mechanism is incorporated to PSO in order to dynamically adjust the 

step size of mutation. IPSO is validated using six well-known multi-criteria test problems, and the 

experimental results outperformed those obtained by the standard PSO, GA and Chaotic PSO 

algorithms. 

Reyes-Sierra et al. [51], proposed and empirically compared the incorporation of three 

different adaptation schemes for MOPSO in order to obtain the highest accurate non-dominated 

solutions for multi-objective optimization problems. In this study, three main parameters are 

considered during adaptation: inertia weight factor (w), cognitive factor (c1) and social factor (c2). 

The aims of this work are first to investigate the impact of the three aforementioned parameters 

on the quality of the PSO search in terms of exploration and exploitation capabilities. Second, 

assigning the parameter that influenced the most on the MOPSO behavior, and third, finding the 

best finite set of values for these parameters that produced the highest quality approximated 

Pareto-front solutions. The three adaptive strategies adopted in this work are -Greedy, Soft 

Max, and Proportional strategies. Several set of numerical experiments are conducted to validate 

the proposed three strategies using a set of well-known benchmark test functions. The 

computational results showed that at least one of the proposed strategies is able to produce a high-

quality set of solutions with respect to the other algorithms such as standard MOPSO, [52]. 

Finally, the authors concluded that achieving an on-line adaption mechanism to improve the 

quality of the produced solutions is affordable by considering the three proposed strategies. 

Bartz-Beielstein et al. [53], proposed a new modified PSO algorithm that incorporated 

the Deletion and Selection functions to the MOPSO algorithm, called as D-PSO, to solve the 

multi-objective optimization problems. Besides the assessment of the fitness function, there are 

two more assessment processes applied in this approach; the first is evaluating the selection 

fitness function, by which a measure of influence of each particle on the diversity of the Pareto-

front is determined. The second assessment process is evaluating the deletion fitness function, in 

which all non-dominated solutions in an external archive are ranked based on their deletion 
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fitness values. Accordingly, a swarm best particle is selected at each iteration based on its 

selection fitness value (i.e. the lower the fitness value, the closer the particle is to the Pareto-

front). The members of the archive are chosen to be deleted based on their deletion fitness values 

(i.e., the lower the fitness values, the higher the chance for deletion). D-PSO algorithm had 

comparable solutions to other PSO and MOPSO algorithms. Higher computational complexity is 

a major drawback of the D-PSO algorithm. 

Even more recently, many methods of this category (Modified PSO) are introduced, 

including Cagnina et al. [54], proposed a new Constrained PSO algorithm (CPSO) that 

incorporated a new constraints handling scheme to solve constrained optimization problems; 

Alvarez-Benitez et al. [55], proposed an extended version of the MOPSO (EMOPSO) based on a 

new dominance scheme for selecting leaders; Huang et al. [56], presented a new Comprehensive 

Learning PSO (CL-PSO) based on the Pareto-dominance to solve MOOPs; Reyes-Sierra et al. 

[57], proposed a new modified MOPSO referred to as oMOPSO that employed the concept of 

fitness-inheritance to minimize the total number of function evaluations; Gong et al. [58], 

presented a modified PSO algorithm based on the Minimal-particle Angle (MAPSO); Reyes-

Sierra et al. [59], proposed a novel modified MOPSO algorithm that combined new Fitness 

Inheritance and approximation themes to the MOPSO, referred to as FI-MOPSO, to minimize the 

computational time; Hiao-Hua et al. [60], proposed a new Intelligent Particle Swarm 

Optimization (IPSO) based on underlying notations of agent-Environment-Rule model (AER); 

Zhen-Su et al. [61], presented a new Adaptive Mutation PSO (AMPSO) that employed an 

adaptive mutation to the PSO; Chatterjee et al. [62], proposed a new form of modified PSO that 

incorporated a Dynamic Inertia Weight scheme to the standard PSO (PSO-DIW); Liang et al. 

[63], presented a new Comprehensive Learning PSO algorithm (CL-PSO) to enhance the particles 

self-experiences; J. Kenned [64], developed a new Gaussian PSO (GPSO); Monson et al. [65], 

presented a new artificial PSO algorithm that combined the Kalman Filter to the standard PSO 

(KF-PSO); Mahfouf et al. [66], presented a new Adaptive Weighted PSO (AWPSO); V.D. Bergh 

et al. [67], proposed the Guaranteed Convergence PSO (GCPSO) that used a new form of 

dynamic equation to update the particle velocity; Ratnaweera et al. [68], proposed two new Time-

Varying Acceleration-Coefficients models with the (MPSO-TVAC); Kennedy et al. [69], 

developed a new Discrete PSO (DPSO) that incorporated a binary scheme to code the particle 

velocity; Al-Kazemi et al. [70], proposed a new Multi-phase Discrete PSO (M-DiPSO) based on 

the hill climbing strategy; and Monson et al. [71], presented a new modified PSO algorithm that 

combined the tribes topology to the adaptive PSO (TRIBES-PSO). 
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2.6.2 Pareto-based PSO 

An important consideration in MOPSO is the mechanism of selecting the leaders during 

the search process. The leaders need to be non-dominated and a member of the Pareto-front. 

Pareto dominance is a scheme that has been employed in several MOPSOs as follows. 

Reyes et al. proposed [72], a novel MOPSO approach using crowding, mutation, and -

dominance (Pareto-dominance). In this approach, the binary tournament scheme associated with 

an extra mechanism (known as the density estimator) is employed to select the leaders of the 

swarm. Furthermore, two external archives are suggested in this algorithm; one is used to store 

the leaders that led the flights at each iteration, while the other is used to store only the particles 

that outperform their pbest value and did not enter the leaders set (i.e., failed to store in the first 

external archive). Additionally, a clustering scheme is introduced to divide the swarm into a 

predefined number of sub-swarms (in their work, three sub-warms that are different in size are 

utilized) in which a different mutation probability operator is applied to each. Pseudo-code 3 

illustrates the procedure of this approach. The proposed MOPSO algorithm is compared to well-

known EA algorithms (such as NSGA-II [73] and SPEAII [74]) and other modified MOPSO 

algorithms. Simulation results showed that the performance of the novel MOPSO is highly 

competitive and is able to find approximate high-quality Pareto-fronts in problems for which 

other EAs or MOPSO algorithms had failed. 

 

Pseudo-code 3: Modified MOPSO 

Initialize: swarm size (N), maximum iteration (Maxiter), iter = 0,  

Task: find Pareto-front set 

for i = 1: N 

     Randomly initialize the velocity within the feasible regions 

     Randomly initialize the position within the feasible regions 

end for 

Initialize the leaders for the swarm 

Send leaders to - archive 

Calculate the crowding distance of leaders 

Repeat 

for i = 1:N 

      Select leaders 

      Perform flight towards its neighbor (closest) leader 

      Mutation 

      Assess fitness function 

      Update best particle position 

end for 
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Update leaders 

Send leaders to - archive 

Calculate the crowding distance of leaders 

iter = iter +1 

if (iter <= Maxiter) or (stopping criterion is NOT satisfied) 

   Return 

end if 

Store the final solutions in -archive 

Obtain the Pareto-front set 

 

Coello et al. [52], proposed a new MOPSO algorithm that incorporated the concept of 

Pareto-dominance to enable the algorithm to solve multi-modal problems. In this approach, an 

external archive repository is deployed. Furthermore, a new mutation operator is introduced to 

enhance exploration. Many experiments are conducted to validate the proposed MOPSO 

algorithm using a set of benchmark functions derived from the optimization literature. Simulation 

results showed that the modified MOPSO approach is competitive compared to other MOEA 

algorithms (namely, NSGA [73], micro-GA [75], and PAES [76]). The outline of the proposed 

MOPSO algorithm is provided in Pseudo-code 4. 

 

Pseudo-code 4: Modified MOPSO Algorithm 

Initialize: Initialize: swarm size (N), maximum iterations (Maxiter), iter = 0,  

Task: find the Pareto-optimal front set 

for i = 1: N 

      DO 

      Assign zero velocity  

      Initialize randomly the particle position within the feasible region 

end for i 

Create an empty external archive for non-dominated solutions (A) 

Repeat  

for i = 1: N 

      DO 

      Evaluate the fitness function 

      if (the particle i is a non-dominated solution) 

          Store the particle i in the external archive 

      end if  

Generate hyper-cubes of the search space explored so far, and locate the particles using these 

hyper-cubes as a coordinate system where each particle’s coordinates are defined according to 
the values of its objective functions. 
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     Store the particles best position found so far 

     Update the particle velocity 

     Update the particle position 

     Apply the problem constraints  

     Assess the fitness function 

end for i  

Update the external archive 

Update the particles best positions 

iter = iter + 1 

if (iter <= Maxiter) or (stopping criterion is NOT satisfied) 

    Return 

end if 

Obtain the Pareto-front solutions 

 

Cabrera et al. [77], presented a new Multi-objective Particle Swarm Optimization 

(MOPSO) technique, called micro-MOPSO, and it is differentiated by the small number of 

particles in the swarm (less than 10). Accordingly, this algorithm has required a very low number 

of function evaluations (3000 per run) in order to produce reasonably good approximations of the 

Pareto-front. The authors employed different approaches along the search process, such as 

selecting the leader and choosing the neighborhood for integrating the swarm. The leader 

selection technique is developed based on the Pareto-dominance concept. To preserve a well-

distributed Pareto optimal set, the proposed approach performed a re-initialization process and 

used two external archives; the first archive, called auxiliary, is used for storing the solutions that 

the algorithm found along the search process, whilst the second archive, called final, is used for 

storing the final solutions. Additionally, in order to improve exploration, the proposed algorithm 

incorporated a mutation operator. The proposed approach tested on benchmark functions and the 

results outperformed those obtained by the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) [73]. 

Fieldsend et al. [78], presented a new PSO algorithm that incorporated a novel Pareto-

dominance called unconstrained elite external archive. Furthermore, a new data structure, referred 

to as dominate-tree, is introduced. The new selecting scheme started by locating the common 

point of the dominate-tree according to its dominance relations, then, the leader is selected based 

on its distance to that common point (i.e. leader is the particle whose distance is the smallest). 

The authors also suggested an original turbulence factor to improve the trajectory adjustment of 

each particle in the search space. 

X. Li [79], proposed a new Non-dominated Sorting PSO algorithm (NSPSO) that 

combined the concept of dominated sorting, the concept of Pareto-dominance, and the external 

archive mechanism to the standard PSO. All particles in the swarm deposit their new position in a 
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pool of size double that of the swarm. In this pool, the previous best particles solutions and the 

current ones are stored in the archive. Only best solutions found at each iteration are kept in the 

swarm using the non-dominated sorting mechanism. Furthermore, the leaders for the swarm are 

randomly selected based on two mechanisms that are niche count and nearest neighbor density 

estimator. 

Other PSO algorithms incorporating the concept of Pareto-dominance include: Moore et 

al. [80], proposed a new PSO algorithm, called MPSO, that adopted the concept of Pareto-

dominance and three different dynamic models to update the particle's velocity during their 

search; Reyes-Sierra et al. [81], presented a new MOPSO that employed the concepts of Pareto-

dominance and -dominance, the crowding distance technique, and the clustering scheme; 

Baumgartner et al. [82], proposed a new MOPSO algorithm that employed the concept of Pareto-

dominance and the weighted sums scheme; and Coello et al. [29], proposed a new MOPSO 

algorithm that combined to the roulette-wheel selecting, external achieve, adaptive mutation 

techniques to solve a variety of multi-objective optimization problems. 

2.6.3 Clustering-based PSO 

The PSO computational complexity is mainly affected by communication between the 

particles of the swarm. In the PSO hypothesis, the information exchanged or broadcasted between 

the particles on the searching space can help to guide the particles towards the possible best 

solutions (i.e., global optimums if exist). 

In a case when a particle finds out a possible good region in the search space, each 

network topology shows different ways to exchange the information among other particles in the 

swarm, in other words, the topology regulates how this information will be delivered out among 

its neighbor particles. 

According to the connectivity-schema (topology) among the particles, the PSO 

performance is determined in which the higher the level of connectivity, the faster the 

convergence of the swarm towards regions nearby with possible good solutions. Nevertheless, 

this fast convergence may also lead the swarm to be trapped in local minima. On the contrary, 

slower convergence can allow the swarm to carefully explore the search space that may leap the 

swarm away from local minima. From the above connectivity-level abbreviation, it is vital to 

choose carefully the type of communication topology among particles in order to make a good 

balance between exploration and exploitation abilities out of the searching algorithm. A selection 

of clustering-based PSO approaches is briefly surveyed here. 

Toscano-Pulido et al. [83], proposed an extension version of the MOPSO algorithm, 

referred to as AMOPSO, that employed the concept of Pareto-dominance to govern the flight 

direction of the swarm during the search process, and also adopted a clustering scheme where the 

entire swarm is divided into sub-swarms to improve the exploiting ability of the algorithm. In this 
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approach, each sub-swarm is allowed to execute the MOPSO algorithm using its own particles. 

Furthermore, after each iteration, the sub-swarms shared their best information amongst 

themselves. The AMOPSO algorithm is verified using benchmark problems, and the results 

showed very good performance with respect to the other MOEAs such as the NGSAII, [73], and 

the PSEAII, [74], algorithms. Finally, according to the vast improvement in the performance of 

the proposed AMOPSO algorithm, the future work of the authors is to further improve their 

algorithm by introducing new schemes to it such as self-adapted and efficient handling 

constraints schemes which enhance the quality of the obtained non-dominated solutions. The 

procedure of the proposed approach is provided in Pseudo-code 5. 

 

Pseudo-code 5: AMOPSO Algorithm 

Initialize: swarm size (N), iter= 1, maximum iterations (Maxiter), No. of sub-swarms (M) 

Task: finds the multi global optimum points 

for each sub-swarm 

      DO 

       Initialize its particles (i.e. initialize both particles’ velocity and position) 
       Initialize gleader set (i.e., the set of global leaders) 

end for 

Repeat 

for each sub-swarm  

      DO  

      for each particle  

            DO 

            Select a leader 

            Perform the flight (i.e. update the particle’s velocity and position) 
            Update values (i.e. assess the fitness function) 

             if (it is a leader)  

                 add to the gleader set 

             end if 

      end for 

      iter = iter + 1 

      While maximum number of iterations is not reached 

       Store leaders in gleader set in nswarms groups  

end for  

Assign each leader group to a sub-swarm  

if (iter <= Maxiter)  

     Return 
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end 

Obtain the Pareto-optimal front solutions 

 

Passaro et al. [84], proposed a new PSO algorithm known as k-PSO that incorporated 

some features such as the clustering scheme, parallel mechanism, and very promising 

neighborhood social network. The goal behind introducing the clustering scheme and 

neighborhood topology is improving the adjustment of a particle’s flight direction in each sub-

swarm. In this approach, a modified version of k-means clustering algorithm is adopted in which 

the notion of Bayesian information is deployed first to estimate the number of the cluster and then 

the standard k-means clustering executed afterward. Further, a promising Von Neumann topology 

is used (i.e. as the neighborhood topology) to properly enhance the sharing of information 

between particles via a powerful communication structure. The k-PSO algorithm is validated 

using many benchmark test problems and the results showed that performance is competitive and 

outperformed other PSO algorithms such as SPSO, [85], and ANPSO, [86]. 

Das et al. [87], presented a modified version of PSO that incorporated the Multi-Elitist 

scheme (ME) to the canonical PSO algorithm, known as MEPSO. The aim of this work is to 

deploy the MEPSO algorithm to optimize complex clustering and linearly non-separable datasets 

applications with no prior knowledge of the number of naturally occurring groups in the data. In 

this proposed algorithm, the Conventional Sum-of-Squares Distance scheme (CSSD) is replaced 

by a more efficient Kernel-Induced Similarity Measure scheme (KISM) allowing the proposed 

algorithm to classify data that is linearly non-separable in the original input space. Furthermore, a 

new selecting scheme is employed for the optimal number of clusters. Experiments are conducted 

to validate the MEPSO using standard low and high dimensional data sets. The computational 

results indicated that the performance of the proposed MEPSO is successful in obtaining accurate 

final classification and the mean number of classes over a test suit of several artificial and real life 

datasets. 

Omarn et al. [88], proposed a new clustering PSO algorithm known as Dynamic 

Clustering PSO (DC-PSO) in which the Dynamic Clustering scheme is linked to the standard 

PSO in order to optimize an unsupervised image classification application. In this approach, no 

prior knowledge is required to specify the number of clusters in advance; rather the algorithm 

itself automatically estimated the optimal number of clusters. Further, the set of data is divided 

into a large number of clusters to reduce the impact of the initial conditions on the clustering 

process. Then, a binary PSO with the optimal number of clusters is applied. Moreover, the centers 

of these clusters are precisely located by employing the K-means clustering algorithm. The 

DCPSO algorithm is validated by testing it against variant set of natural images (i.e. MRI and 

satellite images), and then the simulation results are compared to those given by other 

unsupervised clustering algorithms. The authors concluded that DCPSO algorithm outperformed 

other approaches in terms of number of clusters, convergence rate and quality of final solutions. 
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Mostaghim et al. [89], presented a new version of the MOPSO algorithm, namely 

covering-MOPSO, with the aim of producing non-dominated solutions for multi-objective 

optimization problems that covered all Pareto-front regions. The proposed covering-MOPSO is 

applied in two stages; the goal of the first stage is obtaining an approximated high-quality Pareto-

front set. In the second stage, several sub-swarms are introduced to individually perform 

explorations in the search space to cover the gaps between the non-dominated solutions produced 

by the first stage. The method is first validated using a set of benchmark test functions. It is also 

applied to a real-world problem to optimize an antenna design. The simulation results showed 

that the covering-MOPSO is able to produce non-dominated solutions that covered all Pareto-

optimal fronts and then fulfilled one of the most important issues in optimizing multiple 

objectives that is preserving the diversity. The alternative antenna designs are compared to those 

given by Hybrid MOEA, [90], to find that covering-MOPSO outperformed in terms of less 

computational cost and fast convergence rate. 

Sheng-Ta et al. [91], proposed a new version of Cluster-based Solution Exploration 

Strategy MOPSO algorithm referred to as CSES-MOPSO that incorporated the concept of the 

cluster algorithm to assign swarm leaders. In addition, the concept of external archive is adopted 

to store the non-dominated solutions produced by several sub-swarms. Further, a mutation 

operation is introduced to the CSES-MOPSO algorithm to improve the particles’ exploitation 
capability in finding points very close to the global optimum. Several experiments are conducted 

to validate the CSES-MOPSO algorithm using well-known benchmark functions such as ZDT1, 

ZDT2, and ZDT3 developed by Zitzler et al. [92]. Different Metric schemes are used to compare 

the performance of the proposed algorithm with other MOEAs such as NSGAII, [73], and 

SPEA2, [74]. Accordingly, this comparison led to the conclusion that CSES-MOPSO algorithm is 

able to find higher quality and better-spread non-dominated solutions. 

Cui et al. [93], proposed a new hybrid PSO-K-means algorithm that combined the 

standard PSO algorithm with the K-means clustering algorithm to avoid premature convergence. 

The aim behind the PSO-K-means approach is combining the global search ability of the PSO 

with the fast convergence rate of the K-means algorithm. Two phases are considered in this 

approach; the first phase used the PSO to obtain a set of non-dominated solutions, and the second 

phase refined these solutions to produce a Pareto-front set (i.e., final set of solutions) using a K-

means clustering technique. The simulation results over a set of different text document datasets 

indicated that the proposed PSO-K-means algorithm is able to find good results with a reasonable 

computational complexity. 

Passaro et al. [94], presented a new clustered version of PSO algorithm referred to as k-

PSO that combined the K-means clustering scheme to the standard PSO algorithm in order to 

enhance the exploring capability of the algorithm in finding multiple global optima in problems 

with multi-objective domains. In this approach, the swarm is split into sub-swarms in which each 

cluster group performed its local search. The proposed approach is tested on benchmark problems 
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and the experimental results showed that the k-PSO performance is satisfactory compared to 

other clustered PSO algorithms. 

2.6.4 Parallel-based PSO 

Heuristic methods are parallel processes in nature. As multi-core processors become 

more readily available, they can play a vital role in offering valuable computing resources to the 

optimization community. The assessment process for each individual (i.e. candidate solution) in 

any purely iterative searching algorithm can often be done independently from competing 

solutions. Therefore, parallel mechanism in handling the evaluation process would be highly 

advantageous. In effect, the computational running time required for an application would be 

inversely proportional to the number of processors. 

In spite of the fact that PSO is a population-based optimization technique that naturally 

lends itself to a parallel implementation, incorporating the parallel mechanism into a PSO 

algorithm provides two main advantages: increasing the convergence rate and enhancing the 

robustness of the algorithm. 

Schutte et al. [95], presented a comprehensive study that explored the performance of the 

PSO search engine when hybridized with parallelism. The aim of this study is to investigate the 

effect of employing a parallel mechanism on the computational complexity and the global 

exploration ability of PSO algorithm. In this work, different Parallel PSO performances are 

analyzed using two categories of test problems with multiple local minima and with large scale 

analytical problems (either with high dimensions or large decision variables). In addition to that, 

the behaviors of Parallel PSO are investigated with respect to three different types of fitness 

functions that are cheap functions (i.e. such as simple linear functions), medium-scale functions 

(i.e. such as biomechanical system identification problems), and lastly with high computational 

cost (i.e. such as load-balanced design problems). The computational results confirmed the merits 

of the integration of parallelism into the PSO algorithm in all cases (e.g., in the load-balanced 

problems, the computational time is reduced by 95%). A parallel PSO algorithm is illustrated in 

Figure 2.9. 
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Figure 2.9: Parallel MOPSO Flowchart [95] 

 

Brits et al. [96], presented a new modified PSO algorithm that employed the niching1 

scheme and the parallelism technique to improve the efficiency of the standard MOPSO 

algorithm, referred to as NPSO. In this approach, the concept of sub-swarms is used to obtain 

different regional optima. The authors claimed that their work is the first hybrid PSO algorithm 

that introduced the parallelism technique to the Niching PSO (NPSO). Many experiments are 

conducted using benchmark functions, and the results showed that the performance of the NPSO 

                                                 
1 Niching is a term that refers to a technique of finding and preserving multiple stable 

niches (i.e., favorable in global regions of the search space) to prevent convergence to a local 

optimum [298]. 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

38 

algorithm is promising in terms of having a low computational cost and maintaining diversity 

along the Pareto-front domain. The NPSO algorithm is outlined in Pseudo-code 6. 

 

Pseudo-code 6: NPSO Algorithm 

Initialize: swarm size (N), maximum iterations (Maxiter), iter = 1, no. of sub-swarms (M) 

Tasks: find the Pareto-optimal front set 

for i = 1: N 

      DO 

      Initialize randomly the particle velocity within the feasible region 

      Initialize randomly the particle position within the feasible region 

      Assess the fitness function 

end for i  

Repeat 

for i = 1: N 

      DO 

      Train main swarm particles using one iteration of the cognition only model. 

       Update fitness of each main swarm particle. 

        for j= 1: M 

             DO 

Train sub-swarm particles using one iteration  

             Update each particle’s fitness. 
             Update swarm radius 

             If possible, merge sub-swarms 

            Allow sub-swarms to absorb any particles from the main swarm that moved into it. 

        end for j 

       Search main swarm for any particle that meets the partitioning criteria – if any is found 

with this particle and its closest neighbor. create a new sub-swarm 

end for i 

iter = iter + 1 

if (iter <= Maxiter) or (stopping criterion is NOT satisfied) 

    Return 

end if 

Obtain the Pareto-front solutions 

 

Shu-Kai et al. [97], combined the Multi-objective Evolutionary Algorithms (MOEA), the 

Pareto-dominance concept, and an advanced parallel computing scheme to the standard PSO 

algorithm, all pieced together into a new hybrid PSO algorithm referred to as PPS-MOEA. The 
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aim of PPS-MOEA approach is to tackle real-world (i.e. high-dimensional) multi-objective 

optimization problems in an effective and efficient manner. In this approach, the clustering 

scheme is introduced to divide the swarm into several sub-swarms, and then the parallel 

computing strategy is applied by adopting the master-slave architecture to improve the social 

collaboration of the particles among the sub-swarms. Further, a novel selecting scheme (called 

“picking rule”) is developed to preserve the size of the external repository. The proposed PPS-

MOEA is verified against a set of well-known functions and the results are compared to other 

algorithms. Experimental results showed that the performance of the PPS-MOEA is robust, 

stable, competitive, and reliable in finding high-quality Pareto-front sets that are even very close 

to the Pareto-optimal fronts. 

Parsopoulos et al. [98], presented a new version of the Parallel MOPSO algorithm that 

incorporated the notion of Vector Evaluated Genetic Algorithm (VEGA), developed by D. 

Schaffer [99], into the MOPSO yielding a new Parallel Vector Evaluated MOPSO algorithm 

(Parallel VEPSO). This work is considered as an extension to the VEPSO that is previously 

developed by two of the current authors, [100], with the aim of getting the advantages of the 

parallel implementation on the VEPSO search ability in terms of the computational cost and 

exploration. The new Parallel VEPSO is tested using four well-known benchmark functions and 

the numerical results showed that the Parallel VEPSO is competitive and superior in all cases 

compared to VEGA and VEPSO (series version). 

Gies et al. [101], investigated the performance of the Parallel PSO with respect to the 

number sub-swarms. Their experimental results indicated that a set of ten sub-swarms is giving 

the fastest performance; i.e. comparatively eight time faster than the serial implementation. It is 

important to mention that specifying the number of independent paths or sub-swarms could vary 

based on the nature of the problem, the communication network, and the complexity of the fitness 

function. Therefore, using a multi-core CPU processor and a simple communication topology 

could improve the PSO efficiency. 

Mostaghim et al. [102], proposed two new Parallel versions of a MOPSO algorithm for 

which both had different clustering schemes that divided the entire swarm into several sub-

swarms and then each one independently performed its own MOPSO algorithm on different 

processors (CPUs). The aim of the work is extending the implementations of MOPSO algorithms 

to successfully cope with hard real-world problems that required several processors. Cluster-

based sub-swarm MOPSO, known as C-MOPSO, is the first proposed algorithm that is designed 

to work on a fixed number of processors. In this approach, the main processor is responsible for: 

1. Performing the clustering, in which several leaders are picked from the external repository, 

2. Sending the leaders out to other processors, 

3. Receiving new information from the leaders, 

4. Updating the members in the external repository, and 

5. Repeat the cycle. 
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The Hyper-volume-based sub-swarm MOPSO (H-MOPSO) is the second proposed 

algorithm that is designed to work on undetermined number of processors. In the H-MOPSO, the 

leaders are individually selected based on their domain in the hyper-volume (i.e. according to the 

size of the area dominated by the particle). H-MOPSO is compared to other methods using 

benchmark problems, and the results showed that the H-MOPSO algorithm outperformed the C-

MOPSO algorithm. The authors concluded that the Hyper-volume-based sub-swarm is more 

efficient in choosing high-quality leaders than those given by the Clustering-based sub-swarms. 

Nanbo et al. [103], suggested a novel evolutionary optimization technique for multi-band 

and wide-band patch of antenna design. In their work, the computational time is significantly 

reduced by implementing the optimization process on parallel clusters. Their new parallel PSO is 

applied to the design of rectangular patch antennas. Optimization results obtained are able to 

achieve optimal design. Both accuracy and robustness analysis on their parallel PSO are 

conducted. The authors concluded that parallelism in PSO is promising, but requires further 

examination of the communication protocol between processors and their synchronization. 

Chang et al. [104], presented a new parallel PSO algorithm wherein a sub-swarm division 

technique is incorporated. In their algorithm, the evaluation of the fitness function is 

independently performed for each particle. The results showed that the efficiency of the algorithm 

is highly dependent on the network topology for the communication of the best position found by 

a swarm. Their conclusion is verified by investigating several types of topologies such as star, 

ring, and fully connected shapes. 

2.6.5 Hybrid-based PSO 

In general, a Hybrid system is the combination of two or more different schemes, aimed 

at achieving a particular objective or goal. Within the optimization context, Hybridization is the 

process of merging two or more optimization techniques into a single algorithm, usually 

combining problem knowledge with the algorithm concept. A review of the most common Hybrid 

PSO algorithms is presented as follows. 

Parsopoulos et al. [100], presented a novel hybrid PSO algorithm referred to as VE-PSO 

that integrated the concept of a Vector Evaluation algorithm (VE) (i.e. derived from the notions 

of Vector Evaluation Genetic Algorithm (VEGA) developed by D. Schaffer [99]) to the standard 

PSO in order to simultaneously optimize multi-objective problems. The aim of this work is 

exploring more than one region in constructing the Pareto-front set. To achieve this, an 

aggregation scheme with fixed or adaptive weights is adopted. The first VE-PSO search engine 

used two swarms in which each is evaluated based on one objective (two objective functions are 

considered in this work). At the end of each iteration, both swarms shared their best information 

in a way that the best particle in the first swarm is used to guide the second swarm’s particles. 
The effectiveness of the proposed VE-PSO algorithm is validated using non-trivial benchmark 
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test functions, and the computational results showed that the VE-PSO is able to find robust and 

accurate Pareto-front points, and come close to the Pareto-optimal front compared to the other 

MOEAs such as VEGA. 

Esquiavel at al. [105], proposed two new hybrid MOPSO algorithms referred to as the 

global-best MOPSO (g-PSO) and the local-best MOPSO (l-PSO) algorithms. In these approaches, 

a uniform mutation operator and the concept of the neighborhood best leaders are combined with 

the standard constrained MOPSO algorithm in order to enhance the diversity of the non-

dominated solutions and then avoid premature convergence. Six different experiments are 

conducted to test the effectiveness of the proposed algorithms using well-known benchmark 

problems, and the simulation results showed that the l-best PSO is superior and outperformed 

other MOEA algorithms. Further, it is found that the l-best algorithm performed better than the g-

best algorithm. Finally, the authors concluded that incorporating the uniform and non-uniform 

mutation operators resulted in significant improvement in performance. The outlines of the two 

proposed algorithms are provided in Pseudo-codes 7 and 8. 

 

Pseudo-code 7: Synchronous g-PSO Algorithm 

Initialize: swarm size N, maximum iterations Maxiter, iter = 1, number of dimensions D 

Task: find Pareto-optimal front set 

for i = 1: N 

      DO 

      for j = 1: D 

            Initialize randomly particle position within feasible regions 

             Set particle velocity to zero 

             Copy the particle current position in particle best vector 

              Assess the fitness function 

     end for j 

end for i 

Search the swarm best and store them in the external archive 

Swarm flight in the search space 

Repeat 

for i = 1: N 

      DO 

      for j = 1: D 

           Update the particle velocity (using particle vest vector and current particle position) 

           Apply velocity constraints 

           Update the particle position 

           Apply Mutation operation 

     end for j 
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     Assess the fitness function 

     Update the particle best vector 

end for i 

iter = iter + 1 

if (iter <= Maxiter) or (stopping creation IS NOT satisfied) 

    Return 

end if 

Obtain the Pareto-front set 

 

Pseudo-code 8: Asynchronous l-PSO Algorithm 

Initialize: swarm size N, maximum iterations Maxiter, iter = 1, number of dimensions D 

Task: find Pareto-optimal front set 

for i = 1: N 

      DO 

      for j = 1: D 

            Initialize randomly particle position within feasible regions 

             Set particle velocity to zero 

             Copy the particle current position in particle best vector 

              Assess the fitness function 

     end for j 

end for i 

Swarm flight in the search space 

Repeat 

for i = 1: N 

      DO 

      Search better in the k-neighborhood for particle xi and record it in neighbors best vector l 

       for j = 1: D 

            Update the particle velocity (using particle vest vector and neighbors best) 

            Apply velocity constraints 

            Update the particle position 

            Apply Mutation operation 

      end for j 

      Assess the fitness function 

      Update the particle best vector 

end for i 

iter = iter + 1 

if (iter <= Maxiter) or (stopping creation IS NOT satisfied) 

       Return 
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end if 

Obtain the Pareto-front set 

 
Janson et al. [106], proposed a new hybrid MOPSO algorithm, referred to as Clust-

MPSO, that combined a clustering mechanism with the MOPSO algorithm that is developed by 

Coello et al. [52]. With the clustering mechanism, the entire swarm is divided into several sub-

swarms. This allowed each sub-swarm to direct its particles towards a different region of the 

search space. Accordingly, for each sub-swarm, different strategies for updating the personal best 

position, for selection of the neighborhood best, and for updating the total non-dominated 

particles are adopted. The proposed Clust-MPSO algorithm is applied to a well-suited 

biochemistry problem (the molecule docking problem). The task is predicting the three 

dimensional structure of a binding of a target receptor and a ligand. The numerical results showed 

that the Clust-MPSO algorithm is able to successfully outperform a well-known MOEA 

algorithm that is Lamarckian-GA, developed by Morries et al. [107]. 

Ho et al. [108], presented a novel Intelligent MOPSO (IMOPSO) with the aim of solving 

multi-objective optimization problems. In this approach, two main schemes are adopted in order 

to obtain an efficient and robust performance. These two schemes are a Generalized Pareto-based 

Scale-Independent Fitness function (GPSISF) and the Intelligent Move Mechanism (IMM). In 

GPSISF, each particle in the swarm is given a score on an assessment process. The Intelligent 

Move Mechanism (IMM) used the traditional flying method of PSO with the aim of improving 

the particles exploring ability during the search process. In IMM, a systematic reasoning method 

is employed to improve the quality of the particles over each iteration. This is achieved by 

sampling, analyzing, and then grouping the particles based on the swarm best (gbest). An 

evaluation of the IMOPSO performance is carried out using well-known test functions. 

Accordingly, the authors stated that the IMOPSO algorithm is competitive and is recommended 

for tackling real-world optimization applications. 

Ching-Shih et al. [109], proposed a new hybrid MOPSO algorithm that combined the 

Local search and Clustering schemes to the MOPSO and is referred to as MOPSO-LC. The 

rationales behind the proposed algorithm are: 1) obtaining the advantages of employing the local 

search scheme by fine-tuning the particles search ability which then prevented the swarm from 

getting trapped in local minima; 2) gaining the benefits of incorporating the clustering scheme to 

enhance the convergence rate (i.e. by eliminating the extra non-dominated solutions from the 

external repository), hence, preserving the diversity along the Pareto-front set. The proposed 

MOPSO-LC algorithm is examined using a test function, and the simulation results are compared 

to the Strength Pareto Evolutionary Algorithm (SPEA) which is state-of-the-art in MOEAs 

[110,74]. The authors confirmed that the MOPSO-LC algorithm outperformed the SPEA in that 

test, and suggested more experiments on hard constrained multiple objective problems. 

Salazar-Lechuga et al. [111], proposed a new hybrid MOPSO algorithm referred to as 

MOPSO-fs that combined the standard MOPSO algorithm with the Fitness-Sharing mechanism 
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(fs) for solving multi-model multi-objective optimization problems. In this approach, two 

consecutive operations are employed in order to select the global leaders (i.e., from the 

repository). The first operation is applying the concept of Pareto-dominance to distinguish the 

non-dominated solutions from other particles in the swarm, and then storing them in the 

repository. Next, a fitness-sharing mechanism is deployed to spread the solutions along the 

Pareto-front. In this mechanism, the fitness value is calculated for each of the solutions in the 

repository. A high value for fitness sharing means that the particle is not surrounded by other 

particles, or at least there are particles far away from this one, and vice versa. In the case of full 

repository, the fitness sharing is used to free some spots, in which the particle with worst fitness 

sharing is replaced by this new one. Having done this, only competitive and high-quality elements 

remain in the repository and then PSO is assured to converge with a fast rate and to preserve 

diversity among the best solutions. Furthermore, the stochastic universal sampling method is 

utilized to allow the particles in the swarm to choose their leaders. The MOPSO-fs is validated 

against several benchmark problems, and the results are superior to those obtained by MOPSO 

[52], NSGAII [73], and PAES [112]. Finally, the authors attributed the success of their MOPSO-

fs algorithm to the combination of the Particle Swarm Optimization (PSO) and Fitness sharing. 

Figure 2.10 depicts the general structure of the MOPSO-fs algorithm. 

 

 

Figure 2.10: Flowchart of the MOPSO-fs Algorithm 

 
There exists a vast body of research on Hybrid PSO category in which new and 

previously developed schemes are combined with the standard PSO or MOPSO, including  

Wickramasinghe et al. [113], proposed a novel hybrid PSO referred to as MDEPSO that 

combined the Multi Differential Evolution (MDE) with the standard PSO; Santana-Quintero at al. 

[114], proposed a novel hybrid MOPSO that incorporated the Constrained (C) and Scatter-Search  

(SS) schemes to the MOPSO, called C-MOPSO-SS; Ming-Rong et al. [115], proposed a new 
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form of hybrid PSO with Extremal Optimization (Hybrid PSO-EO); Liu et al. [116], presented a 

new Fuzzy Adaptive TPSO (FATPSO) technique that combined the turbulent PSO (TPSO) with 

the fuzzy logic controller; Poli et al. [117], developed a novel hybrid PSO that made use of 

Genetic Programming (GP) with the standard PSO in an algorithm known as GP-PSO; Jian et al. 

[118], presented a new hybrid PSO, called PSO-RDL, that combined the Recombination 

and Dynamic Linkage Discovery (RDL) with the standard PSO; P.J. Angeline [119], 

proposed a new hybrid PSO that combined the PSO algorithm with the tournament 

selection technique to replace the worst particles in the swarm (e.g., in minimizing 

problems, particles with the largest fitness values) with those of better particles (e.g., 

particles a low fitness value); Z. Geem [120], proposed a new Particle-Swarm Harmony Search 

(PSHS) that incorporated the concept of particle-swarm to the standard discrete-value 

harmony search algorithm; Meissner et al. [121], presented a new Optimized PSO algorithm 

(OPSO) that incorporated the new meta-optimized technique to the standard PSO; Srinivasan et 

al. [122], proposed a new hybrid Particle Swarm Inspired Evolutionary Algorithm (PS-EA) that 

combined the notion of EA to the particle swarm theory; Santana-Quintero et al. [123], 

proposed a new hybrid MOPSO algorithm referred to as PSOMORSA that combined the PSO 

to the new multi-objective constrained-handling technique, Rough Sets theory, and the -

dominance; Krink et al. [124], developed a new hybrid PSO that coupled the new Lifecycle 

model with the standard PSO; Zhang et al. [125], presented a new hybrid PSO algorithm, known 

as DEPSO, that combined the Differential Evolution (DE) with the standard PSO; Robinson et al. 

[126], presented two new hybrid PSO algorithms; the first algorithm, known as GA-PSO, 

combined the Genetic Algorithms (GA) with the PSO, and the second algorithm, called 

PSO-GA, combined the PSO with the GA; Vesterstroom et al. [127], developed a new hybrid 

PSO algorithm referred to as PSO-DL that combined the standard PSO algorithm with the 

Divisions of Labor scheme (DL); T. Hendtlass [128], presented two new hybrid PSO algorithms 

referred to as PSO-ACO and PSO-DE. The first algorithm combined the PSO with the Ant 

Colony Optimization (ACO), and the second algorithm combined the PSO with the Differential 

Evolution; Lopes et al. [129], proposed a new hybrid PSO algorithm that incorporated the Fast 

Local Search (FLS) technique and the GA to the standard PSO; and Habibi et al. [130], proposed 

a new hybrid PSO algorithm that combined the Ant Colony Systems (ACS) and Simulated 

Annealing (SA) with the PSO. 

2.6.6 Dynamic Environment-based PSO 

Many real-world problems are in dynamic environments, meaning that the position, the 

environment, and the landscape of the global optimum can often change over time. Therefore, 
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tackling such problems would require the capability of dynamically altering (i.e. adapting) the 

fitness landscape with the direction of the exploration towards the global optimum 

[131,132,133,134]. In order words, dynamic fitness landscape means that the functions and the 

optimum solutions could change over time. 

Standard PSO algorithms have not been validated against such problems when the speed 

of change is fast and the optimum keep moves across the decision space in steps faster than the 

swarm best position. Therefore, it is very important to develop new forms of PSO that are able to 

track this goal toward finding good approximate global optimum solutions. A summary of 

different PSO algorithms that tackled problems with dynamic traits is provided next. 

Li et al. [135], developed a new version of Speciation-based PSO, known as S-PSO, in 

order to enhance the performance of the searching algorithm in dynamic fitness landscapes. The 

aims behind improving the S-PSO algorithm are first upgrading the S-PSO to handle a series of 

dynamic environments with varying number of peaks, and second, enhancing the S-PSO to 

preserve diversity within each species when it is needed. In the new S-PSO algorithm, the 

concept of Quantum- swarms is employed to enhance the adaptation ability of the algorithm for 

tracking a moving global optimum (or target). Further, a Particle-diversification scheme (PD) is 

adopted in this approach to promote the ability of S-PSO in arranging a good relationship 

between convergence and diversity within each species. The proposed approach is tested against 

many benchmark problems with different number of peaks, and the results showed good 

performances in tracking global optimum on most test problems. The outline of the proposed 

PSO algorithm is provided in Pseudo-code 9. 

 

Pseudo-code 9: Species based PSO Algorithm. 

Initialize: swarm size (N), maximum iterations (Maxiter), iter = 0 

Task: find the Pareto-front solutions 

for i = 1: N 

       DO 

       Randomly initialize the velocity within the feasible region 

      Randomly initialize the position within the feasible region 

end for 

Initialize the swarm best candidate solutions  

Initialize the local best solution 

Repeat 

for i = 1: N 

       DO 

       Update the velocity 

       Update the position 

        Assess the fitness function 
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        if (particle new solution   particle best) or (particle new solution    particle best) 

            best particle = particle new solution 

       end if  

end for i 

 Update the particle best solution 

for i = 1: N 

     DO 

     if (change is detected)     ⃗⃗⃗⃗⃗       ⃗⃗⃗⃗⃗ 
     end if 

end for i 

Sort all particles in an ascending order according to their fitness values 

Call the speciation procedure algorithm to identify species seeds 

Assign  each identified species seed’s    ⃗⃗⃗⃗⃗ as the    ⃗⃗⃗⃗⃗⃗  to all individuals identified in the same 

species 

Update the velocity 

Update the position 

for i = 1: numberSeeds 

     DO 

     if (numParticlesi > Pmax) 

         Replace the excess particles with random particles into the search space 

     end if 

end for i 

iter = iter + 1 

if (iter < =  Maxiter) or (stopping criterion is NOT satisfied) 

    return 

end if 

Obtain the approximated Pareto-front solutions 

 

Kiranyaz et al. [136], presented two new PSO algorithms in order to tackle Moving Peaks 

Problems (MPPs) and then find solutions that are stable, efficient, and robust. The first proposed 

approach is the Multi-Dimensional (MD) PSO, namely (MD-PSO). In this approach, an Inter-

dimensional Navigation scheme (IDN) is incorporated to determine the optimum dimension 

wherever the non-dominated solutions are found. The importance of the MD-PSO algorithm is 

that it required no prior information about the global optimum dimension (i.e. regular PSO or 

even some modified PSO algorithms are often not able to keep track of a moving global 

optimum). In order to overcome premature convergence, the authors introduced their second 

approach that is the Fractional Global Best Formation technique (FGBF) with the Multi-swarm 
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PSO algorithm, called as FGBF-MS-PSO. This approach worked by gathering all the best 

dimensional components and then creating artificial Global-best solutions (aGBs). Next, the 

aGBs solutions are compared to each of the swarm’s best solution (gbest) and the superiors 

amongst are selected to be the leaders. Finally, the two approaches are tested using dynamic 

benchmark functions, and the simulation results showed that both approaches are successful in 

achieving the tracking of the global optimum peak with the least error (using MD-PSO), and 

finding better solutions (using FGBF-MS-PSO). 

Carlisle et al. [137], proposed a new Quantum-behaved PSO algorithm, called as Q-PSO, 

to solve problems with complex dynamic environments. In this work, the Q-PSO algorithm is 

applied to three different dynamic environments with different step size changes. The 

experimental results showed that the Q-PSO algorithm is able to precisely detect the changes that 

occurred in the environment, and effectively re- arrange the relationship between the global and 

the local searches. It is found that in cases for which problems had noisy environments with high 

change frequencies, Q-PSO performed well in terms of being fast, reliable, and accurate tracking. 

Pan et al. [138], proposed two new hybrid PSO algorithms which are Swarm-core 

Evolutionary with PSO (SCEPSO) and PSO with Simulated Annealing (PSOwSA) for dynamic 

environments. In the SCEPSO algorithm, a clustering scheme is introduced to divide the swarm 

into three sub-swarms in which each is assigned a different task. Furthermore, the combination of 

the SCE and the PSO algorithms allowed the searching process to track continuously changing 

solutions with minimal error. In the PSOwSA algorithm, the concept of simulated annealing is 

incorporated to the standard PSO algorithm with the aim of enhancing the exploring ability. Both 

approaches are verified using problems with static and dynamic environments, and the 

computational results showed that the SCEPSO outperformed the standard PSO and PSOwSA 

algorithms. Moreover, it is found that the SCEPSO algorithm showed success in following the 

changing landscape with satisfactory but not high-quality Pareto-front solutions. The results also 

indicated that the PSOwSA algorithm suffered from premature convergence. Finally, the authors 

concluded that the SCEPSO performed well only when the dynamic problems had a big step size. 

They also concluded that the performance of the PSOwSA is acceptable only in problems with 

static environments. 

Parrott et al. [139], proposed a new PSO approach that is used to track dynamic multi-

modal peaks. This approach is inspired by the speciation technique (e.g., a technique that divides 

the swarm into groups of particles that share the same goal). In their work, a new speciation 

technique (i.e. a modified form of speciation technique developed by Li et al. [140]) and 

crowding mechanism are used to encourage simultaneous tracking of multiple peaks by 

preventing overcrowding at peaks. One of the limitations in implementing this technique is that 

the target velocity should be within velocity bounds of each particle. The results of this approach 

showed that this technique is less efficient than the original PSO algorithms due to its 

requirement to perform double fitness evaluation for each particle. 
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P.N. Suganthan [45], proposed a new modified PSO algorithm that employed a new 

dynamic network topology. In this approach, the adaptability in the communication topology is 

implemented. The algorithm started with the ring-topology, and then gradually increased in 

connectivity until it reached a fully connected topology. Furthermore, it is suggested to use the 

particle best position to direct the searching process for better exploration. The authors suggested 

some further improvements to their proposed algorithm as the simulation results did not present 

noticeable improvements. 

Carlisle et al. [141], developed a new PSO algorithm that is able to solve dynamic 

optimization problems. A new dynamic technique, called Unimodal Environment (UE), is 

employed to reset (i.e., randomly initialize the velocity of each particle within its upper and lower 

limits) the record of each particle (i.e., its best position) as the environment changes, and then to 

avoid making direction and velocity decisions based on outdated flight information. The 

algorithm is tested using Kennedy’s social models [142], and the tracking performance is 

improved over multi-tracking problems especially the problems when their targets are moving 

with different velocities. 

Peram et al. [143], proposed a new modified PSO algorithm, called as PSO-WED, is 

incorporated the Weighted Euclidean Distance (WED) to identify the interaction neighbor for a 

particle. In the proposed WED algorithm, the particle with the highest Fitness-Distance Ratio2 

(FDR) is found for each vector element. Based on the FDR value, the algorithm directed each 

particle towards its good neighbors and then reduced the probability that the particle’s interaction 

with a poor neighbor. Experiments are conducted to test the proposed algorithm using a set of 

benchmark functions. The results showed that the performance of the PSO-WED is good 

compared to the standard PSO algorithm. 

Liang et al. [144], proposed a new modified PSO algorithm. In this approach, the entire 

swarm is randomly divided into sub-swarms and its connections randomly re-distributed after 

each set of iterations. The modified PSO is tested against benchmark problems, and it is found 

that when three sub-swarms and a set of five iterations for redistribution are used, good results are 

obtained. 

Eberhart et al. [145], proposed a new PSO algorithm that combined the standard PSO 

with an adaptive technique to vary randomly the value of the inertia weight factor within a range 

of [0.5, 1]. The authors concluded that their approach worked satisfactorily on a ten dimensional 

parabolic test function. 

Janson et al. [146], presented a new modified PSO algorithm that combined the standard 

PSO with the Dynamic Hierarchy scheme (DH), namely PSO-DH. In this approach, the particles 

are arranged in the DH based on their previous success (i.e. particle’s best solution) and then all 

the particles are assorted accordingly. Particles with better performance are ranked up the 

                                                 
2 FDR is defined as “the ratio of the difference between the target particle’s fitness and 

the neighbor’s fitness to the distance between them in the search space on that dimension” [27]. 
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hierarchy. The proposed algorithm is verified using a test function, and the results showed an 

improved performance compared to the standard PSO and other modified PSO algorithms. The 

authors concluded that employing the DH scheme enhanced the exploration ability of the worst 

particles which in turn improved the performance of the entire swarm. 

Yen et al. [147], developed two new hybrid approaches that are Dynamic PSO (DPSO) 

and Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) to tackle MOOPs. DPSMO is 

derived from the concept of the Dynamic Multi Objective EA (DMOEA). In the DPSMO 

algorithm, a new sharing technique is adopted which is used to enhance the information flow 

amongst particles to improve the flying directions towards the global optimum. It is mentioned 

that DPSMO had difficulty in producing a high-quality Pareto-front. DPSEA is further combined 

with EA and PSO's information sharing scheme. Numerical experiments are conducted and the 

performances of both algorithms are compared. The results showed that DPSEA outperformed 

DMOEA and DPSMO in terms of diversity of the solutions along the Pareto-front, extending the 

Pareto-front into new areas, and producing approximated high-quality Pareto-fronts. 

2.7 Trends for New PSO Applications 

This section highlights the real-world applications of multi-objective optimization that 

conventional approaches cannot solve. PSO algorithms are becoming increasingly popular in the 

optimization community as they provide greater flexibility in problem formulation and can handle 

problems that classical approaches cannot easily tackle. The most promising future research 

directions of PSO algorithms are presented based on published case studies in Table 2.4. 

 

Table 2.4: Recommended Case Studies for Future PSO Applications 

Suggested Case Study No. of Objectives Previously Tackled by 

Aerodynamic design 2 – to - 3 
MOEA algorithm called as RM-MEDA 

developed by Zhang et al [148] 

Industrial Neural Network 

design 
2 – to - 3 

GA based on Multi-objective Neural 

Net developed by Pettersson et al. [149] 

Molecular structures for drugs 2 – to - 3 
MOGA II developed by Poloni et al. 

[150] 

Medical decision making 2 – to - 3 

Non-dominated Points Multi-objective 

Linear Programming (NPMOLP) 

developed by Shao et al. [151] 

Supply chain management 2 – to - 3 

Multi-location Supply Network 

Planning (SNP) developed by J. 

Dickersbach [152] 
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Interactive airplane design 4 – to - 20 
MOGA developed by Bandte et al. 

[153] 

Land use planning 4 – to - 20 
MOGA developed by Stewart et al. 

[154] 

Cable-stayed bridge design 20 – to - 100 

Multi-objective Genetic Programming 

(MOGP) developed by Nakayama et al. 

[155] 

2.8 Conclusion 

In this chapter, many forms of PSO are discussed, and hence, a summary of the reviewed 

PSO algorithms is shown in Table 2.5. 

 
Table 2.5: List of Comparable Structure and Design Parameters Used in PSO Algorithms 

Algorithm Topology w C1 C2 Mutation 
Swarm 

best Guide 

Neighborhood 

Best Guide 

l-PSO [105] Fully C C C  -  

g-PSO [105] Fully C C C   - 

Pswarm [17] Fully L C C -  - 

VEPSO [100] Fully L C C -  - 

PSOMORSA [123] Fully C C C   - 

MOPSO [51] Fully R R R   - 

OPSO [121] Fully R R R -  - 

Modified PSO [156] Fully - C C   - 

IPSO [60] Fully L C C    

PS-EA [122] Fully - C C -  - 

MOPSO [46] Fully L C C -  - 

MOPSO [157] Fully C - - -  - 

MOPSO [29] Fully C - - -  - 

MOPSO [112] Fully C - - -  - 

MDEPSO [113] Fully C R R - -  

PAPSO [158] Fully C C C   - 

Covering MOPSO [89] Fully C R R -  - 

Parallel MOPSO [95] Fully D C C -  - 

AMPSO [61] Fully L C C   - 

w: Inertia weight,     C1: Cognitive factor,     C2: Social factor,     R: Randomly drawn from range,  

Fully: Fully-connected,      L: Linearly changes,      C: Constant,     D: Dynamic,    __ : N/A 
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Table 2.5: List of Comparable Structure and Design Parameters Used in PSO (continue) 

Algorithm Topology w C1 C2 Mutation 
Swarm 

best Guide 

Neighborhood 

Best Guide 

VEPSO [98] Ring C C C -  - 

C-MOPSO [102] Fully C C C   - 

H-MOPSO [102] Fully C C C   - 

CPSO [159] Fully R R R   - 

EMOPSO [48] Fully D D D   - 

AMOPSO [160] Fully      - 

MOPSO [161] Fully C C C -  - 

MOPSOSS [162] Fully C C C   - 

CPSO [54] Fully R R R    

K-PSO [84] Fully D R R - -  

EM-MOPSO [91] Fully C C C   - 

DOPS [53] Fully R C C -  - 

MOPSO [55] Fully C C C -  - 

MOPSO [52] Fully C - -   - 

CLPSO [56] Fully L - - -  - 

MOPSO [57] Fully C C C   - 

MAPSO [58] Fully C C C -  - 

NichePSO [96] Fully L C C -  - 

PSO+KM [93] Fully L C C -  - 

OMPSO [81] Fully R R R   - 

MEPSO [87] Fully L R R -  - 

k-PSO [94] Fully C C C -  - 

BinPSO [163] Fully L C C -  - 

Coop-PSO [164] Fully L C C -  - 

MDO/PSO [165] Fully L C C -  - 

MOPSOLS [166] Fully C C C -  - 

Modified MOPSO [167] Fully R R R -  - 

MOCPSO [168] Fully D C C   - 

PSO [7] Fully - C C -  - 

w: Inertia weight,     C1: Cognitive factor,     C2: Social factor,     R: Randomly drawn from range,  

Fully: Fully-connected,      L: Linearly changes,      C: Constant,     D: Dynamic,    __ : N/A 
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Table 2.5: List of Comparable Structure and Design Parameters Used in PSO (continue) 

Algorithm Topology w C1 C2 Mutation 
Swarm 

best Guide 

Neighborhood 

Best Guide 

SMPSO [49] Fully D R R   - 

MOPSO [59] Fully R R R   - 

PPS-MOEA [97] Fully C C C -  - 

PSO-EO [115] Fully L C C   - 

Simplifying PSO [169] Fully R R R -  - 

MPSO [170] Fully L L L -   

TAPSO [171] Fully L D D -  - 

ACVPSO [42] Star C C C -   

ACPPSO [42] Star C C C -   

LDWPSO [172] Fully L C C -  - 

APSOM [173] Fully D C C   - 

IPSO [50] Fully C C C   - 

Micro-MOPSO [77] Fully R C C  -  

ClustMPSO [106] Fully C C C - -  

w: Inertia weight,     C1: Cognitive factor,     C2: Social factor,     R: Randomly drawn from range,  

Fully: Fully-connected,      L: Linearly changes,      C: Constant,     D: Dynamic,    __ : N/A 
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Chapter 3 

Saskatoon West Water Distribution System 

Hydraulic modeling of water distribution systems has had a lengthy history dating back 

to the work of the Babylonian era in the 5500 BC. The practice of exploring water resources (i.e., 

lakes, rivers, and wells) and transporting water through aqueducts has been around for over two 

millennia, [174]. 

In water distribution systems, hydraulics, network, and simulation are terminologies 

fundamentally used for designing and operating water distribution systems. Hydraulics refers to 

moving water through pipes. The concept of a network is fundamental to a water distribution 

model, since it contains all of the major components of the system such as pipes, nodes, pumps, 

valves, tanks, and reservoirs. Moreover, the network describes how those components are 

assembled and function as a whole system. The term simulation is the process of determining the 

hydraulic behavior of a network using its mathematical model. 

A water distribution system is a hydraulic infrastructure consisting of junction nodes, 

pipelines, pumps, tanks, reservoirs, valves, and control equipment. Simulation is used to 

investigate and evaluate the behavior of a water distribution system over a period of time using 

numerical tools, referred to as hydraulic solvers. These are instrumented for designing, 

optimizing, controlling, and analyzing of water distribution systems, [174]. Hydraulic solvers are 

used to compute the flow in each pipeline and the pressure at junction nodes, [175]. They can also 

be utilized to evaluate the network response to events such as closing valves, changing pump 

settings, opening hydrants, and demand variations. 

A commercial system referred to as the Saskatoon West water distribution systems (SW-

WDS) is used as a case study in this dissertation. The system is a rural water distribution system 

operated by Sask-Water. It is well sized and manageable for conducting research experiments. It 

contains all the primary elements (e.g., pipelines, junction nodes, pumps, tanks, valves, etc.) as 

well as the problems associated with water supply management, including different pressure 

zones, treated and untreated water, and a large scope of water demands from minor to major 

users. The next section describes the layout of the Saskatoon West WDS and the derivation of the 

classical demand-head-driven analysis related to the pump operations. In section 3.5, the 

characterizing and modeling of the hydraulic behavior and the performance of a water 
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distribution system are developed. The SW-WDS’s loading conditions and operating scenarios 
are simulated and compared to experimental data. The last section of the chapter presents the 

corollary of the distribution system upon the current operational scenario, and by comparing the 

simulation results to the collected field data; the hydraulic model for SW-WDS is demonstrated. 

In this chapter, the operational considerations such as the electrical energy cost, 

maintenance cost, maximum power peak charges, network reliability, and chlorine residual are 

explained and mathematically represented for their use in optimization and the development of a 

cost function. 

3.1. Water Distribution Systems: Models Representation 

The model of a water distribution system contains all of the hydraulic elements of the 

system (i.e., pipes, junction nodes, valves, tanks, reservoirs, and pumps), and defines the 

constraints associated with the interconnection of these elements. In general, a network usually 

consists of nodes and pipelines, pumps, reservoirs, and valves (as shown in Figure 3.1). 

There are many types of nodal elements in a water distribution model such as junction 

nodes, storage tank nodes, reservoir nodes, pump nodes, and valve nodes. Pipelines connect the 

nodes within the system. Table 3.1 lists common network elements, describes how they are 

differentiated in a numerical model, and explains their primary purpose. 

 
Table 3.1: Common Elements for Model Representation 

Element Type Main Modeling Function 

Junction Node 
Inlet or outlet volume of water to/from the distribution 

system (i.e., demand, or inflow) 

Tank Node Store and/or supply water  

Reservoir Node Supplies water to the distribution system 

Pipe Link Transfers water from one node to another in a system 

Pump Node or Link Pumps water 

Valve Node or Link Controls the flow and pressure at nodes 

 
Table 3.2 lists data association to elements in a network model. 

 
Table 3.2: Network Data for Model Representation [176] 

Data Detail 

Nodes 

 Number or name 

 Coordinates, Elevation 

 Type – Network junctions or end points, source of water 
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Pipelines 

 Initial and end nodes 

 Diameter – nominal or internal 

 Length, Material, Construction year 

 Pipe roughness, Minor loss coefficients 

 Water Quality – Reaction rate coefficients: (bulk and wall) 

Valves and Control 

Equipment 

 Initial and end nodes 

 Diameter, Length 

 Roughness coefficients 

 Type – Throttled, NRV, PRV, PSV, PCV, TCV, FCV 

Pumping Stations 

 Initial and end nodes 

 Diameter of suction and delivery pipe 

 Number or pump, name, pump type 

 Pump delivery rate, delivery head, power 

 Rotating speed, number of stage, efficiency 

 Pump characteristic “Q – H – P curve”, protections 

 Type – Fixed or variable speed pumps 

Reservoirs 

 Number or reservoir name 

 Shape and volume 

 Inflow and outflow pipes arrangements 

 Type – Storages, Water Towers 

 

Figure 3.1 illustrates how these elements can be connected to one another to build a water 

distribution model. 

 

 

Figure 3.1: Physical Elements in a Water Distribution System 
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The representation of a water distribution model of a real system is developed by first 

gathering necessary information that describe the real system, followed by assembling the 

network model, and finally performing the simulations of the dynamics of the network. 

3.1.1 Reservoirs 

A reservoir represents a type of nodal element that supplies or accepts water. Reservoirs 

usually have a large capacity and a constant hydraulic grade lines. Reservoirs are considered as an 

infinite source of water and their Hydraulic Grade Lines (HGLs) are unaffected with respect to 

the flow of water. This means that reservoirs can theoretically handle any amount of inflow or 

outflow for any length of time. In reality, there are no such infinite sources; however, for 

modeling purposes, it is assumed that the inflow and outflow of water have no effect on the 

hydraulic grade at a reservoir. 

In water distribution model, lakes, groundwater wells, treatment plants clearwells, and 

rivers are often represented as reservoirs. The primary input properties for a reservoir are the 

Hydraulic Grade Line (HGL) (water surface elevation in feet or meter units) and the initial 

quality of water in terms of chlorine residual as explained later in Section 3.5.1.5. Furthermore, to 

distinguish between reservoirs and tanks; no volumetric storage data is needed in reservoirs. 

3.1.2 Tanks 

In a network model representation, storage tanks are portrayed as nodal elements with a 

limited capacity for storing water. Tank characteristic capacity is affected by their form and 

geometry. Unlike reservoirs, the Hydraulic Grade Lines (HGLs) in tanks fluctuate according to 

the water level, and hence, by the in and out flow of water. They have a finite storage capacity, 

and can therefore be completely filled or partially exhausted. 

For network security, water levels within tanks are maintained according a minimum and 

a maximum levels. HGLs in tanks are influenced by their geometry and water level as shown in 

Figure 3.2. 
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Figure 3.2: Various Elevation Conventions for Modeling Tanks [174] 

 

Tanks in water distribution systems are fed by two methods: top-feed or bottom-feed 

gravity as shown in Figure 3.3. The first is most favored, since water level with the tank does not 

supply line pressure. The latter causes changes in the HGL of the system. 

 

  

a. Top Feed Tank b. Bottom Feed Tank 

Figure 3.3: Top Feed/Bottom Gravity Discharge Tank 

3.1.3 Junction Nodes 

A junction node is a location where two or more pipes are joined. Generally, a junction 

elevation is the only physical characteristic that is required to be defined by a modeler. This 

parameter is important in determining the node pressure. Figure 3.4 depicts four possible junction 

elevation options that can be used in a network model. It is often convenient to take one of the 

following options for the junction elevation: point A located at the centerline of the pipe; point B 

sited on the ground elevation above the pipe; point C that is the elevation of a hydrant; or point D 

that is the ground elevation of the user. 
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Figure 3.4: Elevation Options for a Junction Node [174] 

3.1.4 Pipes 

Pipes are used to transport water from one junction node to another. In a real distribution 

system, pipelines are joined together using various types of fittings, such as elbows (i.e., to 

sustain sudden changes in flow direction) or isolation valves (i.e., to block off flow through a 

particular section of pipelines, and usually found close to the reservoirs in water distribution 

systems). 

To model pipelines in water distribution systems, properties such as bends, length, width, 

material type, and minor losses coefficients need to be considered. 

3.1.5 Pumps 

A pump is an element that imparts energy to a fluid, thereby raising its hydraulic grade. 

Pumps are generally classified into the two main categories of positive displacement and 

centrifugal. Both categories are related to the way pumps add energy to the moving water. 

Positive displacement pumps work by adding pressure to water that is essentially squeezed out 

using either piston strokes or shaft rotations. Centrifugal pumps work by adding kinetic energy to 

water using a spinning impeller. It should be noted that the most frequently used type of pumps in 

water distribution systems is the centrifugal pump. Pumps may be operated in an ON/OFF mode 

or in a variable frequency mode whereby their speed is regulated to maintain a fixed supply head 

pressure. An important consideration in pump modeling is the pump curves as shown in Figure 

3.5. These curves demonstrate the relationship between the pressure head and flow as well as the 

efficiency of the pump at its various operating points. 
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3.1.5.1 Pump Operating Point 

The pump operating point is only relevant to centrifugal pumps. The operating point is 

always where the pump curve and the system curve3 intersected as shown in Figure 3.5. This 

point is very important as it determines the preferred operating point of the system, including 

pump flow rate, the pressure, and the energy consumption. 

 

 

Figure 3.5: Pump Operating Point at Fixed Speed Pump 

 

For a variable-speed pump, the characteristic curves are presented as a function of the 

pump speed. Hence, there will be a normal operating point for each pump speed as shown in 

Figure 3.6. 

 

 

Figure 3.6: Pump Operating Points at Variable-Speed Pump 

                                                 
3 The system curve is a graphical means to demonstrate the head required to transfer 

water through a system of pipes, fittings, and vessels. It is typically plotted as a 2-dimensional 

graph between the flow rate (x-axis) and the head (y-axis). 
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3.1.5.2 Best Efficiency Point (BEP) 

Both the centrifugal pumps and the positive-displacement pumps have limitations that 

can affect their efficiency and reliability. These limitations can lead to fault conditions and 

subsequent reduction in the pump’s working life. In terms of reliability, fault conditions could 

result from: 

 Excessive load on the bearings, 

 Excessive deflection of mechanical seals, 

 Excessive radial thrust on the pump shaft, and 

 Irregular wear on the shaft bearing, 

The Best Efficiency Point: is the point where the normal operating point corresponds to 

the highest efficiency of the pump as shown in Figure 3.7. It is the point at which the pump 

produces the greatest amount of output for the least amount of energy. 

 

 

Figure 3.7: Pump Characteristic Curves illustrating the Concept of Best Efficiency Point 

 

Benefits that ensue from operation at the Best Efficiency Point (BEP) include: 

 Less energy consumption, 

 Least pump maintenance cost, 

 Efficient performance, and 

 Prolonged motor and pump duty life. 

In the case of variable-speed pumps, different pump speeds produce different head and 

flow characteristics. The rules of thumb suggest that pumps should operate within 80% to 110% 

of BEP. The centrifugal variable-speed pump curves as well as the range of best efficiency points 

are illustrated in Figure 3.8. 
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Figure 3.8: Performance Chart for Variable-Speed Pump 

3.1.6 Valves 

In General, valves are a common element in water distribution systems, and frequently 

modeled as links. The valve’s role is to regulate the pressure or flow at a certain location in the 

network. They can be fully or partially opened or closed in order to change their resistances to 

flow. Valves in water distribution systems are broadly classified as follows: 

 Isolation Valves 

Isolation valves are commonly used to block off the flow of water through pipelines for 

maintenance (i.e., such as replacing broken pipes, leaky joints, regular maintenance, etc.) or 

emergencies (i.e., such as fire, major system failures, etc.). The most popular types of isolation 

valves that can be used are gate valves, butterfly valves, global valves, and plug valves. 

 Directional Valves 

Directional valves, known as check valves, are used to allow water to move in one 

direction through the pipeline. Check valves are usually found in pump stations, particularly at 

the discharge side of a pump, to prevent backflow by using hinged disk and flap mechanisms. 

 Altitude Valves 

This type of valve is widely used in water distribution systems, especially in pipelines 

that enter the tanks. These valves are designed to close when the tank level reaches its upper limit 

in order to prevent any extra flow from entering. 
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 Control Valves 

Control valves, also known as regulating valves, are typically used to control flow and 

pressure. Flow control valves are operated by imposing a set of flow regulations, while throttle 

control valves are worked by adjusting its minor loss coefficient. Furthermore, pressure-based 

controls are functioned by either controlling the hydraulic grade or by applying a pressure setting. 

In network models (i.e., models that are driven by the changes in the HGL of the systems or its 

elements), both pressure settings and valve elevations are critically important to have in order to 

have a correct and efficient network operation. 

Unlike pumps (i.e., which are either ON or OFF), all types of control valves can be in any 

one of the following operating status: 

 Fully closed (i.e., automatically controlling flow, stated as active), 

 Fully open (i.e., automatically controlling flow, stated as active), 

 Throttle (i.e., automatically throttling pressure and flow, stated as active ), 

 Closed (i.e., manually controlling flow), and 

 Inactive (i.e., ignored). 

Most of the hydraulic solvers can deal with several types of control valves, including: 

1. Pressure Reducing Valve (PRV) limits the pressure at specific location in the pipe network. 

PRV can be in three different states that are partially opened (i.e., active), fully open and 

closed (i.e., in cases where reversal flow is not allowed). 

2. Pressure Sustaining Valve (PSV) maintains pressure settings at a specific location in the pipe 

network. Similar to PRV, PSV can also be in three different states that are partially opened 

(i.e., active), fully open and closed (i.e., in cases where reversal flow is not allowed). 

3. Pressure Breaker Valve (PBV) is always used in numerical simulation. This valve forces a 

pressure loss to take place across the valve. PBV is virtually used to model situations where a 

certain pressure drop is known to exist (i.e., for the purposes of network modeling, as the 

PBV is not a true physical device). 

4. Flow Control Valve (FCV) keeps the flow to a specified volume. FCV is operated without 

adding any additional head at the valve. 

5. Throttle Control Valve (TCV) models one of the most common valves that can be partially 

closed. 

3.1.7 Switches 

Switches, known as operational controls, are commonly used in water distribution 

systems to automatically monitor and have a control action or to change the setting of an element. 

For example, in a fixed-speed pump, the simplest control action that can be taken is to 

switch a pump ON or OFF. Whilst for a variable-speed pump, the control is obviously more 

sophisticated, and is applied by varying its speed. In pumping stations (i.e., where two or more 
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pumps are installed either in series or in parallel), pumps are often labeled as “lead” and “lag”. A 

pump is called lead, if it is the first pump that is turned ON, and called lag, if it is switched ON 

later. 

3.1.8 Non-Physical Components 

In addition to physical components that are equipped in real water distribution systems 

(likelihood aspects and elements that are previously mentioned), there are other components that 

are as important as the real ones called non-physical components. These non-physical 

components are essential in designing, modeling, and operating the distribution systems. Energy 

loss is an example of non-physical component, and is presented as follows: 

3.1.8.1 Energy Losses 

Energy loss is a non-physical consideration that has a large impact on the dynamics of 

water distribution systems. Energy loss can include friction losses or head losses (due to friction 

in pipes) and minor losses (due to turbulence within the bulk fluid). 

3.1.8.1.1 Friction Losses 

As depicted in Figure 3.9, a force balance on the water contained within a pipe section 

can be used to generally describe the formula of head loss due to friction. The free body diagram 

of the pipe segment illustrates the following forces: 

 Pressure difference between sections 1 and 2, 

 The weight of the water between sections 1 and 2, and 

 The magnitude of shear stress developed at the pipe walls between sections 1 and 2. 

Considering, for example, a constant flow velocity in the pipe, the system (i.e., forces 

exerted on the system) can be balanced according to the pressure difference, gravitational forces, 

and shear forces.                 ̅        ( )            3.1 
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Figure 3.9: Free Body Diagram of Water Flow in an Inclined Pipe [174] 

 

The friction losses along the pipe wall between the two sections are presented by the last 

term on the left side of Eq. (3.1). By equating sin() = (Z2-Z1)/L, the equation for the associated 

head loss can be rewritten as:                (      )   (      ) 3.2 

For a laminar flow, the shear stress (  ) can analytically be derived using Newton’s law 
of viscosity, and is affected by the water viscosity (µ), the velocity gradient of water (V), the 

specific weight (or density) (), the pipe diameter (D), and the internal roughness of the pipe wall 

(). 
The friction losses in water distribution systems can be calculated using one of the 

following formulas: 

 Darcy-Weisbach Formula 

The Darcy-Weisbach formula has been found to be the most accurate formula used to 

compute the friction losses and it applies over all flow regimes. The formula is written as follows:                                  3.3 

where f is The Darcy-Weisbach friction factor.      (         )   (     ) 3.4 

Recall that the Reynolds number correlates a fluid’s velocity, density and viscosity as 
well as the pipe diameter. Also, note that the internal roughness is expressed in terms of a 
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variable referred to as relative roughness that correlates the internal roughness coefficient () with 

the pipe diameter (D). 

 Colebrook-White Equation and the Moody Diagram 

There exist several formulas to correlate friction factor, Reynolds number, and relative 

roughness coefficient. The most common of these formulas is the Colebrook-White equation:  √          (                √ ) 3.5 

Mathematically, Eq. (3.5) is considered hard to solve, since the friction factor (f) is found 

on both sides of the equation. Iterative methods are typically used for solving this equation. The 

Moody diagram (see Figure 3.10) is a graphical solution for the Darcy-Weisbach friction factor. 

Considerable useful information can be attained from the Moody diagram, for instance, 

the friction factor is a linear function of the Reynolds number for laminar flows. Furthermore, the 

friction factor is only a function of the relative roughness coefficient for the turbulent flow. 

 Swamee-Jain Equation 

Swamee et al. proposed Eq. (3.6) in 1976, [177].         [   (                  )]  
3.6 

 This equation is much easier to solve than the Colebrook-White. Mathematically, the 

Swamee-Jain formula is an explicit function of the Reynolds number and the relative roughness. 

It is more accurate than the Colebrook-White equation by at least one percent over the following 

ranges:                     and                        
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Figure 3.10: Moody Diagram [174] 
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 Hazen-Williams Formula 

Because of its relative simplicity and reasonable accuracy, the Hazen-Williams formula 

has been considered as the most commonly used head loss formula in water distribution 

modeling. Eq. (3.7) expresses the Hazen-Williams friction loss formula, where C is a new 

variable called the carrying capacity factor.                             3.7 

Generally, the higher the C-factor the smoother the pipes. This increases their carrying 

capacity. Hazen-Williams formula is originally developed for turbulent flow only. Therefore, the 

C-factor of a pipe is varied in accordance with the flow velocity under turbulent conditions. Eq. 

(3.8) is used to adjust the C-factor for different velocities.      (   )     
 3.8 

 Manning Formula 

The Chezy-Manning formula is typically applied for open channel flow. The head loss, in 

accordance with the Manning formula, is expressed as:          (  )       3.9 

As can be seen in the Manning equation, the friction losses are dependent on the pipe 

size, the flow through the pipe, and the roughness coefficient. 

 Comparison of Friction Loss Methods 

There are three distinct formulas typically used to compute the friction losses (or head 

losses). Each formula uses a different category to define the pipe roughness coefficient that must 

be determined either mathematically or empirically. 

In network modeling, most of the hydraulic solvers and simulators have the option of 

selecting the Darcy-Weisbach, the Hazen-Williams, or the Manning formulas for computing the 

friction losses. The selection is usually dependent on the nature of the problem and the modeler’s 
preferences. The Darcy-Weisbach formula has a more theoretical basis than the other head loss 

formulas, as it is derived from Newton’s Law. This formula can be used for any Newtonian fluid. 

The Hazen-Williams and the Manning formulas generally apply to water system with turbulent 

flow conditions. Table 3.3 lists expressions for the friction coefficient (Sf) in terms of friction loss 

per unit length of pipe. 
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Table 3.3: Friction Loss Equations in Different Units 

Equation   (    )  ( )   (   )  (   )   (   )  (  ) 

Darcy-Weisback                                                 

Hazen-Williams              (  )     
              (  )     

              (  )     
 

Manning         (  )               (  )               (  )       

3.1.8.1.2 Minor Losses 

Minor Losses, occur at valves, fittings, bends, and other appurtenances associated with a 

real-world piping system. These losses are called “relatively” minor, as they do not substantially 
contribute to the overall energy losses (i.e., minor loss is much smaller in comparison to the 

energy loss due to friction) through the piping systems. Figure 3.11 illustrates the development of 

the turbulent vortices when water flows through a valve (i.e., the graph on the left) and a 90-

degree bend (i.e., the graph on the right). 

Although Minor losses are usually insignificant, in some cases, at high flow velocity and 

certain fitting configurations, minor losses can play a considerable role in the piping systems (i.e., 

at pump station). 

 

 

Figure 3.11: Example of Generating Minor Loss at Valve and Bending Cross-section [174] 

 

The formula used to compute Minor losses is expressed as a function of the minor loss 

coefficient (KL) and the velocity head (V), as shown in Eq. (3.10).                        3.10 

For network modeling, minor loss is treated as a pipe property, and therefore, in 

modeling water distribution systems, the minor loss coefficient is taken as a constant. 
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 Valve Coefficient 

By using Eq. (3.11), the minor loss coefficient (KL) is expressed as a function of the 

percent opening and valve coefficient (Cv) as shown in the equation below.            3.11 

 Equivalent Pipe Length 

In early system modeling, water distribution problems treaded the minor loss as a pipe 

property, and hence, the minor loss coefficient is computed indirectly by adding an equivalent 

length of pipe instead. The equivalent length of pipe to account for the same head loss is written 

as follows:         3.12 

In modern network modeling, the surrogate minor loss coefficient by an equivalent length 

is no longer a valid practice. It is now directly incorporated into the network model. 

3.1.8.2 Resistance Coefficients 

For an ideal hydraulic model, a new variable, namely resistance coefficient, has been 

developed to mathematically express the head loss. Unlike the friction losses, the resistance 

coefficient is formatted to remain the same irrespective of which formula is utilized as presented 

in the following equations.         3.13 

Equations for calculating    with the various head loss methods are expressed as follows: 

 Darcy-Weisbach                3.14 

 Hazen-Williams                   3.15 

 Manning                 3.16 

 Minor Loss 

Similar to the pipe resistance coefficient, the resistance coefficient for minor losses can 

be described in terms of the fitting or appurtenance and flow as shown in the following equation. 
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         3.17 

Solving for the resistance coefficienct by subsituting from Eq. (3.10), yields:    ∑          3.18 

3.1.8.3 Curves 

3.1.8.3.1 Pump Characteristics Curve 

The principal design parameters used to describe the pump performance are as follows: 

1. Head: total dynamic head added by pump (i.e., energy supplied to fluid by a pump and 

usually measured by units of length), 

2. Efficiency: the power that is imparted to the water divided by the power that came in over the 

electrical wires to the motors. It is also known as overall pump efficiency or wire-to-water 

efficiency, 

3. Brake horsepower: is the real power going to the pump, not the power used by the motor (i.e., 

usually measured in units of kilowatt), and 

4. Net Positive Suction Head (NPSH): the head that must be maintained in the pump to avoid 

cavitation. 

Figure 3.12 shows the pump characteristics in an illustrated graph. 

 

 

Figure 3.12: Pump Characteristics Curve 

 
Since it is not practical to experimentally generate the pump characteristics curves at the 

site of the pumping systems, pump manufacturers usually provide pump curves to their 

customers. A pump curve represents the relationship between the head added to the water by the 
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pump and water discharge through the pump (i.e., flow rate), and is used to define reasonable 

settings for a wide operating range of the pump. 

In water distribution systems, pump designers often select oversized pumps (i.e., more 

than the needs of a system) in order to allow for unexpected pressure increases. However, in 

systems with oversized pumps, there will be associated disadvantages, including: 

 Operating with excessive flow, 

 Increasing energy use, 

 Higher pump maintenance costs, and 

 Decrease in the operating-life of the pump. 

3.1.8.3.2 System Curve 

A System curve, known also as a system head curve or system resistance curve, is a 

prerogative non-physical element that defines what the pump is needed to perform (i.e., the 

required head to add) and under which conditions (or settings) the pump will operate. 

Furthermore, the system curve is continually sliding upward and downward along with the 

changes in the tank water levels and demands. 

The system curve is generated by combining the static head4 and variable frictional losses 

(i.e., head losses) based on the rate of discharge through the pump (as shown in Figure 3.7). 

Moreover, in a pumping system, the pump curve is often considered as a function of the pump 

and independent of the system, while the system curve is found to be pretty much dependent on 

the system and not the pump. 

System curves can mathematically be described as a function of the water discharge, 

minor loss, pipe friction losses, and static head, as shown in the following case of a single 

pipeline between two points:       ∑       ∑      3.19 

3.1.8.3.3 Efficiency Curve 

An efficiency curve determines pump efficiency as a function of pump flow rate. It 

defines the overall wire-to-water efficiency of the pumping systems that count the mechanical 

losses in the pump as well as the electrical losses in the electric motor-driven centrifugal pumps. 

                                                 
4 The static head, also called the static lift or fixed head, is defined as the elevation 

difference between the discharge tank water surface and the suction tank water surface. 
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Figure 3.13 shows the pump efficiency curves in the case of a variable-speed pump, as it 

is always preferable to operate the pump on a region where flow remains well controlled as close 

as to the highest efficiency curve as possible. 

 

 

Figure 3.13: Example of System and Efficiency Curves in a Variable-Speed Pump [178] 

3.1.8.3.4 Volume Curve 

Another type of curve that is used in the hydraulic modeling of water distribution systems 

is the volume curve. A volume curve is very important in monitoring and controlling the 

operation of the storage tanks, especially for the non-fixed cross-sectional area, as it determines 

the volume of the storage tank as a function of water level. It is important to mention that the 

volume curve should contain the lower and upper levels between which the storage tank operates, 

as shown in Figure 3.14 whereas points 1 and 2 on the volume curve indicate the lower and upper 

water levels, respectively. 

 

 
Figure 3.14: Storage Tank Volume Curve 
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3.1.8.3.5 Other Pump Curves 

It is often convenient to mention that there are other pump curves than the 

aforementioned explained ones used to describe the pump’s dynamic behavior, including power, 
water horsepower, head loss, and net positive suction head curves. An example is the Net Positive 

Suction Head (NPSH) curve that is involved in designing the pumping systems. NPSH is defined 

as a static head measured at the suction side of the pump (as shown in Figure 3.15). In designing 

a pumping system, the available NPSH must be higher than the required NPSH in order to avoid 

the occurrence of cavitation5 due to the drop of local pressures within the pump below the vapor 

pressure of water. The NPSH available is commonly depended on the HGL of the water resource, 

the elevation of the pump and the head loss on the suction side of the pump. The NPSH required 

is given as a function of flow rate (as illustrated in Figure 3.16). 

 

 

Figure 3.15: Suction and Discharge Sides of a Centrifugal Pump 

 

 

Figure 3.16: NPSH required Curve in a Centrifugal Pump 

                                                 
5 Cavitation is a phenomenon that is usually observed in centrifugal type of pumps in 

which the system pressure (i.e., local pressures) is less than the vapor pressure of the fluid (i.e., 

water in distribution systems), causing the formation and violent collapse of tiny vapor bubbles 

that could severely damage the impeller of the pump which affect its overall performance. 
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An example of calculating the NPSAH available in a simple case where the pump takes 

suction directly from a tank can be expressed as follows:                          3.20 

In network modeling, if the NPSH available is found to be less than the NPSH required, 

the cavitation will occur because of low local pressures, and in this case, the designer needs to 

choose one of the following corrective actions: 

 Lower the height of the pump, 

 Raise the suction tank water level, 

 Replace the suction pipe with a bigger pipe diameter to reduce head loss, or 

 Select a pump with a lower NPSH available or required. 

3.1.8.4 Time Patterns 

Within the hydraulic modeling of water distribution systems, there are many quantities 

that change over time, such as nodal demands, reservoir heads, pump schedules, and water quality 

inputs. To represent these changes, a time pattern is introduced to allow the modeler to accurately 

track the variations occurring within a fixed value of time interval. A time pattern consists of a set 

of multipliers that replicate themselves over 24 hours, and can be applied to any of the above 

quantities. At each time interval, a quantity remains constant, and it is calculated by multiplying 

the quantity nominal value by pattern's multiplier corresponding to that time interval. 

For instance, assuming that the average demand of a node A is 5 GPM, and the time 

interval to be 4 hour over a 28 hour period (i.e., the duration of simulation), then the time pattern 

is expressed as follows: 

 

Period 1 2 3 4 5 6 

Multiplier 0.4 0.6 1.0 1.4 0.8 0.6 

 

During the simulation, the actual demand applied at node A is found to be: 

 

Hours 0-4 4-8 8-12 12-16 16-20 20-24 24-28 

Demand 2 3 5 7 4 3 2 

3.1.8.5 Affinity Laws for Variable-Speed Pumps 

The Pump Affinity laws are commonly used in hydraulics, especially in water 

distribution systems, where the mathematical relationship between several pump characteristics 

(i.e., flow discharge, head discharge, and/or power consumption) directly influences its 
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performance. These laws can be applied to both types of centrifugal and axial flow pumps to 

predict the effects of changing the speed of a centrifugal pump or the diameter of the impeller on 

the pump performance. Being able to determine these effects would allow the design/maintenance 

engineer to assess the consequence of new measures before implementing changes. 

3.1.8.5.1 Law 1: Affinity at Constant Impeller Diameter 

In Centrifugal pumps, the first affinity law, with the impeller diameter held constant and 

the speed changed, is explained as follows: 

1. Flow discharged is proportional to the speed of the motor, as illustrated in Eq. (3.21):       (    ) 3.21 

2. Head produced is proportional to the square of speed of motor, as given in Eq. (3.22):       (    ) 
 3.22 

3. Power required is proportional to the cube of speed of motor, as yielded in Eq. (3.23):       (    ) 
 3.23 

The above equations are widely applied to variable-speed pumps in which a known pump 

curve at one speed is reasonable to predict the curve at another speed. Figure 3.17 shows the 

principles of applying affinity law with the impeller diameter held constant and the motor speed 

changed. Point 1 represents a known characteristic (i.e., flow, head or pressure, and power) 

measured at speed n1, while point 2 represents the predicted characteristic at speed n2. 

 

 

Figure 3.17: Principles of First Affinity Law in a Variable–Speed Pump 
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3.1.8.5.2 Law 2: Affinity at Constant Motor Speed 

The second affinity law is useful to indicate the influence on the volume capacity (i.e., 

flow), head (i.e. pressure), and power (i.e., energy consumption) of a centrifugal pump due to 

being geometrically similar (i.e., change in impeller diameter). Applying this law to centrifugal 

pumps with the speed held constant and the impeller diameter changed is presented as follows: 

1. Flow discharged is proportional to the impeller diameter, as shown in Eq. (3.24):       (    ) 3.24 

2. Head produced is proportional to the square of impeller diameter, as stated in Eq. (3.25):       (    ) 
 3.25 

3. Power required is proportional to the cube of impeller diameter, as expressed in Eq. (3.26):       (    ) 
 3.26 

Using the above relationships, once the pump curve at any one diameter is known, and 

then the pump characteristic at another diameter can be approximately predicted. 

3.2. Water Distribution Systems: Fundamentals of Hydraulics 

In networks of interconnected hydraulic elements, every element is influenced by each of 

its neighbors; the entire system is interrelated in such a way that the condition of one element 

must be consistent with the condition of all other elements. 

3.2.1 Network Principles of Hydraulics 

In modern water distribution systems, utility customers are always expecting reliable and 

high quality water service. Therefore, operating such a water distribution system requires a good 

understanding of the fundamental flow relationships and the hydraulic concepts that govern the 

dynamic of flow in a complex water supply network. 

Generally, there are two main concepts used to model the performance of the networks of 

interconnected hydraulic elements (i.e., water distribution systems) in terms of a set of 

mathematical non-linear equations. These concepts are conservation of mass and conservation of 

energy. The principle of conservation of mass states that the lumped (i.e., mathematical sum) of 

the fluid mass entering in and leaving from a node of a water distribution system must be equal to 

zero. 

The mathematical representation of this concept is shown in the eq. (3.27): 
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∑             3.27 

In the case when the Extend-Period Simulation (EPS) is considered, a tank is used to 

store and withdraw water, thus, there is a need to add a new term to the above equation to 

describe the accumulation of water at certain nodes. Hence, eq. (3.27) can be re-written as 

follows: ∑                   3.28 

Finally, It should be noted that the law of conservation of mass is applied to all nodes and 

tanks connected to the water distribution system (i.e., all nodes and tanks are represented in one 

equation). 

In 1738, Bernoulli derived the principle of conservation of energy. He defined a way that 

regardless of the path taken between any two points, the difference in energy must be the same. 

The hydraulic interpretation of this law is illustrated as a relationship between the link flow and 

the link head loss. The mathematical formula of this law is expressed as shown in eq. (3.29):               ∑                  ∑   ∑    3.29 

Eq. (3.29) shows that the difference in energy at any two points linked in a system is 

equal to the energy gains from pumps (i.e., adding head) and energy losses in pipes and fittings 

(i.e., due to friction in valves, pipes, etc.) that occur in the path between them. This equation can 

be applied to any open-path between any two points, or paths between reservoirs or tanks (i.e., 

with a known difference in head), or paths around a closed-path as the overall (i.e., resultant 

energy) changes in energy must equal to zero, as shown in Figure 3.18. 

 

 

Figure 3.18: Principle of Conservation of Energy 

AB Loss + BC Loss – AC Loss = 0 
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3.2.2 Solving Hydraulic Models 

A conceptual hydraulic model of a water distribution system can be presented in the form 

of an input/output system (as shown in Figure 3.19). Control Schedules (i.e., pumps and reservoir 

schedules), water demands (i.e., water that leave the system as per the demands of users), and 

initial conditions (i.e., tanks and reservoirs initial water levels) are considered the input to the 

hydraulic model (i.e., like a system in the context of control systems). The output comprises 

pressures at nodes, flows at elements (i.e., tank, pump, and pipe), and operating costs. 

 

 

Figure 3.19: Concept of Hydraulic Model of Water Distribution System [179] 

 

A comprehensive understanding of both hydraulics and solvers are needed to accurately 

simulate water distribution systems. From the principles of hydraulics, it is shown that network 

models of real water distribution systems consist of sets of governing continuity and energy 

equations. Hence, for each pipe in the system, one energy equation, and one continuity equation 

should be developed for each node. 

Mathematically, due to the non-linear nature of energy equation systems expressed in 

terms of a flow-head relationship, the hydraulic models and water quality behavior of a water 

distribution system cannot directly be solved. Instead, the largely ongoing development in 

advanced digital computers and powerful numerical techniques allow the modelers to iteratively 

solve the system of equations with substantial computational accuracy. 

Several approaches have been developed to numerically solve the hydraulic and water 

quality models in a water distribution system. These approaches can be classified as either 

Eulerian or Lagrangian. The Eulerian-based approach reformulates the governing flow equations 

into a series of sub-equations (i.e., as the case of a water quality mode in which each separate 

pipe is divided into equal length sub-links). The Lagrangian-based approach tracks changes in 

parcels of water as they travel through the pipe system. In both solution methods, a hydraulic 

model must determine the flow, flow direction, and velocity in each pipe over time during 

simulation. It should be noted that both approaches assume that a steady state hydraulic 

equilibrium is available. 
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3.2.2.1 The Eulerian Approach 

The first viewpoint that is used to observe and analyze fluid flows by observing the fluid 

velocity at fixed positions is known as the Eulerian approach. In this approach, the hydraulic state 

of the system is updated at fixed positions as time progresses in uniform steps. 

For modeling water quality in distribution systems, Grayman et al. proposed a new 

Eulerian solution technique in which each separate pipe is divided into a series of equal length 

sub-links. Then, the water quality concentration is adjusted during each water quality time as 

water moves from one sub-link to the next adjacent one. The sub-link lengths are varied from 

pipe to pipe and even within a pipe as flow changes, [180]. 

Figure 3.20 depicts the concept of Eulerian approach by observing the water (i.e., described 

as a boat) flow through the pipe of a water distribution system where the observer is standing on 

the sideline. 

 

 

Figure 3.20: Concept of Eulerian Solution Method 

3.2.2.2 The Lagrangian Approach 

The second viewpoint of analyzing the fluid motion is to track the movement of a parcel 

of water throughout the pipe system at a fixed or variable time interval. In the Lagrangian 

approach, instead of observing the flow through a fixed grid (i.e., side point), the observer moves 

with the flow to fully track actual changes occurring over time. 

The Lagrangian approach can be either time-driven or event-driven. In a time-driven 

method, the hydraulic state of the system is updated with a fixed time interval. In the event-driven 

case, the hydraulic state of the system is updated at the time when a change actually occurs (i.e., 

variable time interval). Rossman et al. compared the formulation and computational performance 

of the two methods, and found that the Lagrangian time-driven model is more efficient in 

obtaining accurate solutions than the event-driven for the hydraulic modeling of a water 

distribution system, [181]. 

Furthermore, the Lagrangian method is often found to be the most efficient approach 

used in simulating water distribution systems. It is also the most commonly used approach in 
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modeling water quality since it applies to moving parcels of water. Nevertheless, it is found that 

applying Lagrangian to a three-dimensional continuum problems is difficult, and thus, most of the 

theories in fluid mechanics are developed according to the Eulerian system of equations. 

Figure 3.21 illustrates the concept of the Lagrangian approach by plotting the trajectory 

of parcels of water (i.e., described as boats) moving through the pipe of a water distribution 

system (i.e., described as a river). 

 

 

Figure 3.21: Concept of Lagrangian Solution Method 

3.2.3 Calibrating Hydraulic Models 

A concern associated with the use of hydraulic models is determining how well these 

models represent real physical systems, [174]. The main objective of any hydraulic model is to 

reproduce the behavior of a real system including its spatial and hydraulic dynamics in a manner 

that can be useful to analyze the system and then make decisions about system rehabilitation or 

major expansions. 

The hydraulic simulators simply solve sets of system equations (i.e., continuity and 

energy equations) using field-data collected from the sites of a system. The accuracy of a 

hydraulic model essentially depends on the quality of the field-data. The process of comparing 

between the supplied field-data (i.e., also known as field observation data) and the results 

obtained from the hydraulic model is referred to as a calibration process or calibration analysis. 

Therefore, it is recommended that the calibration analysis should always be performed before a 

hydraulic model is used for decision-making purposes. 

Within a calibration analysis, it is necessary that modelers do some adjusting to their 

hydraulic models (i.e., changing node demands, adjusting the roughness of pipes, altering pump 

operations, and fine-tuning other model characteristics) until a reasonable agreement between the 

predicted and measured system performance is obtained over a wide range of operating 

conditions. 
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3.2.3.1 Calibration Approach  

A challenge associated with performing the calibration process is the adjustment required 

to bring the hydraulic model into agreement with the real system. Ormsbee et al., [182], 

suggested a guideline consists of seven steps to performing model calibration. 

1. Identify the intended use of the model: identifying the application of the model, including 

system expansion (i.e., new pipes, new tanks, or new pumps), operational studies (i.e., valves 

settings, pumps settings, or water demands), design studies (i.e., pipe replacement or pipe 

sizing), and water quality studies (i.e., tank water levels). This would help the modelers to 

establish the level of information required in the model, the type of the measured data, and 

the level of tolerance for errors between prediction and actual. 

2. Determine estimates of model parameters: there are some degrees of uncertainty associated 

with collecting field-data. Hence, parameters estimated from the hydraulic models are unlike 

those that are measured and may be changed with time. To compensate the difference 

between these two observations, special emphasis needs to be put on initial pipe roughness 

and node demand factors. 

3. Collect calibration data: flow rate, pressure, and tank water level are the most common data 

measured for water distribution systems. According to the level of instrumentation and 

telemetry, most of those parameters are already collected as part of normal daily operations. 

4. Evaluate simulation results using an initial estimates of model parameters: after properly 

obtaining the measured data (step 3), predicted results will be compared with them in order to 

evaluate the accuracy of the hydraulic models and for correcting the source of errors between 

the predicted and system results. 

5. Perform a rough-tuning or macro-calibration analysis: when there are differences between 

the modeled and measured values, the acceptable approach is to review the data (i.e., input 

data) associated with the model and compare them with the field-data. During the macro-

calibration, most of these errors and mistakes can be removed. 

6. Perform a sensitivity analysis: at this stage, it is important to investigate the relationship 

between the parameter adjustments and their corresponding results. 

7. Perform a fine-tuning or micro-calibration analysis: last procedure of the calibration process 

is that modelers attempt to fine-tune the model’s parameters such as pipe roughness and 

nodal demands. Usually most of these attempts are performed using either an empirical 

approach (i.e., rules of thumb) or a trial-and-error approach. 

In addition to these procedures, American Water Work Association – Engineering 

Computer Applications committee are frequently posting new standards and calibration 

guidelines on their websites in order to enhance the accuracy of the hydraulic models of water 

distribution systems. 
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3.3. Classes of Water Demands 

Water demand, also called water consumption, is the driving force behind the hydraulic 

dynamics developing in a water distribution system. Therefore, it is important to precisely 

represent the consumption of water in hydraulic models. This would require the modelers to 

specify the locations for which water leave the system and categorize the demand patterns of 

water being delivered. 

Spatial analysis is the most common method for describing water use at nodes by 

spatially distributing demands over time during simulation. 

The node demands can be categorized as follows: 

1. Customer demand: is the water required to satisfy the needs of users in the system, it 

represents the metered portion of the total water produced. There are many demand patterns 

used for this category, two of which represent the majority of water demands, namely 

residential and commercial patterns. Figures 3.22 and 3.23 show an example of these two 

patterns over the simulation time, respectively. 

 

 

Figure 3.22: Residential Demand Pattern 

 

 

Figure 3.23: Commerial Demand Pattern 

 

2. Unaccounted-For Water (UFW): is the portion of water that is produced and lost before it 

reaches the customers due to system leakage, theft, unmetered services, or other causes. Also, 

it represents the unmetered portion of total water produced in a system. 
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3. Fire flow demand: is a predetermined system capacity needed to control and extinguish fire, 

so that an adequate protection is supplied during fire emergencies. Figure 3.24 shows the fire 

demand pattern as an example of sudden event occurring in a water distribution system. 

 

 

Figure 3.24: Fire Demand Pattern 

 

An example of demand categories for the Olathe water distribution system in Kansas - 

USA is shown graphically in Figure 3.25. The total consumption data is obtained by tallying up 

the customers’ bills between 2003 and 2005, [183]. From this graph, it can be seen that residential 

demand represents the majority of the water usage compared to other sectors. Two percent of the 

total water produced is considered water lost due to leakage. 

 

 

Figure 3.25: Water Demand by Customer Categories (2003-2005) [183] 

3.4. Types of Hydraulic Simulations 

There are several modes of operation of water distribution models, two of which are 

considered the most important ones: steady-state and Extended-Period Simulation (EPS). These 

two types of simulations are not only used to observe the hydraulic dynamics of a network, but 
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also to predict the hydraulic behavior that may occur due to changes in operating conditions, 

abrupt hydraulic events, or possible failure scenarios. Whereas steady-state simulation is mainly 

concerned with analyzing certain hydraulic behavior, including fire flow requirements, peak 

demand times, system elements failures, and master planning. An Extended-Period Simulation 

(EPS) tracks every hydraulic change that occurs over time by simulation. 

To illustrate the fundamental concepts of these two types of simulations, basic definitions 

are provided: 

 Steady-State Simulation: observes the states of the system (i.e., flows, pressures, pump 

operating status, valve position, etc.) under the assumption that hydraulic demands and 

boundary conditions are held constant during the simulation time. 

 Extended-Period Simulation (EPS): performs a quasi-dynamic analysis for a system and 

determines the states of the system as a series of steady-state simulations. In this type of 

simulation, the assumption that hydraulic demands and boundary conditions are kept constant 

is not valid over period of time. 

3.4.1 Steady-State Simulation 

Steady-state mainly represents a state of a system6 that does not vary over time, 

particularly the elements of a system that have achieved equilibrium during their long-term 

behavior. Tank water levels, reservoir hydraulic elevations, water demand, and pump operating 

status are all elements of a system that remain unchanged to define the boundary conditions of the 

simulation. Furthermore, hydraulic models are simulated using the steady-state mode to not only 

provide information about node pressures and pipe flow rate at equilibrium, but also to define 

other states of a system according to water demands and boundary conditions. 

3.4.2 Extended-Period Simulation 

It is essentially to mention that the mathematic foundation of Extend-period Simulation 

(EPS) can be represented as a sequence of steady-state simulations of the system whose water 

quality model, water demands, and boundary and operating conditions are updated over time. 

One of the main applications of EPS is to perform water quality analysis. For example, 

water quality move at the same velocity as water through pipelines. Features at EPS enable the 

modelers to study many water quality issues, including water age (i.e., is the time taken by a 

                                                 
6 State of a system is a set of numbers contains all the information required to estimate 

responses, with the use of characteristic equations describing the dynamics of the system, to 

present and future inputs without reference to the past inputs and outputs. 
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parcel of water in the network), residual chlorine (i.e., free chlorine concentration at nodes), and 

water source tracing (i.e., when water is drawn from two or more water resources). 

3.5. Problem Formulation 

One of the most researched areas in the hydraulics of water distribution systems is the 

operation optimization, [184,185]. Recently, population-based multi-objective optimization 

algorithms (e.g., Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony 

(AC)) become the preferred optimizers for operational excellence. Moreover, these algorithms 

offer opportunities for new operational strategies and insights into the requirements of a 

distribution system, [186]. 

Water distribution system operation usually involves multi conflicting objectives, 

including cost, reliability, and benefit. A Pareto concept in a multi-objective optimization is 

successfully applied to optimize the operation of a water distribution system. Savic et al. [187], 

proposed a bi-objective cost function to solve a pump scheduling problem. The multi-objective 

genetic algorithm used in their work is based on the concept of Pareto ranking from Goldberg [3]. 

They concluded that minimizing energy cost and the pump-switching criterion are achieved by 

producing a good set of solutions. Halhal et al. [188], developed a dual objective function, 

including capital costs and benefit (i.e., benefit in their work is referred to the network 

rehabilitation) using a structured messy genetic algorithm. The developed algorithm (SMGA) is 

able to produce a range of good solutions with varied costs. Doby et al. [189], investigated a 

genetic algorithm-based method for determining the least cost of looped networks while 

considering three objectives that are cost, redundancy, and water quality. The solutions produced 

by their approach are equally viable in response to the network problem. Farmani et al. [190], 

used a modified Non-dominated Sorting Genetic Algorithm method (NSGA-II) (i.e., developed 

by Deb et al. in 2000) to solve optimal design problems (i.e., in the context of water distribution 

systems). In their approach, the cost function is formulated using two objectives: minimizing the 

total cost of network expansion and rehabilitation, and maximize resilience for their “Anytown” 
network model. A third objective is added to their problem formulation that is minimum surplus 

head benefit that accounts for the network reliability in terms of flow provided through a system 

or head available at critical nodes under different load conditions. Their results are able to 

identify the trade-off characteristic between the cost of the network and its reliability. 

In optimizing pump operation in a water distribution system, a simple model can be used 

because only relatively large mains between pumps, reservoirs, and junction nodes are important 

in calculations [174]. Therefore, in this work, a simplified hydraulic model based on a real-world 

water distribution system in Saskatoon is considered. Figure 3.26 shows the schematic model 

using five pumps installed in two pumping stations and has many grounded and elevated 

reservoirs. In pumping stations, pumping capacities are assumed during the time interval, and 
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therefore, each pump combination has a fixed maximum flow rate, electrical energy consumption, 

and maximum power. Table 3.4 presents the characteristics of a pump combination for the 

Saskatoon West WDS model. 

 

 

Figure 3.26: Schematic of Simplified Water Distribution Model 

 
Table 3.4: Technical Characteristics of Pump Combinations 

Pump 

Combination 

Code 

P1...P5 

Max. 

Flow 

(IGPM) 

Power 

(KW) 
 

Pump 

Combination 

Code 

P1...P5 

Max. 

Flow 

(IGPM) 

Power 

(KW) 

0 00000 0 0  16 10000 922 108 

1 00001 1372 116  17 10001 2294 224 

2 00010 1372 116  18 10010 2294 224 

3 00011 N/A* N/A  19 10011 N/A N/A 

4 00100 198 12  20 10100 1120 120 

5 00101 1570 128  21 10101 2492 336 

6 00110 1570 128  22 10110 2492 336 

7 00111 N/A* N/A  23 10111 N/A N/A 

8 01000 922 108  24 11000 1844 216 

9 01001 2294 224  25 11001 3116 332 

10 01010 2294 224  26 11010 3116 332 

11 01011 N/A N/A  27 11011 N/A N/A 

12 01100 1120 120  28 11100 N/A N/A 

13 01101 2492 336  29 11101 N/A N/A 

14 01110 2492 336  30 11110 N/A N/A 

15 01111 N/A N/A  31 11111 N/A N/A 

*   N/A stands for not applicable due to system’s regulation 
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The mathematical expressions of the multi-objective function problem and its constraints 

are presented as follows: 

3.5.1 Mathematical Definition of the Problem: Objectives 

In this dissertation, a multi-objective analysis is adopted to mathematically represent the 

system-operational problems in WDS. The main objective of any energy optimization strategy, 

for a water distribution system, is to reduce costs while ensuring an acceptable level of service to 

water users, [191]. According to the multi-objective nature of the problem, some goals are in 

conflict with each other such that improving one objective will cause deterioration in another. 

Minimizing the operational cost commonly places the system under more risk of not being able to 

handle unusual events such as pipe ruptures, [192]. Energy optimization can be realized by many 

means, from the field-testing, standard maintenance of equipment, and proper rehabilitation of the 

network, to the use of optimal operating strategies. Energy optimization can be achieved by: 

 Reducing energy costs in pumps (e.g., making efficient use of storage tanks, by filling them 

during off-peak (i.e., lowest electricity tariff) period and draining them during the peak 

period), and 

 Increasing pump efficiency (e.g., operating the pumps near their best efficiency points). 

The cost function can be considered as an evaluation criterion that is used to determine 

the quality of a solution. A multi-objective cost function for water distribution systems can 

include the following elements: electricity cost, pump maintenance, network reliability, 

maximum power peak, and water quality. A detailed explanation of the cost function and its 

mathematical formulation is provided as follows: 

3.5.1.1 Electrical Energy Cost (f1) 

This is the cost of electrical energy consumed by all pumps of the pumping stations 

during the optimization period, [193,194]. This objective has a remarkable influence on the pump 

scheduling by substantially reducing the electricity energy cost when using the smallest possible 

number of pump combination during the operating time interval, [195,187]. It can take the 

advantage of storing water in the reservoirs when pumps are turned ON, and then using it to 

satisfy the community’s demands during the period when pumps are turned OFF. In this work, a 
fixed-charge structure is considered when calculating the electricity cost. The mathematical 

representation of calculating the electrical energy cost is given by Eq. (3.30), [195]:     ∑   [        ( ) ]⏟                              
  
    3.30 
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where: 

i : time interval index, 

Tp: whole optimization period, 

Tr: rate of the electricity charge, 

Pc(i): pump combination at interval i using Np to denote the total number of pumps in the system, 

Pc(i) is coded as a binary string in {0, 1}Np. The code of pumps scheduling is provided in Table 

3.4 (for Np = 5), and 

EC(Pc(i)): is the electric energy consumed by pump combination Pc(i) at time interval i, see 

power column in Table 3.4. 

3.5.1.2 Pump Maintenance Cost (f2) 

The number of pump switches is the number of 0 1 sequences. A Pump switch is only 

counted if the pump was not working (i.e., OFF) in the preceding time interval and then turned 

ON. Therefore, a pump that was already ON in the preceding interval and then switched OFF 

does not count for a pump switch for the present interval. Figure 3.27 illustrates the concept of 

counting the pump switches for the two consecutive time intervals. 

 

 

Figure 3.27: The Mechanism of Counting Pump Switches 

 
Maintenance cost can be as important as electrical energy cost, and is characterized by 

the total number of times pumps are switched ON. This number is simply calculated by counting 

the number of pump switches at every time interval. A pump switch is counted only if the pump 

was OFF in the preceding time interval and then has been turned ON, [192]. Hence, the total 

number of pump switches is commonly used as a measure of maintenance cost. Therefore, 

minimizing pump switches is considered as an objective in the cost function, [196,191,197]. The 

mathematical representation of this objective is shown in Eq. (3.31):    ∑|   (    ( )    (   ))|⏟                                               
  
    3.31 

where | ・ | represents the 1-norm of a vector. 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

90 

3.5.1.3 Network reliability (f3) 

Reliability in water distribution systems is defined as the ability of the system to meet the 

forecast demands that are placed on it according to the criteria of water flow to be supplied and 

pressure to be provided at the junction nodes, [198]. The above definition may be referred to as 

“the ability of the network to provide service at an acceptable level in spite of abnormal 
conditions”. Accordingly, reservoir capacity and operation have a large impact on network 

reliability, [199]. Hence, at the end of each time interval, reservoir water level must be in a 

position between the maximum level (    ) and the minimum level (    ). These two levels 

are defined as follows: 

• Minimum level: that guarantees enough pressure in the pipeline. This level should always be 

maintained for security reasons, so that the system can supply a large amount of water in a 

short time when such unexpected events could happen, and 

• Maximum level: that is compatible with the reservoir’s capacity. 

Since network reliability cannot be mapped into a cost ($ dollar), it is stated that the 

reservoir level variation (  ) between the beginning and the end of the optimization period is 

considered as a distinct objective to be minimized. The equation that describes the network 

reliability is given in Eq. (3.32):       ∑ ∑ [ (     )      ]  
  
   

  
   ⏟                                          

 3.32 

where: 

NT: total number of reservoirs in the system, 

Sk: reservoir’s surface, assumed constant, 

D(Pc(i)): discharge pumped at time interval i using pump combination Pc(i), and 

di,k: water demand at time interval i. 

3.5.1.4 Maximum power peak (f4) 

Some electrical suppliers charge their clients based on a limited power peak. An 

additional charge (an expensive charge) is added when the clients exceed their maximum 

allowable electric energy. It is computed, for billing purpose, according to the maximum peak 

power reached during the period. Therefore, in this work, a daily power peak is chosen as a 

separate objective in the cost function rather than considering it as a penalty added to the 

electricity energy cost, [200]. The maximum power peak is computed using Eq. (3.33):    ∑    [ (  ( ))]⏟                                  
  
    3.33 
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where P(Pc(i)): power at interval i using pump combination Pc(i), see Table 3.4. 

3.5.1.5 Water quality (f5) 

Due to the complexity of most water distribution systems, water quality can undergo 

significant changes as water travels through the pipelines of the system from the treatment plant 

to the point of delivery, [201]. For example, chlorine degrades with time due to reaction with 

pipelines walls. During regular operations, the quality of water is distorted due to the acts of both 

mixing water from various resources and frequently switching the pumps ON and OFF which 

allows an excessive biofilm to be formed7, [202]. Water quality is treated here as a distinct 

element of the objective function. This objective is mathematically described as shown in          

Eq. (3.34) 

   ∑(∑ (   [             ])  ⏟                                                     (   [             ])  ⏟                                               
  
   )  

    3.34 

where: 

ND: total number of junction nodes (i.e., demand nodes), 

Cn,max and Cn,min: maximum and minimum bounds of free chlorine concentration at junction node 

n, and 

Cn,i: chlorine concentration at junction node n during time interval i. 

m1 and m2 are the power of the upper and lower bounds (usually equal to 2). 

3.5.2 System Operational Problem: Multi-objective Cost Function 

Energy saving optimization in water distribution systems are not concerned with cost 

reduction only, but also must consider other operational objectives that cannot easily be expressed 

in economic terms. Hence, effective network operation is a trade-off between multiple objectives. 

The goals of implementing a new energy optimization strategy for a water distribution system can 

successfully be achieved by: 

 Minimizing energy costs, 

 Reducing the costs of maintenance, 

 Preserving network reliability, and 

 Improving water quality. 

                                                 
7 A biofilm is a complex aggregation of microorganisms. Biofilms are often characterized 

by surface attachment, structural heterogeneity, genetic diversity, complex community 

interactions, and an extracellular matrix of polymeric, [297]. 
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In this research, a multi-objective approach is adopted with the above-defined objectives; 

the multi-objective system operational problem can be stated as follows:            (  ( )   ( )   ( )   ( )   ( )) 3.35 

where: 

f1: electrical energy cost; see Eq. (3.30), 

f2: number of pump switches; see Eq. (3.31), 

f3: network reliability; see Eq. (3.32), 

f4: maximum peak power; see Eq. (3.33), 

f5: water quality; see Eq. (3.34),             is the decision vector,   {   }, and   (              )       is the objective vector. 

3.5.3 System Operational Problem: Non-linear Inequality Constraints 

Mathematically, constraints on the optimization problem define the criteria that classify 

the solutions, obtained by the optimization algorithm, whether they are feasible8 or not feasible in 

order to define the system performance. Constraints may be defined as operational and boundary 

conditions on junction node pressure, pipe velocity, tank water level, and pumps switches for a 

given water distribution optimization problem. In this work, the multi-objective cost function (as 

shown in Eq. (3.35)) is subject to a set of non-linear inequality constraints that is defined as 

follows: 

 Pressure Constraints at a Junction Node: 

For reliable service, the water should be supplied to consumers at adequate head pressure. 

Therefore, for each operational interval i, the pressure at any junction node j must always be 

maintained between the maximum and minimum values. This can be expressed as:         ( )                               3.36 

where   ( ) denotes the pressure at node j at time interval i;       is the minimum pressure 

required at node j; and       is the maximum pressure allowed at node j. 

 Water Level Constraints in a Tank: 

A storage tank in a water distribution system operates between the minimum and 

maximum allowable water levels to prevent the tanks from being empty or overflowing. The 

limits on the tank water levels can be described as: 

                                                 
8 A solution is called feasible if it satisfies all problem constraints. Likewise, an infeasible 

solution is defined as a solution to an optimization problem that does not satisfy all or potentially 

any of the constraints. 
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  ( )    (   )   (  ( ))    ( )      ( )                               3.37   ( )                               3.38 

where       represents the minimum water level required at tank j to maintain an adequate 

emergency service;   ( ) is the estimated water level of tank j at time i; and       represents the 

maximum allowable water level at tank j. 

 Pump Switching Constraints: 

In a water distribution system, the total energy cost can effectively be reduced by 

frequently turning pumps ON and OFF during an optimization period. However, the pump 

maintenance cost is relatively increased as pump switches increase due to excessive wear on the 

pumps. In order to limit the pump-wear-out cost, the total number of pump switches must be less 

than a maximum allowable value, given as:                         3.39 

where     represents the number of pump switching for pump k and        designates the 

maximum number of pump switches for pump k. 

 Chlorine Constraints at Junction Node: 

Constraints corresponding to water quality reflect the properties of chlorine concentration 

in the water at junction node. For each time interval i, the chlorine concentration at any junction 

node j must always be maintained within a maximum value and a minimum value. This constraint 

can be expressed as:         ( )   ̅                            3.40 

where   ( ) represents the chlorine concentration at node j at time interval i;       is the 

minimum chlorine concentration required at node j; and  ̅      is the maximum allowable 

chlorine concentration at node j. 

In summary, the defined multi-objective system operational problem and its nonlinear 

inequality constraints considers five conflicting objectives, including electrical energy cost, 

maintenance cost, network reliability, maximum power peak, and water quality are minimized. At 

the same time, the optimization algorithm evaluates the solutions according to the operational and 

boundary constraints associated with the optimization problem such as pressure and chlorine 

concentration at junction nodes, water level at tanks, and the total number of pump switches. 

3.6. Hydraulic Simulations 

The basics of hydraulic models as it applies to water distribution systems are presented in 

this section. It summarizes fundamentals of hydraulics and other related topics, including water 
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demand and allocation, model calibration, steady-state and extended period simulation, water 

quality analysis, and problem formulation. 

The hydraulic simulation of water distribution systems is mainly used to solve the 

relationship between pressure and flow of the system over the course of the simulation time 

period. The simulation allows an accurate prediction of the network operation and potential 

events such as failures in network elements (i.e., burst pipes), level of water leakage, pressure 

fluctuations, energy use, and so on. 

Hydraulic network simulation software packages use a graphical user interface (GUI) that 

makes it easier for modelers to build models and then visualize the dynamics of a network over a 

wide range of design and operating conditions. The most commonly used software packages are: 

 WaterCAD: is a popular and efficient hydraulic simulator that also considers water quality 

modeling solution for water distribution systems. WaterCAD can analyze the water networks 

in both steady state and extended period simulation analyses, [203]. 

 EPANET: is software developed by EPA's Water Supply and Water Resources Division, and 

is used to model water distribution systems. It is able to simulate both hydraulic and water 

quality behaviors within pressurized water networks, [204]. 

3.6.1 Augmenting Hydraulic Solver in an Optimization Process 

This research has developed an optimization cycle referred to as optimization cycle for 

water distribution systems. It integrates the optimization algorithm with the hydraulic simulation 

software (i.e., EPANET) as shown schematically in Figure 3.28. The arrows in this figure 

indicate the normal process of the optimization cycle. For a real-world water distribution 

problem, the optimization process typically begins with identifying full details of the problem. 

Moving from the real-world problem to the optimization formulation is known as analysis. It is 

here that the hydraulic model of the water distribution system is built using the important 

elements extracted from the previous step. Moving from the optimization formulation to the 

algorithm or solution technique is often known as a cost function model. In this step and based on 

the problem complexity, the cost function is mathematically expressed by two or more objectives; 

each has its own space dimension and usually are in conflict with other objectives. Laying bare 

the essential information of a problem has often led to insights into how well an algorithm or a 

solution technique can approach the problem. Moving from the algorithm or solution technique to 

the computer implementation is referred to as a numerical model. This covers issues related to 

analyzing, solving, and simulating the hydraulic model of the WDS using the hydraulic solver. 

Digital computers, MATLAB package, and the concept of multi-islands (i.e., parallel algorithm) 

are very helpful in obtaining an accurate performance and efficient implementation of the 

optimization algorithm. 
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On the return path of the process, moving from the computer implementation back to the 

algorithm or solution technique is called verification. The main idea is that the hydraulic solver 

verifies that the proposed operating scenario meets the network’s boundaries and operational 
constraints. Performance metrics and sensitivity analysis are used for validation and for 

measuring the quality of the obtained solutions. Validation is defined as the process of confirming 

that the hydraulic model, solutions technique, and obtained solutions are all appropriate for the 

real-world problem, while sensitivity analysis studies the effect of changing specific algorithm 

parameters on the results. These two processes occur when moving from the algorithm or 

solution technique and the optimization formulation. Moving from the optimization formulation 

to the real-world problem is known as a decision maker. It is here that the loop of the 

optimization cycle is completed and finally the obtained results are compared to choose a solution 

amongst a set of Pareto-front solutions that is the most reliable, appropriate, and suitable to the 

problem. 

 

 

Figure 3.28: Flowchart of the Optimization Process 

3.6.2 EPANET Software 

In this research EPANET, hydraulic simulation software, is chosen to solve and simulate 

the response of network models. EPANET is developed by the water supply and water resources 
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division (formerly the drinking water research division) of the U.S. Environmental Protection 

Agency's National Risk Management Research Laboratory. It is a Graphical User Interface 

(GUI)-based computer program that runs both steady-state and extended-period simulation of 

hydraulic and water quality behavior for water distribution systems. A water distribution system 

is represented by a network model that consists of pipes, nodes, pumps, valves and storage tanks, 

and reservoirs. EPANET tracks the flow of water in pipes, the pressure at nodes, the water levels 

in tanks, and the concentration of a chemical species through the network model over the course 

of the simulation. Furthermore, EPANET can also simulate water age and source tracing. 

Moreover, EPANET can also be used to assess alternative management strategies for 

enhancing water quality throughout a system. Finally, EPANET provides an integrated 

environment with other computer programs for editing network input data, performing hydraulic 

and water quality simulations, and reporting/viewing the results in different types of formats. 

3.6.2.1 EPANET Modeling Capabilities 

EPANET has been designed to have full-featured hydraulic solver that accurately 

simulates network models and effectively analyzes water quality. For the hydraulic modeling, 

EPANET includes the following capabilities: 

 handles systems of any size (i.e., there is no limit on the size of the network to be analyzed); 

 computes friction headloss using most common methods such as Hazen-Williams, Darcy-

Weisbach, or Chezy-Manning; 

 includes minor head losses for bends, and fittings when calculating energy losses; 

 models both constant and variable speed pumps; 

 computes pump energy consumption and costs; 

 models most common types of valves such as shutoff, pressure reducing, pressure sustaining, 

pressure breaker, and flow control valves; 

 considers uniform and non-uniform storage tank shapes; and 

 allows multiple demand patterns at junction nodes. 

3.6.2.2 EPANET Applications 

Over the past two decades, EPANET has been exclusively used for research on 

optimizing the design, operation, or energy costs of water distribution systems. Samples of this 

work reported by many researchers to design and operate water distribution systems are presented 

as follows: 

Manuel et al. [205], considered a disaggregated (dual-level) methodology that linked a 

Strength Pareto Evolutionary Algorithms II (SPEA II) with EPANET in order to satisfy the 

explicit system constraints and thereby enrich the Pareto-optimal set with more feasible solutions. 
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Their methodology in the pump scheduling problem is able to consider complex network 

instances. Moreover, a feasibility handling technique based on the dominance criteria is used 

instead of penalty functions. Their proposed method is tested and an assessment of the results is 

carried out by means of empirical attainment surfaces. 

Fred et al. [206], used a simulated annealing algorithm linked with EPANET for 

obtaining an optimal operation for two networks that are the northwest pressure zone in the 

Austin, Texas and the North Marin Water District, Novato, California system, in terms of water 

quality and hydraulic performance. From their work, a total of 36 pumps operations are 

considered and it is found that the water quality violations as well as energy costs are reduced. 

Elad et al. [207], used a new model for optimal operation of water distribution systems 

under unsteady water quality conditions referred to as Optimization using Genetic Algorithms 

with EPANET (optiGA). The new model has been derived using the concept of multi-quality 

water distribution system (MWDS) (i.e., initially proposed by T. Liang et al. [208]). Their 

optimal operation strategy included treatment facilities, time dependent electrical tariffs, control 

valves, and hydrological constraints. The simulation in their work is carried out for a period of 24 

h. The model is explored through two example applications, example 1 based on Ostfeld et al. 

[209], and example 2 based on EPANET  Network Example 3, [210]. The feasible solutions 

obtained by optiGA for the optimal operation problem are summarized by the total costs of the 

electricity as well as water treatment, and purchase. 

Ostfeld [211], used EPANET to perform an extend time simulation for Three water 

distribution systems in Austin - Texas, North Marin Water District - Novato, and California 

system. EPANET is used to track the violation of the system and bounding constraints. 

Boulos et al. [212], presented a new management model, referred to as H2ONET 

Scheduler, for determining the cost of a pump operation in a water distribution system. The 

developed optimal model makes use of the advantages of genetic algorithm optimization with a 

quasi-dynamic hydraulic network solver to produce the resulting operational policies over a 24-

hour simulation period. The proposed operational model is tested and verified on different large-

scale water distribution networks. The results of the proposed model showed a significant 

reduction in the cost of energy consumed for a pump operation. 

3.7. Saskatoon West Water Distribution System 

Saskatoon West water distribution system (WDS) is owned and operated by Sask-Water, 

which is Saskatchewan's Crown water utility. The operation of this network includes: 

1. Intake of water from rivers, and 

2. Supply and convey water to farmers, villages, residential areas, and large industrial users near 

the City of Saskatoon. 
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Sask-Water provided operational data on the Saskatoon West WDS. In 2006, this 

network delivered 909 million gallons of water to five major customers across a 36-kilometer 

pipeline. The network is perfectly sized and manageable for conducting research experiments. It 

contains all the features and problems associated with water supply management in terms of 

having: five pumps in two pumping stations (one is an auxiliary pumping station for emergency 

supply). Moreover, it has four reservoirs (i.e., elevated and grounded), zones with treated and 

untreated water at steady state pressures ranging from 20 to 220 psi, pipelines that operate at a 2% 

water loss in the rural and 17% in the urban sections, and a range of users on the network that 

include heavy industries. 

3.7.1 Network Layout 

Saskatoon West WDS infrastructure, like any other rural distribution system, consists of 

arterial pipes, junction nodes, control valves, reservoirs, tanks, primary lifting pumping stations 

(Queen Elizabeth (QE) and Aurora stations), hydrants, main-line meters, service connections, and 

backflow preventers at QE. A simple schematic diagram of this system is shown below. 

 

 

Figure 3.29: Simple Schematic Diagram of Saskatoon West WDS 

 
Saskatoon West WDS supplies water to five major clients as follows: (see Table 3.5) 

 
Table 3.5: Major Clients in Saskatoon West WDS 

Client Name Customer Type Supplied Water 
R. M. of Corman Park - Cedar Villa Residential Raw water 

PCS - Cory (Mining Company) Industrial Raw water 

PCS - Cory R & D Industrial Raw water 

PCS Cogen (SPI / ATCO) Industrial Raw water 

Village of Vanscoy Residential Treated water  

Agrium Industrial Raw water 
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The Saskatoon West WDS contains 169 pipes, 153 junction nodes, 6 pressure reducing 

valve, one treatment plant, four elevated and grounded storage reservoirs, 5 variable-speed pumps 

located at QE and Aurora pumping stations. Table 3.6 provides a summary of the network’s 
elements. 

 

Table 3.6: Types and Characteristics of Elements in Saskatoon West WDS 

Elements Characteristics 

Pipe 
Number Diameter (mm) H-W Material Length (m) 

169 81-1000 100-140 Steel, PVC 5-1951 
 

Junction 
Number Demand (IGPM) Elevation (m) 

153 2.8-1000 472-521.4 
 

Valve 
Number Type Setting 

6 PSV 0 
 

Tank 
Number Volume (m3) Elevation (m) 

5 143-15300 0-6 
 

Pumps 
Number Efficiency % Curve Speed Max. Flow (IGPM) 

5 78 - 81.5 1,2,3 VFD 465-930 

 

Saskatoon West WDS is served by the QE and the Aurora pumping stations. In the QE 

pumping station, two duty pumps (pump 1 and 2 are identical) connected in parallel as shown in 

Figure 3.30. The third one, called the jockey pump, is turned ON only under emergency 

conditions. 

 

Figure 3.30: Simple Schematic Diagram of Pumps Connections in QE Station 

 

Either one, two, or three pumps may be operated at any time interval. The pumps are 

connected in parallel, and their resulting performance curve can be obtained by adding their flow 

rates at the same head (i.e., constant pump head). Figure 3.31 illustrates the pump duty curves. 
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Figure 3.31: Performance Curve for Two Pumps in Parallel 

 

Figure 3.32 shows the two pumps at QE pumping station in cases where single or two 

pumps are on duty. 

 

 

Figure 3.32: Queen Elizabeth – Parallel Operation of Pumps 1 and 2 

 

The specification, data sheet for the pumps in the QE pumping station are given in Tables 

3.7 and 3.8. The characteristic curves for the duty pumps and jockey are shown in Figures 3.33 

and 3.34. 
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Table 3.7: Specification of Main Duty Pump in QE Pumping Station 

Category Pump Information 

Model Could Model 8x 12 R JHC 

Type Vertical Turbine 

No. of Stages 8 

Pump Capacity 1107.8 USGPM @ 525 ft 

Efficiency 82% 

Maximum head pressure 632 ft (273 psi) 

 

 

Figure 3.33: Characteristic Curves of the Main Duty Pumps in QE Pumping Station 

 

Table 3.8: Specification of Jockey Pump in QE Pumping Station 

Category Pump Information 

Model Could Model 6x 10 R AHC 

Type Vertical Turbine 

No. of Stages 6 

Pump Capacity 238 USGPM @ 300 ft 

Efficiency 87% 

Maximum head pressure 311 ft (130 Psi) 
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Figure 3.34: Characteristic Curves of the Jockey Pump in QE Pumping Station 

 

At the Aurora boosting station, two pumps are installed; one is a duty pump and one is 

standby. This is used to add more head pressure to the water to serve clients that are either distant 

or at higher elevation. The data sheet and the characteristics curves of the Aurora’s duty pump are 
given in Table 3.9 and Figure 3.35. 

 

Table 3.9: Specification of Main Duty Pump in the Aurora Pumping Station 

Category Pump Information 

Model Could Model 6x 10 R AHC 

Type Vertical Turbine 

No. of Stages 6 

Pump Capacity 1680 USGPM @ 400 ft 

Efficiency 82% 

Maximum head pressure 475 ft (204 Psi) 
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Figure 3.35: Characteristic Curves of the Main Duty Pumps in Aurora Pumping Station 

 

The estimated pipeline parameters for this simplified network are derived from the data 

provided by Sask-Water and presented in Table 3.10. 

 

 

 

 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

104 

Table 3.10: Estimated Pipeline Parameters 

Pipe 
Length 

(m) 

Diameter 

m (in) 

Roughness 

Coefficient 

Minor Loss 

Coefficient 

1 3.5 0.295(12.75") 120 1.2 

2 3.5 0.295(12.75") 120 1.2 

3 2 0.295(12.75") 120 0.8 

4 2 0.295(12.75") 120 0.8 

5 39 0.295(12.75") 120 3.6 

6 735 0.295(12.75") 120 0 

7 30 0.387(16") 120 2.98 

8 6951 0.387(16") 120 0 

9 4147 0.387(16") 120 0 

10 7 0.387(16") 120 0 

11 13902 0.295(12.75") 120 0 

12 10874 0.295(12.75") 120 0 

 

The elevation of the junction nodes for the simplified network is given as follows: 

 

Table 3.11: Junction Node Elevation 

Junction Node Length (m) 

1 479 

2 479 

3 477 

4 483 

5 503 

6 505 

7 521 

8 504 

 

Moreover, there are four reservoirs in this network; one is elevated and three reservoirs 

are grounded (i.e., surface), and the water from these reservoirs only served their owners. The 

estimated capacity of the four reservoirs is given in Table 3.12. 
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Table 3.12: Estimated Reservoirs’ Capacities in Saskatoon West WDS 

Reservoir Owner Volume (m3) Elevation (m) 

1 Corman Park 143 Surface 

2 PCS Cory 1135 6 

3 Village of Vanscoy 416 Surface 

4 Agrium 15300 Surface 

3.7.2 Network Demand Profile 

In 2006, Saskatoon West WDS supplied a total of 909 million gallons of water at an 

annual electricity cost of approximately $ 300,000. The total water demand in 2006 per customers 

is tabulated in Table 3.13, while the variation of total water demand per month is illustrated 

graphically in Figure 3.36. 

 

Table 3.13: Annual Customers Total Demand (2006) 

Customer 2006 Demand in Millions of Gallons 

Agrium 264.1410 (29.05%) 

PCS - Cory Division 291.3929 (32.04%) 

PCS - Cory R&D 19.5794 (2.15%) 

R.M. of Corman Park - Cedar Villa 4.3244 (0.48%) 

Vanscoy, Village 11.3561 (1.25%) 

SPI/ATCO 318.4337 (35.03%) 

Total 909.3844 100% 

 

 

Figure 3.36: Monthly Customers Total Demand (2006) 
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For this research, Sask-Water provided set field-data over the period 1997 to 2006. 

Accordingly, the monthly-metered water supplied from the QE pumping station and the daily-

metered water for the major users (i.e., water measured on their sites) are used for the 

implementation of a new energy optimization strategy. Summaries of the field-data (i.e., 

measured in 2006) are shown in the following figures, including Figure 3.37 that depicts the total 

discharge flow from the QE pumping station, Figure 3.38 that illustrates the total demand profile 

for the major clients, Figure 3.39 that provides the tanks profiles and the water losses based on 

the total supplied water, and Figure 3.40 that shows the total water demand over the period 1997 - 

2006. 

 

 

Figure 3.37: Queen Elizabeth - Total Supplied Profile (2006) 

 

Figure 3.38: Total Consumption Profile (2006) 
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Figure 3.39: Tanks Profiles + Losses (2.8% of the Total Supplied Profile in 2006) 

 

 

Figure 3.40: Saskatoon West WDS –Total Water Demands (1997 - 2006) 
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3.7.3 Network Settings 

The current operating conditions at the Queen Elizabeth (QE) pumping station and the 

overall systems are: 

 QE station is programmed to maintain a pressure within the range of 180-220 psi, 

 The pumps come ON based on pressure and turn OFF based on flow, 

 When no pumps are ON and the pressure drops below 180 psi, pump 1 comes ON, when 

pump 1 is ON and the pressure drops below 180 psi, pump 2 comes ON and the two pumps 

balance the load. Once the flow drops to 1500 IGPM, pump 2 turns OFF and when the flow 

drops to zero, pump 1 turns OFF, 

 Duty pumps are classified as: 

1. "lead" pump, pump 1 is the first to come ON, and 

2. "lag" pump, pump 2 is the second to come ON. 

3.7.4 Network Simulation Results 

The Saskatoon West WDS is simulated using two well-known hydraulic simulations 

software: WaterCAD9 and EPANET. Steady-State (SS) simulation and Extend-Period Simulation 

(EPS) are performed. The goal of developing simulation model (i.e., hydraulic model) of the 

system is to potentially obtain an accurate hydraulic analysis and accurate evaluation for 

operating scenarios, energy consumption, and water quality. Furthermore, by varying the 

parameter values, the system modeler can obtain valuable insight into system performance, from 

which one can study the behavior of the system under a wide range of diverse circumstances (i.e., 

system and environment conditions). 

3.7.4.1 Case Example 

The features of the hydraulic model are given in Figure 3.41, and the simulation results of 

this model are obtained using the following time setup: 

 

 

 

 

                                                 
9 In Saskatoon West WDS, all of the reservoirs are designed to be fed from the top. This 

part of the hydraulic modeled is only modeled using WaterCAD, and then augmented with the 

rest of the model using EPANET. 
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Table 3.14: Time Setup – Case Example 1 

Times Options 

Property Hrs:Min 

Total Duration 168 

Hydraulic Time Step 0.01 

Quality Time Step 3:01 

Pattern Time Step 0 

Reporting Time Step 3:00 

Report Start Time 0 

Clock Start Time 7 am 

 

Figures 3.42, 3.43, and 3.44 show comparisons of the nodal pressure, nodal flow, and the 

system flow balance for the network. The results corresponding to this case example are obtained 

using EPANET and measured field-data. It can be observed that the hydraulic model is able to 

precisely estimate the flow in links and slightly underestimate the pressures since it assumes that 

the nodal demands are always entirely satisfied within a range of the nodal heads. The assumption 

of complete satisfaction of nodal demands implies that the hydraulic model overestimates the 

head losses in the links and thereby underestimates the nodal pressures. The error in the nodal 

pressures as calculated from the hydraulic model varies from as low as 0.7% at node 1 to as high 

as 5% at node 8. Furthermore, it can also be observed that there are very slight errors in the nodal 

flow values that are obtained from EPANET, which varies from as low as 0.05% (at link 9) up to 

0.32% (at links 5-8 ). 

On the whole, the validity of the hydraulic model for Saskatoon West WDS is verified. 

The results obtained (i.e., computed data) using EPANET are compared with those measured 

from the field as illustrated in Figures 3.45 and 3.46. Moreover, these results are tabulated and 

presented in Tables 3.15 and 3.16. 

It is proven that the use of hydraulic model for the analysis of the Saskatoon West WDS 

can result in very accurate estimations of both nodal heads and nodal flows. Hence, the hydraulic 

model is used to compute the energy costs of the system for a one-month period of time (see 

Table 3.17). The results are compared with those obtained from the system facility for May 2006 

(as shown in Table 3.18). 
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Figure 3.41: Hydraulic Model for the Saskatoon West WDS - Case Example 
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Figure 3.42: Pressure at Node 1 – Case Example 

 

Figure 3.43: Flow at Link 11 – Case Example 

 

Figure 3.44: System Flow Balance – Case Example 
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Figure 3.45: Comparison of Mean Pressure Values – Case Example 

 

Figure 3.46: Comparison of Mean Flow Values – Case Example 
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Table 3.15: Calibration Statistics for Pressure – Case Example 

Location Observed 
Observed 

Mean 

Computed 

Mean 

Mean 

Error 

RMS 

Error 
% Error 

1 55 241.18 240.71 1.704 1.904 0.7 

2 55 239.82 240.21 0.881 0.982 0.37 

3 55 239.82 241.04 0.826 1.116 0.34 

4 55 231.75 231.89 0.685 0.888 0.3 

5 55 180.91 180.58 0.679 0.89 0.38 

6 55 165.20 166.84 1.791 2.172 1.08 

7 55 99.25 100.93 3.454 4.134 3.48 

8 55 92.13 92.2 4.663 6.054 5.01 

Network 440 186.26 186.57 1.835 2.903 0.99 

* Correlation between Means: 1.0 

 

Table 3.16: Calibration Statistics for Flow – Case Example 

Location Observed 
Observed 

Mean 

Computed 

Mean 

Mean 

Error 

RMS 

Error 
% Error 

2 55 678.96 679.59 1.57 1.87 0.23 

3 55 678.96 679.59 1.57 1.87 0.23 

5 55 1357.76 1359.17 4.271 5.361 0.32 

6 55 1357.76 1359.17 4.271 5.361 0.32 

7 55 1357.76 1359.17 4.271 5.361 0.32 

8 55 1357.76 1359.17 4.271 5.361 0.32 

9 55 1357.76 1359.17 0.727 0.895 0.05 

10 55 0 0.01 0.012 0.012 0.0 

11 55 653.22 650.64 2.577 2.613 0.4 

12 55 627.98 626.28 1.703 4,591 0.27 

Network 440 942.79 943.37 16.763 22.961 1.66 

* Correlation between Means: 1.0 

 

Table 3.17: Daily Computed Energy Costs – Case Example 

Pumps 
Percent 

Utilization 

Average 

Efficiency 

KW-

hr/Mgal 

Average 

KW 

Peak 

KW 

Cost/day 

CAD $ 

2 100 82 2429.8 98.93 105.31 193.75 

3 100 82 2429.8 98.93 105.31 193.75 

4 100 82 243.14 9.47 11.69 18.55 

Total cost 406.05 

Demand charge 143.72 

 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

114 

Table 3.18: Energy Costs Comparison for Saskatoon West WDS in May 2006 

Category of Cost Simulation Results Actual Results 

Electrical cost $ 12,181.5 $ 12,176 

Demand charge $ 4,311.6 $ 4,308.36 

Basic monthly charge $ 57.92 $ 57.92 

Surcharge (10%) $ 1,655.1 $ 1,654.23  

Taxes (7%) $ 1,274.43 $ 1,273.76 

Total $ 19,480.55 $ 19,470.27 

3.7.4.2 Network Simulation: Summary of the Results 

The proposed operational scenario for modeling and solving the Saskatoon West WDS 

have been found to accurately determine the nodal head pressure and nodal flow under different 

operating and system conditions. This has been verified using the popular hydraulic solver 

EPANET. The outcome obtained from the case example is summarized as follows: 

 The hydraulic model for the Saskatoon West WDS is able to successfully demonstrate results 

that are very similar to the real data measured from the field, which then prove the high 

accuracy of it. 

 The model shows very good matches between the observed profile and the computed ones in 

terms of energy costs, pressure, and flow profiles. 

 Flow simulation demonstrates a strong correlation between both simulation and real data. 

 Pressure profile shows slight differences due to ignoring valves (or fittings) connected 

through the network and small minor nodes that are not included in the simplified model. 

 The key to successfully obtaining an accurate hydraulic model for the Saskatoon West WDS 

is to verify the hydraulics of the system and the rules of controlling the tank operation. This is 

significantly observed and studied in this research. 

3.8. Conclusion 

In this dissertation, a new multi-objective formulation for the Saskatoon West WDS 

operational problem (could be "any rural" system) is provided. The cost function is posed as 

minimizing the electricity costs, total number of pump switches, the cost of maximum power 

peak, reservoir water level variation, and free chlorine residual as five objectives associated with 

a set of operating constraints that specifies the lower and upper limits of the system. In the next 

chapter, an Adaptive Parallel Clustering-based Multi-objective Particle Swarm Optimization 

(APC-MOPSO is explained to be used as an algorithm or solution technique to solve the 

constrained multi-objective real-world problem in order to obtain a set of trade-off solutions that 
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satisfy the objectives and constraints being considered. The new formulation is brought out to 

improve the ability of the Saskatoon West WDS to handle any future demands and hydraulic 

uncertainties with higher safety and reliability. 
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Chapter 4 

Multi-objective Optimization Algorithm 

Real-world problems are usually better-formulated using multi-objective models; this 

means that more than one objective needs to be considered for their optimization. In this chapter, 

a new form of hybrid multi-objective PSO algorithm is presented that used a novel Adaptive 

Parallel Clustering-based Multi-objective Particle Swarm Optimization algorithm, referred to as 

APC-MOPSO. This algorithm is then analyzed and tested by using well-known benchmark test 

problems. The performance of the proposed algorithm is then compared to other methods that 

represent the state-of-the-art in Multi-objective Evolutionary Algorithms (MOEAs) and Multi-

objective Particle Swarm Optimization algorithms (MOPSOs). Computational results showed that 

the performance of the APC-MOPSO is robust, accurate, and computationally efficient for the 

benchmark test problems considered in this research. The results demonstrated that the APC-

MOPOS algorithm is well suited to high-dimensional NP-hard real-world problems. 

4.1 Introduction 

Real-world problems are often very complex and may need to deal with constrained 

multi-modal multi-objective optimization problems. This has led to a growing interest in multi-

objective optimization techniques that involve more than one objective function to be 

simultaneously optimized. Accordingly, at the end of the multi-objective optimization process, 

there will be more than one solution to be considered. This enables a trade-off of high-quality 

solutions and provides options to the decision-maker to choose a solution based on qualitative 

preferences. 

Generally, the population-based heuristic algorithms can be divided into competitive 

search and cooperative search models. The competitive search model involves individuals that 

compete against each other for dominance in the population. As a result, individuals with high 

fitness will be retained, while those with low fitness will be eliminated from the population and 

replaced by new individuals through crossover and mutation operations. In other words, this type 

of search is modeled on Charles Darwin’s survival of the fittest or a natural selection concept. 
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Competitive search models have been implemented to solve Multi-objective Optimization 

Problems (MOOPs). These include Evolutionary Algorithms (EA) [16,213,214]. Other 

competitive-based algorithms are Genetic Algorithms (GA) [4], Differential Evolutionary (DE) 

[215], Evolutionary Strategy (ES) [216], Evolutionary computation (EC) [217,218], Evolutionary 

Programing (EP) [219], and Genetic Programming (GP) [220]. 

On the other hand, cooperative search models involve a number of individuals working 

together to solve the problem. This idea is the basis of the Swarm Intelligence theory (SI) 

[221,222]. In this model, instead of eliminating the weak individuals (i.e., with lowest fitness) 

from the population, the best individuals in the population (i.e., called leaders) guide the rest of 

the population. Hence, heuristic algorithms based on this type are referred to as social optimizing 

techniques. Cooperative search algorithms have been extensively studied in the past decade and 

deployed to find feasible solutions for real-world problems. Common forms include a Particle 

Swarm Optimization (PSO) algorithm, [7], and an Ant Colony System (ACS), [223]. 

Since 1995 when Kennedy and Eberhart first proposed PSO [7], several modifications 

have been undergone on the standard PSO. Therefore, PSO algorithms have been categorized into 

many classes including Pareto-based PSO, Modified PSO, Clustering-based PSO, Parallel PSO, 

Dynamic PSO, and recently Hybrid PSO (as reviewed earlier in Chapter 2). 

In this chapter, a novel Hybrid PSO algorithm referred to as Adaptive Parallel Clustering-

based Multi-objective Particle Swarm Optimization (APC-MOPSO) is proposed. This approach 

combines the following: 

 The concept of Pareto-dominance, 

 A new adaptive technique10 for updating PSO’s design parameters, 
 A modified K-Means clustering, 

 A new form of parallel implementation, 

 A new adaptive mutation operator, and 

 A new mechanism for a variable external repository size11 (i.e., unlike the previous work 

where which a fixed size of external repository is usually used). 

A brief introduction to the original PSO algorithm is presented in Sections 4.1. In Section 

4.2, the various forms of PSO algorithms are reviewed. Section 4.3 provides a detailed 

description of the proposed APC-MOPSO algorithm. Selected test problems, performance 

metrics, and numerical results and their analysis are given in Section 4.4. 

                                                 
10 In optimization methods, adaptive techniques are commonly used to dynamically 

adjust (adapt) the required values of the design parameters for their better performances. 
11 The size of the external repository means the number of candidate solutions that can be 

stored in the repository after each iteration during the search process. 
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4.2 Particle Swarm Optimization 

4.2.1. Basic Concept and Algorithms 

J. Kennedy and R.C. Eberhart [7], first developed the Particle Swarm Optimization (PSO) 

algorithm. PSO is a heuristic, population-based and stochastic optimization algorithm. In its 

original form, it is used for solving unconstrained single-objective optimization problems. The 

PSO notion is inspired by the concept of the Swarm Intelligence (SI) that is naturally observed in 

a swarm of insects, a flock of birds, or a school of fish when searching to find food12. 

This natural journey in search of food demonstrates two forms of intellectual behavior. 

The first is the individual behavior where each member utilizes its own best experience to draw 

its next flight direction. The second is the collective behavior that demonstrates the social 

behavior of the swarm and the influence of the leaders in guiding the rest of the members towards 

a common target. 

PSO implements search on both an individual as well as a communal level to find an 

optimal set of solutions in the objective space. In PSO, the search process is started by initially 

considering the position of individuals, referred to as particles, in the population, referred to as a 

swarm, as potential solutions to the given problem. Then, the particles fly or travel through the 

search space, looking for new and/or better solutions to the problem. To illustrate the concept of 

the searching process, Figure 4.1 depicts the concept of updating a particle’s position in the 
search space, and Figure 4.2 shows the underlying notion of the searching process in which each 

particle alters its current position using its personal as well as the swarm’s best information. 
 

 

Figure 4.1: Updating Particle’s Position in the Search Space - PSO Algorithm 

                                                 
12 In SI theory, a flock, a swarm and a school are defined as groups under the guidance of 

leaders. 
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Figure 4.2: The Concept of Exploring for the Particles in the Search Space - PSO Algorithm 

4.2.1.1 Basic PSO terminologies 

The definitions commonly used in the PSO literature are as follows: 

 Particle: is a candidate solution or individual or a member of a set of solutions to the problem 

being optimized (i.e. often initialized randomly). 

 Swarm: is a group of particles that represents the population of the algorithm. 

 Leader:  a particle that is chosen according to a certain criterion and responsible to lead other 

particles in the swarm towards the global regions. 

 pbest (particle best): the best position (i.e. best position means the closest point to the global 

optimum) ever visited by a particle during its flight in the search space. 

 lbest (local best or neighborhood best): the best position of a particle found in the 

neighborhood around a given particle so far. 

 gbest (global best or swarm best): the best position amongst particles in the swarm so far. 

 Velocity (v): is a particle’s flight velocity (i.e. rate of the positional change of the particles). 
The velocity is updated at every iteration along the optimization process. 

 Position (x): is the location of a particle during the optimization process. 

 Inertia weight factor (w): a design parameter used to balance between the impacts of the 

particle best position (pbest), the swarm best position (gbest), and the neighborhood best (lbest) in 

determining the velocity of a new flight trajectory. 

 Cognitive factor (C1): represents the successful impact of a particle’s self-experience on 

adjusting its new flight direction towards its best previous position. 

 Social factor (C2): represents the impact of the swarm best position (gbest) on the flight 

directions of other particles. 

 Social topology: represents the structure of the communication network that allows the 

particles in the swarm to exchange their best information. 
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 Exploration: in any population-based optimization algorithm, exploration means the 

temptation of an individual (particle) in searching for or discovering new regions of the 

search space that have not been visited before. 

 Exploitation: means the process of improving and combining the traits of the currently known 

individual(s) with the aim of gaining the utmost benefit from them. 

 Convergence: in any optimization algorithm, the search process is said to have converged if 

and only if there will be no further improvements in that particle’s position. 
 Premature Convergence: in any optimization algorithm, the search process is said to have 

prematurely converged into a local optimum if and only if there will be no further exploration 

of new areas of the decision space while there exists another region that contains better 

solutions [31,32]. Figure 4.3 shows an example of premature convergence as the search 

process is trapped into a local minimum. 

 

 

Figure 4.3: Example of Premature Convergence in Minimization Function [33] 

 

 Preserving Diversity: while solving a multi-objective problem with any population-based 

optimization algorithm, one of the main goals that should be taken under consideration is that 

of preserving a set of non-dominated solutions that are widely dispersed or diversified. 

Preserving diversity can be directly related to maintaining a good balance between 

exploration and exploitation, [34]. Related selected publications on how diversity can be 

measured, can be found in [35,36,37,34,38]. 

4.2.1.2 Original (Single-objective) Particle Swarm Optimization 

The original Particle Swarm Optimization (PSO) is a single-objective and stochastic 

search engine that exhibits a powerful ability in finding optimal (best) solutions for complex, 

non-linear and non-convex functions. 
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PSO algorithms have greatly evolved with modifications that have improved their 

convergence rate, complexity, exploration ability, and search quality. The most famous and 

recognized version of the Single-objective PSO, referred to as SOPSO, is proposed by Shi et al. 

[40]. In their work, the inertia weight factor (w) is introduced in order to adjust the balance 

between exploration (quantitative solutions) and exploitation (qualitative solutions). In other 

words, w plays the role of balancing between the global and local searches in the objective space. 

It is found that a greater w resulted in more iteration before convergence. Shi et al. used two 

equations that govern a particle’s movement or travel through the search space, namely its 

velocity and position at each time step, as given in Eqs. (4.1) and (4.2):  ⃗       ⃗        ( ⃗       ⃗ )        ( ⃗    ⃗ ) 4.1  ⃗     ⃗   ⃗    4.2 

Eq. (4.1) is made of three terms. Its first term represents the particle’s velocity in the 
previous iteration. Its second term is called the “cognitive” component, and represents the self-
exploring experience of each particle by which the particle is encouraged to move towards its 

own best position found so far. The third term is known as the “social” component, and it 
represents the collective influence of the swarm in the particle’s flight direction. The detailed 

outline of the SOPSO algorithm is provided in the following Pseudo-code 10, [40]. 

 

Pseudo-code 10: Original PSO Algorithm for Single-objective Optimization Problems 

Initialize: swam size (N), maximum iterations (Maxiter), iteration counter (iter = 1), inertia 

weight factor (w)  

Task: find an optimal solution 

for i = 1: N 

       DO 

       Initialize randomly the particle velocity vi 

       Initialize randomly the particle position xi 

end for i 

Set the particle best (pbest) vector according to the current positions 

Set the swarm best (gbest) vector according to the current positions 

Repeat  

for i = 1: N 

       DO 

       Assess the fitness function for particle i 

       if (particle i current position   pbest, i ) 

           pbest, i = particle i current position 

       end if 

       if (pbest, i   gbest, i ) 

           gbest, i = pbest, i 
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       end if 

end for i 

for i = 1: N 

       DO 

        Update particle i velocity using Eq. (4.1) 

        Update particle i position using Eq. (4.2) 

end for i 

iter = iter + 1 

if (iter  Maxiter) or (stopping criteria in NOT satisfied) 

    Return 

end if 

Obtain the optimal global solution 

4.2.1.3 Standard Multi-objective Particle Swarm Optimization 

Many modifications and improvements have been proposed since the introduction of the 

Particle Swarm Optimization (PSO) algorithm in 1995. Most of these modifications are essential 

to the application of the PSO to constrained, complex, and multi-objective sets of problems. 

Multi-objective versions of the PSO (MOPSO) have been deployed in many research and 

application areas. 

The most well-known version of Multi-objective PSO (MOPSO) developed by Reyes-

Sierra et al. [81]. In their work, the concept of Pareto-dominance complemented by a new ranking 

scheme, an efficient mechanism for handling constraints, a mutation operator, and finally the 

notions of the external repository are incorporated. These proved very effective for solving 

Constrained Multi-objective Optimization Problems (C-MOOPs). At every iteration, Pareto-

dominance is used for classifying the solutions as dominated or non-dominated. Next, a copy of 

all non-dominated solutions is stored in the external repository to enhance the quality of the 

algorithm’s exploration and to preserve diversity (i.e. have solutions along most of the global 
areas). The MOPSO process is outlined in Pseudo-code 11, [81]. 

 
Pseudo-code 11: Standard MOPSO Algorithm 

Initialize: swarm size (N), maximum iterations (Maxiter), iteration counter (iter = 0), inertia 

weight factor (w), cognitive coefficient (C1), social coefficient (C2), mutation 

probability factor (pm), repository size (Rep), upper and lower bounds of each 

dimension (Ub, Lb) 

Task: find Pareto-front set 

for i =1:N 

      DO 
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      Randomly initialize the position within the feasible region  

      Randomly initialize the velocity within the feasible region (i.e. in the range of [Lb, Ub]) 

end for 

Randomly initialize the leaders in the repository with size (Rep) 

Randomly initialize the leaders for the swarm 

Repeat 

for i = 1:N 

      DO 

      Select leaders 

      Update particle i velocity (Flight) using Eq.(4.1) 

      Update particle i position using Eq.(4.2) 

      Evaluate the fitness functions 

      Apply Mutation 

       Update pbest 

end for 

Update leader in the repository 

Update leaders for the swarm 

iter = iter + 1 

if (iter  < Maxiter) or (stopping criterion is NOT satisfied) 

    Return 

end if 

Obtain the results 

4.3 Adaptive Parallel Clustering-based MOPSO Algorithm 

Three major concerns in Multi-objective Optimization Problems (MOOPs) that also 

apply to MOPSO algorithms are: 

1. Premature convergence (i.e. trapped into local optima), 

2. Diversity (i.e. well-distributed non-dominated solutions), and 

3. Quality guarantees (i.e., how far the non-dominated solutions are from a global optimum 

(Pareto-optimal front)). 

The goal of this work is to propose an Adaptive Parallel Clustering-based MOPSO (APC-

MOPSO) algorithm that can effectively overcome the above difficulties that exist in MOPSO 

algorithms. The result is a powerful optimization tool that can tackle NP-hard and complex real-

world problems. In the APC-MOPSO approach, the following elements are incorporated: 

1. A new dynamic model to update particles’ velocity and position in the search space in order 

to avoid premature convergence, 

2. A new external repository, 
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3. A new technique that dynamically adjusts the values of the design parameters13 and the size 

of the external repository, and adaptively changes the values of the inertia weight factor, 

mutation operator, and the boundaries of the search space, 

4. A modified K-Means clustering algorithm mainly to increase the quality of the selected 

leaders for the swarm and then to enhance the distribution of the non-dominated solutions 

along the Pareto-front regions, 

5. A mutation operator to improve the performance of the MOPSO algorithm by providing a set 

of approximately optimal solutions that is very close to the Pareto-optimal front, and 

6. A parallel islands model. 

The APC-MOPSO algorithm is described in the following subsections. 

4.3.1 New Dynamic Model for Updating a Particle Position 

In most single and multi-objective PSO algorithms, particles only "remember" (i.e. keep 

record of) their own best position (pbest) and the swarm best position (or global best, gbest). 

Particles flight directions are determined and guided by the particles’ self-experience and the best 

position found so far by the swarm during the search process. Usually, the pbest and gbest positions 

are far apart from one another in the search space. This adds more pressure to the particles to 

rapidly move towards the swarm best, often resulting in premature convergence and stagnation in 

a local optimum. 

One of the main reasons for premature convergence is the amount of information shared 

in the swarm. In particular, there exists no sharing of information amongst particles in the swarm, 

except that with the particle that has the latest best position. This could lead the PSO algorithm to 

be trapped into a local optimum. 

To overcome this undesirable stagnation behavior, a new dynamic model (i.e., velocity 

and position updating equations) is proposed. This model involves utilizing a new information 

from all members of a particle’s neighbor referred to as the local best (lbest) that falls somewhere 

between the pbest and gbest (based on the work proposed by Xiao-Hua et al. [60] and Yong et al. 

[170]). Accordingly, the third leader, (lbest), is defined as the best position of the closest neighbor 

of each particle and is introduced in the equation for updating the velocity of the particles (as 

shown in Eq. (4.3)). 

Based on this new model, each particle adjusts its position based on the following: 

1. the current particle position; 

2. the current particle velocity; 

3. the distance between the current particle position and its best position (pbest); 

                                                 
13 Design parameters in the proposed APC- MOPSO algorithm include the cognitive (C1), 

social (C2), contiguous (C3), position (Cp), and velocity (Cv) coefficients. 
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4. the distance between the current particle position and the swarm best position (gbest); and 

5. the distance between the current particle position and the closest best position in neighbor 

(lbest). 

This new model is found to increase the communication amongst particles in the swarm, 

and also raise the probability of breaking away from a local optimum. 

Figure 4.4 shows a modified concept of updating the particle position in the search space 

by the PSO algorithm (i.e. a different model than is shown in Figure 4.1). 

 

 

Figure 4.4: Updating Particle Position in the Search Space –APC-MOPSO Algorithm 

 
The two leaders lbest and gbest are considered as collaborative behaviors for the swarm. 

Accordingly, it is pointed out that gbest is responsible for propelling the particles towards the 

global optima (i.e. speed the convergence rate). Whilst closest best neighbor position, lbest, is a 

mechanism that enables escape from a local optimum. 

In this work, Eqs. (4.1) and (4.2) are modified with a new dynamic model (as 

mathematically expressed in Eqs. (4.3) and (4.4)) by incorporating the combination of three 

guides pbest, lbest and gbest in updating the particles velocity and position in order to steer their flight 

directions towards the Pareto-optimal regions. The proposed model involves two new position 

and velocity coefficients, known as Cp and Cv, respectively. These enhance the quality of the 

MOPSO algorithm in exploring new global optimum areas.  ⃗        ⃗            ( )  ( ⃗        ⃗ )            ( )  ( ⃗        ⃗ )         ( )  ( ⃗        ⃗ )] 4.3 

 ⃗        ⃗     ( ⃗   ⃗   ) 4.4 

where                                       

4.5 
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where three new coefficients are used in the above equations: C3 is referred to as a contiguous 

coefficient that uses the Xiao-Hua expression for the closest best neighbor position, Cp and Cv 

correspond to the position and velocity coefficients, respectively. 

The first term of Eq. (4.3) represents the particle’s previous velocity; the second term, 
called the cognitive component represents the influence of the particle’s self-experience in 

drawing its flight direction; the third component known as the social component represents the 

influence of the swarm leaders in guiding the other particles towards their best positions. In 

addition, this term embodies the collaborative behavior of the particles in the swarm by which a 

leader shares its best position with other particles. The last term of the Eq. (4.3) is called the 

contiguous component and represented the influence of the particle’s closest neighbor in choosing 
its flight path. It should be noted here that the contiguous component shows another communal 

activity in the swarm by establishing a new communication structure amongst particles in 

addition to that of the swarm’s leaders. 
In Eq. (4.4), the new model makes an energy balance between the social activities in 

directing particles towards new areas (i.e. enhance search exploring) and the personal activities of 

the particles in moving around their previous positions and fine-tuning their search (i.e. enhance 

search exploitation). Accordingly, the condition of Eq. (4.5) must be satisfied at each iteration in 

order to maximize performance for updating the particle position (a proof of Eq. (4.5) is provided 

in Appendix A). In this work, a new adaptive scheme is used to automatically adjust the APC-

MOPSO design parameters, including the inertia weight (w), cognitive (C1), social (C2), 

contiguous (C3), position (Cp), and velocity (Cv) coefficients used in the above equations as 

shown next. 

4.3.2 New Adaptive Techniques 

Selection of design parameters, known as control parameters, is an important issue in 

PSO and MOEA algorithms as often considered as their main drawback. Therefore, research 

efforts have been directed on investigating the influence of the control parameters on the 

performance of PSO. Accordingly, these specifications can be made adaptively as reported by Shi 

et al. [224,225], Carlisle et al. [226], V.D.F. Bergh [227], Clerc et al. [228], I.C. Trelea [229], 

Bratton et al. [230], and Zhi-Hui et al. [231]. The underlying principle for the adaptation of the 

control parameters is that the dynamic behavior of the particles must change from exploration 

(i.e. discovering new areas) at the beginning of the search process into exploitation (i.e. fine-

tuning their landed regions) at the end. The control parameter settings can place different 

emphasis between exploration and exploitation activities. This means that the parameter settings 

should vary over time. An adaptive technique is therefore increasingly used in new modified or 

hybrid PSO algorithms. 
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In this work, a new self-directed adaptive technique is proposed. In this technique, the 

adaptivity and refinement are applied to most of the control parameters, namely: 

 the inertia weight, cognitive, social, and contiguous factors; 

 position and velocity coefficients; 

 mutation operator; 

 the size of the external repository; and 

 the boundaries of the search space. 

As a result, the proposed APC-MOPSO algorithm is capable of efficiently exploring the 

search space and effectively exploiting high-quality solutions. 

4.3.2.1 Adaptive Inertia Weight Factor 

The choice of the inertia weight factor is a key for MOPSO algorithms to successfully 

solve complex, nonlinear, multi-peaks, and multi-constraint problems. In this new adaptive 

technique, the inertia weight factor (w) adaptively changes its value to balance global exploration 

(i.e. required at the beginning of the search process) with local exploitation (i.e. required at the 

end of the search process). This ability would lead to significant improvements in the 

performance of MOPSO algorithms. 

In this work, two measured indicators are introduced to control the adjustment of the 

inertia weight factor during the iterative searching process. The two indicators are the evolution 

speed and the crowding distance. A detailed explanation of these indicators is provided in the 

following definitions. 

Definition 1: Evolution Speed of Swarm (  ) [232] 

Evolution Speed (  ) is an important indicator that measures the performance of the 

MOPSO algorithm in terms of not only the dynamic behavior of a particle’s evolution (i.e. when 
a particle changes its position in the search space) but also the evolution speed of the swarm. 

Accordingly, the smaller    is, the faster the evolution speed of the swarm. Hence, when ES is 

equal to 1.0 over several iterations, this indicates that the algorithm has converged to the global 

optimum. The mathematical representation of the ES is given in Eq. (4.6).        { (            )  (          )}   { (            )  (          )}             4.6 

Here, it should be noticed that in a search process, the current fitness value of the global 

optimal solution  (     ( )) should be either better or equal to the value of the last iteration  (     (   )). For the minimization problem,  (     ( ))    (     (   )), while for the 

maximization problem,  (     ( ))    (     (   )). 
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Definition 2: Crowding Distance (  ) [233] 

The Crowding Distance (  ) is another indicator that is used to measure the performance 

of the search engine (i.e. APC-MOPSO algorithm in this work). It indicates the density of 

solutions surrounding a particular candidate optimal solution (i.e. any non-dominated solution 

stored in the external repository) in the swarm for each objective function. For each objective 

function, solutions with smallest and largest function values (i.e., referred to as boundary 

solutions) are assigned an infinite distance value. Other intermediate solutions (i.e., solutions that 

fall within the boundary solutions) are assigned a distance value calculated using Eq. (4.7) as 

shown below: 

    ∑    ∑    (   )    (   )              
       

   
         

    

where                   (                    )                    (                   ) 

 

4.7 

This calculation is continued for all objective functions. Hence, the overall crowding 

distance value is then calculated as the sum of the individual distance values corresponding to 

each objective. Accordingly, after all solutions are assigned a crowding distance value, any two 

solutions (in the population) can be compared for their extent of proximity with other solutions. A 

solution with a smaller distance value (i.e., an overall crowding distance value for that solutions) 

is, more crowded by other solutions. The outline procedure for computing the crowding distance 

is given in Pseudo-code 12. 

 

Pseudo-code 12: Procedure for Computing the Crowding Distance 

Initialize: number of the non-dominated solutions in the external repository (num_sol), number 

of objective functions (num_obj) 

for i = 1 : num_sol                           (initializing distance) 

     CD(i) = 0 

end for i 

for j = 1: num_obj 

      CD= sort(CD, j)                                (sorting using each objective value) 

      CD(1) = CD(num_sol ) =  

      for i = 2 to (num_sol - 1) 

            Calculate CD using Eq. (4.7) as shown below   ( )    ( )     (   )    (   )                
      end for i 

end for j 

Normalize CD                          
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In the first loop, initializing with zero the distance of each element i of the size 

(num_sol). In the second loop, at each objective j, the whole set of solutions (i.e., of size 

num_sol) is sorted in a ranking according to the value for j. Then, the boundary solutions for each 

objective j are defined by assigning the distance value for the first and last position as infinity () 

in order to preserve solutions with extreme values. 

The inner loop presents the calculation of a distance value for each remaining solution i 

(i.e., from position 2 to (num_sol – 1)). First, it requires finding the difference between the 

objective values for the neighbors of i. Then, finding the difference between the boundary 

solutions (i.e., between the highest and lowest value). Finally, the crowding distance value for 

solution i is updated by the sum of its previous value with the new normalized value. Figure 4.5 

depicts the calculation of crowding distance for a given solution i. Within this context, the 

distance value for i will be     where:      (   )    (   )  ( )    ( )       (   )    (   )  ( )    ( )  

 

 

Figure 4.5: The Crowding Distance Calculation 

 

In this new adaptive technique, the inertia weight factor (w) adjusts its value according to 

the change of evolution speed and crowding distance indicators. For the former (   indicator), 

the inertia weight factor should be increased when the    of the swarm is fast, which enhances 

the global exploration ability of the MOPSO in finding a new optimal region in the search space. 

On the contrary, the inertia weight factor should be decreased when the    of the swarm slows 

down to zoom into a region of the search space for fast convergence. For the latter (   indicator), 

the inertia weight factor should be decreased when the    is low in order to prevent the swarm 

from falling into a local optimum by improving the global exploration ability of the MOPSO 

algorithm. On the other hand, if the    is high, this means that the particles are scattered and the 
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swarm has no tendency to converge into local optima. As a result, the inertia weight factor (w) is 

designed to be increased as    becomes fast. While it should be decreased as    gets slow. The 

formula that adapts the inertia weight as a function of both    and    is given in Eq. (4.8).               (   )          (   )      4.8 

where        is the initial value of the inertia weight factor. 

4.3.2.2 Adaptive Cognitive, Social, and Contiguous Factors 

Based on the new dynamic model (as explained in subsection 4.3.1), the cognitive, social, 

and contiguous coefficients, referred to as C1, C2 , and C3 respectively, are very important for the 

exploration, exploitation, convergence, and escape abilities of our MOPSO algorithm. According 

to the effect of these three parameters, the proposed APC-MOPSO dynamically adjusts their 

values in relation to four conditions as provided in Table 4.1. Therefore, the self-adjustments of 

those coefficients can lead the APC-MOPSO algorithm to produce high-quality Pareto-front 

solutions. 

 
Table 4.1: The Strategies for Tuning the Cognitive, Social, and Contiguous Factors 

Cases Durations States C1 C2 C3 

Case 1 At the beginning Exploration Larger Smaller Larger 

Case 2 At the end Exploitation Smaller Larger Smaller 

Case 3 When landed-in Convergence Decreased Increased Decreased 

Case 4 When stagnating Jumping-out Increased Decreased Increased 

 
The four strategies (i.e., the cases outlined in the above table) are listed according to the 

evolutionary states of the search process. The values of C1 and C3 are initialized with a reasonably 

large value and gradually changes in the exploration state, while a larger C2 is required in the 

convergence state. Along with the search algorithm, a balance between global and local search 

ability is adaptively attained. Moreover, in the case of getting trapped into a local optimum (i.e., 

in the jumping-out state), larger C1 and C3 with a smaller C2 are required to make the swarm 

separate from the local region and fly to the new and better region. 

The cognitive, social, and contiguous coefficients are dynamically changing their values 

according to Eqs. (4.9), (4.10), and (4.11):              (                   )    (             )      
 4.9              (                   )    (             )     
 4.10              (                   )    (             )     
 4.11 

* The exponential term value varies within the range of [1, 0], 1 at the first iteration, and 0 at 

the last iteration. 
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4.3.2.3 Adaptive Position and Velocity Coefficients 

According to the new dynamic model (previously explained in subsection 4.3.1), a 

particle’s position is updated based on its previous position and velocity. Thus, there is an urgent 
need to balance the influence of those two components in steering the particle towards a global 

optimum. Hence, in this subsection, a new dynamic technique is proposed to linearly vary (i.e. 

increase or decrease) the values of the position and velocity coefficients along with the iterative 

search process. 

In the early stages of the search process, the particles are encouraged to widely explore 

and visit new areas in the search space. Therefore, a larger influence of the velocity component is 

preferred in updating the current particle’s position. Accordingly, the velocity coefficient is 

chosen to be initially high and to gradually decrease with the increasing number of iterations. At 

late stages of the search process, the particles converge and then exploit a region of the search 

space. At this stage, a larger influence of a particle’s previous position is preferred in moving the 
particle. Accordingly, the initial value of the position coefficient is set low and then is linearly 

increased along with the number of iterations. The position and velocity coefficients are adapted 

by using Eqs. (4.12) and (4.13), as follows:                (                        )  (            ) 4.12                 (                        )  (            ) 4.13 

It is important to note that both    and    are limited within the range (0.1, 1). 

4.3.2.4 Adaptive Mutation Operation 

Generally, mutation operation is known as a process that occurs very infrequently (i.e. 

occasional operation) to introduce random modifications to elements within the population in 

order to improve the population diversity and then to prevent the population from stagnating at 

any local optima. Usually, mutation operation is executed according to the mutation probability 

(  ), and when the population diversity is deteriorated along with the iterative searching process. 

Examples of mutation in binary numbers are illustrated in Figure 4.6. 

 

 

a. Multi-bit Flip Type of Mutation b. Multi-bit Swapped Type of Mutation 

Figure 4.6: Examples of Different Types of Mutation Operation 
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The main advantages of incorporating mutation in multi-objective heuristic algorithms 

can be described as follows: 

 randomness: introduces new particles to the swarm that can induce random walk through the 

search space; 

 preserving diversity: new particles explore new areas by which premature convergence is 

prevented; and 

 enhancing solution quality: helps the search algorithm to arrive at better solutions than were 

previously possible. 

Attempts have been made to improve the performance of the MOPSO to handle hard 

real-world problems. Examples of the adaptive mutation operation have been reported by Zhi-Hui 

et al. [231], Tang et al. [234], Higashi et al. [235], Stacey et al. [236], Pant et al. [166], Chen et al. 

[237], Esquivel et al. [105], Li et al. [238], Li et al. [239], Li et al. [240], Ratnaweera et al. [68], 

and Wang et al. [241]. 

In this work, a new adaptive mutation technique is proposed that takes into account the 

particles’ position and velocity. To illustrate the procedure of the proposed mutation technique, 

two definitions need to be introduced as follows. 

Definition 1: Space Position (  ) [172] 

Let Sp be the space-position aggregation degree in the t-th iteration such that:            {‖          ‖ }      {        {‖          ‖ }} 4.14 

This parameter is used to describe the position of the particles in the decision space. A 

higher value of    indicates that the particles are widely spread in this decision space, and a 

smaller value of    means that the particles are crowded in a certain region in the decision space. 

Definition 2: Space Fitness (  ) 

Let Sf be the space-fitness aggregation degree in the t-th iteration. Then, let:            {‖ (   )   (      )‖ }      {        {‖ (   )   (      )‖ }} 4.15 

where         is the fitness of the swarm best particle at the t-th iteration. 

Space Fitness (  ) is used as a measure of how far a set of particles is spread out in the 

search space. The higher the space-fitness (  ), the farther the particles are located in the search 

space, and vice versa. 

In this adaptive mutation technique, with increasing iteration number, the space position 

and the space fitness of particles become closer to zero, [172]. This indicates that the algorithm is 

likely to stagnate into a local optimum. Hence, the mutation operation needs to be deployed to 

improve the search process (i.e., requires higher mutation probability). On the contrary, when 

space position (  ) or space fitness (  ) is larger, particles are dispersible (i.e., flight in all 
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directions); and the need for the mutation operation is small (i.e., requires lower mutation 

probability). 

The comparison between the values of the two indicators (   and   ) is used to determine 

the mutation probability (  ). The equations used to calculate the mutation probability (  ) are 

given as follows.    {                             (       )                             (      )  
4.16 

4.17 

Then, the mutation operation is implemented according to Eq. (4.18).                (   )              if       , 4.18 

where r is a random number in the range of [0,1] and    is the position of the i-th particle at 

iteration t. 

The procedure of the adaptive mutation is outlined in Pseudo-code 13. 

 

Pseudo-code 13: Adaptive Mutation Technique 

At t-th iteration, calculate: 

    using Eq. (4.14) 

    using Eq. (4.15) 

if (     )               (space position indicator is selected) 

Comparing between the space position and space fitness values to decide which indicator 

is used to determine the mutation probability (  ) 

     Use Eq. (4.16) 

if      , 

       Apply the mutation operation according to Eq. (4.18) 

    end if 

else                           (space fitness indicator is selected) 

      Obtain the mutation probability as given in Eq. (4.17) 

if      , 

         Implement mutation operation according to Eq. (4.18) 

      end if 

end if 

4.3.2.5 Adaptive Search Space Boundaries 

Adjusting the boundaries of the search space has a vital role in landing particles into a 

Pareto-optimal front, [242]. Additionally, to accelerate the convergence speed, a new adaptive 

search space strategy is devised based on the distance between the best position of the swarm and 

the boundaries of the search space. In this technique, the size of the search space is adjusted to 
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ensure that particles progressively find a Pareto-optimal front. Moreover, the search-space 

reduction strategy is applied whenever needed to search for a Pareto-optimal front. 

In other words, when the performance of the algorithm is not improved during a pre-

specified number of iterations, the adaptive mechanism dynamically adjusts the search space (i.e., 

reduces) according to the distance between the swarm best position (      ) and the minimum and 

maximum particle’s best position at the same iteration (           and           , respectively). To 

determine the adjusted minimum/maximum size of the search space at iteration (t), a new variable 

referred to as             is introduced (as given in Eqs. (4.19) and (4.20)).     (                     )   (                     )                    (                     )  4.19 

else  

                   (                     )   4.20 

where             is calculated according to the smaller distance. 

This variable represents the distance that is subtracted (added) from the maximum 

(minimum) size of the search space at iteration (t+1) as described by Eqs. (4.21) and (4.22).                                         4.21                                         4.22 

Figure 4.7 depicts how the search space of each iteration is dynamically reduced when 

activated. The procedure of determining the size of the search space is outlined as follows. 

 
Pseudo-code 14: Adaptive Searching-Space Technique 

if (pbest, j is NOT changed)                                               (at iteration t) 

          if (                     )   (                     ) 

                           is calculated using Eq. (4.19)  

          else 

                               is calculated using Eq. (4.20) 

          end if 

                         is determined using Eq. (4.21) 

                         is determined using Eq. (4.22) 

end if 
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Figure 4.7: Schematic of the Adaptive Search-Space Boundaries 

4.3.2.6 Adaptive External Repository Size 

The external repository is a mechanism that has a large impact on the performance of any 

heuristic search engine, including Genetic Algorithms (GA) and Particle Swarm Optimization 

(PSO). Within the context of PSO, the external repository keeps a historical record of the non-

dominated solutions obtained at each iteration and provides the search algorithm with solutions 

that may be considered as leaders to guide the particles towards the Pareto-optimal front. It can 

also enhance the overall efficiency of algorithms by implementing a broad distribution of the non-

dominated solutions along the Pareto-front. 

The following three cases illustrate the concept, the mechanism, and the implementation 

of the external repository when trying to store a non-dominated solution. It should be noted that 

all (or any one) of these cases can occur during the iterative searching process: 

 Case (1): when the external repository is empty (i.e. at the beginning of the search process), 

 Case (2): when the external repository is neither empty or full, and 

 Case (3): when the external repository is full. 

Figure 4.8 depicts (Case 1) when the external repository is initially empty, and explains 

the mechanism for storing the new selected “better” solutions (i.e. the non-dominated solutions 

found at each iteration). In this case, all new non-dominated solutions are archived and deposited 

into the external repository. 
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Figure 4.8: Archiving New Solutions into an Empty External Repository (Case 1) 

 
Figure 4.9 illustrates the mechanism of storing new non-dominated solutions in the 

external repository when it is not empty or full (Case 2). Three different scenarios are considered 

in this technique. In each of these scenarios, there will be a comparison between the new batch of 

solutions and the solutions stored in the external repository using the concept of Pareto-

dominance. For the first scenario of (Case 2), the new Pareto-front solution (e.g. solutions z) is 

rejected when it is dominated by at least one of the archived solutions in the external repository 

(as shown in Figure 4.9.a). The second scenario occurs when the new Pareto-front solution (e.g. 

solutions z) dominates one or more archived solutions in the external repository. This result in all 

eliminating all archived solutions in the external repository and then substituting by the new 

Pareto-front solution (as depicts in Figure 4.9.b). The last scenario of (Case 2) occurs if the new 

candidate solution(s) (e.g. solution z) is not dominated by the archived solutions in the external 

repository, then the new solution is added to the external repository (as illustrates in Figure 4.9.c). 
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a. if candidate solution (z) is dominated by at least one solution in the repository, then 

solution (z) is discarded. 

 
b. if one (or more) stored solution in the repository (e.g., i3) is dominated by candidate 

solution (z), then the dominated archived solution(s) are eliminated, and candidate 

solution (z) is stored instead. 
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c. if one (or more) candidate solution (e.g., solution z) is NOT dominated by any archived 

solution in the repository, then candidate solution (z) is stored. 

Figure 4.9: Storing New Non-dominated Solutions in the External Repository14 (Case 2) 

 

Just like in the previous case, three scenarios are considered for (Case 3) when the 

external repository is full. In the first scenario, the new candidate solution (e.g. solution z) is 

ignored if it is dominated by at least one solution in the repository (see Figure 4.10.a). The second 

scenario represents one of the most important situation in which the external repository is full and 

the new Pareto-front solution (e.g. solutions z) dominates one or more solutions in the repository. 

In this scenario, the repository will free at least one place for the new competitive solution (see 

Figure 4.10.b). 

An additional scenario that needs to be considered for (Case 3) is when the external 

repository is full and there is a new non-dominated solution(s) (e.g. solution z) that is non-

dominated by any solution in the repository. This scenario often occurs at the end of the iterative 

process when there is no free space in the external repository. This problem can be resolved by 

using clustering techniques on the external repository to reduce the number of the archived 

solutions in the repository and free spots for new solutions (as shown in Figure 4.10.c). In this 

dissertation, a modified K-Means clustering technique is proposed for resolving this scenario as 

described in the next section. 

A fixed size of the external repository has been used in most optimization algorithms that 

incorporate archiving [81,77,97,243]. In this work, an adaptive repository size is proposed to 

                                                 
14 When there is at least one solution already in the repository, it must be checked for 

dominance against those solutions. 
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allow greater flexibility in preserving non-dominated candidate solutions along the Pareto-front 

that are well distributed in the search space. 

 

 
a. if the candidate solution (z) is dominated by at least one solution in the repository, then 

candidate solution (z) is rejected. 

 
b. if one or more archived solutions in the repository (e.g., i3 and i9) are dominated by the 

candidate solution (z), then those archived solutions are eliminated and solution (z) is stored 

instead. 
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c. if candidate solution (z) is NOT dominated by any solution in the repository, then K-Means 

takes place to eliminate some of the stored solutions and solution (z) is stored. 

Figure 4.10: Storing New Non-dominated Solution in the Repository15 (Case 3) 

 

The variable repository size (    ) is calculated according to the percentage ratio, known 

as N%, of the total number of non-dominated solutions found at each iteration to the population 

size. The      is then calculated for 2, 3, and 5 objectives and above using Eqs. (4.23), (4.24), and 

(4.25), respectively. 

 Two-objectives Problem: 

     {  
                                                                                                  (        (                  ))                                                                                                                 

 4.23 

 Three-objectives Problem: 

     {  
                                                                                            (        (                   ))                                                                                                               

 4.24 

 Five-objectives Problem (or more): 

                                                 
15 When the repository is full, it is required to check for non-dominance and apply K-

Means clustering. 
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     {  
                                                                                         (        (                   ))                                                                                                               

 4.25 

where      and      are the minimum and maximum bounds of the percentage ratio (N%). In 

this work, the      and      are chosen to be 25% and 75%, respectively (Constants 3, 12, and 

40 are chosen according to the proposed      and      values, and can be re-calculated if new 

boundary values are used). 

The procedure of updating the size of the external repository is given in following 

pseudo-code. 

 

Pseudo-code 15: Adaptive External Repository Size Algorithm 

if (No. of the objective function = = 2)       is calculated using Eq. (4.23)   

elseif (No. of the objective function = = 3)           is calculated using Eq. (4.24)  

elseif (No. of the objective function > 3)           is calculated using Eq. (4.25)  

end if 

4.3.3 K-Means Clustering Technique 

In contrary to the Single-objective Optimization Problems (SOOPs), there is more than 

one solution to the Multi-objective Optimization Problems (MOOPs). Moreover, there are a 

number of non-dominated solutions located on the Pareto-optimal front. Within the context of 

MOPSO algorithms, each non-dominated solution can be a leader, gbest, and guide other particles 

towards its position. Thus, for any heuristic algorithm, the problem is “how to deal with a large 

number of non-dominated solutions?” and then “how to select leaders among these solutions?”. 
Together, these two questions have resulted in one of the main difficulties in solving MOOPs that 

is preservation of diversity and preventing the poor distribution of non-dominated solutions along 

the Pareto-optimal front. 

In the previous adaptive external repository size subsection, (Case 3), the need for 

clustering is discussed. Clustering can be used as a mechanism for archiving new non-dominated 

solutions when there is no free space in the external repository. Incorporating clustering 

techniques has been found to be very effective in enhancing the selection of better solutions and 

improving the distribution of non-dominated solutions along the Pareto-optimal front 

[81,77,97,243]. Use of a clustering technique greatly improves diversity as it effectively preserves 
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the size of the repository, while enhancing the ability of the algorithm to explore the search space 

more effectively and efficiently (i.e., coverage of the search space). 

Before describing the proposed K-Means clustering and its implementation on the 

external repository, it is important to first provide the concept of the standard K-Means algorithm, 

[244]. K-Means is an algorithm to cluster n objects based on attributes into k partitions,      . 

K-Means method is considered an easy, simple, and fast cluster algorithm. 

The K-Means algorithm comprises of a simple re-estimation four steps as follows. Step 1, 

initially the data points are randomly selected from the k clusters. For step 2, the centroid is 

calculated for each set. In step 3, each point is assigned to the cluster whose centroid is nearest to 

that point. Step 4 is the re-estimation of steps 2 and 3 until there is no further change in the 

assignment of the data points. Pseudo-code 16 illustrates the procedure of the standard K-Means. 

 

Pseudo-code 16: Standard K-Means Clustering 

1. Choose randomly the k number of the cluster centers   {          } 
2. for each   {       } do:  

- Set the cluster Ci to be the set of points in X that are closer to ci than they are to cj for all 

ji 

3. for each   {       } do: 

- Set the cluster ci to be center of mass of all points in Ci:     |  |     ∑       

4. Repeat steps 2 and 3 for no longer changes in C 

 

Figure 4.11 shows an example for the standard K-Means in a 2-dimensional case. 

 

 
 

 

a) k initial are randomly selected from the 

data set (   ) (as shown in color) 

b) k clusters are created by associating 

every observation with the nearest mean  
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c) The centroid of each of k clusters 

becomes the new means. 

d) Steps 2 & 3 are repeated until 

convergence has been reached. 

Figure 4.11: An Example of the Standard K-Means Algorithm [245] 

 

David et al. [246], proposed a new K-Means++ algorithm to minimize the average squared 

distance between the points in the same cluster. The algorithm adopts a very simple randomized 

seeding to improve the speed and the accuracy of K-Means. The algorithm starts by randomly 

selecting only one cluster center, and then, the rest of the cluster centers are chosen based on a 

new probability criterion calculating by using Eq. (4.26). Next, the algorithm proceeds with the 

standard K-Means steps (2-4).  ( ́) ∑  ( )     4.26 

where  ́ represents a member of the data set (    ). 

In this section, a modified version of the K-Means++ clustering algorithm is proposed to 

enhance the mechanism of storing new solutions in the external repository. In the modified K-

Means++ algorithm, a new radius r is introduced to the K-Means++ algorithm (step 5), and is 

determined by using Eq. (4.27). Then, circles with radius r are drawn (i.e., in the case of the 2-

dimenional case) from each cluster center (i.e., each cluster center represents a center of one of 

the circles), so that the data points that are located inside them are eliminated.   ∑  {(             ) (             )}                               ∑     ((           )  (               ) )           

 

 

 

4.27 

where, SN denotes the number of non-dominated solutions that exist in the repository found so far, 

d is the Euclidean distance, and             are the maximum and minimum of the i-th objective 

in the non-dominated solutions found so far, respectively. 

The procedure of applying the modified K-Means++ clustering algorithm to the external 

repository is provided in Pseudo-code 17: 
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Pseudo-code 17: Modified K-Means++ Clustering Algorithm 

Let D(x) denotes the shortest measured distance between a data point x and the closest center 

that has already chosen. Then: 

1. Choose randomly k number of the cluster centers   (          ) 

a. Choose an initial center c1 uniformly at random from X. 

where X represents a set of non-dominated solutions stored in the repository 

b. for i = 1: k 

                   DO 

 Choose the next center ci 

 Selecting     ́    with a probability determined by Eq. (4.26): 

where  ́ represents a member of the non-dominated solutions stored in the 

repository (X) 

            end for i 

2. for i = 1: k 

             DO 

 Set the cluster Ci to be the set of points in X that are closer to ci than they are to 

cj for all ji 

       end for i 

3. for i = 1: k 

             DO 

 Reset the cluster center ci to be center of mass of all points in Ci:                            |  |  ∑       

       end for i 

4. Repeat steps 2 and 3 until there are no more changes in C. 

5. Computing radius r as expressed in Eq. (4.27) 

6. Assign each clustering center obtained from step 4 with a radius r. 

7. Eliminate all the particles lay inside the K-Means circles. 

 

Figure 4.12 illustrates the mechanism of eliminating the solutions for minimizing a bi-

objective problem. When the external repository is full, the modified K-Means++ is applied to 

eliminate some of the stored solutions and free spots in the external repository. 
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Figure 4.12: Modified K-Means++ Clustering Technique 

4.3.4 Parallel Islands Model 

When applied to large hard problems, MOPSO algorithms may become too slow. One 

way to overcome time and size constraints is to parallelize them (i.e., the computational engines, 

CPU or multi-core processor, simultaneously perform the MOPSO algorithm). Recent MOPSO 

algorithms lend themselves well to parallel computing to improve computational complexity. 

This is done by sharing the workload, in which a N-processor system will do the computation 

nearly N times faster than a uniprocessor system, [247]. The main characteristic of this 

mechanism is that the full swarm exists in distributed form. A common use of the decomposition 

approach is referred to as the Parallel Islands. In this approach, the swarm is divided into several 

sub-swarms. Each sub-swarm is assigned to a different processor (island). Each processor runs a 

sequential MOPSO on its swarm. Parallel islands models allow migration (i.e. periodic exchange) 

of good candidate solutions from one island to another after every fitness evaluation, [248]. Semi-

isolated sub-swarms help maintain MOPSO diversity (as shown in Figure 4.13). Therefore, the 

swarm of each island can explore a different part of the search space. Thereby parallel islands 

models allowing MOPSO algorithms to efficiently solve the Multi-objective Optimization 

Problems (MOOPs), [249,250,251,252]. Furthermore, parallel islands models can also be seen as 

a key factor for the success of the external repository technique by providing a sufficient number 

of good solutions found by the sub-swarms, [249]. 
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Figure 4.13: The Islands Model of n Semi-isolated Sub-swarms 

 

In MOPSO algorithms, parallel islands models have been found to be better in search 

performance than single swarm models in terms of the quality of the solutions and the reduced 

computational time, [249]. In this work, the parallel islands model is implemented using the 

Parallel Computing toolbox and MATLAB Distributed Computing Server. The toolbox allows 

solving computationally problems using MATLAB® on multi-core and multiprocessor computers. 

The parallel computing toolbox consists such that it implements task-parallel and data-parallel 

algorithms without programming for a specific hardware architecture. The toolbox also performs 

the execution of multi-task job by evaluating each of its tasks and returning the results. Moreover, 

the parallel computing toolbox allows up to eight MATLAB workers to run (i.e., the server’s 
individual MATLAB sessions are called workers) on a local machine. Scheduling or job manager 

is the part of the server software that coordinates the execution of jobs and the evaluation of the 

task. Figure 4.14 shows the basic parallel computing configuration. 
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Figure 4.14: Basic Parallel Computing Architecture in a Multi-core Processor 

4.3.5 Overall Adaptive Parallel Clustering-based MOPSO Algorithm 

The proposed Adaptive Parallel Clustering-based Multi-objective Particle Swarm 

Optimization (APC-MOPSO) not only has a technique to guide the search for better solutions, but 

also aims to have well-distributed solutions along the Pareto-optimal front. To accomplish this, 

the previously described concept of Pareto-dominance, a new dynamic model, an adaptive 

weight, cognitive, social, contiguous, position, and velocity coefficients, an adaptive mutation, an 

adaptive external repository size, an adaptive search-space boundaries, a modified K-Means 

clustering algorithm, a parallel islands model, and a parallel computing architecture are 

incorporated into it. 

The flowchart of the proposed Adaptive Parallel Clustering-based Multi-objective 

Particle Swarm Optimization algorithm (APC-MOPSO) is depicted in Figure 4.15. 
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Figure 4.15: Flowchart of the Proposed APC-MOPSO 

 

It is important to describe some of the mechanisms associated with the flow of the 

proposed APC-MOPSO algorithm shown in the above figure: 

 As discussed in Section 4.3.1, a new dynamic model is proposed to increase the exploration 

ability of the particles in a way that enables particles to be guided not by a single leader, but a 

set of leaders during their flight. Accordingly, three leaders that are: (1) the best position (i.e., 

solution) in the swarm (gbest), (2) the particles’ previously best position (pbest), and (3) the best 

closest position in the neighbor (lbest) are proposed. 

 To automatically adjust the values of the APC-MOPSO’s parameter, including inertia weight 

(w), cognitive (  ), social (  ), contiguous (  ), velocity (  ), position (  ), mutation 

probability (  ), boundaries of the search space (           ), and the size of the external 

Each particle updates its position and 

velocity according to the best swarm, 

best neighbor, and its best position 

Criterion to stop the 

iterative search process 

Increasing the quality of the selected 

leaders and then enhancing the 

distribution of the found solutions 

along the global regions 

Mutation process to 

generate new and better 

candidate solutions 

 Gathering only the 

non-dominated 

solutions found by 

each sub-swarm 

 Ring topology is 

used where each 

particle only 

communicates with 

two neighbors 

 Storing those 

solutions in an 

external repository 

Dividing the whole 

swarm into a set of 

sub-swarms 

 

 Evaluating the 

objective function 

for each particle 

 Fitness assignment 

where the concept  

of Pareto-dominance 

used to rank the 

found solutions 
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repository, new adaptive techniques are proposed (as illustrated in Section 4.3.2). These 

techniques enable the APC-MOPSO to further promote the search under various conditions. 

 One way to preserve a reasonable number of non-dominated solutions during the search 

process is to use an external repository mechanism (as described in Section 4.3.2.6). 

Eventually, this mechanism archives only the good solutions found after each iteration. 

 To maintain this repository, an update process is performed during each iteration of the 

algorithm. Accordingly, the good solutions (i.e., that are not dominated by any archived 

solutions) will be stored and those which are no longer non-dominated will be deleted from 

the repository. 

 A modified K-Means++ clustering is proposed to eliminate some of the archived solutions 

from the repository. When the repository is full and there is no space to insert new non-

dominated solutions, K-Means deletes some of the stored solutions to give a chance for good 

solutions to archive in the repository (as explained in Section 4.3.3). In this way, the external 

repository with a modified K-Means++ clustering helps in maintaining a set of non-dominated 

solutions until the end of the run. 

 Having assigned leaders to guide the search, particles in each sub-swarm starts to perform its 

own search using the concept of parallel islands. In this approach, each sub-swarm explores 

different Pareto-front regions. For more efficient and fast function evaluations, parallel 

computing is proposed to shorten the computation time as well as to enhance the performance 

of the search process (as illustrated in Section 4.3.4). 

As shown in the previous figure, the main steps of the proposed APC-MOPSO algorithm 

are described. For the sake of completeness, another diagram of the proposed APC-MOPSO 

algorithm is shown in Figure 4.16 to explain in detail its cycle run similar to that of MOPSO 

paradigms mentioned in Chapter 2. The underlining notions of the proposed APC-MOPSO are 

described for each step given in the diagram: 

1. In the first step, all algorithm design parameters (i.e., mentioned above) are initialized. 

Particles (swarm) are randomly initialized in the search space (i.e., set the position and 

velocity for each particle), and the three leaders (gbest, lbest, and pbest) are selected based on the 

particles current locations (i.e., with respect to each objective in the problem). The external 

repository is filled with all initialized swarm best position (gbest). 

2. Leaders are chosen from the repository to guide the search of the particles. The criterion is 

based on the fitness values of the particles such that particles with higher fitness are selected 

over the less fitness ones. Those leaders then guide the particles in each sub-swarm to explore 

regions that are less explored in the search space. The velocity for the particles in each sub-

swarm is updated as shown in Section 4.3.2.3. 

3. The position of the particles is updated according to their new velocity calculated in the 

previous step (as expressed in Section 4.3.2.3). 

4. The fitness value for each particle in the sub-swarms is evaluated. 
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5. Having ranked all solutions in each sub-swarm, non-dominated solutions from each sub-

swarm are migrated to the solutions pool using the concept of Pareto-dominance and ring 

topology. Then, the repository is updated with the current solutions found by the particles. 

6. The particles’ best position is updated using the Pareto-dominance criterion; if the current 

location of the particle dominates the stored one, then the current position is considered 

instead. 

7. Finally, a new generation of particles is produced using an adaptive mutation technique as 

explained in Section 4.3.2.4. The new swarm (i.e., a combination of both new and old 

particles) is then distributed into sub-swarms to perform a new execution of the search 

process. 

 

 

Figure 4.16: The Simplified Diagram of the APC-MOPSO Algorithm 

 

The features and advantages of the proposed APC-MOPSO algorithm are outlined as 

follows: 

 the ability of automatically adjusting the design parameters of the APC-MOPSO algorithm 

(i.e., using new adaptive schemes); 

 the ability of flexibly selecting leaders (i.e., using the new dynamic model); 
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 the ability of guiding the particles towards the global regions (i.e., using the external 

repository); 

 the ability of maintaining a diverse Pareto-front set of solutions in the search space (i.e., using 

a mutation operator technique); 

 the ability of fast converging (i.e., using the concept of parallel islands), 

 the ability of shortening the computation time (i.e. using a parallel computing technique); and 

 the ability of producing high quality Pareto-front solutions (i.e., using the concept of Pareto-

dominance). 

4.4 Experiments and Comparison of Results 

4.4.1 Competitive Multi-objective Optimization Algorithms 

To compare the performance of the proposed APC-MOPSO, five other well-known 

optimization algorithms in the multi-objective literature are used. Those algorithms are all 

developed based on the notion of Pareto optimum, and they are: Strength Pareto Evolutionary 

Algorithm (SPEA2) [110,74], Non-dominated Sorting Genetic Algorithm (NSGA-II) [233], 

Multi-objective PSO (MOPSO) [52], Two-local Best MOPSO (2LB-MOPSO) [243], and Parallel 

Elite Genetic Algorithm (PEGA) [253]. Brief descriptions of the algorithms are provided in this 

section. 

1. Parallel Elite Genetic Algorithm (PEGA) 

A new Parallel Elite Genetic Algorithm (PEGA) for a global optimization problem is 

proposed by Hsu-Chih et al. [253]. The core operators of the proposed Elite GA (EGA) are: 

selecting, crossover, mutation, fitness function, reproduction strategy with elite policy, and 

diversity pool. A brief explanation of these operators is provided as follows: 

 Selection: the task of this process is to select individuals from the current population so that 

they can be sent to crossover and mutation. This operator is considered one of the key 

operators to ensure survival of the fitness. 

 Crossover: it is implemented by the exchange of strings between two parent chromosomes. 

This process is important to find the optimal solution. 

 Mutation: is the process of making random alteration to the bit(s) of the chromosomes. This 

process is necessary for maintaining diversity in the population. 

 Fitness Function: is the process of evaluating the fitness of new chromosomes generated by 

operators such as crossover and mutation. 
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 Reproduction Strategy with Elite Policy: it is used to avoid destroying the best solution in the 

next generation (i.e., offsprings have fitness worse than parents do). This is done by taking 

elite preservation policy into account, in which 20% of the old population is preserved in the 

next generation. 

 Diversity Pool: this process is used to increase the diversity in the population. This is 

implemented by adding a random population of 20% to the new generation. This operator 

increases the ability of EGA to find global solutions. 

The PEGA is composed of two parallel EGA algorithms which are concurrently executed 

on multi-core processor. The PEGA is proposed to take advantage of preserving diversity, 

avoiding premature convergence, and faster computing than conventional or serial GAs do. 

Figure 4.17 depicts the architecture of the PEGA. 

 

 

Figure 4.17: Schematic of Parallel Elite Genetic Algorithm 

 

The PEGA is outlined by the following pseudo-code. 

 

Pseudo-code 18: Parallel Elite Genetic Algorithm (PEGA) 

for each individual 

       DO 

- Step1. Randomly generate the population. 

end for 

Step2. Set the two parents from the population-based tournament selection. 
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Step3. Execute the procedure of crossover  

while                (until maximum number of function evaluations is NOT reached) 

for each chromosome 

       Do 

      while 

                 if the new chromosome is acceptable 

                    return 

                 else 

- Repeated until acceptable chromosomes are obtained. 

                            end if 

                 end while 

         end for 

         Step4. Perform the mutation process 

         Step5. Repeat the above steps until the convergence is reach. 

end while 

2. Strength Pareto Evolutionary Algorithm (SPEA2) 

A modified version of Strength Pareto Evolutionary Algorithm, called as SPEA2, has 

been proposed by Zitzler et al. [110,74]. The algorithm introduced elitism by an external 

repository on non-dominated solutions at all time. It starts by randomly initializing the population 

(P) and an external repository of size (  ). At every iteration, the non-dominated solutions from 

(P) are ranked based on their fitness and best individuals are copied from the population (P) to 

the external repository (  ). The external repository is updated by eliminating archived members 

that are no longer non-dominated and store the new individuals instead. This mechanism allows 

the external repository to keep only the best solutions found over time. When the external 

repository is full, a new archive truncation method (proposed by Zitzler et al. [254]) is adopted to 

determine which solutions from the external repository (  ) will be retained. Figure 4.18 shows 

the flow of the SPEA2 algorithm. 

To generate offsprings, SPEA2 evaluates the fitness of all individuals by using a nearest 

neighbor density estimation technique (proposed by Terrell et al. [255]) and uses genetic 

operators (i.e., mutation and crossover, [3]), and tournament selection, [256], to create a new 

population. 

The equation used to determine the fitness (i.e., called strength) of an individual i in the 

external repository is given as follows.           

where    is the number of solutions that a solutions i dominates in the population, and N is the 

size of the population. 
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Figure 4.18: Flowchart of SPEA2 Algorithm 

 

The outline of SPEA2 algorithm is given in Pseudo-code 19. 

 

Pseudo-code 19: Strength Pareto Evolutionary Algorithm (SPEA2) 

Initialize population (P) with randomly generated solutions 

Evaluate the fitness value of each solution 

Create empty external repository (  ) 
while                                       (until stopping creation is NOT satisfied) 

Store (i.e., copy) non-dominated individuals of (P) to (  ) 
Delete elements from (P) which are dominated by any other solutions of (  ) 

if (  ) is FULL                   (exceeds its maximum capacity)  

Decide which elements to be removed by means of the truncation operator 

end if 

Evaluate the fitness value of individuals from (P) and (  ) 

Apply binary tournament selection to select individuals from (P +   ) 

Apply crossover (i.e., single point operation) 

Apply mutation 

end while 
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3. Non-dominated Sorting Genetic Algorithm (NSGA-II) 

In 2001, Deb et al. proposed the second version of their elitist Non-dominated Sorting 

Genetic Algorithm that is referred to as NSGA-II, [233]. NSGA-II is developed based on several 

layers of classifications of the individuals (i.e., solutions) as suggested by Goldberg, [3]. The 

algorithm begins by initializing a random population of size (P), and then, generates an offspring 

population of size (Q) using the crowded tournament selection, crossover, and mutation operators 

(as shown in Figure 4.19). Both populations are combined (size of 2N) in order to select solutions 

for a new population in the next generation as depicted in Figure 4.20. 

The main mechanism of NSGA-II involves a non-dominated crowding sort process; a 

process in which the individuals in the population are ranked based on the concept of non-

domination: all non-dominated individuals are classified into one category. Accordingly, a 

crowding distance is calculated for the individuals in each front (see Figure 4.20). In an NSGA-II 

algorithm, a sorting mechanism is used to select the solutions of the new population in the next 

iteration. Individuals in the fronts closer to the Pareto-optimal front always have a higher priority 

rather than those in the far fronts. In this way, the crowding distance assignment approach keeps 

diversity without specifying any additional parameters. 

 

 

Figure 4.19: Flowchart of NSGA-II Algorithm 
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Figure 4.20: Schematic of Sorting and Selecting the Solutions – NSGA-II Algorithm [73] 

 

The main steps of NSGA-II algorithm are given in the following pseudo-code. 

 

Pseudo-code 20: Non-dominated Sorting Genetic Algorithm (NSGA-II) 

Initialize population with randomly generated solutions (P) 

Evaluate the fitness value of each solution 

- Apply Selection operator 

- Apply Crossover operator 

- Apply Mutation operator 

- Create the offspring population (Q) 

while 

- Apply rank based on Pareto-dominance (     ) 

- Compute niche count (R) 

- Apply Crowding Sort (R) 

- Apply selection via stochastic universal sampling (Roulette Wheel) 

- Apply single point crossover 

- Apply mutation 

- Evaluate new candidates (         ) 

end while  (until stopping creation is satisfied) 

4. Multi-objective Particle Swarm Optimization Algorithm (MOPSO) 

Coello et al. (2004) proposed a modified version of the standard PSO that can solve 

Multi-objective Optimization Problems (MOOPs) referred to as Multi-objective PSO algorithm 

(MOPSO), [52]. In this technique, an external repository to store non-dominated solutions is 

employed. Then, the external repository is used to select the best solution (gbest) as a leader to 

guide the search of the particles towards the Pareto-front and to provide a mechanism that 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

157 

maintains diversity along the Pareto-front. The fitness of the archived members is evaluated for 

every iteration. A geographically based technique is incorporated to keep only solutions that have 

the highest fitness values in the external repository. In order to improve diversity, MOPSO 

approach uses a mutation operator that acts on the particles of the swarm. The flow of the 

MOPSO algorithm is shown in Figure 4.21. 

 

 

Figure 4.21: Flowchart of the MOPSO Algorithm 

 

The outline of the MOPSO is provided in Pseudo-code 21. 
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Pseudo-code 21: Multi-objective Particle Swarm Optimization Algorithm (MOPSO) 

for each particle 

       Do 

- Randomly initialize the position  ⃗ using Eq. (4.1) 

- Randomly initialize the velocity using Eq. (4.2) 

- Evaluate fitness function( ⃗) 

- Initialize pbest =  ⃗ 

end for 

while                (until maximum number of iterations is NOT reached) 

for each particle 

       Do 

- Compute the new velocity on each dimension       (along each objective) 

- Compute the new position on each dimension       (along each objective) 

- Evaluate the fitness using the new position 

end for 

- Update the solutions in the repository REP 

if  ⃗ dominates to Pbest  

Pbest =  ⃗     (update leaders to guide the rest of the swarm during their search) 

end if 

end while 

5. Two-lbests based Multi-objective Particle Swarm Optimizer (2LB-MOPSO) 

Two-lbests MOPSO algorithm (2LB-MOPSO) is proposed by Zhao et al. in 2010 using a 

new elitism mechanism that maintains diversity even when there are few non-dominated solutions 

in the external repository, [243]. This approach suggested a new form of leaders that is referred to 

as the local best (lbest) instead of the swarm best solution (gbest) commonly used in the standard 

MOPSO algorithms. Two local best leaders are chosen from the non-dominated solutions in the 

external repository. The concept of non-domination sorting is applied to obtain the solutions 

generated in every iteration. During this process, the new solutions are ranked (i.e., from the 

lowest to the highest fronts (front1 to front 4) as shown in Figure 4.22) and retained two 

indicators, namely the front rank and the crowding distance value, [73]. Only the solutions with 

the lowest front rank will be stored in the external repository. When the size of the external 

archive reaches its maximum capacity, the crowding distance is applied to select the required 

number of solutions to be stored in the external repository for the next iteration (i.e., from the 

lowest front that still has unselected solutions in the current iteration). As each particle is guided 

by two neighborhoods (i.e., in decision and objective spaces) with the lowest front (e.g., front 1), 

the flight of each particle will be in the direction between the positions of the two lbest leaders. 

Unlike the search behavior of the MOPSOs, 2LB-MOPSO is proposed to focus the search around 
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small regions in the decision space in the vicinity of the best fronts. The main procedure of the 

2LB-MOPSO algorithm is illustrated in Pseudo-code 22. 

 

 

Figure 4.22: An Example of Ranking the Solutions in the External Repository – 2LB-MOPSO 

 

Pseudo-code 22: Two-lbests Multi-objective PSO Algorithm (2LB-MOPSO) 

for each particle 

       Do 

 - Set initial position  ⃗ ( ) 

 - Randomly initialize the velocity 

 - Evaluate fitness value 

 - Initialize lbest =  ⃗( ) 

end for 

Iteration-count = 1 

while                (until maximum number of function evaluations is NOT reached) 

for each particle 

       Do 

if iteration-count > 5 

- Randomly choosing an objective 

- Randomly choosing a bin of the selected objective 

- Choosing the solutions that have the lowest front and the largest crowding 

distance in the chosen bin 

- Select the second lbest from the neighborhood of the first lbest in the decision 

space 
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else 

if  ⃗ dominates to lbest  

    lbest =  ⃗ 

            - Update the two leaders lbest in the same bins used in the last iteration-count 

end if 

end if 

- Update the velocity on each dimension       (along each objective)  (   )      ( )         ( )  (      ( )       ( )) 

                                              ( )  (      ( )       ( ))  
- Limit the velocity for each dimension (d)    ( )  (   (    ( )   ( ))     (   (     ( )   ( )) 

- Update the position on each dimension (d)       (along each objective)   ( )    ( )    ( ) 

 if position exceeds the search space 

    Set a new search space boundary 

end if 

Evaluate the fitness using the new position (Q) 

end for 

- Sort non-dominated solutions on combined ( P+ Q) 

- Update the solutions in the external repository for the next iteration 

end while 

4.4.2 Test Problems 

To test the performance of multi-objective optimization algorithms, there are several 

benchmark test problems whose Pareto-optimal front sets are known. In this work, three groups 

of benchmark test problems are considered: the first group contains bi-objective problems, and is 

used to assess the performance of the optimization algorithm in terms of its global convergence 

ability to different Pareto-optimal front geometry shapes, including convex, non-convex, linear, 

non-linear, continuous, disconnect, unimodal, and multimodal. Zitzler et al. [92], developed a set 

of bi-objective benchmark test problems, namely ZDT116, ZDT2, ZDT3, ZDT4, and ZDT6. 

Moreover, Deb et al. [257], identified another set of benchmark test problems, namely DTLZ117, 

DTLZ2, DTLZ3, DTZL4, DTLZ5, and DTZL6 for MOEA and MOPSO algorithms. Lastly, T. 

Okabe [258], F. Kursawe [259], and C. Fonseca [202] proposed bi-objective benchmark test 

                                                 
16 ZDT stands for the initials of the authors Zitzler, Deb and Thiele. 
17 DTLZ stands for the initials of the authors Deb, Thiele, Zitzler, and Laumanns. 
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problems that are very challenging and are difficult to solve for most multi-objective optimization 

technique, [260]. 

The second group contains three-objective problems, namely DTLZ2, DTLZ5, and 

DTLZ7. These problems are used to evaluate the performance of the optimization algorithm in 

terms of its ability to finding solutions that cover the entire Pareto-optimal front. The third group 

contains five-objective problems (e.g., DTLZ2 and DTYLZ5) that are used to measure the 

performance of the optimization algorithm in terms of its computational speed and solution 

quality. 

All these benchmark problems are used to validate and compare the performance of the 

APC-MOPSO algorithm. A Summary of these test problems is provided as follows. 

 ZDT1 two-objective Test Problem 

Has a convex Pareto-optimal front with 30 decision variables, Zitzler et al. [92]. 
 

Geometry m Constraints Formulations 

Convex 30        

  ( ⃗)    ,   ( ⃗)   ( ⃗) [  √    ( ⃗)] 
 ( ⃗)      (∑   

   ) (   ) 

 ZDT2 two-objective Test Problem 

Has a non- convex Pareto-optimal front with 30 decision variables, Zitzler et al. [92]. 
 

Geometry m Constraints Formulations 

Non-convex 30        

  ( ⃗)    ,   ( ⃗)   ( ⃗) [  (    ( ⃗)) ] 
 ( ⃗)      (∑   

   ) (   ) 

 ZDT3 two-objective Test Problem 

Has a disconnected, non-contiguous, and convex Pareto-optimal front with 30 decision 

variables, Zitzler et al. [92]. 
 

Geometry m Constraints Formulations 

Convex and 

dis-continuous 
30        

  ( ⃗)    ,   ( ⃗)   ( ⃗) [  √    ( ⃗)     ( ⃗)    (     )] 
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 ( ⃗)     (∑   
   ) (   ) 

 ZDT4 two-objective Test Problem 

Has a convex and multimodal Pareto-optimal front with 10 decision variables, Zitzler et 

al. [92]. It contains 219 local Pareto-optimal fronts, and therefore, used to test the optimization 

algorithm’s ability to deal with multimodality. 
 

Geometry m Constraints Formulations 

Convex and 

multi-modal 
10 

               

  ( ⃗)    ,   ( ⃗)   ( ⃗) [  (    ( ⃗)) ] 
 ( ⃗)      (   )  ∑   

   (         (    )) 

 ZDT6 two-objective Test Problem 

Has a non-convex and multimodal Pareto-optimal front with 10 decision variables, 

Zitzler et al. [92]. Due to the non-uniformity of the search space, solving this test problem 

includes a difficulty that the density of the solutions are lowest close to the Pareto-optimal front 

and highest away from it. 
 

Geometry m Constraints Formulations 

Non-convex 10        

  ( ⃗)       (    )     (    ),   ( ⃗)   ( ⃗) [  (    ( ⃗)) ] 
 ( ⃗)     [(∑   

   ) (   )]    
 

 FONSECA two-objective Test Problem 

Has a non-convex and Pareto-optimal front with 3 decision variables, C. Fonseca [202]. 
 

Geometry m Constraints Formulations 

Concave 3         

  ( ⃗)       ( ∑(    √ )  
   ) 

  ( ⃗)       ( ∑(    √ )  
   ) 
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 OKA2 two-objective Test Problem 

Has a convex and Pareto-optimal front with 3 decision variables, T. Okabe [258]. This 

test problem is very difficult for any MOEA and MOPSO to solve, since the closer the 

individuals (or particles) get to the Pareto-front, the sparser the probability density becomes. 
 

Geometry m Constraints Formulations 

Convex 3 
                

  ( ⃗)       ( ⃗)        (    )  |        (  )|  ⁄   |        (  )|  ⁄  

 KURSAWE two-objective Test Problem 

Has several disconnected and unsymmetrical global area in the search space. The Pareto-

optimal front of this test problem consists of three disconnected Pareto curves with 3 decision 

variables, F. Kursawe [259]. 
 

Geometry m Constraints Formulations 

Non-convex 

and non-

connected 

3         

  ( )  ∑ (    (   ) √         )   
    

  ( )  ∑(|  |         (  ) ) 
    

 DTLZ1 M-objective Test Problem 

It is a scalable test problem that has a linear and multimodal Pareto-optimal front with 12 

decision variables, Deb et al. [257]. The difficulty in this problem is to converge to the hyper-

plane, as the search space contains (     ) local Pareto-optimal fronts. 
 

Geometry m Constraints Formulations 

Linear and 

Multi-

modal 

12        

  ( ⃗)        (   ( ⃗))   ( ⃗)      (    )(   ( ⃗))   ( ⃗)    (    )(   ( ⃗))     ( ⃗)      (    )(   ( ⃗))   ( ⃗)    (    )(   ( ⃗)) 
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  ( ⃗)     [|  |  ∑(      )  
       (   (      ))] 

 DTLZ2 M-objective Test Problem 

It is a scalable test problem that has a non-convex Pareto-optimal front with 12 decision 

variables, Deb et al. [257]. It is used to investigate the algorithm’s ability to scale up its 
performance with a large number of objectives. In this problem, the summation of all objective 

function values must satisfy the condition given in Eq. (4.28). ∑(  )  
      4.28 

 

Geometry m Constraints Formulations 

Non-convex 12        

  ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )   ( ⃗)  (   ( ⃗))   (     )     ( ⃗)  (   ( ⃗))   (    )    (    )   ( ⃗)  (   ( ⃗))   (     )   ( )  ∑(      )  
    

 DTLZ3 M-objective Test Problem 

It is a scalable test problem that has a concave and multimodal Pareto-optimal front with 

12 decision variables, Deb et al. [257]. Moreover, the problem has (     ) local Pareto-optimal 

fronts. 
 

Geometry m Constraints Formulations 

Concave 12        

  ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )     ( ⃗)  (   ( ⃗))   (    )    (    )   ( ⃗)  (   ( ⃗))   (     )   ( )     [|  |  ∑(      )     (   (      )) 
   ] 
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 DTLZ4 M-objective Test Problem 

It is a scalable test problem that has a concave and unimodal Pareto-optimal front with 12 

decision variables, Deb et al. [257]. 
 

Geometry m Constraints Formulations 

Concave 12 
       

 = 100 

  ( ⃗)  (   ( ⃗))   (     )   (     ) 

  ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )     ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )  ( ⃗)  ∑(      )  
    

 DTLZ5 M-objective Test Problem 

It is a scalable test problem that has a concave and unimodal Pareto-optimal front with 12 

decision variables, Deb et al. [257]. Same condition given in Eq. (4.28) is applied, in which the 

summation of the square objective values must equal to 1. 
 

Geometry m Constraints Formulations 

Non-convex 

and uni-

modal 

12        

  ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )     ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )  ( ⃗)  ∑(      )  
    

     (   ( ⃗)) (    ( ⃗)  ) 

for i=2, 3,…, (M-1) 

 DTLZ6 M-objective Test Problem 

It is a scalable test problem that has a concave and unimodal Pareto-optimal front with 22 

decision variables, Deb et al. [257]. 
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Geometry m Constraints Formulations 

Concave and 

uni-modal 
22        

  ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )   (     )   ( ⃗)  (   ( ⃗))   (     )     ( ⃗)  (   ( ⃗))   (    )    (    )   ( ⃗)  (   ( ⃗))   (     )      (   ( ⃗)) (    ( ⃗)  ) 

for i=2, 3,…, (M-1)  ( ⃗)  ∑(  )    
    

 DTLZ7 M-objective Test Problem 

It is a scalable test problem that has four disconnected Pareto-optimal fronts with 20 

decision variables, Deb et al. [257]. This problem is used to test the ability of the optimization 

algorithm to maintain and distribute sub-populations in different Pareto-optimal regions. 
 

Geometry m Constraints Formulations 

non-

connected 
20        

  ( ⃗)       ( ⃗)       ( ⃗)  (   ( ⃗)) (       )     ( ⃗)         ( ⃗)  (   ( ⃗)) (              )  ( ⃗)      |  |∑   
    

 (       )    ∑[      ( ⃗)]  (     (    )) 
    

4.4.3 Numerical Settings 

This subsection investigates several key features of the proposed APC-MOPSO 

algorithm, as well as the effect of different parameter (i.e. numerical) settings on the quality of 

the solutions and the rate of convergence to determine their influence. The performance of the 

proposed APC-MOPSO algorithm is compared to other state-of-the-art MOEAs and MOPSOs. 

Accordingly, each experiment for every benchmark test problem is repeated 25-times (i.e., to 
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ensure consistency) and then the average is taken for validating and measuring the performance 

of each method. The configurations and the numerical settings of the proposed APC-MOPSO, 

MOPSO, PEGA, NSGA-II, SPEA2, and 2LB-MOPSO are provided in Tables 4.2 to 4.5. 

 

Table 4.2: Configurations of the Design Parameters for the APC-MOPSO 

Design Parameters Lower Limit Upper Limit Remark 

Inertia weight (w) 0.4 2.5 Dynamically changes 

Social factor (C1) 1.5 2.75 Exponentially changes 

Cognitive factor (C2) 1.5 2.75 Exponentially changes 

Contiguous factor (C3) 1.5 2.75 Exponentially changes 

Position coefficient (Cp) 0.1 1 Linearly changes 

Velocity coefficient (Cv) 0.1 1 Linearly changes 

 

Table 4.3: Configurations of the Algorithm Parameters for the APC-MOPSO 

Design Parameters Numerical Value Remarks 

Maxiter 100 Maximum iterations 

Maxeval 10,000 Maximum number of function evaluations 

Swarm_size 100 The size of the swarm 

Repository_size variable 
The size of external repository, it is 

computed using Eqs. (4.21)-to-(4.25) 

Random [0, 1] Uniform distribution 

Clus_num variable No. of clustering group  = No. of objectives 

MigrationInterval 1500 Executing migration every 1500 FEs 

MigrationFraction 0.2 The percentage of the migrated particles 

MigrationDirection ‘forward’ Particles migrate towards ahead sub-swarms 

 

Table 4.4: Architectural Specifications for the APC-MOPSO Algorithm 

Features Numerical Value Remarks 

Parallelism variable No. of parallel paths = No. of objectives 

Cooperative topology Ring The communication among particles 

K-Means Probability-based No. of centers = No. of the objectives 

Subswarm_size Swarm_size/Clsu_num Number of particles in each sub-swarm 

 

 

 

Table 4.5: Parameter Settings for MOPSO, SPEA2, NSGA-II, PEGA, and 2LB-MOPSO 
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Parameterization used in MOPSO 
Population Size  100 particles 

Repository Size 100 particles 

Maximum Iteration 100 

phi1 2.05 

phi2 2.05 

Grid inflation parameter 0.1 

Parameterization used in MOPSO 
Number of grids per each dimension 10 

Leader selection pressure parameter 4 

Repository member selection pressure 2 

Parameterization used in SPEA2 
Maximum number of generation 100 

Population size 100 

Number of individuals for tournament 2 

Individual mutation probability 1 

Variable recombination probability 1 

Individual recombination probability 1 

Variable swap probability 0.5 

Eta mutation 15 

Eta recombination 5 

Parameterization used in NSGA-II 
Population Size  100 

Maximum iteration 100 

Crossover ratio 0.8 

Mutation ratio 0.3 

Number of parents  80 

Number of mutation 30 

Parameterization used in PEGA 
Population Size  100 individuals (50 - 50) 
Pareto Fraction 1 

Maximum generation  100 

Crossover Fraction 0.8 

Migration Direction ‘forward’ 
Migration Interval  20 

Migration Fraction 0.2 

Parameterization used in 2LB-MOPSO 
Number of count  5 
Number of bins 10 
Population size 100 particles 
Maximum function evaluations 10,000 
Archive Size  100 
Weight factor 0.729 

Social factor 2.05 

Cognitive factor 2.05 
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4.4.4 Performance Metrics 

Comparing various heuristic optimization methods experimentally involves the notion of 

performance. In a multi-objective optimization, the quality of the solutions is substantially more 

complex than for single-objective optimization. This is because the optimization itself is multiple 

(i.e., multi-objective), including minimizing the distance between the non-dominated solutions 

and the Pareto-optimal front, a distribution (in most cases uniform) of the non-dominated 

solutions, and maximizing the extent of the non-dominated solutions for each objective. 

A summary of the performance metrics used to assess the performance of the APC-

MOPSO and other MOEA and MOPSO algorithms is provided in Table 4.6. 

 

Table 4.6: Performance Metrics for Multi-objective Optimization Techniques 

Spacing (S) 
Mathematical Formulation Remark 

  √     ∑( ̅    )  
    

where  ̅ is the mean of all            (|   ( )     ( )|          |   ( )     ( )|)               

 A value of zero is ideal for this metric, 

since it indicates all members of PFknown 

are equidistantly spaced (uniformly 

distributed). 

Generational Distance (GD) 
Mathematical Formulation Remark 

    √∑          

where    is the Euclidean distance between each 

member, i, of PFknown and the closest 

member in PFtrue to that member, i, in the 

objective space 

 If the value of GD indicates zero, this means 

that the algorithm is efficiently converged to 

the Pareto-optimal front (100% coincided). 

Conversely, any other value will indicate the 

degree of matching with the Pareto-optimal 

front (PFtrue). 

Error Ratio (ER) 
Mathematical Formulation Remark 

    ∑         

 If     {                                                                                                    

 Hence, if     {                                                                                   
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Table 4.6: Performance Metrics for Multi-objective Optimization Techniques (continue) 

Two Set Coverage (C) 

Mathematical Formulation Remark  (               )    |{                             }||        |  

 When C = 1, means that PFknown = PFtrue. In 

other words, all elements in PFknown 

dominate or equal to all elements in PFtrue. 

Contrarily, when C = 0, means that PFknown  

PFtrue. 

4.4.5 APC-MOPAO Comparative Results 

The purpose of this section is to compare the performance of the proposed APC-MOPSO 

with other methods using the above-mentioned benchmark test problems. This comparison is 

made against well-known multi-objective optimization algorithms, such as Two-local Best 

MOPSO (2LB-MOPSO), original MOPSO, Strength Pareto Evolutionary Algorithm (SPEA2), 

Non-dominated Sorting Genetic algorithm (NSGA-II), and Parallel Elite Genetic Algorithm 

(PEGA). Two-set Covering (C), Error Ratio (ER), Generational Distance (GD), and Spacing (S) 

are the four performance metrics (i.e., as explained above) used to evaluate the effectiveness of 

the proposed APC-MOPSO. 

4.4.5.1 Results for Two-Objectives Test Problems 

This section presents comparative results for the set of two-objective benchmark test 

problems, including ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, FONSECA, OKA2, KURSAWE, 

DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6, and DTLZ7. For each test problem, 25 

independent runs are executed for statistics collection. Furthermore, the results are displayed in 

four performance metrics that are Spacing (S), Two-set Coverage (C), Error Ratio (ER), and 

Generational Distance (GD). Samples of the experimental results obtained by the proposed APC-

MOPSO, the 2LB-MOPSO, MOPSO, NSGA-II, SPEA2, and PEGA against the above test 

problems are discussed as follows. 

 ZDT2 Test Problem 

Figure 4.23 shows the graphical results obtained by the APC-MOPSO, the 2LB-MOPSO, 

the PEGA, the NSGA-II, and the SPEA2 against the ZDT2 benchmark test problem. This 

problem has a non-convex Pareto-optimal front, and Tables 4.7, 4.10, 4.13, and 4.16 present the 

numerical comparison of the Pareto-optimal fronts considering the Two-set Covering (C), Error 

Ratio (ER), Generational Distance (GD), and Spacing (S) metrics. Neither NSGA-II nor PEGA 

are converged to the optimal region and are unable to find non-dominated solutions after 100 
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iterations. This is also demonstrated from their high average values of C, ER, and S metrics. It 

can be seen that APC-MOPSO performed well, obtained non-dominated solutions spread over the 

entire optimal regions, and returned the best average values with respect to C, ER, and GD, while 

returned values that marginally below the 2LB-MOPSO with respect to S. Note however, that 

only APC-MOPSO found solutions that covered the entire Pareto-front of the problem. 

 ZDT4 Test Problem 

ZDT4 is a very challenging problem for any multi-objective optimization algorithm 

because of its modality (i.e., contains 219 local Pareto-optimal fronts). However, amongst the 

algorithms considered, the proposed APC-MOPSO is the only algorithm that converged onto the 

Pareto-optimal front, while 2LB-MOPSO, MOPSO, NSGA-II, PEGA, and SPEA2 did not. The 

solutions produced by all algorithms on this benchmark test problem are compared in terms of C, 

ER, GD, and S performance metrics as provided in Tables 4.7, 4.10, 4.13, and 4.16. Figure 4.24 

graphically presents the solutions for the six algorithms and compares them with respect to the 

Pareto-optimal front. Figure 4.33 presents ZDT4’s results in terms of the GD metric for all 

algorithms. The results demonstrated that the adaptation strategies broadly improved performance 

of the APC-MOPSO. 

 OKA2 

OKA2 benchmark test problem is a very difficult for any multi-objective optimization 

algorithm, since the algorithm converges closer to the Pareto-front, the probability density 

becomes sparser [260]. Figure 4.25 shows the graphical results obtained after 10,000 function 

evaluations by the APC-MOPSO, the 2LB-MOPSO, the PEGA, the NSGA-II, and the SPEA2 for 

this test problem. Tables 4.8, 4.11, 4.14, and 4.17 show the comparison of results for the six 

algorithms according to four commonly used performance metrics. Four algorithms that are 

MOPSO, NSGA-II, SPEA2, and PEGA are failed to converge and are poorly performed in terms 

of finding non-dominated solutions. Moreover, it can be seen that only the proposed APC-

MOPSO and the 2LB-MOPSO converged to the Pareto-optimal front with 10,000 function 

evaluations. The results showed that the APC-MOPSO outperformed the other five algorithms. 

With respect to C, ER, GD, and S, APC-MOPSO returned the best average values compared to 

2LB-MOPSO. Note that the results of this benchmark test problem demonstrated the 

effectiveness and stability of the proposed APC-MOPSO in performing the search process. 

 KURSAWE Test Problem 

The computational results produced by the proposed APC-MOPSO, the 2LB-MOPSO, 

the PEGA, the NSGA-II, and the SPEA2 in the KURSAWE benchmark test problem are shown 

in Figure 4.26. The non-dominated solutions obtained by the six algorithms are compared to the 

Pareto-optimal front, which has several disconnected and unsymmetrical areas in the search space 

(i.e., which may cause difficulty in finding non-dominated solutions in all optimal regions). 
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Tables 4.8, 4.11, 4.14, and 4.17 show the results for the six algorithms. From these tables, it can 

be noticed that the APC-MOPSO performed very well (i.e., in finding the entire Pareto-front) in 

terms of C and ER metrics. Furthermore, APC-MOPSO returned better average GD and S values 

compared to the NSGA-II and 2LB-MOPSO, respectively. With respect to SPEA2 and PEGA, 

they failed to find a full set of optimal solutions and to cover the entire Pareto-front of the 

problem. 

 DTLZ1 Test Problem 

Although DTLZ1 is considered a simple benchmark test problem (i.e., has a linear 

Pareto-optimal front), nonetheless it seems hard for many multi-objective optimization algorithm. 

Besides the high number of local Pareto-fronts this problem has (i.e., contains (11k – 1) local 

Pareto-fronts) 18, the total number of variables that represent the solutions in the decision space 

can further make it difficult for most optimization algorithms to converge to the linear Pareto-

front. Figure 4.27 shows the Pareto-front sets for this problem obtained by the proposed APC-

MOPSO, the 2LB-MOPSO, the MOPSO, the NSGA-II, the PEGA, and the SPEA2. Four 

performance metrics are adopted in this test in order to track and assess the convergence and 

efficiency of all algorithms. The results in Tables 4.8, 4.11, 4.14, and 4.17 showed that the APC-

MOPSO and the 2LB-MOPSO algorithms are successful in solving the problem, while PEGA 

and MOPSO are partially successful in obtaining parts of the Pareto-fronts. SPEA2 and NSGA-II 

failed to converge and then to produce a set of non-dominated solutions. With respect to the 

considered metrics, it is clear that the proposed APC-MOPSO obtained the desired Pareto-front 

better than the other algorithms, especially in C, ER, and GD average values, except for the S 

metric whereas APC-MOPSO is slightly below the 2LB-MOPSO. Accordingly, it can be 

concluded that APC-MOPSO outperformed the others in solving DTLZ1problem. 

 DTLZ3 Test Problem 

Six multi-objective optimizers that are the APC-MOPSO, 2LB-MOPSO, MOPSO, 

NSGA-II, SPEA2, and PEGA are applied to this test with respect to the C, ER, GD, and S 

metrics. The DTLZ3 benchmark test problem has a concave, multimodal, and continuous Pareto-

optimal front). For the this problem, only the APC-MOPSO and 2LB-MOPSO returned vectors of 

Pareto-front with average values of Error Ratio (ER) metric ranging from 1% to 9% and from 2% 

to 27%, respectively (as illustrated in Table 4.12). With regards to Spacing (S) metric, Table 4.18 

shows that the APC-MOPSO consistently produced solutions that are well distributed in the range 

of 0.00086 to 0.0111, while the 2LB-MOPSO’s results are way beyond that (i.e., ranging from 

0.005 to 0.25). A similar trend can be observed when considering Generational Distance (GD) 

and Two-set Coverage (C) metrics (see Tables 4.12 and 4.15, respectively, for their ranges). 

                                                 
18 k represents a design parameter for all DTLZ benchmark problems, and it is calculated 

by using the following formula:                                              



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

173 

NSGA-II, SPEA2, PEGA, and MOPSO algorithms returned vectors farther away from the Pareto-

optimal front, and they failed to converge to the global regions in all 25 independent runs. Figure 

4.28 illustrates the results of the six algorithms for the DTLZ3, and also compares the solutions 

with respect to the Pareto-optimal front. 

 DTLZ6 Test Problem 

Another hard problem is chosen to measure the quality of the overall performance of the 

APC-MOPSO and five other well-known algorithms that are 2LB-MOPSO, MOPSO, NSGA-II, 

SPEA2, and PEGA. The DTLZ6 benchmark test problem has a Pareto-optimal front that is 

unimodal, continuous, and non-convex. Figure 4.29 shows graphically the set of non-dominated 

solutions obtained by each of the above algorithms compared to the Pareto-optimal front of the 

problem. It can be seen that the APC-MOPSO evidently converged faster to the global front and 

has a wider converge length than others have. This can easily be confirmed by looking at the 

average values of C, ER, GD, and S for the APC-MOPSO compared to the other algorithms (see 

Tables 4.9, 4.12, 4.15, and 4.18). 

 DTLZ7 Test Problem 

The last benchmark test problem in the two-objectives set is DTLZ7, which has 

disconnected Pareto-optimal regions. The results produced by the APC-MOPSO, 2LB-MOPSO, 

MOPSO, NSGA-II, SPEA2, and PEGA with respect to C, ER, GD, and S metrics are graphically 

illustrated in Figure 4.30, while their statistical values (i.e., best, worst, average, median, and 

standard deviations for each metric) are tabulated in Tables 4.9, 4.12, 4.15, and 4.18. From this 

figure, it is clear that the APC-MOPSO, the 2LB-MOPSO, and the SPEA2 produced solutions 

that covered the entire disjointed front, while PEGA and MOPSO did converge to a segment of 

that front. With regards to NSGA-II, it returned the worst non-dominated solutions. Furthermore, 

by looking at the four tables, the average values of the four metrics showed that the APC-

MOPSO outperformed all other algorithms. An example of that is the average values of ER 

returned by the APC-MOPSO that ranged from 1% to 6%, while for 2LB-MOPSO and SPEA2, 

the ranged from 2% to 7% and from 5% to 14%, respectively. 

Finally, it is important to provide examples of the four performance metrics and their 

average values that are returned by the six algorithms. Figures 4.31 to 4.34 illustrate the average 

values of the four metrics against ZDT1, ZDT3, ZDT4, and ZDT6 benchmark test problems. 

From these figures, it is clearly shown that the proposed APC-MOPSO returned the better (i.e., 

smallest) average values for all metrics compared with other algorithms. 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.23: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the ZDT2 Benchmark Test Problem (2-D) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.24: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the ZDT4 Benchmark Test Problem (2-D) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.25: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the OKA2 Benchmark Test Problem (2-D) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.26: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the KURSAWE Benchmark Test Problem (2-D) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO 

  

f. Pareto-front Produced by APC-MOPSO 

Figure 4.27: Pareto-front Produced by the MOPSO, 2LB-MOPSO, and APC-MOPSO for the 

DTLZ1 Test Problem (2-D) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.28: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ3 Benchmark Test Problem (2-D) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.29: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ6 Benchmark Test Problem (2-D) 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5
F

2

F1

 

 

True Pareto-front

SPEA2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

F
2

F1

 

 

True Pareto-front

NSGA-II

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

F
2

F1

 

 

True Pareto-front

PEGA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
2

F1

 

 

True Pareto-front

MOPSO

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
2

F1

 

 

True Pareto-front

2LB-MOPSO

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
2

F1

 

 

True Pareto-front

APC-MOPSO



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

181 

  

a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.30: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ7 Benchmark Test Problem (2-D) 
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Figure 4.31: Overall Results for ZDT1 Benchmark Test Problem Using Spacing Metric 

 

Figure 4.32: Overall Results for ZDT3 Benchmark Test Problem Using Coverage Metric 
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Figure 4.33: Overall Results for ZDT4 Benchmark Test Problem Generational Distance Metric 

 

Figure 4.34: Overall Results for ZDT6 Benchmark Test Problem Using Error Ration Metric 

  

-5

0

5

10

15

20

25

30

35

40

MOPSO NSGA-II SPEA2 2LB-MOPSO PEGA APC-MOPSO

G
e

n
e

ra
ti

o
n

a
l 

D
is

ta
n

ce
 

Algorithms 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

MOPSO NSGA-II SPEA2 2LB-MOPSO PEGA APC-MOPSO

E
rr

o
r 

R
a

ti
o

 

Algorithms 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

184 

Table 4.7: The Results for Two-set Coverage Metric on Benchmark Test Problems 1-5 (2-D) 

Method Statistics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
A

P
C

-M
O

P
S

O
 Best 0.01000 0.04000 0.02000 0.12000 0.02000 

Worst  0.04000 0.04000 0.07000 0.22000 0.02000 

Mean  0.02600 0.04000 0.04400 0.17400 0.02000 

Median 0.02000 0.04000 0.04000 0.20000 0.02000 

Std 0.01242 0.00000 0.01502 0.04561 0.00000 

2
L

B
-M

O
P

S
O

 Best 0.02000 0.04000 0.02000 0.28000 0.02000 

Worst  0.08000 0.08000 0.12000 0.96000 0.02000 

Mean  0.04520 0.04800 0.06880 0.83680 0.02000 

Median 0.04000 0.04000 0.07000 0.89000 0.02000 

Std 0.01782 0.01190 0.02403 0.15842 0.00000 

N
S

G
A

II
 

Best 1.00000 1.00000 1.00000 1.00000 0.12000 

Worst  1.00000 1.00000 1.00000 1.00000 0.60000 

Mean  1.00000 1.00000 1.00000 1.00000 0.29810 

Median 1.00000 1.00000 1.00000 1.00000 0.25930 

Std 0.00000 0.00000 0.00000 0.00000 0.12591 

S
P

E
A

2
 

Best 0.09000 0.21000 0.43000 0.02000 0.74000 

Worst  0.28000 1.00000 0.76000 0.38000 0.85000 

Mean  0.16760 0.57160 0.57120 0.20960 0.78700 

Median 0.16000 0.34000 0.57000 0.20000 0.78000 

Std 0.04763 0.36047 0.08343 0.10106 0.04596 

M
O

P
S

O
 

Best 0.96880 0.07000 1.00000 0.75000 0.00000 

Worst  0.98920 1.00000 1.00000 0.98940 0.68570 

Mean  0.98218 0.86797 1.00000 0.91917 0.11140 

Median 0.98410 1.00000 1.00000 0.94740 0.02000 

Std 0.00565 0.30079 0.00000 0.06812 0.18346 

P
E

G
A

 

Best 0.92210 1.00000 1.00000 0.45280 0.49120 

Worst  1.00000 1.00000 1.00000 1.00000 0.78080 

Mean  0.97584 1.00000 1.00000 0.90778 0.68047 

Median 0.98210 1.00000 1.00000 1.00000 0.68250 

Std 0.02485 0.00000 0.00000 0.19861 0.07616 
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Table 4.8: The Results for Two-set Coverage Metric on Benchmark Test Problems 6-10 (2-D) 

Method Statistics FONSECA KURSAWE OKA2 DTLZ1 DTLZ2 
A

P
C

-M
O

P
S

O
 Best 0.14830 0.08000 0.04000 0.08000 0.09000 

Worst  0.18510 0.20000 0.04000 0.28000 0.33000 

Mean  0.17503 0.13400 0.04000 0.19000 0.13400 

Median 0.17895 0.13000 0.04000 0.17000 0.11000 

Std 0.01214 0.03562 0.00000 0.08206 0.07074 

2
L

B
-M

O
P

S
O

 Best 0.25290 0.08000 0.04000 0.19000 0.24000 

Worst  0.31720 0.25000 0.04000 0.39000 0.47000 

Mean  0.28535 0.16680 0.04000 0.28600 0.33200 

Median 0.28510 0.16000 0.04000 0.28000 0.32000 

Std 0.01815 0.04375 0.00000 0.05317 0.06215 

N
S

G
A

II
 

Best 0.18390 0.07000 0.33330 1.00000 0.05000 

Worst  0.26210 0.34000 0.70000 1.00000 0.09000 

Mean  0.21580 0.13400 0.54573 1.00000 0.07333 

Median 0.20920 0.13000 0.58245 1.00000 0.08000 

Std 0.02200 0.05635 0.14724 0.00000 0.02082 

S
P

E
A

2
 

Best 0.71720 0.57000 1.00000 1.00000 0.31000 

Worst  0.81380 0.84000 1.00000 1.00000 0.51000 

Mean  0.76450 0.68920 1.00000 1.00000 0.41800 

Median 0.76550 0.69000 1.00000 1.00000 0.43000 

Std 0.02694 0.05802 0.00000 0.00000 0.06303 

M
O

P
S

O
 

Best 0.13560 0.29000 1.00000 1.00000 0.10000 

Worst  0.20920 0.52000 1.00000 1.00000 0.40000 

Mean  0.17501 0.41051 1.00000 1.00000 0.24700 

Median 0.18390 0.42000 1.00000 1.00000 0.26000 

Std 0.02515 0.06312 0.00000 0.00000 0.09117 

P
E

G
A

 

Best 0.27060 0.15560 1.00000 0.04120 0.13830 

Worst  0.37170 0.51160 1.00000 1.00000 0.81010 

Mean  0.33182 0.30559 1.00000 0.76383 0.52001 

Median 0.33420 0.31460 1.00000 1.00000 0.57040 

Std 0.02859 0.12415 0.00000 0.37554 0.22640 
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Table 4.9: The Results for Two-set Coverage Metric on Benchmark Test Problems 11-15 (2-D) 

Method Statistics DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 
A

P
C

-M
O

P
S

O
 Best 0.14000 0.04000 0.07500 0.01000 0.02000 

Worst  0.86000 0.09000 0.15000 0.01000 0.02000 

Mean  0.55333 0.06700 0.10350 0.01000 0.02000 

Median 0.55000 0.07000 0.10500 0.01000 0.02000 

Std 0.21633 0.01829 0.02199 0.00000 0.00000 

2
L

B
-M

O
P

S
O

 Best 0.34000 0.22000 0.27000 0.01000 0.02000 

Worst  1.00000 0.43000 0.38000 0.01000 0.03000 

Mean  0.57900 0.33800 0.32150 0.01000 0.02100 

Median 0.45000 0.35500 0.31000 0.01000 0.02000 

Std 0.27562 0.06795 0.04184 0.00000 0.00316 

N
S

G
A

II
 

Best 1.00000 0.02000 0.00500 0.94000 1.00000 

Worst  1.00000 0.11000 0.07500 0.99500 1.00000 

Mean  1.00000 0.07000 0.02800 0.97506 1.00000 

Median 1.00000 0.07500 0.02250 0.97750 1.00000 

Std 0.00000 0.03916 0.01889 0.01799 0.00000 

S
P

E
A

2
 

Best 1.00000 0.33000 0.40500 0.87000 0.02000 

Worst  1.00000 1.00000 0.51000 0.96000 0.11000 

Mean  1.00000 0.45300 0.44650 0.92550 0.05133 

Median 1.00000 0.38000 0.44250 0.93750 0.05000 

Std 0.00000 0.19528 0.03598 0.02733 0.02416 

M
O

P
S

O
 

Best 1.00000 0.06000 0.11000 0.01000 0.03000 

Worst  1.00000 1.00000 0.21500 0.43140 0.20000 

Mean  1.00000 0.69889 0.14700 0.05714 0.10300 

Median 1.00000 1.00000 0.14500 0.01500 0.09500 

Std 0.00000 0.45195 0.03199 0.13160 0.04715 

P
E

G
A

 

Best 1.00000 0.24420 0.11890 0.27680 0.07140 

Worst  1.00000 1.00000 0.30820 0.99490 1.00000 

Mean  1.00000 0.64985 0.23250 0.88727 0.88311 

Median 1.00000 0.55280 0.23235 0.96080 1.00000 

Std 0.00000 0.26215 0.05414 0.21875 0.30909 
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Table 4.10: The Results for Error Ratio Metric on Benchmark Test Problems 1-5 (2-D) 

Method Statistics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
A

P
C

-M
O

P
S

O
 Best 0.00000 0.01000 0.07000 0.00000 0.04000 

Worst  0.04000 0.05000 0.14000 0.02000 0.12000 

Mean  0.01667 0.02600 0.10267 0.01200 0.07667 

Median 0.02000 0.03000 0.10000 0.01000 0.08000 

Std 0.01047 0.01056 0.02017 0.00837 0.02717 

2
L

B
-M

O
P

S
O

 Best 0.00000 0.01000 0.07000 1.00000 0.04000 

Worst  0.03000 0.05000 0.16000 1.00000 0.12000 

Mean  0.01720 0.02760 0.11200 1.00000 0.07720 

Median 0.02000 0.03000 0.11000 1.00000 0.08000 

Std 0.00843 0.00926 0.02432 0.00000 0.02031 

N
S

G
A

II
 

Best 1.00000 1.00000 1.00000 1.00000 1.00000 

Worst  1.00000 1.00000 1.00000 1.00000 1.00000 

Mean  1.00000 1.00000 1.00000 1.00000 1.00000 

Median 1.00000 1.00000 1.00000 1.00000 1.00000 

Std 0.00000 0.00000 0.00000 0.00000 0.00000 

S
P

E
A

2
 

Best 0.04000 0.06000 0.11000 1.00000 1.00000 

Worst  0.17000 1.00000 0.30000 1.00000 1.00000 

Mean  0.08760 0.46800 0.18960 1.00000 1.00000 

Median 0.08000 0.14000 0.18000 1.00000 1.00000 

Std 0.03689 0.44392 0.04860 0.00000 0.00000 

M
O

P
S

O
 

Best 1.00000 0.84620 0.42310 1.00000 0.23000 

Worst  1.00000 1.00000 1.00000 1.00000 1.00000 

Mean  1.00000 0.98188 0.97457 1.00000 0.48833 

Median 1.00000 1.00000 1.00000 1.00000 0.40000 

Std 0.00000 0.04513 0.11549 0.00000 0.27407 

P
E

G
A

 

Best 1.00000 1.00000 1.00000 1.00000 1.00000 

Worst  1.00000 1.00000 1.00000 1.00000 1.00000 

Mean  1.00000 1.00000 1.00000 1.00000 1.00000 

Median 1.00000 1.00000 1.00000 1.00000 1.00000 

Std 0.00000 0.00000 0.00000 0.00000 0.00000 
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Table 4.11: The Results for Error Ratio Metric on Benchmark Test Problems 6-10 (2-D) 

Method Statistics FONSECA KURSAWE OKA2 DTLZ1 DTLZ2 
A

P
C

-M
O

P
S

O
 Best 0.06670 0.09000 0.04000 0.01000 0.04000 

Worst  0.10110 0.15000 0.11000 0.17000 0.09000 

Mean  0.07963 0.12400 0.06333 0.08714 0.06600 

Median 0.07590 0.12000 0.06000 0.07000 0.07000 

Std 0.01170 0.01724 0.01799 0.05345 0.01430 

2
L

B
-M

O
P

S
O

 Best 0.08970 0.12000 0.02000 0.04000 0.05000 

Worst  0.14940 0.23000 0.11000 0.15000 0.08000 

Mean  0.12033 0.16080 0.06467 0.10000 0.06900 

Median 0.11950 0.16000 0.07000 0.10000 0.07000 

Std 0.01543 0.02644 0.02416 0.03091 0.00994 

N
S

G
A

II
 

Best 0.07820 0.09000 1.00000 1.00000 0.05000 

Worst  0.14250 0.19000 1.00000 1.00000 0.09000 

Mean  0.10773 0.12800 1.00000 1.00000 0.07333 

Median 0.10800 0.12000 1.00000 1.00000 0.08000 

Std 0.01733 0.02533 0.00000 0.00000 0.02082 

S
P

E
A

2
 

Best 0.46210 0.22000 1.00000 1.00000 0.04000 

Worst  0.59540 0.46000 1.00000 1.00000 0.11000 

Mean  0.52542 0.31040 1.00000 1.00000 0.08300 

Median 0.52640 0.31000 1.00000 1.00000 0.08500 

Std 0.03627 0.05863 0.00000 0.00000 0.02058 

M
O

P
S

O
 

Best 0.06210 0.10000 1.00000 1.00000 0.01000 

Worst  0.10800 0.35000 1.00000 1.00000 0.05000 

Mean  0.08845 0.18225 1.00000 1.00000 0.02700 

Median 0.08740 0.17000 1.00000 1.00000 0.03000 

Std 0.01241 0.05073 0.00000 0.00000 0.01252 

P
E

G
A

 

Best 0.13260 0.06820 1.00000 0.00000 0.07610 

Worst  0.19050 0.31870 1.00000 1.00000 0.41770 

Mean  0.15552 0.19145 1.00000 0.74306 0.25499 

Median 0.15260 0.17980 1.00000 1.00000 0.25465 

Std 0.01795 0.06001 0.00000 0.39471 0.12360 
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Table 4.12: The Results for Error Ratio Metric on Benchmark Test Problems 11-15 (2-D) 

Method Statistics DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 
A

P
C

-M
O

P
S

O
 Best 0.01000 0.03000 0.00000 0.01000 0.01000 

Worst  0.09000 0.09000 0.01000 0.01000 0.06000 

Mean  0.05000 0.04500 0.00700 0.01000 0.03417 

Median 0.04000 0.04000 0.01000 0.01000 0.03000 

Std 0.02398 0.01780 0.00483 0.00000 0.02109 

2
L

B
-M

O
P

S
O

 Best 0.02000 0.03000 0.00500 0.01000 0.02000 

Worst  1.00000 0.06000 0.00500 0.01500 0.07000 

Mean  0.27600 0.04700 0.00500 0.01050 0.04500 

Median 0.05000 0.05000 0.00500 0.01000 0.04500 

Std 0.38831 0.01059 0.00000 0.00158 0.01581 

N
S

G
A

II
 

Best 1.00000 0.03000 0.00500 1.00000 0.62000 

Worst  1.00000 0.07000 0.01000 1.00000 0.87000 

Mean  1.00000 0.05500 0.00700 1.00000 0.72000 

Median 1.00000 0.06000 0.00500 1.00000 0.67000 

Std 0.00000 0.01732 0.00258 0.00000 0.13229 

S
P

E
A

2
 

Best 1.00000 0.03000 0.00500 0.28500 0.05000 

Worst  1.00000 1.00000 0.03000 1.00000 0.14000 

Mean  1.00000 0.15000 0.01400 0.87150 0.07667 

Median 1.00000 0.06000 0.01250 0.99000 0.07000 

Std 0.00000 0.29900 0.00699 0.24686 0.02320 

M
O

P
S

O
 

Best 1.00000 0.06000 0.00500 0.00500 0.00000 

Worst  1.00000 1.00000 0.04000 0.43140 0.41000 

Mean  1.00000 0.69111 0.02450 0.05764 0.06900 

Median 1.00000 1.00000 0.02500 0.01750 0.00500 

Std 0.00000 0.46337 0.01039 0.13151 0.14091 

P
E

G
A

 

Best 1.00000 0.00000 0.00520 0.55360 0.00000 

Worst  1.00000 0.23600 0.23900 1.00000 1.00000 

Mean  1.00000 0.08667 0.11249 0.95536 0.86196 

Median 1.00000 0.07895 0.10925 1.00000 1.00000 

Std 0.00000 0.07039 0.07633 0.14116 0.33930 
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Table 4.13: The Results for Generational Distance Metric on Test Problems 1-5 (2-D) 

Method Statistics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
A

P
C

-M
O

P
S

O
 Best 0.000311 0.000427 0.000610 0.000418 0.00031 

Worst  0.000505 0.000531 0.000731 0.000506 0.00037 

Mean  0.000447 0.000492 0.000664 0.000467 0.00034 

Median 0.000459 0.000490 0.000660 0.000469 0.00034 

Std 0.000053 0.000034 0.000039 0.000032 0.00002 

2
L

B
-M

O
P

S
O

 Best 0.000389 0.000424 0.000656 0.27470 0.000310 

Worst  0.000492 0.000550 0.000776 1.83460 0.000377 

Mean  0.000454 0.000500 0.000715 1.03966 0.000343 

Median 0.000452 0.000502 0.000714 0.97330 0.000340 

Std 0.000026 0.000030 0.000035 0.42173 0.000018 

N
S

G
A

II
 

Best 0.05270 0.18190 0.06510 0.56080 0.56600 

Worst  0.12840 0.29830 0.11220 44.78510 0.87590 

Mean  0.08696 0.23014 0.09424 8.58564 0.71754 

Median 0.08400 0.22710 0.09380 4.90910 0.71590 

Std 0.01758 0.03117 0.01173 9.68899 0.09186 

S
P

E
A

2
 

Best 0.00220 0.00480 0.00270 20.94510 0.02140 

Worst  0.05140 1.00000 0.04840 35.56060 0.18290 

Mean  0.01306 0.40664 0.01748 25.61957 0.10725 

Median 0.00770 0.01470 0.01320 24.73090 0.11185 

Std 0.01290 0.49448 0.01298 3.85661 0.05240 

M
O

P
S

O
 

Best 0.07280 0.00110 0.02940 0.72040 0.02850 

Worst  0.16290 1.00000 0.22720 21.29110 1.21310 

Mean  0.11388 0.70236 0.14167 5.01252 0.37875 

Median 0.11490 1.00000 0.13960 3.40710 0.22530 

Std 0.02527 0.46038 0.04799 4.59958 0.38673 

P
E

G
A

 

Best 0.11500 0.24380 0.13810 7.81260 0.55790 

Worst  0.27950 0.51100 0.28210 133.41250 0.76580 

Mean  0.20087 0.37037 0.19969 36.50758 0.67525 

Median 0.19520 0.37020 0.19280 17.94635 0.69330 

Std 0.04582 0.07124 0.04462 42.06396 0.07244 
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Table 4.14: The Results for Generational Distance Metric on Test Problems 6-10 (2-D) 

Method Statistics FONSECA KURSAWE OKA2 DTLZ1 DTLZ2 
A

P
C

-M
O

P
S

O
 Best 0.000061 0.00930 0.00170 0.000207 0.000803 

Worst  0.000065 0.01170 0.00190 0.000282 0.000945 

Mean  0.000063 0.01068 0.00183 0.000227 0.000853 

Median 0.000063 0.01080 0.00180 0.000216 0.000838 

Std 0.000001 0.00056 0.00006 0.000026 0.000043 

2
L

B
-M

O
P

S
O

 Best 0.000062 0.00970 0.00170 0.000211 0.000800 

Worst  0.000067 0.01180 0.00190 0.000251 0.000959 

Mean  0.000064 0.01078 0.00181 0.000233 0.000891 

Median 0.000064 0.01080 0.00180 0.000235 0.000912 

Std 0.000001 0.00050 0.00008 0.000014 0.000056 

N
S

G
A

II
 

Best 0.000058 0.00910 0.11260 0.05460 0.000817 

Worst  0.000065 0.01080 0.26130 0.27490 0.000922 

Mean  0.000062 0.00998 0.18658 0.12858 0.000886 

Median 0.000063 0.01000 0.18920 0.11015 0.000918 

Std 0.000002 0.00045 0.05816 0.07484 0.000059 

S
P

E
A

2
 

Best 0.000115 0.01190 0.04890 1.67060 0.00080 

Worst  0.000143 0.01900 0.05820 4.65500 0.00390 

Mean  0.000126 0.01422 0.05322 3.03853 0.00144 

Median 0.000124 0.01380 0.05365 2.89600 0.00105 

Std 0.000007 0.00164 0.00281 1.09419 0.00093 

M
O

P
S

O
 

Best 0.0000550 0.00920 1.00000 0.48620 0.00052 

Worst  0.0000591 0.01390 1.00000 6.09610 0.00078 

Mean  0.0000577 0.01154 1.00000 1.82460 0.00066 

Median 0.0000581 0.01150 1.00000 1.36680 0.00067 

Std 0.0000012 0.00114 0.00000 1.64930 0.00008 

P
E

G
A

 

Best 0.000070 0.00890 0.08160 0.00020 0.00100 

Worst  0.000080 0.06520 0.18450 4.04260 0.02480 

Mean  0.000074 0.01908 0.13577 0.92276 0.01243 

Median 0.000074 0.01230 0.13410 0.28360 0.01470 

Std 0.000003 0.01792 0.03219 1.15026 0.00959 
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Table 4.15: The Results for Generational Distance Metric on Test Problems 11-15 (2-D) 

Method Statistics DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 
A

P
C

-M
O

P
S

O
 Best 0.00060 0.00060 0.000160 0.000160 0.00090 

Worst  0.00340 0.00110 0.000170 0.000169 0.00100 

Mean  0.00108 0.00078 0.000164 0.000165 0.00099 

Median 0.00080 0.00080 0.000164 0.000165 0.00100 

Std 0.00088 0.00013 0.000003 0.000003 0.00003 

2
L

B
-M

O
P

S
O

 Best 0.00070 0.000656 0.00280 0.000159 0.00090 

Worst  0.21080 0.000869 0.00320 0.000175 0.00100 

Mean  0.02255 0.000785 0.00295 0.000165 0.00099 

Median 0.00080 0.000809 0.00290 0.000163 0.00100 

Std 0.06617 0.000064 0.00014 0.000005 0.00003 

N
S

G
A

II
 

Best 0.00310 0.000716 0.00290 0.09190 0.00660 

Worst  0.09180 0.000916 0.00370 0.16240 0.02110 

Mean  0.03283 0.000816 0.00328 0.10861 0.01337 

Median 0.00360 0.000816 0.00325 0.10160 0.01240 

Std 0.05107 0.000082 0.00025 0.02040 0.00730 

S
P

E
A

2
 

Best 6.07670 0.00070 0.00190 0.00550 0.00100 

Worst  12.19850 1.00000 0.00480 0.01860 0.05060 

Mean  8.73841 0.10123 0.00271 0.01296 0.00736 

Median 8.53120 0.00095 0.00215 0.01355 0.00130 

Std 2.04655 0.31580 0.00110 0.00468 0.01392 

M
O

P
S

O
 

Best 1.78570 0.00089 0.00450 0.00020 0.00050 

Worst  34.41650 1.00000 0.00580 0.07960 0.00110 

Mean  11.09382 0.66697 0.00518 0.00814 0.00065 

Median 5.74310 1.00000 0.00525 0.00020 0.00060 

Std 11.72776 0.49954 0.00041 0.02511 0.00020 

P
E

G
A

 

Best 0.81210 0.00000 0.00440 0.09280 0.21000 

Worst  53.33880 0.01800 0.01410 0.16610 0.53000 

Mean  25.30813 0.00396 0.00931 0.13289 0.30500 

Median 28.27340 0.00130 0.00945 0.13620 0.27000 

Std 15.06526 0.00578 0.00357 0.02381 0.10384 
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Table 4.16: The Results for Spacing Metric on Benchmark Test Problems 1-5 (2-D) 

Method Statistics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
A

P
C

-M
O

P
S

O
 Best 0.00520 0.00760 0.00760 0.00620 0.00630 

Worst  0.00770 0.01110 0.01100 0.00740 0.00850 

Mean  0.00627 0.00964 0.00905 0.00680 0.00732 

Median 0.00620 0.00980 0.00900 0.00680 0.00720 

Std 0.00067 0.00104 0.00085 0.00045 0.00068 

2
L

B
-M

O
P

S
O

 Best 0.00610 0.00660 0.00660 0.03450 0.00500 

Worst  0.00810 0.00910 0.01020 0.77350 0.00760 

Mean  0.00715 0.00750 0.00811 0.15811 0.00590 

Median 0.00710 0.00750 0.00800 0.11790 0.00570 

Std 0.00052 0.00066 0.00099 0.15271 0.00066 

N
S

G
A

II
 

Best 0.01100 0.01790 0.01250 0.38050 0.01910 

Worst  0.06860 0.04860 0.06400 42.11720 0.13080 

Mean  0.02422 0.02916 0.02875 4.28973 0.05025 

Median 0.02280 0.02860 0.02400 1.77030 0.04460 

Std 0.01242 0.00756 0.01384 8.40363 0.02555 

S
P

E
A

2
 

Best 0.00410 0.00640 0.00550 1.34190 0.03660 

Worst  0.16680 1.00000 0.14310 77.63700 0.37370 

Mean  0.02799 0.42528 0.03803 10.53770 0.20668 

Median 0.01930 0.08080 0.02300 3.47700 0.19985 

Std 0.03136 0.48027 0.03851 16.67469 0.11874 

M
O

P
S

O
 

Best 0.01310 0.00300 0.00820 0.01520 0.03160 

Worst  0.02910 1.00000 0.04100 1.39870 0.32560 

Mean  0.02094 0.69903 0.02069 0.26096 0.11661 

Median 0.02170 1.00000 0.02050 0.06500 0.10690 

Std 0.00454 0.46527 0.00758 0.39013 0.07643 

P
E

G
A

 

Best 0.00970 0.00080 0.01130 0.80970 0.01420 

Worst  0.04720 0.09460 0.03460 23.08210 0.04110 

Mean  0.02089 0.01406 0.02247 5.68275 0.02189 

Median 0.01730 0.00970 0.02240 2.04200 0.02090 

Std 0.01053 0.01882 0.00687 7.34578 0.00683 
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Table 4.17: The Results for Spacing Metric on Benchmark Test Problems 6-10 (2-D) 

Method Statistics FONSECA KURSAWE OKA2 DTLZ1 DTLZ2 
A

P
C

-M
O

P
S

O
 Best 0.00140 0.05120 0.02260 0.00490 0.00605 

Worst  0.00160 0.10710 0.03300 0.00560 0.00670 

Mean  0.00155 0.07681 0.02967 0.00533 0.00624 

Median 0.00160 0.06330 0.03010 0.00550 0.00620 

Std 0.00008 0.02319 0.00285 0.00026 0.00019 

2
L

B
-M

O
P

S
O

 Best 0.00110 0.04290 0.02590 0.00230 0.00590 

Worst  0.00140 0.10480 0.03250 0.00350 0.00670 

Mean  0.00129 0.06457 0.02801 0.00296 0.00628 

Median 0.00130 0.05420 0.02730 0.00315 0.00630 

Std 0.00006 0.02116 0.00207 0.00046 0.00027 

N
S

G
A

II
 

Best 0.00120 0.04690 0.02330 0.00990 0.00630 

Worst  0.00150 0.10690 0.27720 0.04110 0.00700 

Mean  0.00131 0.07892 0.07315 0.02079 0.00663 

Median 0.00130 0.08870 0.03330 0.01520 0.00660 

Std 0.00009 0.01945 0.10034 0.01289 0.00035 

S
P

E
A

2
 

Best 0.00180 0.06700 0.03140 0.49960 0.00340 

Worst  0.00220 0.16880 0.14020 7.01610 0.00970 

Mean  0.00203 0.08922 0.05157 3.48157 0.00497 

Median 0.00200 0.08630 0.04010 3.26990 0.00405 

Std 0.00010 0.01868 0.03219 2.03365 0.00198 

M
O

P
S

O
 

Best 0.00210 0.06510 1.00000 0.04330 0.00800 

Worst  0.00280 0.16010 1.00000 4.10340 0.01740 

Mean  0.00236 0.08868 1.00000 1.45905 0.01167 

Median 0.00240 0.08330 1.00000 0.83090 0.01040 

Std 0.00017 0.02180 0.00000 1.43332 0.00346 

P
E

G
A

 

Best 0.00200 0.06140 0.01260 0.00330 0.00860 

Worst  0.00230 0.11770 0.18470 3.53970 0.02160 

Mean  0.00218 0.09030 0.05089 0.52290 0.01472 

Median 0.00220 0.08670 0.03830 0.05910 0.01470 

Std 0.00008 0.01961 0.04744 0.97500 0.00513 
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Table 4.18: The Results for Spacing Metric on Benchmark Test Problems 11-15 (2-D) 

Method Statistics DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 
A

P
C

-M
O

P
S

O
 Best 0.00860 0.00410 0.00300 0.00390 0.00910 

Worst  0.01110 0.00760 0.00340 0.00440 0.01070 

Mean  0.00986 0.00632 0.00322 0.00415 0.00993 

Median 0.01000 0.00640 0.00320 0.00410 0.00975 

Std 0.00081 0.00094 0.00017 0.00019 0.00056 

2
L

B
-M

O
P

S
O

 Best 0.00500 0.00490 0.000169 0.00310 0.00680 

Worst  0.25450 0.00690 0.000191 0.00400 0.00830 

Mean  0.03287 0.00615 0.000183 0.00347 0.00771 

Median 0.00590 0.00620 0.000183 0.00345 0.00795 

Std 0.07800 0.00069 0.000007 0.00029 0.00060 

N
S

G
A

II
 

Best 0.00680 0.00570 0.000155 0.00750 0.00670 

Worst  0.05370 0.00870 0.000170 0.04900 0.01120 

Mean  0.02260 0.00665 0.000163 0.02097 0.00957 

Median 0.00730 0.00610 0.000163 0.01405 0.01080 

Std 0.02693 0.00138 0.000005 0.01537 0.00249 

S
P

E
A

2
 

Best 2.07480 0.00370 0.00020 0.01150 0.00350 

Worst  13.44780 1.00000 0.00270 0.06600 0.23400 

Mean  6.41544 0.10395 0.00053 0.02988 0.02611 

Median 5.55065 0.00460 0.00030 0.02880 0.00490 

Std 3.80201 0.31484 0.00077 0.01631 0.05953 

M
O

P
S

O
 

Best 0.39870 0.00790 0.00015 0.00450 0.21000 

Worst  16.17870 1.00000 0.00017 0.04080 0.53000 

Mean  4.94942 0.66999 0.00016 0.00925 0.30500 

Median 2.65135 1.00000 0.00016 0.00580 0.27000 

Std 5.35356 0.49502 0.00001 0.01112 0.10384 

P
E

G
A

 

Best 0.06970 0.00000 0.00040 0.01190 0.00260 

Worst  45.89020 0.02490 0.01430 0.05860 0.09700 

Mean  12.38026 0.00946 0.00672 0.02288 0.02891 

Median 9.32280 0.00955 0.00615 0.01825 0.02250 

Std 11.56206 0.00672 0.00478 0.01377 0.02464 
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4.4.5.2 Results for Three-Objective Test Problems 

This section presents the results derived from applying the proposed APC-MOPSO and 

2LB-MOPSO to the benchmark test problems DTLZ2, DTLZ5, and DTLZ7. Two cases are 

considered in this section; the first case is conducted using 25 independent runs, a maximum of 

10,000 function evaluations, and a population size of 100 individuals. In the second case, 15 

independent runs, a maximum of 10,000 function evaluations, and a population size of 1000 

individuals are used. 

The reason behind selecting these three benchmark test problems is that their Pareto-

optimal front correspond to        for all      , (where    represents a solution, and M is the 

number of objectives) and all objective function values (i.e., fitness values) must satisfy the 

condition (i.e., referred to as a Pareto-front condition) given in Eq. (4.28). 

By using the Pareto-front condition, the solutions produced by the APC-MOPSO, the 

2LB-MOPSO, the NSGAII, the MOPSO, the SPEA2, and the PEGA can be compared based on 

the average value returned by each algorithm. Thus, it can be seen that the closer the average 

value is to 1.0, the better the performance in favor of converging and diversity. The results 

obtained from the two cases and their statistical analyses against the selected benchmark test 

problems are discussed as follows. 

 DTLZ2 Test Problem 

The obtained solutions are shown in Figures 4.35 and 4.36. The proposed APC-MOPSO 

obtained a better Pareto-front (i.e., returned an average value ranging from [1.00045 to 1.0465]), 

compared to 2LB-MOPSO, NSGA-II, MOPSO, and PEGA (i.e., returned average values within 

the ranges of [1.0022, 1.19899], [1.00334, 1.1192], [1.00768, 1.3455], and [1.01312, 1.52378], 

respectively, as shown in Table 4.19). For SPEA2, Figure 4.36 and Table 4.19 clearly show that 

the SPEA2 failed to reach the Pareto-optimal front (i.e., returned an average value of 1.01088 to 

2.82756)19. Figures 4.35 and 4.36 show that the proposed APC-MOPSO outperformed all other 

algorithms and successfully returned an average value that is closer to the reference point of 1.0 

(i.e., the value given by the Pareto-front condition shown in Eq. (4.28)). Table 4.19 supports the 

conclusion made by observing the graphical representation of the results in Figures 4.35 and 4.36. 

In this table, statistical analysis such as best, worst, mean, median, and standard deviation values 

based on a Pareto-front condition are provided for each algorithm. Figures 4.37 and 4.38 show the 

solutions obtained for the second case (i.e., with a population size of 1000 individuals) on a 

DTLZ2 test problem in two different views. These figures imply that both APC-MOPSO and 

2LB-MOPSO algorithms converged to the global region after 10,000 function evaluations. 

                                                 
19 In this section, and for the sake of the comparison among the results of the six 

algorithms on DTLZ2 and DTLZ5 benchmark test problems, it is decided to consider the 

algorithm that returns an average value within a range bigger than 2.0 to be unsuccessful. 
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However, to evaluate the performance of both algorithms against DTLZ2, 25 independent runs 

are conducted, and the Pareto-front condition is applied to sum up the function values for each 

run. The sum of the objectives of each solution for DTLZ2 is determined, and presented in Table 

4.20, whereas the average for the minimum and maximum function values of each run is 

displayed. Here, it is found that the range of the objective values for APC-MOPSO is [1.0, 1.055], 

and is [1.0, 1.1577] for the 2LB-MOPSO. Accordingly, the proposed APC-MOPSO has the 

ability to produce more accurate non-dominated solutions than the 2LB-MOPSO.This test again 

demonstrated that the proposed APC-MOPSO substantively performed better than all other 

algorithms. 

 DTLZ5 Test Problem 

For the case of using a population size of 100 individuals, the solutions produced by the 

APC-MOPSO, the 2LB-MOPSO, the NSGA-II, the MOPSO, the SPEA2, and the PEGA for the 

DTLZ5 benchmark test problem showed that for each non-dominated solution (xi), the sum of its 

squared objective values is equal to 1.0 (as shown in Eq. (4.28)). Table 4.21 shows the statistical 

results for every algorithm. The APC-MOPSO algorithm returned an average value within the 

range of [1.00005, 1.01126], while 2LB-MOPSO returned an average value ranging from 

[1.00006, 1.02214]. MOPSO, NSGA-II, SPEA2, and PEGA failed to converge to the global 

fronts (i.e., these four algorithms returned average values that are greater than 2.0). Figure 4.40 

visually demonstrated the solution fronts obtained by the two algorithms for three-objective 

DTLZ5 benchmark test problems using a population size of 1000 individuals. This figure implies 

that both algorithms converged to Pareto-optimal curve, but still APC-MOPSO is able to locate 

solutions on the region of the Pareto front closer than 2LB-MOPSO algorithm. For this case, 

Table 4.22 shows that APC-MOPSO returned an average value within the range of [1.0, 1.00358] 

and 2LB-MOSO produced solutions with average values ranging from 1.0 to 1.00386. As can be 

seen here, increasing the size of the population could enhance the performance of the algorithm. 

It should be pointed out that this inference mainly depends on the complexity of the test 

problems. 

 DTLZ7 Test Problem 

This problem is chosen to test the ability of APC-MOPSO, 2LB-MOPSO, NSGA-II, 

MOPSO, SPEA2, and PEGA in producing non-dominated solutions that cover four Pareto-

optimal regions as shown in Figure 4.41. It is important to note that APC-MOPSO is the only 

algorithm that converged to the optimal fronts and produced solutions that are spread into all four 

global regions (i.e., global regions 1, 2, 3, and 4). 2LB-MOPSO converged to the optimal fronts 

and produced a limited number of solutions that covered the global regions 1 and 4, while NSGA-

II failed to converge. Both SPEA2 and PEGA converged to a Pareto-optimal front and partially 

covered the four global regions. It can also be seen from Figure 4.41, that SPEA2 did not explore 

either global region 1 or global region 3. MOPSO converged only to one global region that is 
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region 1. In the case where 1000 individuals are used, Figures 4.42 and 4.43 illustrate the Pareto-

front sets produced by the APC-MOPSO and the 2LB-MOPSO. It can be seen that the APC-

MOPSO is more successful in locating more solutions and covering wider front areas in the four 

global regions than the 2LB-MOPSO. In general, this test also indicated that the proposed APC-

MOPSO is superior in giving solutions that are close and spread well over disconnected Pareto-

optimal fronts. 

 

  
a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2L-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.35: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ2 Benchmark Test Problem (3-D) 1st View (100 Particles) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2L-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.36: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ2 Benchmark Test Problem (3-D) 2nd View (100 Particles) 
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a. Pareto-front Produced by APC-MOPSO b. Pareto-front Produced by 2LB-MOPSO 

 

Figure 4.37: Pareto-fronts Produced by the APC-MOPSO and 2LB-MOPSO for the DTLZ2 

Benchmark Test Function (3-D) 1st View (1000 Particles) 

 

  

a. Pareto-front Produced by APC-MOPSO b. Pareto-front Produced by 2LB-MOPSO 

 

Figure 4.38: Pareto-fronts Produced by the APC-MOPSO and 2LB-MOPSO for the DTLZ2 

Benchmark Test Function (3-D) 1st View (1000 Particles) 
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c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.39: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ5 Benchmark Test Problem (3-D) (100 Particles) 

 

  

a. Pareto-front Produced by APC-MOPSO b. Pareto-front Produced by 2LB-MOPSO 

 

Figure 4.40: Pareto-Fronts Produced by the APC-MOPSO and 2LB-MOPSO for the DTLZ5 

Benchmark Test Function (3-D) (1000 Particles) 
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a. Pareto-front Produced by SPEA2 b. Pareto-front Produced by NSGA-II 

  

c. Pareto-front Produced by PEGA d. Pareto-front Produced by MOPSO 

  

e. Pareto-front Produced by 2LB-MOPSO f. Pareto-front Produced by APC-MOPSO 

 

Figure 4.41: Pareto-front Produced by SPEA2, NSGA-II, PEGA, MOPSO, 2LB-MOPSO, and 

APC-MOPSO for the DTLZ7 Benchmark Test Problem (3-D) (100 Particles) 
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a. Pareto-front Produced by APC-MOPSO 

 

b. Pareto-front Produced by 2LB-MOPSO 

 

Figure 4.42: Pareto-Fronts Produced by the APC-MOPSO and 2LB-MOPSO for the DTLZ7 

Benchmark Test Function (3-D) 1st View (1000 Particles) 
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a. Pareto-front Produced by APC-MOPSO 

 

b. Pareto-front Produced by 2LB-MOPSO 

 

Figure 4.43: Pareto-Fronts Produced by the APC-MOPSO and 2LB-MOPSO for the DTLZ7 

Benchmark Test Function (3-D) 2nd View (1000 Particles) 
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Table 4.19: The Range of Results for DTLZ2 Benchmark Test Problem (3-D) (100 Particles) 

DTLZ2 

100 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.00030 1.02640 

Worst 1.00070 1.06280 

Mean  1.00045 1.04650 

Median 1.00044 1.04500 

Std 0.00016 0.01437 

2
L

B
-M

O
P

S
O

 Best 1.00040 1.153200 

Worst 1.00480 1.285200 

Mean  1.00220 1.198980 

Median 1.00190 1.180700 

Std 0.00162 0.051859 

N
S

G
A

-I
I 

Best 1.00190 1.084400 

Worst 1.00470 1.194500 

Mean  1.00334 1.119200 

Median 1.00360 1.102700 

Std 0.00107 0.045347 

S
P

E
A

2
 

Best 1.00630 2.252300 

Worst 1.01890 3.947000 

Mean  1.01098 2.827560 

Median 1.00970 2.547500 

Std 0.00504 0.714232 

M
O

P
S

O
 

Best 1.00570 1.208400 

Worst 1.00990 1.628900 

Mean  1.00766 1.343580 

Median 1.00750 1.291000 

Std 0.00155 0.164210 

P
E

G
A

 

Best 1.00270 1.195100 

Worst 1.02190 1.981800 

Mean  1.01312 1.523780 

Median 1.01610 1.465200 

Std 0.00933 0.298204 
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Table 4.20: The Range of Results for DTLZ2 Benchmark Test Problem (3-D) (1000 Particles) 

DTLZ2 

100 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.00000 1.019800 

Worst 1.00000 1.095400 

Mean  1.00000 1.055043 

Median 1.00000 1.046700 

Std 1.00000 0.027973 

2
L

B
-M

O
P

S
O

 Best 1.00000 1.108300 

Worst 1.00000 1.140400 

Mean  1.00000 1.157700 

Median 1.00000 1.076400 

Std 1.00000 1.092100 

 

Table 4.21: The Range of Results for DTLZ5 Benchmark Test Problem (3-D) (100 Particles) 

DTLZ5 

100 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.00000 1.010000 

Worst 1.00010 1.013100 

Mean  1.00005 1.011260 

Median 1.00000 1.011200 

Std 0.00005 0.001150 

2
L

B
-M

O
P

S
O

 Best 1.00000 1.014900 

Worst 1.00020 1.027900 

Mean  1.00006 1.022140 

Median 1.00000 1.023400 

Std 0.00009 0.005301 

N
S

G
A

-I
I 

Best 1.00850 4.267300 

Worst 1.01320 4.747900 

Mean  1.01046 4.513960 

Median 1.00950 4.617700 

Std 0.00200 0.214307 
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S
P

E
A

2
 

Best 1.01000 5.010600 

Worst 1.04760 5.046600 

Mean  1.03220 5.029120 

Median 1.03030 5.027400 

Std 0.01526 0.014589 

M
O

P
S

O
 

Best 1.04330 3.220900 

Worst 1.12390 5.042500 

Mean  1.07992 4.037620 

Median 1.07030 3.857000 

Std 0.03803 0.720195 

P
E

G
A

 

Best 1.00850 4.002800 

Worst 1.04520 4.479900 

Mean  1.02496 4.353260 

Median 1.02120 4.430900 

Std 0.01404 0.197796 

 

Table 4.22: The Range of Results for DTLZ5 Benchmark Test Problem (3-D) (1000 Particles) 

DTLZ5 

1000 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.00000 1.003200 

Worst 1.00000 1.003900 

Mean  1.00000 1.003580 

Median 1.00000 1.003600 

Std 0.00000 0.000249 

2
L

B
-M

O
P

S
O

 Best 1.00000 1.003200 

Worst 1.00000 1.004700 

Mean  1.00000 1.003867 

Median 1.00000 1.003700 

Std 0.00000 0.000764 
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4.4.5.3 Results for Five-Objective Test Problems 

Another set of experiments are performed on five-objective DTLZ2 and DTLZ5 

benchmark test problems to provide both qualitative and quantitative performance comparisons of 

the APC-MOPSO with other algorithms that are 2LB-MOPSO, NSGA-II, MOPSO, SPEA2, and 

PEGA. Two population sizes of 100 and 1000 individuals are considered to study the effect of 

increasing the population size on the performance in terms of the exploring ability of the 

algorithm in finding global solutions to problems that have a multimodal and a disconnected 

Pareto-front. 

 DTLZ2 Test Problem 

In the case of 100 individuals, the mean values of 15 runs achieved by the APC-MOPSO 

and the other algorithms that are 2LB-MOPSO, NSGA-II, MOPSO, SPEA2, and PEGA at 10,000 

function evaluations are compared on the DTLZ2 test problem (see Section 4.4.2). As shown in 

Table 4.23, all solutions are compared with respect to the reference value of 1.0 (i.e., this value 

represents the sum of the square of all objectives in each solution, as shown in Eq. (4.28)). From 

this table, the average values of the solutions produced by the proposed APC-MOPSO are in the 

range of [1.00959, 1.15650], the NSGA-II’s are in the range of 1.02336 to 1.67188, and the 

MOPSO’s ranged from 1.0118 to 1.255. The 2LB-MOPSO, SPEA2, and PEGA failed to 

converge to the Pareto-optimal front. It is clear that the proposed APC-MOPSO outperformed all 

other algorithms by returning the closest average value to 1.0. Finally, for the case of 1000 

particles, the results obtained by the APC-MOPSO and the 2LB-MOPSO are in the ranges of 

[1.00031, 1.6594] and [1.00034, 2.08047], respectively. Table 4.24 indicates that the APC-

MOPSO performed better than the 2LB-MOPSO. 

 DTLZ5 Test Problem 

The last test in this section is used to compare the results produced by the proposed APC-

MOPSO, the 2LB-MOPSO, the NSGA-II, the MOPSO, the SPEA2, and the PEGA algorithms on 

the five-objective DTLZ5 problem (with 10 decision variables). The performance of the six 

algorithms is compared with respect to the Pareto-optimal front (see Eq. (4.28)). For the case of 

100 individuals, APC-MOPSO converged to the global region of the problem, and found 

solutions with an average value in the range of [1.0753, 1.78806] as shown in Table 4.25. All 

other algorithms are failed to converge to the true Pareto-front. Table 4.26 shows the results 

obtained for the case where a size of 1000 individuals is considered. In this case, both APC-

MOPSO and 2LB-MOPSO are tested. A range of [1.00069 to 1.3846] is returned by the APC-

MOPSO, while 2LB-MOPSO is failed to converge. The conclusion drawn from this test is that 

the APC-MOPSO has a huge potential to consistently solve problems with high dimensions in an 

effective and stable manner.  
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Table 4.23: The Range of Results for DTLZ2 Benchmark Test Problem (5-D) (100 Particles) 

DTLZ2 

100 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.00842 1.02120 

Worst 1.01080 1.17430 

Mean  1.00959 1.12400 

Median 1.00931 1.15650 

Std 0.00092 0.06232 

2
L

B
-M

O
P

S
O

 Best 1.01150 2.408600 

Worst 1.05380 2.707800 

Mean  1.03354 2.556900 

Median 1.03080 2.541700 

Std 0.01561 0.130275 

N
S

G
A

-I
I 

Best 1.00980 1.565400 

Worst 1.04740 1.788600 

Mean  1.02336 1.671880 

Median 1.02320 1.663200 

Std 0.01511 0.097096 

S
P

E
A

2
 

Best 1.07150 5.553800 

Worst 1.31140 5.982900 

Mean  1.16848 5.737720 

Median 1.16840 5.722700 

Std 0.09165 0.155800 

M
O

P
S

O
 

Best 1.00650 1.190300 

Worst 1.01570 1.327700 

Mean  1.01180 1.255440 

Median 1.01290 1.254600 

Std 0.00364 0.056564 

P
E

G
A

 

Best 1.12420 2.700600 

Worst 2.06180 4.018400 

Mean  1.36242 3.243520 

Median 1.16440 3.149600 

Std 0.39736 0.502471 
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Table 4.24: The Range of Results for DTLZ2 Benchmark Test Problem (5-D) (1000 Particles) 

DTLZ2 

1000 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.00028 1.611400 

Worst 1.00034 1.685500 

Mean  1.00031 1.659433 

Median 1.00031 1.681400 

Std 0.00003 0.041649 

2
L

B
-M

O
P

S
O

 Best 1.00010 2.07930 

Worst 1.00050 2.08150 

Mean  1.00034 2.08047 

Median 1.00042 2.08060 

Std 0.00021 0.00111 

 

Table 4.25: The Range of Results for DTLZ5 Benchmark Test Problem (5-D) (100 Particles) 

DTLZ5 

100 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-M

O
P

S
O

 Best 1.02140 1.50560 

Worst 1.16380 1.97600 

Mean  1.07520 1.78806 

Median 1.06530 1.76730 

Std 0.05666 0.19306 

2
L

B
-M

O
P

S
O

 Best 1.00140 5.124600 

Worst 1.00830 6.250000 

Mean  1.00402 5.743800 

Median 1.00400 5.701000 

Std 0.00284 0.505098 

N
S

G
A

-I
I 

Best 1.01670 5.024400 

Worst 1.06800 5.690800 

Mean  1.03534 5.426880 

Median 1.03450 5.521000 

Std 0.02087 0.259993 
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S
P

E
A

2
 

Best 1.03970 6.093000 

Worst 2.39860 6.227200 

Mean  1.41426 6.174860 

Median 1.16180 6.182700 

Std 0.55946 0.049387 

M
O

P
S

O
 

Best 1.09370 3.285100 

Worst 2.34990 5.335700 

Mean  1.41238 3.915980 

Median 1.22460 3.611600 

Std 0.52957 0.825956 

P
E

G
A

 

Best 1.00970 4.915800 

Worst 1.42270 5.634400 

Mean  1.15088 5.304120 

Median 1.07740 5.344300 

Std 0.16330 0.274983 

 

Table 4.26: The Range of Results for DTLZ5 Benchmark Test Problem (5-D) (1000 Particles) 

DTLZ5 

1000 Particles with 10,000 FEs 

Method Statistics Min Max 

A
P

C
-

M
O

P
S

O
 

Best 1.00010 1.35500 

Worst 1.00120 1.41260 

Mean  1.00069 1.38463 

Median 1.00078 1.38630 

Std 0.00056 0.02884 

2
L

B
-

M
O

P
S

O
 

Best 1.01530 2.21390 

Worst 1.11350 2.22320 

Mean  1.06427 2.21870 

Median 1.06400 2.21900 

Std 0.04910 0.00466 

4.4.5.4 Experimental Timing Analysis 

A timing analysis of the experiments conducted in this chapter revealed an important 

consideration regarding the computational speed of the six algorithms. The platform of this 

analysis is designed to use a set of two, three, and five-objective benchmark test problems, a 
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population size of 100 individuals, a maximum of 10,000 function evaluations, and 25 

independent runs for each problem to determine the average CPU20 times for all algorithms. 

Figures 4.44 and 4.45 depict the average CPU time obtained for each algorithm in solving the 

benchmark test problems. For the two-objective tests, Figure 4.44 shows that the PEGA and the 

SPEA2 are executed faster than other algorithms with the same average CPU time of 26.9 

seconds. It is important to note that for the PEGA algorithm, adopting a parallel mechanism 

enhanced its speed of computation. Moreover, Figure 4.44 shows that the NSGA-II has the 

longest average CPU time to converge compared to other algorithms (with an average CPU time 

of 551 seconds). Also, Figure 4.44 shows that the APC-MOPSO algorithm performed faster than 

the other MOPSO algorithms, and this is the main reason for employing both parallel islands 

model and parallel computing MATLAB toolbox to the proposed APC-MOPSO algorithm. The 

APC-MOPSO has an average CPU time of 65.7 seconds, while 2LB-MOPSO and MOPSO have 

average CPU times of 102.2 and 166.2 seconds, respectively. 

Table 4.27 presents the average CPU time for each two-objective test problem. 

Furthermore, Table 4.28 shows the mean of CPU times needed for each algorithm to solve the 

whole set of the two-objective benchmark test problems. The last column of this table provides 

the number of the benchmark test problems that each algorithm did solve. Accordingly, NSGA-II 

and PEGA solved only seven problems out of a total of fifteen. The proposed APC-MOPSO is 

the only algorithm that successfully solved the whole suite of the benchmark test problems. The 

NSGA-II is the slowest algorithm in performing the search process. 

For the three-objective experiments, 25 independent runs, a maximum of 10,000 function 

evaluations, three selected benchmark problems, and a population size of 100 individuals are used 

to calculate the average executing CPU time for each of the six algorithms. Tables 4.29 and 4.30 

report the CPU times required to solve DTLZ2, DTLZ5, and DTLZ7 by the APC-MOPSO, the 

2LB-MOPSO, the NSGA-II, the MOPSO, the SPEA2, the PEGA. As shown in the last column of 

Table 4.30, PEGA, MOPSO, and SPEA2 solved only one test problem out of the selected three. 

NSGA-II failed to solve DTLZ5, while 2LB-MOPSO did not perform well on DTLZ7. Evidently, 

the proposed APC-MOPSO is the best as it is able to successfully solve all three benchmark test 

problems. Figure 4.45 shows that APC-MOPSO is faster in executing its algorithm than 2LB-

MOPSO and MOPSO. In the case of 1000 individuals, two algorithms are only considered, in 

which the proposed APC-MOPSO needed an average CPU time of 3282 seconds (i.e. equivalent 

to  54 minutes) to solve the three problems compared to 4624 seconds (i.e., equivalent to  

77.minutes) for 2LB-MOPSO (as shown in Table 4.31). 

For the five-objective set of experiments, the timing analysis is conducted by using the 

benchmark problems DTLZ2 and DTLZ5, a maximum of 10,000 function evaluations, 15 

                                                 
20 The PC used to conduct the timing analysis has the following specification: a Genuine 

Intel(R) CPU T2500 @ 2.00GHz and 2.00GB of RAM with WINDOWS 7. 
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independent runs, and a population size of 100 individuals. Table 4.32 reports the CPU time 

needed for each algorithm to solve the selected test problems. As per this table, APC-MOPSO 

required an average CPU time of 153.523 to successfully solve the test problems. Table 4.33 

shows that the proposed APC-MOPSO successfully solved the test problems with a competitive 

average CPU time compared to the CPU times for the others. The 2LB-MOPSO, the SPEA2, and 

the PEGA failed to converge to the global front. NSGA-II and MOPSO solved one problem, 

namely DLTZ2. Even though these two algorithms obtained solutions for the DTLZ2, they did 

not outperform  the APC-MOPOS. Hence, it is worth concluding that the APC-MOPSO is the 

only algorithm that successfully solved the hardest set of experiments with better results. In the 

case of using a population size of 1000 individuals, Table 4.34 shows the average CPU times 

needed for APC-MOPSO and 2LB-MOPSO to solve five-objective DTLZ2 and DTLZ5 

benchmark test problems; 31370 seconds (i.e., equivalent to  9 hrs.) for the APC-MOPSO and 

40217 seconds (i.e., equivalent to  11 hrs.) taken by the 2LB-MOPSO. 

 

 

Figure 4.44: Timing Analysis for the Two-Objective Benchmark Test Problems 
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Figure 4.45: Timing Analysis for the Three-Objective Benchmark Test Problems 

 

Table 4.27: Average CPU Times for the Two-Objective Test Problems (100 Particles) 

Problems 

2-Obective 

Average CPU Time* (in seconds) 

PEGA SPEA2 NSGA-II MOPSO 2LB-MOPSO APC-MOSPO 

ZDT1 11.87 23.594 208.25 18.8594 44.5156 42.3419 

ZDT2 12.0938 23.281 210.0781 17.500 46.5156 43.0971 

ZDT3 11.375 22.969 208.9531 22.046 44.5312 42.1532 

ZDT4 11.9688 23.906 215.968 16.5313 31.3594 39.4878 

ZDT6 11.375 22.188 211.0938 19.125 48.9844 41.7793 

FONSECA 170.9531 59.718 3997.012 1329.1 685.8594 285.224 

KURSAWE 11.14 25.156 211.281 32.0156 49.2813 42.5446 

OKA2 19.282 32.662 240.391 85.050 53.0625 44.794 

DTLZ1 10.625 19.844 211.7344 36.6563 49.9219 42.5446 

DTLZ2 10.9735 21.094 207.625 87.6406 48.3281 44.083 

DTLZ3 10.9219 19.8531 213.9531 36.219 32.7656 42.2785 

DTLZ4 12.6094 21.094 211.8906 51.875 46.000 41.2239 

DTLZ5 43.3125 31.313 830.3906 354.2031 147.453 93.7009 

DTLZ6 44.752 32.250 876.251 361.145 154.0313 98.625 

DTLZ7 10.8750 25.140 210.2656 24.156 48.750 41.528 

*   Average CPU Time is calculated by taking the mean time of 25 independent runs for each test 

problem and algorithm 
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Table 4.28: Summary of the Algorithms for Two-Objective Test Problems (100 Particles) 

Algorithm 
Execution Speed 

(CPU Time in seconds)* 

Language 

(Platform) 
Problems Solved 

APC-MOPSO 65.6937 MATLAB and C 15 / 15 

2LB-MOPSO 102.0906 MATLAB and C 14 / 15 

NSGA-II 551.0092 MATLAB 7 / 15 

SPEA2 26.9425 MATLAB and C 10 / 15 

MOPSO 166.1415 MATLAB 8 / 15 

PEGA 26.9418 MATLAB 7 / 15 

*   Execution CPU time is calculated for each algorithm as a mean time of all 2-objective test 

problems 

 

Table 4.29: Average CPU Times for the Three-Objectives Test Problems (100 Particles) 

Problems 

3-Obective 

Average CPU Time* (in seconds) 

PEGA SPEA2 NSGA-II MOPSO 2LB-MOPSO APC-MOSPO 

DTLZ2 19.640 23.9531 229.3125 116.14 81.796 43.480 

DTLZ5 19.328 23.468 230.2813 57.590 75.760 43.391 

DTLZ7 19.676 23.5938 230.0781 33.2656 75.234 44.192 

*   Average CPU Time is calculated by taking the mean time of 25 independent runs for each test 

problem and algorithm 

 

Table 4.30: Summary of Algorithms for Three-Objective Test Problems (100 Particles) 

Algorithm 
Execution Speed 

(CPU Time in seconds)* 

Language 

(Platform) 
Problems Solved 

APC-MOPSO 43.687 MATLAB and C 3 / 3 

2LB-MOPSO 77.597 MATLAB and C 2 / 3 

NSGA-II 229.8906 MATLAB 2 / 3 

SPEA2 23.6716 MATLAB and C 1 / 3 

MOPSO 68.998 MATLAB 1 / 3 

PEGA 19.548 MATLAB 1 / 3 

*   Execution CPU time is calculated for each algorithm as a mean time of all 2-objective test 

problems 
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Table 4.31: Average CPU Times for the Three-Objective Test Problems (1000 Particles) 

Problems 

3-Objective 

Average CPU Time* (in seconds) 

2LB-MOPSO APC-MOSPO 

DTLZ2 4560 3210 

DTLZ5 4472 3157 

DTLZ7 4840 3480 

Average 4624 3282 

*   Average CPU Time is calculated by taking the average time of 15 independent runs for each 

test problem and algorithm 

 

Table 4.32: Average CPU Times for the Five-Objectives Test Problems (100 Particles) 

Problems 

5-Obective 

Average CPU Time* (in seconds) 

PEGA SPEA2 NSGA-II MOPSO 2LB-MOPSO APC-MOSPO 

DTLZ2 20.4219 44.688 230.1406 159.328 315.043 152.764 

DTLZ5 19.7188 45.000 230.9036 163.875 279.468 154.282 

*   Average CPU Time is calculated by taking the mean time of 25 independent runs for each test 

problem and algorithm 

 

Table 4.33: Summary of the Algorithms for Five-Objective Test Problems (100 Particles) 

Algorithm 
Execution Speed 

(CPU Time in seconds)* 

Language 

(Platform) 
Problems Solved 

APC-MOPSO 153.523 MATLAB and C 2 / 2 

2LB-MOPSO 297.2555 MATLAB and C 0 / 2 

NSGA-II 230.5221 MATLAB 1 / 2 

SPEA2 44.844 MATLAB and C 0 / 2 

MOPSO 161.6015 MATLAB 1 / 2 

PEGA 20.070 MATLAB 0 / 2 

*   Execution CPU time is calculated for each algorithm as a mean time of all 2-objective test 

problems 

 

Table 4.34: Average CPU Times for the Five-Objective Test Problems (1000 Particles) 

Problems 

5-Objective 

Average CPU Time* (in seconds) 

2LB-MOPSO APC-MOSPO 

DTLZ2 41142 31516 

DTLZ5 39291 31223 

Average 40217 36370 

*   Average CPU Time is calculated by taking the average time of 15 independent runs for each 

test problem and algorithm 
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4.5 Summary of Results 

Generally, the simulation results demonstrated that the proposed APC-MOPSO 

performed better than the MOEAs represented by NSGA-II, SPEA2, and PEGA, and the well-

known MOPSOs such as the original MOPSO and the 2LB-MOPSO. It can be observed that 

APC-MOPSO outperformed the others in terms of the distance of its solutions to the Pareto-

optimal front (i.e., also known as true Pareto-front) and the distribution of the non-dominated 

solutions along the Pareto-optimal front. In this chapter, different benchmark test problems are 

used. These vary in terms of convexity, concavity, continuity, and linearity of the Pareto-optimal 

fronts. Convex problems (i.e., ZDT1) present the least amount of difficulty for the multi-objective 

optimizers. 

On the other hand, the non-convex problems (i.e., like ZDT4 and OKA2) are more 

challenging. Only APC-MOPSO and 2LB-MOPSO can produce evenly distributed Pareto-front 

sets that are close to the Pareto-optimal fronts. Furthermore, it is clear that the APC-MOPSO 

outperformed the 2LB-MOPSO in terms of the high quality and the number of non-dominated 

solutions. In the case of discontinuous Pareto-front (i.e., ZDT3 and KURSAWE, and DTLZ7), 

APC-MOPSO is superior to all others. When considering performance metrics with respect to the 

benchmark test problems, a clear hierarchy of algorithms can and summarized as follows: 

1. APC-MOPAO 

2. 2LB-MOPSO 

3. NSGA-II 

4. MOPSO 

5. PEGA 

6. SPEA2 

Furthermore, the APC-MOPSO algorithm is superior in its global search capability, 

finding high-quality non-dominated solutions, maintaining diversity (i.e., evenly distributed 

Pareto-front set), and enhanced ability to leap away from local optima (i.e., avoiding premature 

convergence). 

For the two-objective experiments, Table 4.35 shows the results obtained by using the 

APC-MOPSO, the 2LB-MOPSO, the MOPSO, the NSGA-II, the SPEA2, and the PEGA. For the 

C metric, the APC-MOPSO produced the smallest mean and standard deviations for C metric 

than the other five methods in all of the benchmark problems, except in DTLZ2 and DTLZ5 

where APC-MOPSO is ranked the second best. 

The quality of all non-dominated solutions obtained by the APC-MOPSO, the2LB-

MOPSO, the MOPSO, the NSGA-II, the SPEA2, and the PEGA after 10,000 function evaluation 

(i.e., equivalent to 100 iterations in the case of 100 individuals in the population) on fifteen two-

objective benchmark test problems are measured by using the Generational Distance (GD) metric. 

The results provided in Table 4.35 stated that the. APC-MOPSO is considerably outperformed the 
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other algorithms in terms of returning the lowest mean and standard deviations of GD in most of 

the problems (except for DTLZ6 and DTLZ7, APC-MOPSO produced the second best values). 

Furthermore, the results of the ER metric are also presented in Table 4.35 (i.e., ER is 

considered as one of the most common performance measures for multi-objective optimization 

algorithms). Accordingly, the APC-MOPSO and 2LB-MOPSO algorithms performed almost 

equally well for the whole two-objective problems. NSGA-II performed somewhat well on 

ZDT4, DTLZ4, and DTLZ5, while MOPSO, SPEA2, and PEGA returned high mean values of 

ER. Not surprisingly, the APC-MOPSO outperformed the other algorithms by returning the 

lowest mean value of ER for almost each test problem (except DTLZ2 test problem which 

obtained the second best), a fact that may largely be attributed to its outstanding performance on 

both C and GD metrics. 

Lastly, the Spacing (S) metric is used to measure the spread and the distribution of the 

obtained Pareto-front solutions over a non-dominated region for each algorithm, and its results 

are provided in Table 4.35. The results indicated that the APC-MOPSO produced well-spread 

solutions and returned the best average values for six test problems. Moreover, the results showed 

that the APC-MOPSO obtained the second best in the rest of the fifteen test problems. In 

addition, the 2LB-MOPSO takes the lead in ZDT2, ZDT3, ZDT6, DTLZ1, DTLZ4, DTLZ7, and 

FONSECA; nevertheless, it is important to keep in mind its partial lack of performance in terms 

of other metrics (e.g., C, ER, and GD). 

 

Table 4.35: Ranking of the Algorithms: Two-Objectives Test Problems 

ZDT1 
Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 5 1 3 2 4 1 

ER 5 5 3 2 5 1 

GD 4 3 2 1 5 1 

S 4 5 6 2 3 1 

ZDT2 
Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 4 5 3 2 5 1 

ER 5 5 3 2 5 1 

GD 6 3 5 2 4 1 

S 6 4 5 1 3 2 

ZDT3 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 4 4 3 2 4 1 

ER 4 5 3 2 5 1 

GD 5 4 3 2 6 1 

S 3 5 6 1 4 2 
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Table 4.35: Ranking of the Algorithms: Two-Objectives Test Problems (continue) 

ZDT4 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 5 6 2 3 4 1 

ER 2 2 2 2 2 1 

GD 3 4 5 2 6 1 

S 3 4 6 2 5 1 

ZDT6 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 2 3 5 1 4 1 

ER 3 4 4 2 4 1 

GD 3 5 2 1 4 1 

S 5 4 6 1 3 2 

DTLZ1 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 4 4 4 2 3 1 

ER 4 4 4 2 3 1 

GD 4 2 5 1 3 1 

S 5 3 6 1 4 2 

DTLZ2 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 3 1 5 4 6 2 

ER 1 4 5 3 6 2 

GD 1 3 4 3 5 2 

S 5 4 1 3 6 2 

DTLZ3 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 3 3 3 2 3 1 

ER 3 3 3 2 3 1 

GD 5 3 4 2 6 1 

S 4 2 5 3 6 1 

DTLZ4 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 6 2 4 3 5 1 

ER 6 3 5 2 4 1 

GD 5 2 4 1 3 1 

S 6 3 5 1 4 2 
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Table 4.35: Ranking of the Algorithms: Two-Objectives Test Problems (continue) 

DTLZ5 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 3 1 6 5 4 2 

ER 5 2 4 1 6 1 

GD 1 1 4 3 5 1 

S 5 4 1 2 6 3 

DTLZ6 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 2 5 4 1 3 1 

ER 3 6 4 2 5 1 

GD 3 5 4 1 6 2 

S 3 4 6 1 5 1 

DTLZ7 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 4 6 3 2 5 1 

ER 3 5 4 2 6 1 

GD 1 4 3 2 5 2 

S 6 3 4 1 5 2 

KURSAWE 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 5 1 4 2 3 1 

ER 4 2 6 3 5 1 

GD 5 1 4 3 6 2 

S 4 3 5 1 6 2 

OKA2 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 3 2 3 1 3 1 

ER 3 3 3 2 3 1 

GD 5 4 2 1 3 1 

S 6 5 4 2 3 1 

FONSECA 

Metrics MOPSO  NSGAII  SPEA2 2LBMOPSO  PEGA APC-MOPSO  

C 1 3 6 4 5 1 

ER 2 3 6 4 5 1 

GD 1 1 3 1 2 1 

S 6 2 4 1 5 3 
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For the three-objective experiments, the rank of the six algorithms is provided in Table 

4.36. This rank is obtained based on how far the solutions produced by each algorithm are from 

the Pareto-optimal front. For the DTLZ7 test problem, the visualization of the graphical 

representation of the produced solutions is used for determining and ranking performance. 

Accordingly, for all three problems, APC-MOPSO performed better than the other selected 

algorithms. 

 

Table 4.36: Ranking of the Algorithms: Three-Objectives Test Problems (100 Particles) 

Test Problem 2LBMOPSO APC-MOPSO MOPSO NSGAII SPEA2 PEGA 

DTLZ2 3 1 4 2 Fail 5 

DTLZ5 2 1 Fail Fail Fail Fail 

DTLZ7 2 1 Fail Fail 3 Fail 

 

For the five-objective experiments, the performance ranking is provided in Table 4.37. 

This ranking considered the ability of the APC-MOPSO, the 2LB-MOPSO, the NSGA-II, the 

MOPSO, the SPEA2, and the PEGA algorithms for solving the DTLZ2 and the DTLZ5 problems. 

This ranking is determined based on the values returned by summing of all objectives of each 

solution. It can be seen that the APCMOPSO clearly outperformed the others. It is also important 

to note that the MOPSO well performed in solving DTLZ2 compared to its performance in 

solving 2- and 3-objective benchmark test problems. In addition, it is worth noting that although 

2LB-MOPSO showed competitive results in two- and three-objective test problems, but it failed 

in producing solutions that are close to the Pareto-optimal front in both five-objective problems. 

 

Table 4.37: Ranking of the Algorithms: Five-Objectives Test Problems (100 Particles) 

Test Problem 2LBMOPSO  APC-MOPSO  MOPSO  NSGAII  SPEA2 PEGA  

DTLZ2 Fail 1 2 3 Fail Fail 

DTLZ5 Fail 1 Fail Fail Fail Fail 

4.6 Conclusion 

PSO algorithms are increasingly being used to solve NP-hard and complex real-world 

applications that involve multi-objective mathematical formulation. PSO algorithms provide a 

powerful search capability in finding accurate and robust solutions. Furthermore, various PSO 

algorithms have performed well in many applications as described in 

[237,75,101,80,232,261,242,262,263,27]. To improve the overall performance of the MOPSO, an 

Adaptive Parallel Clustering-based MOPSO (APC-MOPSO) algorithm has been proposed. This 

algorithm introduced a new adaptive technique that automatically (i.e. dynamically, linearly, and 

exponentially) adjusted the settings of the algorithm’s parameters, such as inertia weight (w), as 
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well as its cognitive (  ), social (  ), contiguous (  ), position and velocity coefficients (   and   , respectively), and mutation operator (  ). Furthermore, the proposed APC-MOPSO 

employed a modified K-Means++ clustering technique for managing the number of the non-

dominated solutions in its external repository. Lastly, the APC-MOPSO is implemented in a 

parallel platform so that its diversity, convergence, and computational time are enhanced. 

As a conclusion, the proposed APC-MOPSO algorithm has been demonstrated, through 

an extensive experimental analysis, a strong potential to efficiently solve multi-objective real 

world applications such as energy optimization in water distribution systems as shown next in 

Chapter 6. 
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Chapter 5 

Auxiliary Techniques for Energy Optimization 

Strategy 

This chapter begins with a brief overview of three new mechanisms that are searching-

for-gaps, operating-mode pointer, and selecting-best-operating point. Each is explained in relation 

to the proposed energy optimization strategy. Searching-for-gaps algorithm is formally defined, 

and some experiments are conducted using the benchmark test problems previously explained in 

Chapter 4. Next, a novel operating-mode pointer is introduced. Some key concepts and notations 

on encoding and capturing pumping operations and settings are presented. Operating-modes are 

settings that have been tested and successfully implemented in pumping stations of water 

distribution systems. Common approaches for controlling variable-speed pumps are reviewed, 

and a strategy for selecting-best-operating point is described. Finally, the above three mechanisms 

are analyzed, tested, and assessed to be integrated to the new energy optimization strategy for 

optimizing pumping operations in rural water distribution systems. 

5.1 Introduction 

Water utilities are amongst the biggest energy consumers and use one fifth of the world’s 
total power. One of the largest operating costs for water utilities is for electrical energy for 

pumping. This cost can be reduced by developing energy optimization strategies that would 

overcome the problem of pumps operate far from their most efficient operating point. 

To successfully implement a new optimization technique on pumping stations for energy 

saving, novel techniques that are searching-for-gaps, operating-mode pointer, and selecting-best-

operating point are proposed in this dissertation. The main reason of developing the three 

techniques and then combining them to the proposed Adaptive Parallel Clustering-based Multi-

objective Particle Swarm Optimization algorithm (APC-MOPSO) is to have a new energy 

optimization strategy that can effectively deal with real-world applications and efficiently 

produce approximately optimal solutions. The aims of the new energy optimization strategy are 
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not only significantly reducing the electric bill, but also improving the pump life cycle cost, the 

reliability of the pump operation, and the water quality in a distribution system. In this context, 

many research efforts on energy management in water distribution systems have been reported, 

but very few of them have in practice resulted in reducing the energy cost and promoting other 

good operating conditions [264,265,266,267,268,269,270,271,272]. 

5.2 Searching-for-Gaps 

Although many researchers have reported the use of archiving strategies in multi-

objective optimization [273,274], not many have proposed new techniques to archive non-

dominated solutions of a multi-objective optimizer. What follows, is a review of literature in this 

specialized domain. 

Hiroyasu et al. [275], proposed the Divided Range Multi-Objective Genetic Algorithm 

(DRMOGA). In this algorithm, the whole population is sorted according to an objective function 

with randomly selected elements that are changed after a number of iterations. The population is 

divided into sub-populations as shown in Figure 5.1. After a certain number of iterations, the non-

dominated solutions produced in each sub-population are gathered. The process is then repeated 

with another randomly rearranged objective function. This approach is mainly used to improve 

the search ability and diversity of MOGA. 

 

 

Figure 5.1: Division of Population in Divided Range MOGA [276] 

 
J.D. Knowles [277], proposed a new Adaptive Grid Algorithm (AGA) to address some of 

the problems associated storing and selecting the non-dominated solutions obtained during the 

search process for multi-objective optimization problems. The AGA is developed based on the 

archiving method used in Pareto Archived Evolutionary Strategy (PAES) (J.D. Knowles et al. 

[76]). Figure 5.2 illustrates the mechanism of AGA, in which an adaptive grid in the hyper-
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dimensional objective space changes its location and size as the solutions in the repository change 

with iterations (        ). In this mechanism, the grid adjusts its boundaries to envelop all the 

solutions. Furthermore, the grid is also used for selecting which solutions to eliminate from the 

archive when it reaches its capacity limit. The principle of crowding distance is also adopted in 

the archiving process, where only a single solution from the most crowded region(s) is selected to 

be stored. The author concluded that proposing AGA would allow the multi-objective optimizers 

to not only have solutions that cover the entire front, but also are evenly distributed. 

 

 

Figure 5.2: The Mechanism of Changing the Shape in Adaptive Grid Algorithm [277] 

 
S. Fan et al. [97], developed a new picking rule for the external repository to obtain an 

evenly-distributed Pareto-front. In their work, a new technique, known as a picking rule, to select 

the non-dominated set of solutions in the external repository is used to maintain a ‘constant’ 
number of non-dominated solutions at every iteration. This technique is designed to be executed 

only when the number of currently non-dominated solutions exceeded the size of the external 

repository. Figure 5.3 depicts the mechanism of applying a picking rule on the external 

repository. For example, assuming that 13 non-dominated solutions are produced at t-iteration, 

and the external repository is restricted to a maximum size of 10 solutions. The first step is to 

select the solutions at the extremities; solutions S1 and S13 shown in Figure 5.3 (a). Next, the 

distance from S1 to S13, is approximated as the sum of piecewise line segments between two 

adjacent Pareto solutions. Then, 10 temporary index points (i.e., I1,2,...,10) are equidistantly 

assigned along the Pareto-front (see Figure 5.3 (b)). The last step of this technique is to pick a 

non-dominated solution that is closest to the index points (see Figure 5.3 (c)). The objective of the 
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picking rule is to enhance the diversity of the solutions in the external repository. However, 

inspection of the plots provided in ZDT4 test problem show that the picking rule experienced 

problems producing solutions over the full length of the front. Thus, this technique cannot 

guarantee a fair basis of selecting solutions that preserves the Pareto-front. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5.3: Graphical Representation of the Pick Rule for External Archive Scheme [97] 

 
C.A.C. Coello and M.S. Lechunga [29], proposed two fixed-size repositories with a 

modified version of MOPSO. The first repository is used to archive the global best particles 

found so far by the search process; while the second stores the local best for each particle of the 

swarm. The authors used the truncate method from [76] to archive the global particles. In this 

method, the objective space is divided into a number of hyper-cubes (an adaptive grid), and the 

densely populated hyper-cubes are truncated if the repository exceeded its limit. A fitness value is 

assigned to each hypercube that contained archived members, equal to dividing 10 by the number 

of resident particles. Hence, a lower score will be assigned to a densely populated hypercube and 

vice versa. An illustration of this mechanism is given in Figure 5.4. For example, hypercube (4, 

1) has only one solution, and thus, assigned a fitness value of 10.0, while hypercube (1, 4) 

contains 5 solutions, and therefore, a fitness value of 2.0 is given to it. Accordingly, the global 

best for the swarm is selected based on a roulette wheel of a hypercube first, and then randomly 
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choosing a member of that hypercube. Unlike the original method proposed in [76], the adopted 

archive method in this work biases selection toward under-represented areas of the Pareto-front. 

For the two-objective test problems, the proposed MOPSO showed better results than those 

obtained by Pareto Archived Evolutionary Strategy (PAES), [76]. Again, for higher number of 

objectives, this method failed to produce a significantly better solution when compared to 

competing algorithms. 

 

 

Figure 5.4: Graphical Representation of Grid Based Selection Scheme [29] 

 
O. Schutze, et al. [278], proposed a technique called “gaps-free” or “tight Pareto-front” 

for multi-objective stochastic search algorithms to obtain a finite size of approximately optimal 

solutions for continuous multi-objective optimization problems. With the concept of -dominance 

[273], a gaps-free scheme is proposed to obtain a finite non-dominated set of solutions that cover 

the entire front. Furthermore, to determine the bounds of the repository size, two memetic 

strategies21 are included into the search process. One uses the -dominance to store only the 

solutions that are non-dominated by any other members in the repository. This strategy allows 

limiting the number of entries of the repository and then guaranteeing the convergence of the 

archived members to the Pareto set. The second repository is used to obtain a uniform distribution 

and a better approximation quality by changing the criterion of accepting candidate solutions (i.e., 

                                                 
21 Combining global and local search is a strategy used by a hybrid optimization 

approach, namely Memetics Algorithm (MA). MA is an Evolutionary Algorithms (EA) that 

applies some sort of a local search to further improve the fitness of individuals in the population-

based approach. “Memetics Algorithm” is first introduced by Richard Dawkins in 1976, [299]. 
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used in the first repository) and replacing it by -(approximate) Pareto and uniformity level 

strategies. The numerical results summarized the behavior of the two archiving strategies against 

selected benchmark functions. Finally, it should be noted that the proposed strategy did not 

guarantee a gap-free approximation of the Pareto-front. More selection pressure in the first 

archiver prevents the members of the repositories from converging toward the global front, while 

for the second respository, it allows for such a convergent behavior, but at the expense of lossing 

its uniformity level. 

5.2.1 The Proposed Searching-for-Gaps Technique (SFG) 

In most MOPSOs, particles draw their flight directions based on two leaders that are 

particle best and swarm best positions, pbest and gbest, respectively. In reality, these two positions 

could misguide the particles since they are far apart from each other in the parameter space (i.e., 

decision space). Therefore, in the proposed Adaptive Parallel Clustering-based Multi-objective 

Particle Swarm Optimization (APC-MOPSO) (explained in Chapter 4), the flight directions of the 

particles in the search space is guided by three leaders that are the particle best, the swarm best, 

and the local best (pbest, gbest, lbest, respectively). Hence, APC-MOPSO is said to have an effective 

guide to accelerate the particles in multiple directions when solving hard problems (see the results 

section of Chapter 4). 

For the proposed APC-MOPSO, a new Searching-for-Gaps (SFG) technique is developed 

to guarantee: (i) storing and maintaining solutions at the extremities of the front, (ii) storing and 

maintaining solutions in all the critical Pareto-occupied regions, (iii) preserving diversity by 

converging towards global fronts, and (iv) distributing uniformly and evenly the solutions along 

Pareto-optimal front. In this variant, a second external repository, an adaptive grade algorithm, 

and leader selection technique are adopted as follows. 

The proposed APC-MOPSO with SFG used two external repositories: one, referred to as 

the primary, for archiving the non-dominated solutions produced throughout the iterative search, 

and another, referred to as auxiliary or secondary repository, which is used for archiving neighbor 

best positions (lbest) that APC-MOPSO found along the search process. 

For the SFG to cover the entire front as well as the extremes for each objective, an 

Adaptive Grid Archiving (AGA) algorithm (proposed by J.D. Knowles [277]) is adopted. In this 

variant, adding the AGA to the divided d-dimensional search space has an advantage over the 

crowding methods used in some MOEAs and MOPSOs. The AGA is used to remove the 

solutions from the auxiliary repository when it reached its maximum capacity bound. In this 

algorithm, there are two boundaries to the adaptive grid (i.e., upper and lower bounds,      and    , respectively) for all objectives in the auxiliary repository. The boundaries are updated to 

enclose all the solutions found at the extremes of the search space. 
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The AGA works by calculating the range for the current solutions stored in the auxiliary 

repository, and accordingly, adjusting the grid boundaries to cover the entire range. It should be 

noted that in order to avoid recalculating the ranges too frequently, a threshold parameter is 

introduced so that the grid boundaries are only recalculated when the change in the range of the 

archived solutions is bigger than the threshold. The number of grid regions (known as bins), 

which sets the number of the subdivisions (i.e., hyper-cubes) of the search space are in each 

dimension is chosen priori by the user. This number, referred to as div (     ), remains 

constant over time and is independent on the number of the non-dominated solutions in the 

auxiliary repository at each iteration. In other words, the space occupied by the stored solutions is 

frequently updated according to the locations of the solutions in the search space. It should be 

noted that the modified K-Means++ explained in Chapter 4, is also used in the auxiliary repository 

to truncate the extra solutions. 

To illustrate the mechanism of the adaptive grid archiving, assume the following: when a 

new solution z extends the range of the grid in an objective k (i.e., the change in the range is 

larger than the threshold value along that objective), a new        is calculated, and the grid 

boundaries are updated as shown in Eqs. (5.2) and (5.3).               (  )        (  ) 5.1            (  )  (  (     ))(      ) 5.2            (  )  (  (     ))(      ) 5.3 

where N is the set of non-dominated solutions archived in the auxiliary repository. 

The two external vectors         and         in objective k will be located at the center 

of the outer grid regions as depicted in Figure 5.5. 

 

 
Figure 5.5: Example of Adaptive Grid Boundaries Technique in the Auxiliary Repository 

 
At each iteration and after updating the particles’ velocity and position, the range of each 

objective function is divided into a number of bins (by using AGA). The lbest is then selected from 

the archived members located in the neighboring bin. The lbest selection technique used in the 

auxiliary repository is adopted from the Two Local Best Multi-objective Particle Swarm 

Optimization (2LB-MOPSO), [243]. In order to assign lbest for a particle, an objective and a non-
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empty bin is randomly selected. Within the bin, the archived member is selected if it has the 

lowest objective value and is amongst those with the highest crowding distance. As each particle 

is guided by a third leader (lbest), the archiving technique allowed the particles to update their 

velocity in the direction between the swarm best (gbest), their personal best (pbest), and their local 

best (pbest). Hence, the archiving strategy adopted for the auxiliary repository is oriented to 

improve the convergence and distribution of the resulting Pareto-front as shown in Figure 5.6. 

 

 

Figure 5.6: Graphical Representation of Selecting lbest from the Auxiliary Repository 

 
In Figure 5.6, a two-objective minimization example is shown. Each objective range in 

the auxiliary repository is equally divided to create bins. For example, the auxiliary repository has 

6 archived solutions (S1 to S6), each of them is a non-dominated front 1 solution. The four 

particles (P1 to P4) fly in directions guided by their corresponding pbest, gbest, and lbest. For particle 

P1, it is best to randomly select one objective and bin for its lbest. Here, objective 2 and bin 10 are 

assumed for P1. Between the two archived solutions S1 and S2 in bin 10, the S2 is chosen as the 

lbest since it has the larger crowding distance. Assuming the local best (lbest) of P3 is assigned to 

objective 1 and bin 3 in the current iteration. S4 is selected because it has crowding distance 

larger than S5. Following the same rules, S3 and S6 can be chosen as the local best (lbest) for P2 

and P4, respectively. 

Finally, Searching-for-Gaps (SFG) with an auxiliary repository, an Adaptive Grid 

Archiving (AGA), and a selection leader technique ensure obtaining Pareto-optimal solutions that 

cover a wide extent in the search space and are “well-distributed”. 
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Next, the dissuasion of the results obtained by implementing the APC-MOPSO with SFG 

on the benchmark test problems (previously explained in Chapter 4) is provided. 

5.2.2 Results for Two-Objective Test Problems 

To assess the performance of the proposed APC-MOPSO with SFG, a set of two-

objective and three-objective benchmark problems (previously described in Chapter 4) are used. 

Twenty-five independent runs are performed for each test problem, and the results are compared 

with respect to the proposed APC-MOPSO without SFG. The total number of function 

evaluations is set to 10,000 in all tests, and the results obtained by the proposed APC-MOPSO 

with SFG are displayed in the four metrics: two-set Coverage (C), Error Ratio (ER), Generational 

Distance (GD), and Spacing (S). The best, worst, mean, median, and standard deviations of the 

metrics are reported for each test problem. The results are presented as follows: 

 ZDT1 Benchmark Test Problem 

The first test compared the APC-MOPSO with SFG with APC-MOPSO without SFG for 

the ZDT1 test problem. This test is performed using the same parameters used in the standard 

tests performed in Chapter 4. Table 5.1 tabulates the experimental results, and Figure 5.7 a and b 

illustrate the Pareto-front obtained by the APC-MOPSO with and without SFG versus the Pareto-

optimal front of the problem. It is important to note that adopting SFG with APC-MOPSO 

significantly improved the distribution of the Pareto-front set as shown in Figure 5.7 c. In this 

figure, the solutions are evenly and uniformly distributed along the Pareto-optimal front. 

 ZDT2 Benchmark Test Problem 

This test is performed to illustrate the improvement in the performance of the proposed 

APC-MOPSO when SFG is used for the ZDT2 benchmark problem. In this test, the APC-

MOPSO returned average values of 0.04, 0.02, 0.000467, and 0.00665 for the C, ER, GD, and S 

metrics that are less than those produced in Chapter 4. Furthermore, Figure 5.8 showed that APC-

MOPSO with SFG produced a Pareto-front set that is better in filling the entire front as well as 

precisely converging to the Pareto-optimal front. 

 ZDT3 Benchmark Test Problem 

Figure 5.9 showed the Pareto-front produced by APC-MOPSO with and without SFG 

versus the Pareto-optimal front for the ZDT3 test problem. Table 5.1 presented the results of C, 

ER, GD, and S averaged over 25 independent runs. In this table, a significant improvement in 

performance is observed by considering the average values of C and S metrics, in which APC-

MOPSO with SFG returned 0.035 and 0.00765, while APC-MOPSO without SFG returned 0.044 

and 0.00964, respectively. 
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 ZDT4 Benchmark Test Problem 

Although ZDT4 is considered a hard test problem, the proposed APC-MOPSO with SFG 

performed well and repeatedly converged to the Pareto-optimal front. In this test, a significant 

reduction in the average values of metrics C and S are reported in Table 5.1. Figure 5.10 depicts 

the Pareto-front obtained by APC-MOPSO with and without SFG technique. 

 ZDT6 Benchmark Test Problem 

The uniformly distributed solutions obtained by APC-MOPSO with SFG are better than 

those produced by APC-MOPSO without SFG. In this test, a full set of optimal Pareto-front (i.e., 

tight Pareto-front) is produced, in which the algorithm returned average values of 0.02, 0.0204, 

0.003207, and 0.00563 for the four metrics of C, ER, GD, and S, respectively. Table 5.1 shows 

that the improvements of ER and S metrics are superior in comparison to the corresponding 

values of 0.07667 and 0.00732 for ER and S by APC-MOPSO without SFG. Figure 5.11 shows 

that vectors produced by both APC-MOPSO with/without SFG are clearly different. 

 DTLZ1 to DTLZ7 Benchmark Test Problems 

Table 5.1 presents the results of C, ER, GD, and S obtained by using the proposed APC-

MOPSO with SFG. In all test problems, APC-MOPSO with SFG returned smaller average and 

standard deviations for C, ER, GD, and S values than those obtained by APC-MOPSO without 

SFG. For the proposed APC-MOPSO with SFG, the mean values of the four metrics are 

significantly reduced. The consistency of producing high quality vectors for DTLZ1 to DTLZ7 

test problems are shown in Figures 5.12 and 5.18. It can also be seen from these figures that 

APC-MOPSO with SFG is not only converged to the Pareto-optimal front but also remarkably 

filled all gaps present in the solutions. 

 OKA2 Benchmark Test Problem 

Figure 5.19 shows the graphical representation of the results obtained by the proposed 

APC-MOPSO with SFG on OKA2 test problem. In this figure, it can be seen that the produced 

Pareto-front is more accurate in converging to the Pareto-optimal front and well spread and 

distributed along the Pareto-optimal front of the problem. The results of APC-MOPSO with SFG 

are provided in Table 5.1. 

 KURSAWE Benchmark Test Problem 

In the last test for the two-objective benchmark test problems, the KURSAWE problem is 

chosen to illustrate the importance of the proposed APC-MOPSO with SFG. The results of APC-

MOPSO with SFG indicated considerable improvement compared to the case without SFG in the 

average values of C, ER, GD, and S metrics. The average value of C is reduced from 0.134 to 

0.075; the ER’s is reduced from 0.124 to 0.115; the GD’s is reduced from 0.0106 to 0.0095; and 

the S’s is reduced from 0.07681 to 0.0631 (as provided in Table 5.1 and shown in Figure 5.21). 
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The obtained Pareto-fronts produced by the APC-MOPSO with and without SFG are illustrated in 

Figure 5.20. Furthermore, this figure shows that the solutions obtained by APC-MOPSO with 

SFG are diverse and well-distributed. 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

 

c. APC-MOPSO with Searching-for-Gaps - Zoom View 

Figure 5.7: Pareto-front Produced by the APC-MOPSO for the ZDT1 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.8: Pareto-front Produced by the APC-MOPSO for the ZDT2 Benchmark Problem 
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a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.9: Pareto-front Produced by the APC-MOPSO for the ZDT3 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.10: Pareto-front Produced by the APC-MOPSO for the ZDT4 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.11: Pareto-front Produced by the APC-MOPSO for the ZDT6 Benchmark Problem 
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a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.12: Pareto-front Produced by the APC-MOPSO for the DTLZ1 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.13: Pareto-front Produced by APC-MOPSO for the DTLZ2 Benchmark Problem (2-D) 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.14: Pareto-front Produced by the APC-MOPSO for the DTLZ3 Problem 
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a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.15: Pareto-front Produced by the APC-MOPSO for the DTLZ4 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.16: Pareto-front Produced by the APC-MOPSO for the DTLZ5 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.17: Pareto-front Produced by the APC-MOPSO for the DTLZ6 Benchmark Problem 
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a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.18: Pareto-front Produced by the APC-MOPSO for the DTLZ7 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.19: Pareto-front Produced by the APC-MOPSO for the OKA2 Benchmark Problem 

 

  

a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

 

c. APC-MOPSO with Searching-for-Gaps - Zoom View 

Figure 5.20: Pareto-front Produced by APC-MOPSO for the KURSAWE Benchmark Problem 
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Table 5.1: The Results for APC-MOPSO with SFG on Benchmark Test Problems (2-D) 

Problem Statistics C ER GD S 

ZDT1 

Best 0.02000 0.00000 0.000382 0.00460 

Worst 0.02000 0.01000 0.000437 0.00710 

Mean 0.02000 0.00800 0.000406 0.00572 

Median 0.02000 0.01000 0.000411 0.00500 

Std 0.00000 0.00447 0.000024 0.00122 

ZDT2 

Best 0.04000 0.01000 0.000418 0.00610 

Worst 0.04000 0.02000 0.000505 0.00680 

Mean 0.04000 0.01500 0.000467 0.00652 

Median 0.04000 0.01500 0.000474 0.00665 

Std 0.00000 0.00548 0.000031 0.00029 

ZDT3 

Best 0.02000 0.07000 0.006027 0.00710 

Worst 0.06000 0.10000 0.006475 0.00830 

Mean 0.03500 0.09167 0.006175 0.00765 

Median 0.03500 0.10000 0.006135 0.00755 

Std 0.01517 0.01329 0.000178 0.00055 

ZDT4 

Best 0.05000 0.01000 0.004440 0.00600 

Worst 0.13000 0.01000 0.004710 0.00630 

Mean 0.08500 0.01000 0.004567 0.00613 

Median 0.08000 0.01000 0.004560 0.00610 

Std 0.03416 0.00000 0.000118 0.00015 

ZDT6 

Best 0.02000 0.01000 0.003155 0.00550 

Worst 0.02000 0.04120 0.003280 0.00590 

Mean 0.02000 0.02040 0.003207 0.00563 

Median 0.02000 0.01000 0.003187 0.00550 

Std 0.00000 0.01801 0.000065 0.00023 

DTLZ1 

Best 0.07000 0.01000 0.000180 0.00380 

Worst 0.15000 0.07000 0.000234 0.00460 

Mean 0.10800 0.03400 0.000208 0.00437 

Median 0.10000 0.02000 0.000208 0.00451 

Std 0.03564 0.02510 0.000021 0.00030 

DTLZ2 

Best 0.02000 0.01000 0.000829 0.00711 

Worst 0.02000 0.06000 0.000854 0.00780 

Mean 0.02000 0.03500 0.000842 0.00746 

Median 0.02000 0.03500 0.000842 0.00746 

Std 0.00000 0.03536 0.000018 0.00049 

DTLZ3 

Best 0.28000 0.01000 0.000780 0.00850 

Worst 0.53000 0.04000 0.001020 0.00930 

Mean 0.42250 0.02250 0.000892 0.00895 

Median 0.44000 0.02000 0.000883 0.00900 

Std 0.11500 0.01258 0.000101 0.00033 
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Table 5.1: The Results for APC-MOPSO with SFG on Benchmark Test Problems (2-D) (continue) 

Problem Statistics C ER GD S 

DTLZ4 

Best 0.04000 0.02000 0.000600 0.00590 

Worst  0.06000 0.03000 0.000736 0.00630 

Mean  0.05000 0.02250 0.000639 0.00611 

Median 0.05000 0.02000 0.000611 0.00613 

Std 0.00816 0.00500 0.000065 0.00018 

DTLZ5 

Best 0.10000 0.00400 0.000158 0.00300 

Worst  0.10000 0.00500 0.000160 0.00320 

Mean  0.10000 0.00433 0.000159 0.00310 

Median 0.10000 0.00400 0.000159 0.00310 

Std 0.00000 0.00058 0.000001 0.00010 

DTLZ6 

Best 0.01000 0.01000 0.000152 0.00305 

Worst  0.01000 0.01000 0.000161 0.00360 

Mean  0.01000 0.01000 0.000157 0.00329 

Median 0.01000 0.01000 0.000158 0.00325 

Std 0.00000 0.00000 0.000004 0.00026 

DTLZ7 

Best 0.02000 0.03000 0.00082 0.00720 

Worst  0.02000 0.04000 0.00095 0.00820 

Mean  0.02000 0.03200 0.00088 0.00750 

Median 0.02000 0.03000 0.00087 0.00740 

Std 0.00000 0.00447 0.00006 0.00040 

KURSAWE 

Best 0.07000 0.11000 0.009300 0.05890 

Worst  0.08000 0.12000 0.009700 0.06730 

Mean  0.07500 0.11500 0.009500 0.06310 

Median 0.07500 0.11500 0.009500 0.06310 

Std 0.00707 0.00707 0.000283 0.00594 

OKA2 

Best 0.04000 0.01000 0.001700 0.02200 

Worst  0.04000 0.06000 0.001800 0.03000 

Mean  0.04000 0.04200 0.001740 0.02721 

Median 0.04000 0.04000 0.001700 0.02917 

Std 0.00000 0.02049 0.000055 0.00357 
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Figure 5.21: Performance Comparison between APC-MOPSO with and without SFG on 

KURSAWE Benchmark Problem 

5.2.3 Results for Three-Objective Benchmark Test Problems 

In the second set of tests, the proposed APC-MOPSO with SFG is compared with APC-

MOPSO without SFG on the DTLZ2 and DTL5 benchmark test problems. The total number of 

function evaluations is set to 10,000 for the suite of DTLZ test problems. A swarm of 100 

particles is used as the size of the population, and 25 independent runs are performed for each test 

problem. Note that in these problems the summation of all square objectives is equal to 1.0. 

 DTLZ2 Test Benchmark Problem 

Although both algorithms yield satisfactory results, the proposed APC-MOPSO with 

SFG converges closer to the Pareto- optimal front than the proposed APC-MOPSO without SFG. 

The results are provided in Table 5.2. Figure 5.22 shows that the proposed APC-MOPSO with 

SFG achieved a comparatively better solution spread and a better convergence to the Pareto-

optimal front. 
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a. APC-MOPSO without Searching-for-Gaps b. APC-MOPSO with Searching-for-Gaps 

Figure 5.22: Pareto-front Produced by APC-MOPSO on DTLZ2 Benchmark Problem (3-D) 

 DTLZ5 Benchmark Test Problem 

The proposed APC-MOPSO with SFG is implemented to solve the DTLZ5 test problem. 

It can be observed from the results shown in Table 5.2 that the proposed APC-MOPSO with SFG 

produced clearly better solutions with respect to the reference point of 1.0, as it returned a range 

of [1.0005 to 1.00951], while APC-MOPSO without SFG returned a range of [1.005, 1.0112]. 

Evidently, from this comparison, the proposed SFG is an improvement over the APC-MOPSO 

without SFG in most performance metrics. 

 

Table 5.2: The Results for APC-MOPSO with SFG on Benchmark Problems (3-D) (100 Particles) 

Problem Statistics Min Max 

DTLZ2 

Best 1.00000 1.02070 

Worst  1.00020 1.03490 

Mean  1.00007 1.02620 
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DTLZ5 

Best 1.00000 1.00850 

Worst  1.00010 1.01060 
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of solutions regardless of the shape of the Pareto-optimal front. This includes problems that have 

multi-local Pareto-optimal fronts (ZDT4 and ZDT6), disconnected set of Pareto-optimal fronts 

(ZDT3, DTLZ7, and KURSAWE), convex Pareto-front (ZDT1 and OKA2), non-convex Pareto-

front (ZDT2 and DTLZ5), and concave Pareto-front (DTLZ3, DTLZ4, and DTLZ6). 

From Figures 5.23 and 5.24, the proposed APC-MOPSO with SFG is significantly better 

compared to APC-MOPSO without SFG. In particular, for the ER and C metrics, the use of SFG 

reduced these measures down by 55% and 33%, respectively. With respect to GD and S, again 

the average values are reduced by 10% and 15%, respectively. 

The ranking comparison for the six algorithms as presented in Chapter 4 is updated and 

presented in Tables 5.3 and 5.4. By combining APC-MOPSO with SFG, a better spread of 

solutions and convergence is obtained compared to the other five algorithms: 2LB-MOPSO, 

NSGA-II, MOPSO, SPEA2, and PEGA. 

For the three-objective experiments, and based on the computational results discussed in 

Section 5.2.3, it can be concluded that APC-MOPSO with SFG’s results are more accurate, 

proximate, and well-spread for general multi-objective optimization problems. Table 5.5 and 

Figure 5.25 show that the proposed APC-MOPSO with SFG returned the best average values of 

performance metrics for both DTLZ2 and DTLZ5 benchmark problems, a fact that may be 

attributed to its excellent trade-off between exploration and exploitation abilities (i.e., balance the 

selection pressure). 

 

 

Figure 5.23: Overall Average Metrics for APC-MOPSO with and without Searching-for-Gaps on 
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Figure 5.24: Overall Percentage Improvements in APC-MOPSO’s Performance on Two-

Objective Benchmark Problems with Searching-for-Gaps 

 

Table 5.3: Update Ranking of the APC-MOPSO with SFG on Two-Objective Problems 
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Performance Metrics 

C ER GD S 

ZDT1 1 1 1 1 

ZDT2 1 1 1 1 (2)* 
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DTLZ2 1 (2) 2 2 2 

DTLZ3 1 1 1 1 

DTLZ4 1 1 1 1 

DTLZ5 2 1 1 1 (3) 

DTLZ6 1 1 1 (2) 1 

DTLZ7 1 1 2 1 (2) 

OKA2 1 1 1 1 

KURSAWE 1 1 1 (2) 1 (2) 

*   (#) means the rank of APC-MOPSO without searching for gaps technique with respect to five 

other algorithms against two-objective test problems 
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Table 5.4: Average Performance Metrics Using APC-MOPSO with and without Searching-for-

Gaps on Two-Objective Benchmark Test Problems 

Problem 

Performance Metrics 

C ER GD S 

Without 

SFG 

With 

SFG 

Withou

t SFG 

With 

SFG 

Without 

SFG 

With 

SFG 

Without 

SFG 

With 

SFG 

ZDT1 0.02600 0.02000 0.01667 0.00800 0.00045 0.000406 0.00627 0.00572 

ZDT2 0.04000 0.04000 0.02600 0.01600 0.00049 0.000467 0.00964 0.00652 

ZDT3 0.04400 0.03500 0.10267 0.09167 0.00066 0.000618 0.00905 0.00765 

ZDT4 0.17400 0.08500 0.01200 0.01000 0.00047 0.000457 0.00680 0.00613 

ZDT6 0.02000 0.02000 0.07667 0.02040 0.00340 0.003207 0.00732 0.00563 

OKA2 0.04000 0.04000 0.06330 0.04200 0.00180 0.00174 0.02970 0.02721 

KUR 0.13400 0.07500 0.12400 0.11500 0.01068 0.00950 0.07680 0.06310 

DTLZ1 0.19000 0.10800 0.08714 0.03400 0.00023 0.000208 0.00533 0.00437 

DTLZ2 0.13400 0.02000 0.06600 0.03500 0.00085 0.00084 0.00624 0.00746 

DTLZ3 0.55333 0.42250 0.05000 0.02250 0.00108 0.000892 0.00986 0.00895 

DTLZ4 0.06700 0.05000 0.04500 0.02550 0.00078 0.00639 0.00632 0.00611 

DTLZ5 0.10350 0.10000 0.00500 0.00430 0.00016 0.000159 0.00322 0.00310 

DTLZ6 0.01000 0.01000 0.01000 0.01000 0.00016 0.000157 0.00415 0.00329 

DTLZ7 0.02000 0.02000 0.34170 0.03200 0.00099 0.00087 0.00993 0.00750 

Average 0.11113 0.07467 0.07329 0.03331 0.001586 0.001851 0.013616 0.011624 

 

Table 5.5: Comparison between APC-MOPSO with and without Searching-for-Gaps on Three-

Objective Benchmark Test Problems (100 Particles) 

Problem 

Pareto-front Condition 

Without SFG With SFG 
% Improvement 

Min Max Min Max 

DTLZ2 1.00005 1.04650 1.00007 1.02620 43.66 

DTLZ5 1.00050 1.01120 1.00005 1.00951 15.09 

average 1.000275 1.02885 1.00006 1.017855 38.11 
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Figure 5.25: Maximum Average Values for APC-MOPSO with and without Searching-for-Gaps 

on Three-Objective Benchmark Test Problems 
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In this technique, the operating-modes are stored in a library, which is designed with the 

purpose of providing the optimization algorithm with initial candidate solutions. The optimization 

results pertain in a new (optimal) sequence of operating-modes that are originally derived from 

the library. This OMP technique can integrate to most optimization algorithms to develop an 

accurate knowledge of the problem and then can use that in generating new optimal solutions. 

This section briefly discusses some encoding schemes that have been already used in 

Evolutionary Algorithms (EAs). Early work (1970s) on Genetic Algorithms (GA) encoded the 

solutions as strings (chromosomes) of bits from a binary alphabet. Traditional operations of GA 

such as selection, crossover, and mutation are specifically designed for only binary encodings. In 

the 1980s, with the development of GA and Evolutionary Algorithms (EA), new forms of 

encoding are introduced such as permutation encoding22. In permutation encoding, every 

chromosome is a string of integer numbers, [283]. Moreover, to better represent real-life 

optimization problems, a direct value encoding is used, where every chromosome is represented 

as a string of floating point number. In the 1990s, Genetic Programming (GP) is developed and 

employed tree encoding, where every gene represented as an object, such as a function, 

mathematical operation, or a command in a programming language, [283]. A review of the 

history of real coding schemes in relation to the multiple evolutionary paradigms is given by D. 

Goldberg [286]. 

In this dissertation, a novel gene-coding technique, referred to as the Operating-Mode 

Pointer (OMP) is proposed. The OMP is an updated form of tree encoding which refers to the use 

of a variable-length code table for encoding a source symbol. This means that it is possible to use 

OMP to capture, encode, and manipulate a consecutive chain of events as a discrete, a 

continuous, or a mixed form for real-world applications. 

5.3.1 The Proposed Operating-Mode Pointer Technique (OMP) 

The Operating-Mode Pointer (OMP) uses a different type of gene representation than 

other common encoding schemes such as binary alphabet, permutation, floating-point number, 

direct value, and tree. The OMP approach separates time into segments of varying length 

bordered by certain events. Such segments, referred to as the operating-modes, are denoted by 

indices at which the functions describing the system’s behavior (i.e., the functions which specify 

the ongoing process). A high-level semantics for encoding about systems dynamic behavior is 

developed in this work. In doing this, the encoding technique is combined with numerical scheme 

offering qualitative and quantitative assessment of optimal solutions. 

                                                 
22 In permutation encoding, every chromosome is encoded by a string of numbers, which 

represents number in a sequence. 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

247 

In this dissertation, the Operating-mode Pointer (OMP) is employed to represent the 

pump operations in the Saskatoon West WDS. The extracted operating-modes contain the status 

of all of the network’s elements, including the operational status of pumps (e.g., whether they are 

ON or OFF as well as their head pressure) and the percentages of water delivered to the demand 

nodes within its chromosome. 

In this technique, the constant-demand periods are extracted by using piecewise linear-

approximation over the original demand profile (i.e., the total discharge flow at the QE pumping 

station). The network operation is captured and then separated over the piecewise linear regions 

as operating-modes. Each operating-mode contained information on discharge flow and head 

pressure, and is represented by a string of 11-elements. This new representation is then applied to 

the Saskatoon West WDS (as illustrated in Figure 5.26). Here, the first two elements indicate the 

status of the two duty pumps at the QE station (1 if the pump is ON or 0 if it is OFF), followed by 

two elements indicating the two pumps’ head pressures. Similarly, elements 5 and 6 indicate the 

operating status of the booster pump at the Aurora pumping station. The rest of the string, 

elements 7 to 11, contains the percentage (corresponds to valve settings) of flow delivered to the 

demand nodes (i.e., Corman Park, PCS Cogen, PCS Cory, Village of Vanscoy, and Agrium). 

Table 5.6 summarizes the description of the 11-elements operating-mode string. 

Next, to represent the pumping operations over a period of one month, a set of 168 

operating-modes23 are combined (in series) to construct what is known as a chromosome (i.e., 

each chromosome represents an initial candidate solution used by the optimization algorithm). 

Herein, each operating-mode string is referred to as a gene. Each gene in the chromosome is 

represented by an index (i.e. pointer) that refers to a certain operating mode extracted and stored 

in the library from the true network operation (a complete description of the library is presented 

in the following subsection). Finally, a set of 100 chromosomes24 are constituted the population 

(i.e. swarm) in the proposed APC-MOPSO (as illustrated in Figure 5.27). 

 

1 1 241 241 1 100 6.8 452.5 524.9 17.7 410.3 

P1 P2 Head1 Head2 P3 Head3 Corman Cory Cogen Vanscoy Agrium 

Figure 5.26: An Example of the Operating-Mode String 

 

                                                 
23 For an hourly basis and for a one week period of pumping operation, each chromosome 

should have 24 hrs x 7 days = 168 genes is the length of each chromosome. 
24 According to the sensitivity analysis performed for the APC-MOPSO, the population 

size of 100 individuals performs well for the most multi-objective optimization problems. 
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Figure 5.27: Examples of the Chromosomes Constructed Using OMP Technique 

 
Table 5.6: Description of Operating-Mode String 

Location Remark 

1 Status of duty pump 1 at QE pumping station (1 = On, 0 = OFF) 

2 Status of duty pump 2 at QE pumping station (1 = On, 0 = OFF) 

3 Head pressure at duty pump 1 at QE pumping station (psi) 

4 Head pressure at duty pump 2 at QE pumping station (psi) 

5 Status of duty pump 3 at Aurora pumping station (1 = On, 0 = OFF) 

6 Head pressure at duty pump 3 at Aurora pumping station (psi) 

7 Percentage of demand flow delivered to Corman Park (L/min) 

8 Percentage of demand flow delivered to PCS Cory (L/min) 

9 Percentage of demand flow delivered to PCS Cogen (L/min) 

10 Percentage of demand flow delivered to Village of Vanscoy (L/min) 

11 Percentage of demand flow delivered to Agrium (L/min) 

5.3.2 Operating-Mode Pointer: Library 

In the new Operating-Mode Pointer (OMP), two libraries are proposed. The first library 

is designed to store the proven operating-modes that are originally extracted from the network 

profile, and the second library is created to archive new operating-modes produced by the 

proposed APC-MOPSO. 

For the new energy optimization strategy, the discharge flow, pressure, and tank water 

level are recorded over 90 days by using SCADA systems. Figure 5.28 (a) shows the 

implementation of the piece-wise linear approximation on the original demand profile from 

March 1st to June 1st 2011 (2256 hrs). Figure 5.28 (b) and (c) depict the operating-modes 

obtained for one month (720 hrs) and one week (168 hrs), respectively. The operating-modes for 

the first operational day are shown in Figure 5.28 (d). Examples of the information (e.g., the 

discharge flow for the pumps and the water volume supplied for each demand nodes) obtained 

from the operating-modes are contained in Tables 5.7 and 5.8 (i.e., for the first 24 hour of the 
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recorded data). The corresponding pump discharge, pump scheduling, pump combination, and 

demands of the customers are tabulated and provided in Appendix B. 

 

a. 2256 hrs 

  

b. 720 hrs 
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c. 168 hrs 

 

d. 24 hrs 

 
Figure 5.28: Extract the Operating Modes from the QE Total Supplied Profile Using Piece-wise 

Linear Approximation (March – May 2011) 

 

Table 5.7: Operating-Modes for the Duty Pumps at QE Pumping Station for 24 Hours 
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Operating-Mode 

Pointer 

Time Period Discharge Rate(L/min) 

From To 1 2 

1 Day 1 11:00 AM Day 1 1:00 PM 5516 5516 

2 Day 1 1:00 PM Day 1 2:00 PM 5291 5291 

3 Day 1 2:00 PM Day 1 8:00 PM 5308 5308 

4 Day 1 8:00 PM Day 1 10:00 PM 5542.5 5542.5 

5 Day 1 10:00 PM Day 1 11:00 PM 5442 5442 

6 
Day 1 11:00 PM 

Day 1 6:00 AM 

Day 1 12:00 AM 

Day 1 8:00 AM 
3940 3940 

7 Day 1 12:00 AM Day 1 1:00 AM 3326 3326 

8 
Day 1 1:00 AM 

Day 1 4:00 AM 

Day 1 2:00 AM 

Day 1 5:00 AM 
2798 2798 

9 Day 1 2:00 AM Day 1 4:00 AM 1683 1683 

10 
Day 1 5:00 AM 

Day 1 8:00 AM 

Day 1 6:00 AM 

Day 1 9:00 AM 
1623 1623 

11 Day 1 9:00 AM Day 1 11:00 AM 3556 3556 

 

Table 5.8: Operating-Modes for the Demands Nodes at First 24 Hours 

Operating-Mode 

Pointer 

Demand Flow (L/min) 

Corman 

Park 
PCS Cory PCS Cogen 

Village of 

Vanscoy 
Agrium 

1 53.0 3534.6 4101.7 137.9 3204.8 

2 50.8 3390.5 3934.4 132.3 3074.1 

3 51.0 3401.4 3947.0 132.7 3084.0 

4 56.6 3782.3 4389.1 147.6 3429.4 

5 52.2 3487.2 4046.7 136.1 3161.8 

6 37.8 2524.8 2929.8 98.5 2289.1 

7 31.9 2131.3 2473.2 83.2 1932.4 

8 26.9 1793.0 2080.6 70.0 1625.6 

9 16.15 1078.5 1251.5 42.1 977.8 

10 15.6 1040.0 1206.9 40.6 943.0 

11 34.1 2278.6 2644.2 88.9 2066.0 

5.4 Selecting-Best-Operating Point Technique (SBOP) 

In water distribution systems, pumps operate on a continuous basis, 24 hours a day and 

365 days per year. Their operation entails heavy use of energy, which relates to their total 
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operational costs. The costs of pumping usually account for 60 to 80% of the total operational 

cost of water distribution systems, and the average pump efficiency is estimated to be below 40%, 

[287]. Furthermore, many pumps in water distribution systems are run at operating points that are 

varied over the course of the day. A simple and useful kind of analysis for a pump can be done by 

calculating the pump production versus time of day and compare it with the discharge rate at the 

pump’s BEP. Figure 5.29 illustrates an example of a pump discharge over a two-day period. If the 

pump’s BEP is approximately 400 gpm, then the pump is running efficiently. If, however, the 

pump’s BEP is 600 gpm, then the pump is not running efficiently and is wasting energy. 

Therefore, correcting pump operation (i.e. make the pump operates closer to its best efficiency 

point (BEP)) can reduce costs in terms of energy usage and maintenance requirements. 

 

 

Figure 5.29: An Example of Pump Operates Away from its BEP 

 

In this work, a new post-processing technique, referred to as Selecting-Best-Operating 

Point (SBOP) is proposed to provide solutions that are: 

 more efficient in terms of energy costs; and 

 not only satisfying the hydraulic constraints of the system, but also has operating points close 

to the best efficiency point (BEP). 

The proposed SBEP technique is described in the following sections. 

5.4.1 Reliability Curve 

In a water distribution system, the definition of reliability is given as the probability of a 

pump to perform its prescribed duty (i.e., pump-schedule) without failure over a specified period 

of time and under pre-specified conditions, [288]. 
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Figure 5.30 illustrates the concept of the proposed Selecting-Best-Operating Point 

(SBOP) by introducing a new curve referred to as the Reliability Curve that is superimposed on 

the pump-system characteristic curve. In this figure, the area under the reliability curve is divided 

into three regions that are the target region (-10% to 5% of the BEP), re-consider region (-20% to 

10% of the BEP), and avoid region (-30% to 15% of the BEP). The preferred pump operations are 

obtained when they are in the target region and close to the BEP. 

When a complete set of optimized solutions25 is obtained, the proposed Selecting-Best-

Operating Point (SBOP) is applied to move their operating points to the target region. For each 

solution, the proposed SBOP started by evaluating the operating point of each operating-mode 

(i.e., finding out how far the operating point is from the BEP). Then, SBOP classified each 

operating-mode as to whether it belonged to avoid, re-consider, or target regions. For each 

solution and after evaluating and classifying all operating-modes, three actions are taken: (1) if 

the operating point of an operating-mode is located in the target region, then, the operating-mode 

is accepted, (2) if the operating point is found to be in the avoid region, then, it is eliminated, and 

(3) if the operating point belonged to the re-consider region, then the SBOP uses one of the two 

new schemes referred to as the Speed-up and the Speed-down. These two schemes change the 

pump speed (RPM) in order to move the pump operating point close to the BEP. The pseudo-

code for the proposed SBOP technique is given in Table 5.9. 

 

 

Figure 5.30: The Characteristics of Reliability Curve 

 

                                                 
25 A set of optimized solutions (i.e., pump(s) schedules) is mainly the solutions produced 

by the APC-MOPSO with SFG and OMP techniques. Each solution consists of a number (i.e., 

varies for each solution) of different operating-modes over the duration of 168 hrs. 
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Table 5.9: Pseudo-code of the Proposed Selecting-Best-Operating Point Technique 

From the optimization algorithm, 

 A set of pumping operations are produced over certain durations. 

From the Selecting-Best-Operating Point (SBOP), 

for each pumping operation  

     DO 

 Evaluate how far its operating point from the BEP 

 Check on which region the operating point belongs 

       if the operating point is located in the avoid region, then, rejects that operation 

       else if the operating point is located in the target region, then, accepts that operation 

       else if the operating point is located in the re-consider region, then apply Speed-up or 

Speed-down approaches 

end for 

 
For the Saskatoon West WDS, the regulations provided by Sask-Water including the 

range of the head pressure at the QE pump station [180-220 psi] and the nominal pump speed of 

1770 rpm, provides an opportunity to implement the proposed Speed-up and Speed-down 

approaches. Figure 5.31 illustrates the relationship between the pump’s head and discharge (with 

respect to its speed. As shown in this figure, the range of required pump speed can vary between 

1200 to 2200 rpm. This speed range is wide enough for the Speed-up and Speed-down to shift the 

operating points towards the BEP. Similarly, Figures 5.32 and 5.33 show head-discharge-speed 

relationship for the jockey pump at the QE pump station and for the pump at the Aurora pump 

station. The corresponding values of head, discharge, and speed for the pumps are provided in 

Table 5.10. The Speed-up and Speed-down schemes are explained next. 

 

 
Figure 5.31: Characteristics Curves for the Pumps at the QE Pumping Station [180–220 psi] 
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Figure 5.32: Head-Flow-Speed Relationship for the Jockey Pump at the QE Pumping Station 

[180–220 psi] 

 

 

Figure 5.33: Head-Flow-Speed Relationship at Aurora Pumping Station [110–150 psi] 

 
Table 5.10: Estimated Pumps Characteristics at the QE and Aurora Pump Stations 

Station 
Head (ft) Discharge (igpm) Speed (RPM) 

From To From To From To 

QE Duty Pumps 420 513 622 634 1479 1631 

QE Jockey Pump 420 513 116 167 1973 2127 

Aurora Duty Pump 257 350 483 490 1287 1501 

Aurora Jockey Pump 257 350 483 490 1287 1501 
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5.4.2 Speed-up and Speed-down Schemes 

The idea behind the post-processing Speed-up and Speed-down schemes is to move the 

operating point of a pump towards its best efficiency point (BEP) by either increasing or 

decreasing its speed (RPM). 

The proposed Speed-down scheme is applied when the operating point produced by the 

optimization algorithm is in the re-consider region of the reliability and has a flow rate bigger 

than that of the BEP’s. Hence, the action of lowering the pump speed (RPM) is required to bring 

that operating point closer to the BEP. In contrast, the speed-up scheme is triggered when the 

operating point belongs to the re-consider region of the reliability curve and has a flow rate that is 

less than that of the BEP’s. Then, an action of increasing the pump speed (RPM) is required to 

shift that point towards the BEP. The mathematical formulations for the two approaches are 

explained as follows. 

Pump head can be approximated as a function of speed (RPM) by a quadratic equation:              5.4 

At the QE pumping station, two identical duty pumps are used in parallel, hence, the 

pump equation can be specified as:     (  )    (  )    5.5 

At the BEP, the above equation can be written as:        (     )    (     )    5.6 

If the pump operates at a discharge flow different from QBEP, then by applying the 

Affinity Laws26, [289]:                                    (          )          5.7 

where    is tha Affinity ratio 

Then, Eq. (5.7) can be re-written as:        (         )    (          )    
 

    (     )    (     )           5.8 

Write the above equation for Sr: 

                                                 
26 The affinity laws are used to describe the relationship between variables involved in 

pumps such as head, flow rate, efficiency, speed, and power. They are used to predict the head-

discharge characteristic of a pump from a known characteristic measured at a different speed or 

impeller diameter. The only requirement is that the two pumps must be dynamically similar. 
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 ̂      ̂     ̂        5.9               ̂             ̂             ̂   (  )    5.10 

Sovling the quatratic equation, Eq. (5.9), yields:      ̂  √ ̂     ̂  ̂  ̂  5.11 

Sr is re-calculated whenever the operating point, produced by the optimization algorithm, 

belongs to the re-consider region of the reliability curve. Figure 5.34 shows the flowchart of the 

proposed Speed-up and Speed-down schemes. 

To apply the Speed-up and Speed-down schemes to the pumps at the Saskatoon West 

WDS, some of the pump congfiguration parameters need to be determined, including pump 

coefficiencts and pump head, discharge, and speed at its BEP. Table 5.11 provides the values of 

the parameters for the pumps at the system. 

 

Table 5.11: Configuration Parameters for the Pumps at the Saskatoon West WDS 

Pump 

Coefficients Characteristics at BEP 

a b b Head (ft) 
Discharge 

(igpm) 

Speed 

(RPM) 

QE Duty Pumps 0.2267 -1.179E-04 587.53 550 922 1770 

QE Jockey Pump 0.0864 -9.808E-04 290.29 300 199 1170 

Aurora Duty Pump 0.1388 -8.967E-05 416.199 400 1400 1750 

Aurora Jockey Pump 0.1388 -8.967E-05 416.199 400 1400 1750 
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Figure 5.34: The Mechanism of Using Speed-up and Speed-down Schemes 

5.5 Conclusion 

The convergence proof of the current heuristic search algorithms toward the Pareto-

optimal front of multi-objective optimization problems is given in Chapter 4. Therefore, the focus 

of the research is directed to obtain a finite set of non-dominated solutions that capture the entire 
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front region by using what is referred to as the Gaps Free (or ’tight’) techniques. Although several 

archiving strategies are proposed for obtaining a finite set of Pareto-optimal front, the strategies 

do not guarantee a gap free of their front sets. That is, in this work, a new Searching-for-Gaps 

(SFG) is proposed to use an auxiliary external repository with an adaptive grid archiving for 

obtaining Pareto-front solutions that cover the entire global regions. The results demonstrated the 

effectiveness of the APC-MOPSO with SFG, and showed well how the diversity and the 

distribution capability are improved. 

In water distribution systems, it is very difficult and not practical to achieve increases of 

the operational efficiency and/or reductions of the operational costs by means of physical 

modifications in the facilities. Operating-Mode Pointer (OMP) is proposed to be a technique that 

practically guarantees obtaining of efficient pumping operations in terms of effective-cost, safety 

and reliability. 

In pumping stations, several problems can result when pumps operate away from their 

BEP. These problems are attributed to maintenance cost, operational costs, and the costs 

associated with wasted energy. The Selecting-Best-Operating Point (SBOP) is proposed to 

enhance the reliability of the optimized operating-modes in terms of flow rate, head pressure, and 

speed. 
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Chapter 6 

Energy Optimization Strategy 

As time goes on, more and more operating-modes based on changing demand profiles 

will be compiled to enrich the range of feasible solutions for a water distribution system. This 

implies the conservation of energy consumed by a water pumping station and improves the ability 

for energy optimization. Another important goal is improving safety, reliability, and maintenance 

cost. In this work, three important goals are addressed: cost-effectives, safety, and self-

sustainability operations of water distribution systems. 

In this dissertation, the objectives to optimize are: electrical energy consumption; total 

number of pump switches; cost of maximum power peak; reservoir water level variation; and 

water quality while preserving the service provided to water users. 

To accomplish these goals, the new energy optimization strategy of Adaptive Parallel 

Clustering-based Multi-objective Particle Swarm optimization (APC-MOPSO) with Searching-

for-Gaps (SFG), Operating-Mode Pointer (OMP), Selecting-Best-Operating-Point (SBOP), and 

Modified EPANET is used. The strategy resulted in a Pareto-front with solutions that are 

quantitatively equally good. This provides the decision maker at the water distribution system 

with the opportunity to qualitatively compare the solutions before their implementation into 

practice. 

In this chapter, the energy optimization strategy for WDS and its main components are 

first presented. Section 6.2 describes the characteristics of the Saskatoon West WDS components: 

consumption profile, demand profiles, pump discharge, pump efficiency, the derivation of the 

classical demand-head-driven analysis related to the pump operations, and reservoir level over the 

week of Tuesday March 1st 2011. This is followed by investigating, discussing, and comparing 

the optimization results obtained for the case study considered in this work with experimental 

data. 
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6.1 Approach Proposed in this Thesis 

The multi-objective optimization approach developed in this dissertation follows modern 

applications that combine an optimization algorithm with a network simulation model by using 

full hydraulic simulations and distributed demand models, [290]. Figure 6.1 shows the 

architecture of the proposed optimization system for the system-operating problem27. The input to 

the system includes both a complete model of the water distribution system as well as its demand 

profiles over the period of optimization. The Operating-mode Pointer (OMP) and the 

optimization algorithm, the Adaptive Parallel Clustering-based Multi-objective Particle Swarm 

Optimization algorithm (APC-MOPSO) with Searching-for-Gaps (SFG), then generate candidate 

solutions (pump schedules). These are in turn evaluated by the hydraulic simulation, EPANET, to 

satisfy the system and operation constraints (e.g., node pressure and pump discharge) as well as 

the constraint violations. 

In this architecture, the optimization algorithm is independent from the hydraulic 

simulator (i.e., modifications to either of them do not imply changes to the other). Selecting-Best-

Operating Point (SBOP) is applied to modify the optimized operating-modes in terms of pump 

characteristics such as head pressure, discharge, speed, and efficiency. 

 

 

Figure 6.1: Schematic Diagram of Energy Optimization System 

                                                 
27 The term “system-operating problem” is used to denote the combination of pump-

scheduling and reservoir-operating problem considered in this work. 
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6.2 Saskatoon West WDS: Current Operating Scenario 

In Chapter 3, a mathematical model of the Saskatoon West WDS has been outlined and 

verified based on field data provided by Sask-Water. The model is used to simulate the network’s 

hydraulic behavior and to analyze its pumping operations over the three-month period starting 

from March to May 2011. The current operating scenario (i.e., within a three month period) is 

analyzed and used to extract the operating-modes as previously explained in Chapter 5. A total of 

297 operating-modes are extracted, each containing the status of all system components at that 

time. 

In this work, the energy optimization strategy is applied over a period of one week from 

1st to 7th March 2011. The total supplied profile for this week is measured as illustrated in Figure 

6.2. 

 

 

Figure 6.2: Total Volume of Water Supplied at QE Pumping Station (1st-7th March 2011) 

 

Hourly-based customer consumption profiles are derived using the total water supply 

profile (i.e., shown above). The percentage of monthly consumption of each of the main clients is 

listed in Chapter 3 (see Table 3.17). The weekly demand profiles for the customers are 

summarized in Figures 6.4, 6.5, and 6.6. 
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Figure 6.3: Demand Profile of Agrium (1st to 7th March 2011) 

 

 

Figure 6.4: Demand Profile of PCS Cory (1st to 7th March 2011) 
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Figure 6.5: Demand Profile of PCS Cogen (1st to 7th March 2011) 

 

 

Figure 6.6: Demand Profiles of Corman Park and Vanscoy Villa (1st to 7th March 2011) 
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Figure 6.7: Pumps Flow Rates at QE Pumping Station (1st to 7th March 2011) 

 

 
Figure 6.8: Pumps Efficiency for the Duty Pumps (1st to 7th March 2011) 
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pumps at the QE station and between 110-150 psi for the pumps at the Aurora station (as shown 

in Figures 5.31 and 5.32). 

Figures 6.9 to 6.12 show the fluctuation in the water level of the main four tanks at 

Agrium, the Villa of Vanscoy, PSC Cory, and Corman Park. For each tank profile, a dashed line 

is used to indicate its maximum allowable capacity. 

 

 

Figure 6.9: Reservoir Level at Agrium (1st to 7th March 2011) 
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Figure 6.11: Reservoir Level at PCS Cory (1st to 7th March 2011) 

 

 

Figure 6.12: Reservoir Level at Corman Park (1st to 7th March 2011) 
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6.3 Energy Optimization Strategy: Results and Analysis 

The energy optimization strategy is applied to the Saskatoon West WDS to determine the 

optimal pumping-operation schedule and analyze some important factors in pump maintenance 

and reliability. 

The proposed APC-MOPSO algorithm combined with EPANET, Operating-Mode 

Pointer (OMP), and Selecting-Best-Operating Point (SBOP) has to be tested on the hydraulic 

model of the Saskatoon West WDS. 

A reduction of approximately 7 to 14% in total operation cost is targeted after applying 

the proposed energy optimization strategy. Accordingly, changes in the amount and the profile of 

the consumers’ demand are considered without affecting their consumption profiles. This change 

is possible because of the availability of reservoirs that allow the customers to store water and 

consume it later. 

In this work, a case study is investigated as explained in the following sections. 

6.3.1 Setup 

To overcome the problem of defining network boundary and operational conditions, it is 

important to plan pumping operations for more than one day, [192]. Planning pumping operations 

for multiple days is useful for systems with tanks that are large enough to hold significant storage 

volumes (e.g., in Saskatoon West WDS). In such situations, water can be stored when pumps are 

turned ON, and the tanks can be emptied when pumps are turned OFF without affecting the 

consumption profile of the customers. Hence, for the Saskatoon system, results are obtained for 

168 fixed time intervals of 1 hour28. 

For the case scenario, each run is conducted using the values of the APC-MOPSO 

parameters described in Chapter 4 (see Tables 4.2, 4.3, and 4.4) and a different randomly selected 

initial population of 100 candidate solutions is chosen. Moreover, each run using APC-MOPSO 

and EPANET is evaluated for 100 generations and the subsequent results are used for comparison 

purposes. The parameters of the system-operational problem considered in this work are based on 

technical characteristics of the main pumping stations of the Saskatoon West WDS, and described 

in Table 6.1. All experiments are run on a Pentium D (2.8 GHz) with 2 GB Ram using 

GNU/WINDOWS 7. 

 

                                                 
28 For 5 pumps and 168 time intervals, the number of possible potential solutions (i.e., 

possible ways of pump combination) is found to be              which defines the search 

space of the problem. 
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Table 6.1: Technical Characteristics and Parameters of Saskatoon West WDS 

Chlorine Concentration (mg/L) 

Junction Node Range* 

Corman Park [0.27 – 51] 

PCS Cory [0.3 – 0.6] 

Village of Vanscoy [0.2 - 0.41] 

Agrium [0.23 – 0.25] 

Reservoir Water Level (ft) 

Reservoir Initial Level 

Corman Park 4.9 

PCS Cory 8.2 

Village of Vanscoy 4.5 

Agrium 20 

QE Pumping Station 

Parameter Status 

Discharge Rate 
 Flow rate is evenly divided when two duty pumps 

are working at the same time interval 

Number of Pump switches 
           

Pumping-operation  Two pumps are working for each time interval 

Aurora Pumping Station 

Parameter Status 

Pumping-operation  One pump is working for each time interval 

Number of Pump switches 
           

Hydraulic Model (EPANET) 

Component Description 

Pumps  Each pump is assigned to a H-Q curve 

Junction Nodes  Each node is assigned to demand pattern 

Electricity Tariff Period 
 168 hours starting at 11:00 am and ending at 10:00 

am 

* The range is determined based on the flow rate range of [1000 gpm – to- 2000 gpm] 

 

The details of the case study and the analysis of its optimized results are thoroughly 

presented as follows. 
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6.3.2 Case Study 

In this case study, the system-operational problem is set as a multi-objective optimization 

formulation that tries to determine the most economically effective pumping operation for the 

Saskatoon West WDS. These objectives include:  

 minimizing the electrical energy cost; 

 minimizing the total number of pump switches (i.e., reducing maintenance cost); 

 minimizing the cost of maximum power peak (i.e., reducing demand charge) 

 minimizing the reservoir water level variation (i.e., enhancing network reliability); and  

 minimizing the free chlorine residual (i.e., improving water quality). 

Given multiple competing objectives, it is not possible to improve one objective (e.g., 

reduce the risk of not meeting demands, network reliability) without making at least one of the 

other objectives worse (e.g., increasing electrical energy cost and/or the cost of maximum power 

peak). 

The mathematical formulation for the five objectives is provided in Chapter 3. An 

optimization period of one week is considered starting from Tuesday 11:00 am. 

The trade-off between the electricity cost, cost of maximum power peak, maintenance 

cost, network reliability, and water quality is analyzed and presented in more detail for the 

Saskatoon West WDS as follows. 

6.3.2.1 Optimization Results 

To compare the solutions for the Saskatoon West WDS obtained by the energy 

optimization strategy, the range of corresponding objectives values of electrical energy cost ($), 

number of pump switching, cost of maximum power peak ($), reservoir level (ft), and chlorine 

concentration (mgL) need to be identified for all solutions. Accordingly, Table 6.2 provides the 

range of each objective. 

Amongst the solutions29 provided, fifteen solutions are then selected to evaluate and 

analyze the performance of the proposed strategy. Therefore, there is a need for a criterion that 

identifies and labels the solutions based on their values with respect to each objective. And thus, a 

statistical criterion is applied to select three solutions for each objective based on their highest, 

median, and lowest corresponding values. A set of fifteen solutions is then used to make the 

comparison and the discussion of the experimental results for this case study. 

For the first set of solutions (solutions 1, 2, and 3), the whole solutions are sorted based 

on their electrical cost. Three solutions are then selected: one that has the highest electrical cost, 

                                                 
29 There are 100 solutions obtained by the energy optimization strategy when it is applied 

to the Saskatoon West WDS. 
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one that produced the lowest cost, and one from the median of the cost range. Table 6.3 provides 

not only the electrical costs of these solutions, but also their values with respect to the other 

objectives. 

Similarly, for the second set of solutions, the solutions are sorted according to their 

number of pump switches. Another three solutions (solutions 4, 5, and 6) are selected using the 

statistical criterion mentioned above. Table 6.4 reports the values of these solutions in regards to 

all objectives. The same steps are repeated for the reservoir level (solutions 7, 8, and 9), cost of 

maximum power peak (solution 10, 11, and 12), and chlorine concentration (solutions 13, 14, and 

15). Solutions with the highest (best), the median, and the lowest (worse) values for the three 

objectives are selected. The corresponding values of the solutions (6 to15) are given in Tables 

6.5, 6.6, and 6.7. 

 

Table 6.2: Range of the Experimental Results for the Saskatoon West WDS 

Objective  
Range of the Objective 

From To 

Electrical Energy Cost ($) 2926.6 3138.9 

Number of Pump Switching 73 143 

Reservoir Level Variation (ft) -2.9 3.4 

Maximum Power Peak Cost ($) 1323.5 1405.2 

Chlorine Concentration (mgL) 1.1 2.4 

 

Table 6.3: Experimental Results for the Saskatoon West WDS – Objective 1 

Based on the Range of Electrical Energy Cost 

 Cost of Electrical Energy ($) Cost of Maximum Power Peak ($) 

Solution Label 
Actual 

Cost 

Optimized 

Cost 

Cost 

Saving 

(%) 

Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Highest 1 3315.5 3138.9 5.31 1460.4 1384.6 5.19 

Median 2 3315.5 3020.2 8.91 1460.4 1389.4 4.86 

Lowest 3 3315.5 2926.6.4 11.73 1460.4 1415.5 3.07 

Average 8.65 % Average 4.37 % 
        

Solution Label Number of Pump Switching Reservoir Level (ft) Chlorine Residual (mgL) 

Highest 1 81 3.1 1.3 

Median 2 95 -1.9 1.8 

Lowest 3 131 -2.7 1.4 
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Table 6.4: Experimental Results for the Saskatoon West WDS – Objective 2 

Based on the Range of the Total Number of Pump Switching 

 Cost of Electrical Energy ($) Cost of Maximum Power Peak ($) 

Solution Label 
Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Highest 4 3315.5 2977.7 10.19 1460.4 1395.9 4.42 

Median 5 3315.5 3038 8.37 1460.4 1387.7 4.98 

Lowest 6 3315.5 3106.6 6.3 1460.4 1334.7 8.61 

Average 8.29 % Average 6.0 % 
 

Solution Label Number of Pump Switching Reservoir Level (ft) Chlorine Residual (mgL) 

Highest 4 143 1.1 1.2 

Median 5 95 -1.8 1.9 

Lowest 6 73 2.7 1.5 

 

Table 6.5: Experimental Results for the Saskatoon West WDS – Objective 3 

Based on the Range of the Reservoir Level Variation 
 

 Cost of Electrical Energy ($) Cost of Maximum Power Peak ($) 

Solution Label 
Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Highest 7 3315.5 2998.5 9.56 1460.4 1386.3 5.08 

Median 8 3315.5 3046.3 8.12 1460.4 1392.8 4.63 

Lowest 9 3315.5 3115.2 6.04 1460.4 1398.9 4.21 

Average 7.91 % Average 4.64 % 
 

Solution Label Number of Pump Switching Reservoir Level (ft) Chlorine Residual (mgL) 

Highest 7 122 3.4 1.9 

Median 8 119 0.5 1.6 

Lowest 9 81 -2.9 2.1 

 

Table 6.6: Experimental Results for the Saskatoon West WDS – Objective 4 

Based on the Range of the Maximum Power Peak Cost 

 Cost of Electrical Energy ($) Cost of Maximum Power Peak ($) 

Solution Label 
Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Highest 10 3315.5 3112.6 6.12 1460.4 1405.2 3.79 

Median 11 3315.5 3075.8 7.23 1460.4 1367.7 6.35 

Lowest 12 3315.5 3059.4 7.72 1460.4 1323.5 9.37 

Average 7.02 % Average 6.48 % 
 

Solution Label Number of Pump Switching Reservoir Level (ft) Chlorine Residual (mgL) 

Highest 10 79 -2.7 1.9 

Median 11 88 2.4 1.6 

Lowest 12 113 2.8 2.1 
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Table 6.7: Experimental Results for the Saskatoon West WDS – Objective 5 

Based on the Range of the Chlorine Concentration 

 Cost of Electrical Energy ($) Cost of Maximum Power Peak ($) 

Solution Label 
Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Actual 

Cost 

Optimized 

Cost 

Cost Saving 

(%) 

Highest 13 3315.5 3076.5 7.21 1460.4 1389.9 4.83 

Median 14 3315.5 3087.7 6.87 1460.4 1382.7 5.32 

Lowest 15 3315.5 3082.4 7.03 1460.4 1387.7 4.98 

Average 7.04 % Average 5.03% 
 

Solution Label Number of Pump Switching Reservoir Level (ft) Chlorine Residual (mgL) 

Highest 13 84 2.1 2.4 

Median 14 119 1.7 1.6 

Lowest 15 89 2.9 1.1 

6.3.2.2 Discussion of Results 

The results showed the feasibility of using the APC-MOPSO framework for the 

optimization of system-operating problem. The main aspects needed to implement an APC-

MOPSO algorithm, EPANET, SFG, and SBOP for the Saskatoon West WDS, namely the 

representation of solutions as operating-modes, the reduction in electrical energy consumption, 

the improvement of network reliability, the enhancement of water quality, and the new 

Operating-Mode Pointer (OMP) used by APC-MOPSO to generate new solutions. An extensive 

analysis of the solutions obtained by the energy optimization strategy is carried out, examining, 

and comparing in detail the outcome of each solution with regard to the cost function of the 

problem (i.e., five objectives). By means of statistical criterion, the highest, median, and lowest 

configuration of values pertaining to each objective are selected as solutions in this analysis. One 

conclusion of this analysis is that the five objectives are fundamentally different, a compromise is 

therefore sought which aimed to represent the solution that has the best configuration values on 

one of them has little resemblance with the best values for the others. Hence, from the fifteen 

solutions, solutions 4, 5, and 3 are chosen to investigate the performance of the energy 

optimization strategy. 

The final part of this discussion is to compare the solutions 4, 5, and 3 with their 

corresponding values of electrical energy cost ($), number of pump switching, cost of maximum 

power peak ($), reservoir level (ft), and chlorine concentration (mgL). Table 6.8 shows that 

solution 4 produced lower reservoir level (1.2 ft) and chlorine concentration (1.1 mgL) (i.e., this 

considers better that the optimization problem is designed as a minimization of all objective). 

Whereas there is no significant difference between using solution 4 or the others in terms of 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

274 

energy cost. Therefore, it seems more beneficial to prefer solution 4 for the best result. For the 

rest of this section, the analysis is mainly made on solution 4. 

 

Table 6.8: Summary of Experimental Results 

Solution 
Savings 

in Electricity Cost (%) 

Savings 

in Max. Power Peak Cost (%) 

Improvement 

in Pumping Reliability (%) 

4 10.19 4.42 3.57 

5 8.37 4.98 4.56 

3 11.73 4.17 3.84 

Solution 
Reservoirs Level 

Variation (ft)* 

Chlorine Concentration Range 

(mg/L)** 

Total Pump Switches 

Range*** 

4 1.2 1.1 143 

5 -1.8 1.9 95 

3 -2.7 1.4 131 

* Small variations do not make solutions unacceptable [200] 

** The range of chlorine concentration at demand nodes is set to [1.1 mg/L –to- 2.47 mg/L] 

*** The total allowable pumps switches considered in this work is equal to 420 times 

 

To ensure the hydraulic periodicity of the Saskatoon West WDS, the reservoirs must 

finish their optimization period at the same level from which they started. In this work, the 

differences between initial and final levels in all reservoirs are determined and shown in Figures 

6.13 to 6.16. It should be noted that the reservoir level that is largely affected is that of Agrium 

(see Figure 6.14) due to its large storage capacity. Also, it is important to mention that the 

capacity constraints of this reservoir (and other reservoirs in the network) are not exceeded. For 

all reservoirs, the initial levels are restored at the end of the optimization period of time. 
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Figure 6.13: Optimized Reservoir Level for PCS Cory (One-Week) 

 

  

Figure 6.14: Optimized Reservoir Level for Agrium (One-Week) 
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Figure 6.15: Optimized Reservoir Level for Corman Park (One-Week) 

 

 

Figure 6.16: Optimized Reservoir Level for Vanscoy Villa (One-Week) 
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The corresponding pump discharge, node pressure, pump scheduling, and operating-

modes for the optimized solutions are tabulated and provided in Appendix C. The pressure and 

flow rate at demand nodes and pumping stations are shown in Figures 6.17 and 6.18. It should be 

noted that under the optimized pump schedules, both the consumption profile of the customers as 

well as the reservoirs constraints are not violated. Furthermore, for all solutions obtained by APC-

MOPSO, EPANET simulations confirm that the pressure constraints are satisfied. 

 

  

a. Pressure at QE Pumping Station b. Pressure at Aurora Pumping Station 

  

c. Node Pressure at Corman Park  d. Node Pressure at PCS 
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e. Node Pressure at Villa of Vanscoy  f. Node Pressure at Agrium 

Figure 6.17: Corresponding Nodes Pressures for the Optimized Operating-Modes 

 

  

a. Discharge at Pump 1 at QE Station b. Discharge at Pump 2 at QE Station 
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e. Discharge at Pump 2 at Aurora Station 

Figure 6.18: Corresponding Pumps Discharge for the Optimized Operating-Modes 

 

Changing the demand profile of the customers is considered as one of the cost-effective 

factor that reduces the energy costs. The revised demand profiles of the five major customers are 

illustrated in Figures 6.19 to 6.22. 

 

 
Figure 6.19: Revised Demand Profiles of Corman Park and Vanscoy Villa (One-Week) 
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Figure 6.20: Revised Demand Profile of PCS Cogen (One-Week) 

 

 

Figure 6.21: Revised Demand Profile of Agrium (One-Week) 
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Figure 6.22: Revised Demand Profile of PCS Cory (One-Week) 

 

Figure 6.23 shows the pump schedules obtained from solution 3 for the Saskatoon West 

WDs using a constraint of 420 pump switches. 
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: Pump is OFF 

: Pump is ON 
 

 Pump Schedules extracting from Solution 1 

e. Standby Pump at Aurora Pumping Station 

Figure 6.23: Pump Schedules for the Saskatoon West WDS – Solution 4 

 

To illustrate the advantages of implementing Selecting-Best-Operating Point (SBOP) 

technique, Table 6.9 and Figure 6.24 together show the number of modified operating-modes for 

the fifteen solutions specified in this case, and the changes that take place on the discharge profile 

for the two duty pumps at QE. Figure 6.24 shows the changes in the pumps discharge over the 

optimization period obtained by solution 4 (e.g., pumps 1 and 2 at the QE pumping station). 

 

Table 6.9: Implementing SBOP Method on the Selected Fifteen Solutions 

Solution  
Number of 

Operating-Modes 

Number of Modified 

Operating-Modes 

Improvement 

% 

1 104 4 3.84 

2 115 6 5.22 

3 123 13 10.57 

4 112 5 3.57 

5 132 6 4.56 

6 112 13 11.6 

7 131 4 3.05 

8 121 6 4.96 

9 104 13 12.5 

10 101 4 3.96 

11 115 6 5.22 

12 108 13 12.04 

13 121 7 5.79 

14 111 8 7.21 

15 117 5 4.27 
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a. Pump Flow 

without SBOP 

 

b. Pump Flow 

with SBOP 

 

 

Figure 6.24: Optimized Discharge Rate at QE Pumping Station - Solution 4 
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point made in this chapter is that the application of the energy optimization strategy has potential 

savings with the goal of further improving the safety and reliability of the operating-modes. 

6.4 Conclusion 

In 1980s and 1990s, most pump-scheduling models only considered the objectives of 

minimizing the energy-consumption cost and the maintenance cost, [192,187,291]. While recent 

optimization methodologies consider goals other than the aforementioned objectives for pump-

scheduling problems, including network reliability, cost of maximum power peak, system 

rehabilitation30, water quality, and tank capacity and operation, [200,205,292,293,190,294]. In 

this work, the system-operational problem is formulated using five objectives that are: the 

electrical energy cost, the cost of maximum power peak, the total number of pump switches, 

network reliability, and water quality. Moreover, the hydraulic analysis of the Saskatoon West 

WDS for the demand pattern and pump combinations is performed using EPANET. The APC-

MOPSO algorithm is then used to search for approximately optimal solutions. It is implemented 

by using a combination of MATLAB and C++ codes. 

Due to the problem of the high dimensionality, the proposed energy optimization strategy 

is implemented for an optimization time period of one week (168 hours). However, the proposed 

strategy can be applied to a longer optimization. 

Selecting-Best-Operating Point (SBOP) is used to correct inefficiencies in pump 

operation and the necessary calculations to compute the head-discharge-speed-efficiency 

relationships. The results of these calculations showed that variable-speed pumps operate 

efficiently over the full range of speeds. It should be noted that the changes in head and discharge 

cause minor degradation in the optimality of the solutions obtained by the energy optimization. 

The results of the compromised best three solutions show potential for considerable cost 

reductions in electricity and maximum power peak costs (see Table 6.8). The implementation of 

the APC-MOPSO, SFG, SBOP, and a novel Operating-Mode Pointer (OMP) on the Saskatoon 

West WDS improve its total operational costs by using the pump schedules. 

Finally, using the potential savings for the month of March 2011, the projected reduction 

in the total energy cost in 2011 is as follows: (using the savings obtained by solution 4) 

 

 

 

 

                                                 
30 System rehabilitation is defined as the application of repairing, renewing, and replacing 

the infrastructure (e.g., pipes, valves, etc.) of water distribution systems and wastewater collection 

systems to return its functionality. 
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Table 6.10: Projected Savings for the Total Energy Cost for the Saskatoon West WDS in 2011 

Annual Total Energy Cost ($) Projected Saving ($) Monthly Cost ($) Projected 

Monthly 

Saving ($) 
Month 

Electrical 

Energy 

Max. Power 

Peak 

Electrical 

Energy (10.19%) 

Max. Power 

Peak (4.42%) 

Actual 

Cost 

Projected 

Cost 

JAN 16,817 6,589 1714 291 27,142 24,739 2,403 

FEB 17,602 6,212 1794 275 27,614 25,136 2,478 

MAR 14,339 6,259 1461 277 23,899 21,815 2,084 

APR 17,785 5,680 1812 251 27,210 24,740 2,471 

MAY 14,408 5,772 1468 255 23,416 21,350 2,066 

JUN 16,438 6,463 1675 286 26,559 24,209 2,350 

JUL 15,327 5,999 1562 265 24,740 22,550 2,190 

AUG 14,661 5,767 1494 255 23,703 21,606 2,096 

SEP
*
 13,150 9,245 1340 409 25,975 23,870 2,104 

OCT
*
 13,551 8,781 1381 388 25,902 23,775 2,127 

NOV
*
 17,388 5,767 1772 255 26,852 24,425 2,427 

DEC
*
 17,005 5,535 1733 245 26,142 23,774 2,368 

Total 188,470 78,068 19,205 3,451 309,154 281,989 27,166 

* Note that the electricity bills for the months of September, October, November, and 

December are not available and have been estimated using the bills of the previous year with a 

reasonable adjustments. 
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Chapter 7 

Summary, Conclusions & Future Considerations 

This dissertation is concerned with the development of a practical and efficient energy 

optimization strategy for rural water distribution systems. The work can be divided into six main 

parts: first, the fundamentals of water distribution systems; second, the formulation of system-

operation as a constrained multi-objective optimization problem; third, the development of the 

APC-MOPSO approach and its application to well-known benchmark test problems; fourth, the 

development of auxiliary techniques that are integral to the APC-MOPSO algorithm, including 

operating-mode pointer, searching-for-gaps, and selecting-best-operating point; fifth, the 

application of energy optimization strategy to the Saskatoon West WDS; and sixth, the exhaustive 

experimental analysis and comparison of collected results. A conclusion to these parts are 

summarized as follows. 

7.1 Fundamentals of Water Distribution Systems 

Chapter 3 starts by giving an overview of the main elements in water distribution 

systems, defines the nature, functions, and purposes of water distribution system modeling. This 

chapter is structured to explain the fundamental of modeling and simulating of water distribution 

systems. 

Saskatoon West Water Distribution System is a rural water distribution system used for 

the proposed energy optimization strategy. This system has all the typical features of a water 

distribution system, yet is small enough to provide a tangible test case. 

7.2 Formulation of System-Operational Problem 

The formulation of a system-operational problem is explained in Chapter 3. The 

formulation of the objective functions and the constraints are presented. The cost function 

includes the consideration of electrical energy cost, total number of pump switches (i.e., 

maintenance cost), cost of maximum power peak (i.e., demand charge), network reliability (i.e., 

reservoir water level variation), and water quality (i.e., free chlorine residual). Chapter 3 also 
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summarized improvements to the hydraulic simulator, EPANET, for its use in optimization 

within a MATLAB framework. 

7.3 Development of APC-MOPSO Algorithm 

A new Adaptive Parallel Clustering-based Multi-objective Particle Swarm Optimization 

(APC-MOPSO) algorithm is proposed in Chapter 4. The proposed algorithm is distinguished 

from today’s MOEAs and MOPSOs by having a set of new features, including a dynamic model 

to update the position and velocity of flying particles, an adaptive mutation operator, an adaptive 

variable-size of repository, an adaptive mutation model, a migration process to exchange the good 

particles amongst the sub-swarms, an adaptive search space boundary, and adaptive social, 

cognitive, contiguous, position, and velocity factors. In addition to these new features, a parallel 

computing process is proposed to perform concurrent searches using several subgroupings of the 

population (i.e., sub-swarms) to obtain non-dominated solutions to broadly cover the search 

space. The proposed APC-MOPSO is then tested to verify its performance using fifteen well-

known benchmark problems and four different performance metrics. 

7.4 Development of Auxiliary Techniques 

Searching-for-Gaps (SFG) is a technique proposed in Chapter 5 to improve the 

performance of the APC-MOPSO when solving multi-objective real-world problems. This is 

achieved by incorporating a new adaptive grid scheme as well as a secondary external repository. 

Accordingly, the search space is divided into hyper-cubes and non-dominated solutions in each 

cube are counted. Then, the secondary repository is used to archive the neighborhood best 

solutions that APC-MOPSO finds at each iteration which in turn used to cover the entire global 

fronts. 

Based on the previous work proposed by Habibi [295], a new representation of pump 

scheduling, referred to as the “operating-mode”, is developed in Chapter 5. This representation is 

based on proven pumping operations that are extracted from the network daily supply and 

consumption profiles. The operating-mode representation explicitly contains system settings, 

loading conditions, and flow demands. The operating-modes are scheduled and combined to 

represent system operations in this case over one week of an optimization period of time. 

The Selecting-Best-Operating Point (SBOP) is also proposed. In this technique, a new 

reliability curve is introduced to assess the reliability of the pump characteristics in terms of 

efficiency, head pressure, and flow rate. Two processes are suggested to improve the reliability, 

namely speed-up and speed-down. In the first process, the speed of the pump is increased to move 

the current operating point of a pump close to its best efficiency point (BEP). Conversely, in the 

latter process, the speed of the pump is reduced so that the required head pressure and flow rate of 

the operating point become close to those of the BEP. 
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7.5 Application of Energy Optimization Strategy to the Saskatoon 

West WDS 

The implementation of the new energy optimization strategy to the Saskatoon West WDS 

is provided in Chapter 6. The APC-MOPSO algorithm with SFG and EPANET is used to 

optimize the system-operating problem that is formulated and presented in Chapter 3. For this 

problem, five objectives are considered including, electrical energy consumption, total number of 

pump switches, network reliability, maximum power peak, and water quality. Fifteen optimized 

solutions are selected and analyzed in which the savings in electrical cost, number of pump 

switching, reservoir level, cost of maximum power peak, and chlorine concentration are tabulated 

and provided. The criterion of selecting these solutions is done based on the highest, median, and 

lowest values returned by the optimized solution with respect to each objective. 

7.6 Experimental Analysis and Comparison 

7.6.1 Experiments on APC-MOPSO Algorithm 

To identify the robustness, accuracy, and flexibility of the proposed APC-MOPSO 

algorithm, three different sets of experiments are performed using fifteen well-known benchmark 

test problems and four different performance metrics. The first set of experiments is held using 

two-objective test problems, a second set used three-objective test problems, while a third set 

considered five-objective test problems. An exhaustive experimental analysis is then carried out 

to evaluate and compare the results obtained by APC-MOPSO with other state-of-the-art 

algorithms in the heuristic literature. 

The optimization of the two-objective test problems is empirically studied to assess the 

performance of the proposed APC-MOPSO. Selected test problems are chosen from different 

perspectives, including continuous, discontinuous, discrete, convex, concave, unimodal, and 

multi-modal. The results showed that non-dominated solutions obtained by APC-MOPSO against 

ZDTs, DTLZs, OKA2, KURSAWE, and FONSCA typically have the best average values of 

Two-sets Covering (C), Error Ratio (ER), Spacing (S), and Generational Distance (GD) metrics. 

It is also concluded that the adaptive techniques, K-Means clustering tool, parallel structure of 

search process, new dynamic (i.e., flying) model have a great effect on the obtained solutions in 

terms of converging and covering the Pareto-optimal front. For the same problems, five different 

MOEAs and MOPSOs are tested for comparison. In most experiments, APC-MOPSO generated 

better solutions than those of the other MOEAs and MOPSOs. Only in for the DTLZ2 test 

problem, APC-MOPSO is ranked second in the ER, GD, and S metrics. Nonetheless, with the use 

of an auxiliary technique referred to as Searching-for-Gaps (SFG), APC-MOPSO produced better 

results on all benchmark test problems. 
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With regard to the three-objective benchmark test problems, the proposed APC-MOPSO 

produced the best solutions in terms of returning the best metrics’ values and having the best 

coverage of the Pareto-optimal front. Optimizing with three or more objectives increasingly 

requires longer computational time due to the exponential growth of the search space. 

Next, the APC-MOPSO algorithm is applied to the five-objective benchmark test 

problems. Minimizing five-objective DTLZ2and DTLZ5 problems is considered. The results of 

the APC-MOPSO approach outperformed all others in terms of the quality of the Pareto-front set 

and the computation time. 

The overall conclusion from the above experiments indicate that APC-MOPSO is a 

flexible search approach that can easily be adapted to most of real-world optimization problems, 

typically producing high quality non-dominated solutions with reduced computational time. 

7.6.2 Experiments on Computation Effort 

The computation time of the proposed APC-MOPSO approach is discussed in Chapter 4. 

The results from the benchmark test problems indicate that the computation time (i.e., CPU time) 

of the APC-MOPSO algorithm is significantly lower than when compared with the time spent by 

MOPSOs and some of MOEAs (e.g., NSGA-II) considered as state-of-the-art 

7.7 Contributions of this Thesis 

The main contributions of this thesis are summarized as follows: 

 A new formulation for a system-operational problem is developed by simultaneously 

minimizing the electrical energy cost, the total number of pump switches, the reservoir water 

level variation, the cost of maximum power peak, and the free chlorine residual. 

 A new Adaptive Parallel Clustering-based Multi-objective Particle Swarm Optimization 

(ACP-M OPSO) Algorithm is developed. 

 A new Searching-for-Gaps technique to strengthen the performance of the APC-MOPSO is 

proposed. 

 The proposed APC-MOPSO algorithm is linked to a new modified version of a hydraulic 

simulator (EPANET) for WDS optimization. 

 The effect of the constraint on the total number of pump switches is empirically investigated 

in the Saskatoon West WDS. The results suggest that schedules with low electrical cost 

typically have a moderate number of pump switches. This observation contradicts the 

intuitive notion that a higher number of pump switches would provide a lower cost. 

 The application of APC-MOPSO for solving well-known benchmark multi-objective test 

problems demonstrated its ability to outperform other state-of-the-art algorithms proposed in 

the literature such as NSGA-II [233], 2LBMOPSO [243], SPEA2 [110,74], PEGA [253], and 

original MOPSO [52]. 
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 The new Searching-for-Gaps (SFG) technique effectively enhanced the search properties of 

the APC-MOPSO algorithm by guaranteeing uniform and even distribution along the Pareto- 

optimal front. It also is found to preserve diversity. 

 The APC-MOPSO algorithm is applied to rural WDS, specifically Saskatoon West WDS by 

using the Operating-Mode Pointer (OMP). 

 A modified version of EPANET is developed to simulate WDS within a MATLAB platform 

and to interface with APC-MOPSO to accept and evaluate new pump curves at each 

optimization iteration. 

 The APC-MOPSO algorithm is implemented using a parallel search model (i.e., the concept 

of parallel islands). 

 Speed-up and speed-down are two post-processes applied to the solutions obtained by a 

combination of APC-MOPSO and EPANET. The results showed a considerable improvement 

in pumping characteristics (e.g., efficiency, head pressure, and flow rate) for all solutions, 

regardless of the total number of pump switches or the problem formulation. 

 The proposed energy optimization strategy has benefits other than saving energy costs, 

including improving system safety (i.e., all the hydraulic and operational constraints are 

satisfied and all new solutions (operating-modes) have been already validated by the 

operators of the Saskatoon West WDS). 

Significant average reductions of 10.19% in the electrical energy cost and 4.42% in the 

cost of maximum power peak are achieved when the new energy optimization strategy is applied 

to the Saskatoon West WDS. 

Currently, in Canada, water is highly subsidized (water is priced at one-tenth of the actual 

cost, [296]). Hence, it is imperative to reduce the costs involved in operating / maintaining water 

distribution systems. A considerable saving of 10% or CAD$27,000 per annum in total 

operational cost is achieved by implementing a new energy optimization strategy on the 

Saskatoon West WDS. The new Adaptive Parallel Clustering-based Multi-objective Particle 

Swarm Optimization (APC-MOPSO) with Searching-for-Gaps (SFG) is developed to find 

feasible solutions that fulfill the desired objectives as well as the system and operating 

constraints. To overcome the disadvantages of today’s encodings, which clearly limit their 
functionality to represent multidisciplinary systems and systems with large variables, a novel 

Operating-Mode Pointer (OMP) technique is proposed. Within the Operating-Mode-Pointer 

(OMP), the operational safety, reliability, and ability to meet customer demands are guaranteed 

for the Saskatoon West WDS. The new operating scenarios obtained by the proposed energy 

optimization strategy are made up of existing operating-modes and chosen only after extensive 

practical verification. For a real-time implementation, the proposed energy optimization strategy 

can be interfaced to the control system that is used for operating the system. The success of the 

work presented in this dissertation can lead to a new technology that actively manages and 

minimizes the energy consumption in water distribution systems. This work would also allow a 
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way of practically implementing a more efficient pumping operation in a safe and controlled 

manner. 

7.8 Future Directions 

The following ideas and research trends deserve further considerations: 

 In the dissertation, the steady-state (SS) and the extended-period (EPS) hydraulic simulations 

are used. The hydraulic simulation should be extended to include the transient behavior of the 

network as well as unusual operating scenarios (e.g., fire, burst damages). 

 Since the localization problems involve high strain gradients, adaptive meshing techniques 

are encouraged to be used. 

 New applications of the proposed optimization strategy should be considered, namely in 

power plant, manufacturing, and wastewater treatment facilities. 

 Applications of energy optimization should be extended to include system-design parameters 

such as pipeline sizes, reservoir geometries, valve locations, and demand profiles. 

 Characterization and modeling of the pump operating point and energy consumption is 

required particularly for the problem of pumping operation in water distribution systems. 

 Further investigations are required to include water age and chlorine residual in the network 

model when solving system-operational problem. 
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Appendix A 

Derivation of Equation (4.5) for Cp and Cv 

Coefficients 

The proposed dynamic model to update the positions of the particles in the decision space 

(i.e., known also variable space) is given as follows:               (       ) 1 

where          2 

The condition of Eq. (2) effectively results in the implementation of a low-pass filter as 

follows. For example, the transfer function of a first-order low-pass filter is:              ( )        3 

where s is the Laplace variable,  is the time constant, and   is the DC gain of the digital filter. 

Applying the z-transformation to Eq. (3) provides a discrete representation as:   ( ) ( )   ( )             ⁄  4 

where    represents the filtered variable (i.e., output signal),   is the original variable (i.e., input 

signal), and T is the sampling period. 

In the time domain, the above can be implemented as:                ⁄         5 

If     ⁄  is replaced with k, solve Eq. (4) to get unity gain, then the difference equation 

can be simplified to      (   )             6 

Then, the above equation can be written as: 
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       (   )             7 

Generally, the velocity is defined as the change in position over a period of time, which is 

expressed as follows:                8 

Substitute      from Eq. (8) into Eq. (7), yields:        (   ) (         )           

This can be simplified to:           (   ) [             ]  

          (   ) (   )                 (     ) 9 

According to Eq. (1), the proposed dynamic model can be re-written as:      (     )        (    ) 10 

Comparing Eqs. (9) and (10), then:          11       12 
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Appendix B 

Pipe Flow and Node Pressures for the Existing 

Operating-Modes 

The Operating-Mode Pointer (OMP) is used to analyze and extract the existing operating-

modes of the Saskatoon West WDS over the three-month period from March to May 2011. The 

OMP is applied by taking snap-shots (i.e., hourly basis) of the system, referred to as operating-

modes. Each mode contains the status of all network components, including the pump discharge, 

pump combination, pump scheduling, and demands of the network’s clients. A total of 297 

operating-modes are extracted and provided as follows. 

 

Table B.1: Pump Discharge and Node Demands 

Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

1 2419 1 1 0 702.72 30.24 775.05 899.38 11.61 

2 2525 1 1 0 733.51 31.56 809.01 938.80 12.12 

3 2647 1 1 0 768.95 33.09 848.10 984.15 12.71 

4 1563 0 1 0 454.05 19.54 500.79 581.12 7.50 

5 1371 0 1 0 398.28 17.14 439.27 509.74 6.58 

6 2652 1 1 0 770.41 33.15 849.70 986.01 12.73 

7 2494 0 1 0 724.51 31.18 799.08 927.27 11.97 

8 2721 0 1 1 790.45 34.01 871.81 1011.6 13.06 

9 2486 0 1 1 722.18 31.08 796.51 924.29 11.93 

10 2637 0 1 1 766.05 32.96 844.89 980.44 12.66 

11 2492 0 1 1 723.93 31.15 798.44 926.53 11.96 

12 1774 0 1 1 515.35 22.18 568.39 659.57 8.52 

13 1854 0 1 0 538.59 23.18 594.02 689.32 8.90 

14 1855 0 1 1 538.88 23.19 594.34 689.69 8.90 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

15 1856 0 1 0 539.17 23.20 594.66 690.06 8.91 

16 2517 0 1 1 731.19 31.46 806.45 935.82 12.08 

17 2498 0 1 1 725.67 31.23 800.36 928.76 11.99 

18 2562 0 1 1 744.26 32.03 820.86 952.55 12.30 

19 2381 0 1 1 691.68 29.76 762.87 885.26 11.43 

20 1337 0 1 0 388.40 16.71 428.37 497.10 6.42 

21 2473 0 1 1 718.41 30.91 792.35 919.46 11.87 

22 2390 0 1 1 694.30 29.88 765.76 888.60 11.47 

23 2604 0 1 1 756.46 32.55 834.32 968.17 12.50 

24 2657 0 1 1 771.86 33.21 851.30 987.87 12.75 

25 2289 0 1 1 664.95 28.61 733.40 851.05 10.99 

26 1811 0 1 1 526.10 22.64 580.24 673.33 8.69 

27 1810 0 1 0 525.81 22.63 579.92 672.96 8.69 

28 2072 0 1 0 601.92 25.90 663.87 770.37 9.95 

29 1966 0 1 0 571.12 24.58 629.91 730.96 9.44 

30 2515 0 1 1 730.61 31.44 805.81 935.08 12.07 

31 1543 0 1 0 448.24 19.29 494.38 573.69 7.41 

32 1953 0 1 0 567.35 24.41 625.74 726.13 9.37 

33 2528 0 1 1 734.38 31.60 809.97 939.91 12.13 

34 2246 0 1 1 652.46 28.08 719.62 835.06 10.78 

35 1544 0 1 1 448.53 19.30 494.70 574.06 7.41 

36 1544 0 1 1 448.53 19.30 494.70 574.06 7.41 

37 2335 0 1 0 678.32 29.19 748.13 868.15 11.21 

38 2337 0 1 1 678.90 29.21 748.77 868.90 11.22 

39 1457 0 1 1 423.26 18.21 466.82 541.71 6.99 

40 1558 0 1 0 452.60 19.48 499.18 579.26 7.48 

41 1122 0 1 0 325.94 14.03 359.49 417.16 5.39 

42 2034 0 1 0 590.88 25.43 651.69 756.24 9.76 

43 2346 0 1 1 681.51 29.33 751.66 872.24 11.26 

44 2348 1 1 0 682.09 29.35 752.30 872.99 11.27 

45 2368 1 1 0 687.90 29.60 758.71 880.42 11.37 

46 1848 1 1 0 536.84 23.10 592.10 687.09 8.87 

47 1245 0 1 0 361.67 15.56 398.90 462.89 5.98 

48 2221 1 0 0 645.20 27.76 711.61 825.77 10.66 

49 2535 1 0 0 736.42 31.69 812.21 942.51 12.17 

50 2539 1 0 0 737.58 31.74 813.50 944.00 12.19 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

51 2350 1 1 0 682.68 29.38 752.94 873.73 11.28 

52 2127 1 1 0 617.89 26.59 681.49 790.82 10.21 

53 2124 1 0 0 617.02 26.55 680.53 789.70 10.20 

54 2125 1 1 0 617.31 26.56 680.85 790.08 10.20 

55 1446 1 1 0 420.06 18.08 463.30 537.62 6.94 

56 1247 1 0 0 362.25 15.59 399.54 463.63 5.99 

57 2393 1 0 0 695.17 29.91 766.72 889.72 11.49 

58 2395 1 1 0 695.75 29.94 767.36 890.46 11.50 

59 2509 1 1 0 728.86 31.36 803.88 932.85 12.04 

60 2279 1 1 0 662.05 28.49 730.19 847.33 10.94 

61 1514 1 1 0 439.82 18.93 485.09 562.91 7.27 

62 1514 1 1 0 439.82 18.93 485.09 562.91 7.27 

63 1877 1 1 0 545.27 23.46 601.39 697.87 9.01 

64 1875 1 0 0 544.69 23.44 600.75 697.13 9.00 

65 1879 1 0 0 545.85 23.49 602.03 698.61 9.02 

66 1900 1 1 0 551.95 23.75 608.76 706.42 9.12 

67 1761 1 1 0 511.57 22.01 564.22 654.74 8.45 

68 1760 1 0 0 511.28 22.00 563.90 654.37 8.45 

69 2601 1 0 0 755.59 32.51 833.36 967.05 12.48 

70 1750 1 1 0 508.38 21.88 560.70 650.65 8.40 

71 1724 1 1 0 500.82 21.55 552.37 640.98 8.28 

72 2118 1 1 0 615.28 26.48 678.61 787.47 10.17 

73 2120 1 0 0 615.86 26.50 679.25 788.22 10.18 

74 2115 1 1 0 614.41 26.44 677.65 786.36 10.15 

75 1848 1 1 0 536.84 23.10 592.10 687.09 8.87 

76 1850 1 0 0 537.43 23.13 592.74 687.83 8.88 

77 1845 1 1 0 535.97 23.06 591.14 685.97 8.86 

78 2280 1 1 0 662.34 28.50 730.51 847.70 10.94 

79 2285 1 0 0 663.79 28.56 732.11 849.56 10.97 

80 2540 1 0 0 737.87 31.75 813.82 944.37 12.19 

81 2428 1 1 0 705.33 30.35 777.93 902.73 11.65 

82 2501 1 1 0 726.54 31.26 801.32 929.87 12.00 

83 1391 1 1 0 404.09 17.39 445.68 517.17 6.68 

84 2101 1 1 0 610.34 26.26 673.16 781.15 10.08 

85 2105 1 0 0 611.50 26.31 674.44 782.64 10.10 

86 2396 1 0 0 696.04 29.95 767.68 890.83 11.50 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

87 2185 1 0 0 634.74 27.31 700.07 812.38 10.49 

88 2190 1 1 0 636.20 27.38 701.68 814.24 10.51 

89 1477 1 1 0 429.07 18.46 473.23 549.15 7.09 

90 1607 1 1 0 466.83 20.09 514.88 597.48 7.71 

91 1605 1 0 0 466.25 20.06 514.24 596.74 7.70 

92 1982 1 0 0 575.77 24.78 635.03 736.91 9.51 

93 1980 1 1 0 575.19 24.75 634.39 736.16 9.50 

94 1985 1 0 0 576.64 24.81 635.99 738.02 9.53 

95 2427 1 0 0 705.04 30.34 777.61 902.36 11.65 

96 2491 1 0 0 723.64 31.14 798.12 926.15 11.96 

97 2490 1 1 0 723.35 31.13 797.80 925.78 11.95 

98 2292 1 1 0 665.83 28.65 734.36 852.17 11.00 

99 1359 1 1 0 394.79 16.99 435.42 505.28 6.52 

100 2160 1 1 0 627.48 27.00 692.06 803.09 10.37 

101 2161 1 0 0 627.77 27.01 692.38 803.46 10.37 

102 1965 1 0 0 570.83 24.56 629.59 730.59 9.43 

103 2579 1 0 0 749.20 32.24 826.31 958.87 12.38 

104 2580 1 1 0 749.49 32.25 826.63 959.24 12.38 

105 1559 1 1 0 452.89 19.49 499.50 579.64 7.48 

106 1560 1 0 0 453.18 19.50 499.82 580.01 7.49 

107 1555 1 1 0 451.73 19.44 498.22 578.15 7.46 

108 1489 1 1 0 432.55 18.61 477.08 553.61 7.15 

109 2310 1 1 0 671.06 28.88 740.12 858.86 11.09 

110 2311 1 0 0 671.35 28.89 740.44 859.23 11.09 

111 2214 1 0 0 643.17 27.68 709.37 823.17 10.63 

112 2407 1 0 0 699.23 30.09 771.20 894.92 11.55 

113 2410 1 1 0 700.11 30.13 772.16 896.04 11.57 

114 2381 1 1 0 691.68 29.76 762.87 885.26 11.43 

115 2405 1 1 0 698.65 30.06 770.56 894.18 11.54 

116 2526 1 1 0 733.80 31.58 809.33 939.17 12.12 

117 1220 1 1 0 354.41 15.25 390.89 453.60 5.86 

118 1059 1 1 0 307.64 13.24 339.30 393.74 5.08 

119 1405 1 1 0 408.15 17.56 450.16 522.38 6.74 

120 1406 1 0 0 408.44 17.58 450.48 522.75 6.75 

121 2439 1 0 0 708.53 30.49 781.46 906.82 11.71 

122 2666 1 0 0 774.47 33.33 854.19 991.22 12.80 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

123 2665 1 1 0 774.18 33.31 853.87 990.85 12.79 

124 2318 1 1 0 673.38 28.98 742.69 861.83 11.13 

125 2158 1 1 0 626.90 26.98 691.42 802.34 10.36 

126 2602 1 1 0 755.88 32.53 833.68 967.42 12.49 

127 1951 1 1 0 566.77 24.39 625.10 725.38 9.36 

128 1167 1 1 0 339.01 14.59 373.91 433.89 5.60 

129 1143 1 1 0 332.04 14.29 366.22 424.97 5.49 

130 1283 1 1 0 372.71 16.04 411.07 477.02 6.16 

131 1280 1 0 0 371.84 16.00 410.11 475.90 6.14 

132 2309 1 0 0 670.76 28.86 739.80 858.49 11.08 

133 2455 1 0 0 713.18 30.69 786.58 912.77 11.78 

134 2360 1 0 0 685.58 29.50 756.14 877.45 11.33 

135 2343 1 1 0 680.64 29.29 750.70 871.13 11.25 

136 2266 1 1 0 658.27 28.33 726.03 842.50 10.88 

137 2138 1 1 0 621.09 26.73 685.02 794.91 10.26 

138 1514 1 1 0 439.82 18.93 485.09 562.91 7.27 

139 2178 1 1 0 632.71 27.23 697.83 809.78 10.45 

140 2175 0 1 0 631.84 27.19 696.87 808.67 10.44 

141 1896 0 1 0 550.79 23.70 607.48 704.93 9.10 

142 1900 0 1 1 551.95 23.75 608.76 706.42 9.12 

143 2350 0 1 1 682.68 29.38 752.94 873.73 11.28 

144 2272 0 1 0 660.02 28.40 727.95 844.73 10.91 

145 2373 0 1 0 689.36 29.66 760.31 882.28 11.39 

146 2375 0 1 1 689.94 29.69 760.95 883.03 11.40 

147 1478 0 1 1 429.36 18.48 473.55 549.52 7.09 

148 2400 0 1 1 697.20 30.00 768.96 892.32 11.52 

149 2399 0 1 0 696.91 29.99 768.64 891.95 11.52 

150 2259 0 1 0 656.24 28.24 723.78 839.90 10.84 

151 2339 0 1 0 679.48 29.24 749.42 869.64 11.23 

152 2340 1 1 0 679.77 29.25 749.74 870.01 11.23 

153 2288 1 1 0 664.66 28.60 733.08 850.68 10.98 

154 2305 1 1 0 669.60 28.81 738.52 857.00 11.06 

155 2488 1 1 0 722.76 31.10 797.16 925.04 11.94 

156 1610 1 1 0 467.71 20.13 515.84 598.60 7.73 

157 1184 1 1 0 343.95 14.80 379.35 440.21 5.68 

158 1484 1 1 0 431.10 18.55 475.47 551.75 7.12 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

159 2468 0 1 0 716.95 30.85 790.75 917.60 11.85 

160 2513 0 1 0 730.03 31.41 805.17 934.33 12.06 

161 2515 1 1 0 730.61 31.44 805.81 935.08 12.07 

162 2259 1 1 0 656.24 28.24 723.78 839.90 10.84 

163 2481 1 1 0 720.73 31.01 794.91 922.44 11.91 

164 2436 1 1 0 707.66 30.45 780.49 905.70 11.69 

165 1627 1 1 0 472.64 20.34 521.29 604.92 7.81 

166 1625 0 1 0 472.06 20.31 520.65 604.18 7.80 

167 1995 0 1 0 579.55 24.94 639.20 741.74 9.58 

168 1928 0 1 0 560.08 24.10 617.73 716.83 9.25 

169 2245 1 1 0 652.17 28.06 719.30 834.69 10.78 

170 2243 0 1 0 651.59 28.04 718.66 833.95 10.77 

171 2353 0 1 0 683.55 29.41 753.90 874.85 11.29 

172 2383 0 1 0 692.26 29.79 763.51 886.00 11.44 

173 2460 1 1 0 714.63 30.75 788.18 914.63 11.81 

174 2340 1 1 0 679.77 29.25 749.74 870.01 11.23 

175 2051 1 1 0 595.82 25.64 657.14 762.56 9.84 

176 1576 1 1 0 457.83 19.70 504.95 585.96 7.56 

177 2674 1 1 0 776.80 33.43 856.75 994.19 12.84 

178 2645 0 0 1 768.37 33.06 847.46 983.41 12.70 

179 2479 0 1 1 720.15 30.99 794.27 921.69 11.90 

180 2476 0 0 1 719.28 30.95 793.31 920.58 11.88 

181 2830 0 0 1 822.12 35.38 906.73 1052.2 13.58 

182 2835 0 1 1 823.57 35.44 908.33 1054.1 13.61 

183 2465 0 1 1 716.08 30.81 789.79 916.49 11.83 

184 1499 0 1 1 435.46 18.74 480.28 557.33 7.20 

185 1500 1 1 0 435.75 18.75 480.60 557.70 7.20 

186 2029 1 1 0 589.42 25.36 650.09 754.38 9.74 

187 2030 0 1 0 589.72 25.38 650.41 754.75 9.74 

188 2035 1 1 0 591.17 25.44 652.01 756.61 9.77 

189 2665 1 1 0 774.18 33.31 853.87 990.85 12.79 

190 2663 0 1 0 773.60 33.29 853.23 990.10 12.78 

191 2438 0 1 0 708.24 30.48 781.14 906.45 11.70 

192 2645 0 1 0 768.37 33.06 847.46 983.41 12.70 

193 2650 1 1 0 769.83 33.13 849.06 985.27 12.72 

194 2481 1 1 0 720.73 31.01 794.91 922.44 11.91 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

195 1670 1 1 0 485.14 20.88 535.07 620.91 8.02 

196 2015 1 1 0 585.36 25.19 645.61 749.18 9.67 

197 3056 1 1 0 887.77 38.20 979.14 1136.2 14.67 

198 3050 0 1 0 886.03 38.13 977.22 1134 14.64 

199 2531 0 1 0 735.26 31.64 810.93 941.03 12.15 

200 2504 0 1 0 727.41 31.30 802.28 930.99 12.02 

201 2510 1 1 0 729.16 31.38 804.20 933.22 12.05 

202 2333 1 1 0 677.74 29.16 747.49 867.41 11.20 

203 2410 1 1 0 700.11 30.13 772.16 896.04 11.57 

204 2440 1 1 0 708.82 30.50 781.78 907.19 11.71 

205 1654 1 1 0 480.49 20.68 529.94 614.96 7.94 

206 1647 0 1 0 478.45 20.59 527.70 612.35 7.91 

207 2549 0 1 0 740.48 31.86 816.70 947.72 12.24 

208 2560 1 1 0 743.68 32.00 820.22 951.81 12.29 

209 2383 1 1 0 692.26 29.79 763.51 886.00 11.44 

210 2592 1 1 0 752.98 32.40 830.48 963.71 12.44 

211 1497 1 1 0 434.88 18.71 479.64 556.58 7.19 

212 2064 1 1 0 599.59 25.80 661.31 767.40 9.91 

213 2060 0 1 0 598.43 25.75 660.02 765.91 9.89 

214 2464 0 1 0 715.79 30.80 789.47 916.12 11.83 

215 2708 1 1 0 786.67 33.85 867.64 1006.8 13.00 

216 2463 1 1 0 715.50 30.79 789.15 915.74 11.82 

217 2377 1 1 0 690.52 29.71 761.59 883.77 11.41 

218 1721 1 1 0 499.95 21.51 551.41 639.87 8.26 

219 1710 1 1 0 496.76 21.38 547.88 635.78 8.21 

220 2058 0 1 0 597.85 25.73 659.38 765.16 9.88 

221 2055 0 1 0 596.98 25.69 658.42 764.05 9.86 

222 1825 0 1 0 530.16 22.81 584.73 678.54 8.76 

223 1740 1 1 0 505.47 21.75 557.50 646.93 8.35 

224 2377 1 1 0 690.52 29.71 761.59 883.77 11.41 

225 2375 0 1 0 689.94 29.69 760.95 883.03 11.40 

226 2270 0 1 0 659.44 28.38 727.31 843.99 10.90 

227 2271 1 1 0 659.73 28.39 727.63 844.36 10.90 

228 2738 0 1 0 795.39 34.23 877.26 1018 13.14 

229 2922 1 1 0 848.84 36.53 936.21 1086.4 14.03 

230 2610 1 1 0 758.21 32.63 836.24 970.40 12.53 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

231 1333 1 1 0 387.24 16.66 427.09 495.61 6.40 

232 1404 1 1 0 407.86 17.55 449.84 522.01 6.74 

233 1882 1 1 0 546.72 23.53 602.99 699.73 9.03 

234 1880 0 1 0 546.14 23.50 602.35 698.98 9.02 

235 1881 1 1 0 546.43 23.51 602.67 699.36 9.03 

236 2560 1 1 0 743.68 32.00 820.22 951.81 12.29 

237 2561 0 1 0 743.97 32.01 820.54 952.18 12.29 

238 2676 0 1 0 777.38 33.45 857.39 994.94 12.84 

239 2890 1 1 0 839.55 36.13 925.96 1074.5 13.87 

240 2775 1 1 0 806.14 34.69 889.11 1031.8 13.32 

241 2538 1 1 0 737.29 31.73 813.18 943.63 12.18 

242 2425 1 1 0 704.46 30.31 776.97 901.62 11.64 

243 2677 1 1 0 777.67 33.46 857.71 995.31 12.85 

244 700 1 1 0 203.35 8.75 224.28 260.26 3.36 

245 2158 1 1 0 626.90 26.98 691.42 802.34 10.36 

246 2413 1 1 0 700.98 30.16 773.13 897.15 11.58 

247 2410 0 1 0 700.11 30.13 772.16 896.04 11.57 

248 2453 0 1 0 712.60 30.66 785.94 912.03 11.77 

249 2626 1 1 0 762.85 32.83 841.37 976.35 12.60 

250 2359 1 1 0 685.29 29.49 755.82 877.08 11.32 

251 2325 1 1 0 675.41 29.06 744.93 864.44 11.16 

252 1860 1 1 0 540.33 23.25 595.94 691.55 8.93 

253 1527 1 1 0 443.59 19.09 489.25 567.74 7.33 

254 1729 1 1 0 502.27 21.61 553.97 642.84 8.30 

255 2848 1 1 0 827.34 35.60 912.50 1058.9 13.67 

256 2850 0 1 0 827.93 35.63 913.14 1059.6 13.68 

257 2452 0 1 0 712.31 30.65 785.62 911.65 11.77 

258 1539 0 1 0 447.08 19.24 493.10 572.20 7.39 

259 1540 1 1 0 447.37 19.25 493.42 572.57 7.39 

260 1988 1 1 0 577.51 24.85 636.96 739.14 9.54 

261 1985 0 1 0 576.64 24.81 635.99 738.02 9.53 

262 2800 0 1 0 813.40 35.00 897.12 1041.0 13.44 

263 2805 1 1 0 814.85 35.06 898.72 1042.9 13.46 

264 2633 1 1 0 764.89 32.91 843.61 978.95 12.64 

265 2668 1 1 0 775.05 33.35 854.83 991.96 12.81 

266 1738 1 1 0 504.89 21.73 556.86 646.19 8.34 
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Mode 
Flow Pump  Pump  Pump  Agrium Vanscoy Cory Cogen Corman 

(IGPM) 1 2 3 (IGPM) (IGPM) (IGPM) (IGPM) (IGPM) 

267 1272 1 1 0 369.52 15.90 407.55 472.93 6.11 

268 1463 1 1 0 425.00 18.29 468.75 543.94 7.02 

269 1564 1 1 0 454.34 19.55 501.11 581.50 7.51 

270 2543 0 1 0 738.74 31.79 814.78 945.49 12.21 

271 2839 0 1 0 824.73 35.49 909.62 1055.6 13.63 

272 2841 1 1 0 825.31 35.51 910.26 1056.3 13.64 

273 2555 1 1 0 742.23 31.94 818.62 949.95 12.26 

274 2649 1 1 0 769.53 33.11 848.74 984.90 12.72 

275 2438 1 1 0 708.24 30.48 781.14 906.45 11.70 

276 2199 1 1 0 638.81 27.49 704.56 817.59 10.56 

277 1759 1 1 0 510.99 21.99 563.58 654.00 8.44 

278 1512 1 1 0 439.24 18.90 484.44 562.16 7.26 

279 1510 0 1 0 438.66 18.88 483.80 561.42 7.25 

280 2354 0 1 0 683.84 29.43 754.22 875.22 11.30 

281 2355 1 1 0 684.13 29.44 754.54 875.59 11.30 

282 2330 1 1 0 676.87 29.13 746.53 866.29 11.18 

283 2758 1 1 0 801.20 34.48 883.66 1025.4 13.24 

284 1954 0 1 0 567.64 24.43 626.06 726.50 9.38 

285 1617 0 1 0 469.74 20.21 518.09 601.20 7.76 

286 1620 1 1 0 470.61 20.25 519.05 602.32 7.78 

287 1718 1 1 0 499.08 21.48 550.45 638.75 8.25 

288 1715 0 1 0 498.21 21.44 549.49 637.64 8.23 

289 2275 0 1 0 660.89 28.44 728.91 845.85 10.92 

290 2592 1 1 0 752.98 32.40 830.48 963.71 12.44 

291 2545 1 1 0 739.32 31.81 815.42 946.23 12.22 

292 2755 1 1 0 800.33 34.44 882.70 1024.3 13.22 

293 2151 1 1 0 624.87 26.89 689.18 799.74 10.32 

294 2150 0 1 0 624.58 26.88 688.86 799.37 10.32 

295 1655 0 1 0 480.78 20.69 530.26 615.33 7.94 

296 2594 0 1 0 753.56 32.43 831.12 964.45 12.45 

297 2600 1 1 0 755.30 32.50 833.04 966.68 12.48 
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Table B. 2: Pump Combination (ON = 1, OFF = 0) 

Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

1 1 1 0 0 1 25 

2 1 1 0 1 0 26 

3 1 1 0 1 0 26 

4 0 1 0 0 0 8 

5 0 1 0 1 0 10 

6 1 1 0 1 0 26 

7 0 1 0 1 0 10 

8 0 1 1 1 0 14 

9 0 1 1 1 0 14 

10 0 1 1 1 0 14 

11 0 1 1 1 0 14 

12 0 1 1 1 0 14 

13 0 1 0 1 0 10 

14 0 1 1 1 0 14 

15 0 1 0 1 0 10 

16 0 1 1 1 0 14 

17 0 1 1 1 0 14 

18 0 1 1 1 0 14 

19 0 1 1 1 0 14 

20 0 1 0 1 0 10 

21 0 1 1 1 0 14 

22 0 1 1 1 0 14 

23 0 1 1 1 0 14 

24 0 1 1 1 0 14 

25 0 1 1 1 0 14 

26 0 1 1 1 0 14 

27 0 1 0 1 0 10 

28 0 1 0 0 0 8 

29 0 1 0 1 0 10 

30 0 1 1 1 0 14 

31 0 1 0 1 0 10 

32 0 1 0 1 0 10 

33 0 1 1 1 0 14 

34 0 1 1 1 0 14 

35 0 1 1 1 0 14 

36 0 1 1 1 0 14 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

37 0 1 0 1 0 10 

38 0 1 1 1 0 14 

39 0 1 1 0 0 12 

40 0 1 0 1 0 10 

41 0 1 0 1 0 10 

42 0 1 0 1 0 10 

43 0 1 1 1 0 14 

44 1 1 0 1 0 26 

45 1 1 0 1 0 26 

46 1 1 0 1 0 26 

47 0 1 0 1 0 10 

48 1 0 0 1 0 18 

49 1 0 0 1 0 18 

50 1 0 0 1 0 18 

51 1 1 0 1 0 26 

52 1 1 0 1 0 26 

53 1 0 0 1 0 18 

54 1 1 0 1 0 26 

55 1 1 0 0 0 24 

56 1 0 0 1 0 18 

57 1 0 0 1 0 18 

58 1 1 0 1 0 26 

59 1 1 0 1 0 26 

60 1 1 0 1 0 26 

61 1 1 0 1 0 26 

62 1 1 0 1 0 26 

63 1 1 0 1 0 26 

64 1 0 0 1 0 18 

65 1 0 0 1 0 18 

66 1 1 0 0 0 24 

67 1 1 0 1 0 26 

68 1 0 0 1 0 18 

69 1 0 0 1 0 18 

70 1 1 0 1 0 26 

71 1 1 0 1 0 26 

72 1 1 0 1 0 26 

73 1 0 0 1 0 18 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

74 1 1 0 1 0 26 

75 1 1 0 1 0 26 

76 1 0 0 1 0 18 

77 1 1 0 0 0 24 

78 1 1 0 1 0 26 

79 1 0 0 1 0 18 

80 1 0 0 1 0 18 

81 1 1 0 1 0 26 

82 1 1 0 1 0 26 

83 1 1 0 1 0 26 

84 1 1 0 1 0 26 

85 1 0 0 1 0 18 

86 1 0 0 1 0 18 

87 1 0 0 1 0 18 

88 1 1 0 1 0 26 

89 1 1 0 1 0 26 

90 1 1 0 1 0 26 

91 1 0 0 1 0 18 

92 1 0 0 1 0 18 

93 1 1 0 1 0 26 

94 1 0 0 1 0 18 

95 1 0 0 1 0 18 

96 1 0 0 1 0 18 

97 1 1 0 0 0 24 

98 1 1 0 0 0 24 

99 1 1 0 1 0 26 

100 1 1 0 1 0 26 

101 1 0 0 1 0 18 

102 1 0 0 1 0 18 

103 1 0 0 1 0 18 

104 1 1 0 1 0 26 

105 1 1 0 1 0 26 

106 1 0 0 1 0 18 

107 1 1 0 1 0 26 

108 1 1 0 1 0 26 

109 1 1 0 1 0 26 

110 1 0 0 1 0 18 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

111 1 0 0 1 0 18 

112 1 0 0 1 0 18 

113 1 1 0 1 0 26 

114 1 1 0 1 0 26 

115 1 1 0 1 0 26 

116 1 1 0 1 0 26 

117 1 1 0 0 0 24 

118 1 1 0 1 0 26 

119 1 1 0 1 0 26 

120 1 0 0 1 0 18 

121 1 0 0 1 0 18 

122 1 0 0 1 0 18 

123 1 1 0 1 0 26 

124 1 1 0 1 0 26 

125 1 1 0 1 0 26 

126 1 1 0 1 0 26 

127 1 1 0 0 0 24 

128 1 1 0 0 0 24 

129 1 1 0 1 0 26 

130 1 1 0 1 0 26 

131 1 0 0 1 0 18 

132 1 0 0 1 0 18 

133 1 0 0 1 0 18 

134 1 0 0 1 0 18 

135 1 1 0 1 0 26 

136 1 1 0 1 0 26 

137 1 1 0 1 0 26 

138 1 1 0 1 0 26 

139 1 1 0 1 0 26 

140 0 1 0 1 0 10 

141 0 1 0 1 0 10 

142 0 1 1 1 0 14 

143 0 1 1 1 0 14 

144 0 1 0 1 0 10 

145 0 1 0 1 0 10 

146 0 1 1 0 0 12 

147 0 1 1 1 0 14 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

148 0 1 1 1 0 14 

149 0 1 0 1 0 10 

150 0 1 0 1 0 10 

151 0 1 0 1 0 10 

152 1 1 0 1 0 26 

153 1 1 0 1 0 26 

154 1 1 0 1 0 26 

155 1 1 0 1 0 26 

156 1 1 0 0 0 24 

157 1 1 0 1 0 26 

158 1 1 0 1 0 26 

159 0 1 0 1 0 10 

160 0 1 0 1 0 10 

161 1 1 0 1 0 26 

162 1 1 0 1 0 26 

163 1 1 0 1 0 26 

164 1 1 0 0 0 24 

165 1 1 0 0 0 24 

166 0 1 0 0 0 8 

167 0 1 0 0 0 8 

168 0 1 0 1 0 10 

169 1 1 0 1 0 26 

170 0 1 0 1 0 10 

171 0 1 0 1 0 10 

172 0 1 0 1 0 10 

173 1 1 0 1 0 26 

174 1 1 0 1 0 26 

175 1 1 0 0 0 24 

176 1 1 0 1 0 26 

177 1 1 0 1 0 26 

178 0 0 1 1 0 6 

179 0 1 1 1 0 14 

180 0 0 1 1 0 6 

181 0 0 1 1 0 6 

182 0 1 1 1 0 14 

183 0 1 1 1 0 14 

184 0 1 1 1 0 14 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

185 1 1 0 1 0 26 

186 1 1 0 0 0 24 

187 0 1 0 1 0 10 

188 1 1 0 1 0 26 

189 1 1 0 1 0 26 

190 0 1 0 1 0 10 

191 0 1 0 1 0 10 

192 0 1 0 1 0 10 

193 1 1 0 1 0 26 

194 1 1 0 1 0 26 

195 1 1 0 1 0 26 

196 1 1 0 1 0 26 

197 1 1 0 1 0 26 

198 0 1 0 1 0 10 

199 0 1 0 1 0 10 

200 0 1 0 1 0 10 

201 1 1 0 1 0 26 

202 1 1 0 1 0 26 

203 1 1 0 1 0 26 

204 1 1 0 0 0 24 

205 1 1 0 1 0 26 

206 0 1 0 1 0 10 

207 0 1 0 1 0 10 

208 1 1 0 1 0 26 

209 1 1 0 1 0 26 

210 1 1 0 1 0 26 

211 1 1 0 1 0 26 

212 1 1 0 1 0 26 

213 0 1 0 1 0 10 

214 0 1 0 1 0 10 

215 1 1 0 1 0 26 

216 1 1 0 1 0 26 

217 1 1 0 1 0 26 

218 1 1 0 0 0 24 

219 1 1 0 0 0 24 

220 0 1 0 0 1 9 

221 0 1 0 0 1 9 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

222 0 1 0 0 1 9 

223 1 1 0 0 1 25 

224 1 1 0 0 1 25 

225 0 1 0 0 1 9 

226 0 1 0 0 1 9 

227 1 1 0 0 1 25 

228 0 1 0 0 1 9 

229 1 1 0 0 1 25 

230 1 1 0 0 1 25 

231 1 1 0 0 1 25 

232 1 1 0 0 1 25 

233 1 1 0 0 1 25 

234 0 1 0 0 1 9 

235 1 1 0 0 1 25 

236 1 1 0 0 1 25 

237 0 1 0 0 1 9 

238 0 1 0 0 1 9 

239 1 1 0 0 1 25 

240 1 1 0 0 1 25 

241 1 1 0 0 1 25 

242 1 1 0 0 0 24 

243 1 1 0 0 1 25 

244 1 1 0 0 1 25 

245 1 1 0 0 1 25 

246 1 1 0 0 1 25 

247 0 1 0 0 1 9 

248 0 1 0 0 1 9 

249 1 1 0 0 1 25 

250 1 1 0 0 1 25 

251 1 1 0 0 1 25 

252 1 1 0 0 1 25 

253 1 1 0 0 1 25 

254 1 1 0 0 0 24 

255 1 1 0 0 1 25 

256 0 1 0 0 1 9 

257 0 1 0 0 1 9 

258 0 1 0 0 1 9 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

259 1 1 0 0 1 25 

260 1 1 0 0 1 25 

261 0 1 0 0 1 9 

262 0 1 0 0 1 9 

263 1 1 0 0 1 25 

264 1 1 0 0 1 25 

265 1 1 0 0 1 25 

266 1 1 0 0 1 25 

267 1 1 0 0 1 25 

268 1 1 0 0 1 25 

269 1 1 0 0 1 25 

270 0 1 0 0 1 9 

271 0 1 0 0 1 9 

272 1 1 0 0 1 25 

273 1 1 0 0 0 24 

274 1 1 0 0 1 25 

275 1 1 0 0 1 25 

276 1 1 0 0 1 25 

277 1 1 0 0 1 25 

278 1 1 0 0 1 25 

279 0 1 0 0 1 9 

280 0 1 0 0 1 9 

281 1 1 0 0 1 25 

282 1 1 0 0 1 25 

283 1 1 0 0 1 25 

284 0 1 0 0 1 9 

285 0 1 0 0 1 9 

286 1 1 0 0 1 25 

287 1 1 0 0 1 25 

288 0 1 0 0 1 9 

289 0 1 0 0 1 9 

290 1 1 0 0 1 25 

291 1 1 0 0 1 25 

292 1 1 0 0 1 25 

293 1 1 0 0 1 25 

294 0 1 0 0 1 9 

295 0 1 0 0 1 9 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Combination 

296 0 1 0 0 1 9 

297 1 1 0 0 1 25 

  



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

312 

Appendix C 

Pipe Flow and Node Pressures for the Optimized 

Operating-Modes 

The corresponding pump discharge, node pressures obtained from the optimized 

operating-modes are tabulated and provided as follows. 

 

Table C.1: Pump Discharges Obtained From Solution 4 

Mode 
Time Period Discharge (igpm) 

From To Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

181 3/1/11 11:00 AM 3/1/11 12:00 PM 2118 0 0 688 0 

216 3/1/11 12:00 PM 3/1/11 1:00 PM 2118 0 0 0 688 

128 3/1/11 1:00 PM 3/1/11 2:00 PM 2118 0 0 688 0 

151 3/1/11 2:00 PM 3/1/11 3:00 PM 0 0 1035 444 0 

72 3/1/11 3:00 PM 3/1/11 4:00 PM 1992 0 126 688 0 

148 3/1/11 4:00 PM 3/1/11 5:00 PM 2000 0 118 688 0 

223 3/1/11 5:00 PM 3/1/11 6:00 PM 2000 0 118 688 0 

137 3/1/11 6:00 PM 3/1/11 7:00 PM 2000 0 118 0 688 

99 3/1/11 7:00 PM 3/1/11 8:00 PM 2118 0 0 688 0 

144 3/1/11 8:00 PM 3/1/11 9:00 PM 1995 0 123 688 0 

190 3/1/11 9:00 PM 3/1/11 10:00 PM 2000 0 118 0 688 

124 3/1/11 10:00 PM 3/1/11 11:00 PM 2000 0 118 0 688 

42 3/1/11 11:00 PM 3/2/11 12:00 AM 1059 1059 0 688 0 

173 3/2/11 12:00 AM 3/2/11 1:00 AM 2118 0 0 0 688 

90 3/2/11 1:00 AM 3/2/11 2:00 AM 2000 0 118 688 0 

155 3/2/11 2:00 AM 3/2/11 3:00 AM 2118 0 0 0 688 

119 3/2/11 3:00 AM 3/2/11 4:00 AM 2000 0 118 688 0 

170 3/2/11 4:00 AM 3/2/11 5:00 AM 2000 0 118 688 0 

124 3/2/11 5:00 AM 3/2/11 6:00 AM 2071 0 151 722 0 

167 3/2/11 6:00 AM 3/2/11 7:00 AM 2071 0 151 0 722 
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Mode 
Time Period Discharge (igpm) 

From To Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

49 3/2/11 7:00 AM 3/2/11 8:00 AM 2071 0 151 722 0 

143 3/2/11 8:00 AM 3/2/11 9:00 AM 2071 0 151 722 0 

157 3/2/11 9:00 AM 3/2/11 10:00 AM 2071 0 151 722 0 

195 3/2/11 10:00 AM 3/2/11 11:00 AM 2071 0 151 722 0 

47 3/2/11 11:00 AM 3/2/11 12:00 PM 2071 0 151 722 0 

86 3/2/11 12:00 PM 3/2/11 1:00 PM 2071 0 151 722 0 

164 3/2/11 1:00 PM 3/2/11 2:00 PM 2071 0 151 722 0 

91 3/2/11 2:00 PM 3/2/11 3:00 PM 0 0 1035 450 0 

141 3/2/11 3:00 PM 3/2/11 4:00 PM 2426 0 0 788 0 

126 3/2/11 4:00 PM 3/2/11 5:00 PM 2219 0 207 0 788 

175 3/2/11 5:00 PM 3/2/11 6:00 PM 2273 0 0 0 738 

95 3/2/11 6:00 PM 3/2/11 7:00 PM 0 0 1035 450 0 

155 3/2/11 7:00 PM 3/2/11 8:00 PM 2107 0 225 0 738 

169 3/2/11 8:00 PM 3/2/11 9:00 PM 2108 0 225 738 0 

174 3/2/11 9:00 PM 3/2/11 10:00 PM 2108 0 225 738 0 

182 3/2/11 10:00 PM 3/2/11 11:00 PM 2273 0 0 738 0 

126 3/2/11 11:00 PM 3/3/11 12:00 AM 2107 0 225 738 0 

71 3/3/11 12:00 AM 3/3/11 1:00 AM 1807 0 0 587 0 

174 3/3/11 1:00 AM 3/3/11 2:00 AM 1914 0 0 0 622 

143 3/3/11 2:00 AM 3/3/11 3:00 AM 1914 0 0 622 0 

79 3/3/11 3:00 AM 3/3/11 4:00 AM 0 0 1034 452 0 

157 3/3/11 4:00 AM 3/3/11 5:00 AM 625 957 0 622 0 

196 3/3/11 5:00 AM 3/3/11 6:00 AM 1914 0 0 622 0 

148 3/3/11 6:00 AM 3/3/11 7:00 AM 1893 0 22 622 0 

91 3/3/11 7:00 AM 3/3/11 8:00 AM 1914 0 0 622 0 

122 3/3/11 8:00 AM 3/3/11 9:00 AM 1893 0 22 622 0 

63 3/3/11 9:00 AM 3/3/11 10:00 AM 1893 0 22 622 0 

83 3/3/11 10:00 AM 3/3/11 11:00 AM 1893 0 22 622 0 

181 3/3/11 11:00 AM 3/3/11 12:00 PM 1893 0 22 622 0 

144 3/3/11 12:00 PM 3/3/11 1:00 PM 1914 0 0 622 0 

141 3/3/11 1:00 PM 3/3/11 2:00 PM 1893 0 22 0 622 

189 3/3/11 2:00 PM 3/3/11 3:00 PM 1914 0 0 0 622 

80 3/3/11 3:00 PM 3/3/11 4:00 PM 1996 0 116 687 0 

133 3/3/11 4:00 PM 3/3/11 5:00 PM 1998 0 117 687 0 

152 3/3/11 5:00 PM 3/3/11 6:00 PM 1998 0 117 687 0 

116 3/3/11 6:00 PM 3/3/11 7:00 PM 1998 0 117 687 0 

88 3/3/11 7:00 PM 3/3/11 8:00 PM 2000 0 118 688 0 
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Mode 
Time Period Discharge (igpm) 

From To Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

85 3/3/11 8:00 PM 3/3/11 9:00 PM 0 0 1034 457 0 

132 3/3/11 9:00 PM 3/3/11 10:00 PM 1166 1166 798 452 0 

92 3/3/11 10:00 PM 3/3/11 11:00 PM 2000 0 118 688 0 

157 3/3/11 11:00 PM 3/4/11 12:00 AM 2000 0 118 0 688 

62 3/4/11 12:00 AM 3/4/11 1:00 AM 0 0 1034 458 0 

92 3/4/11 1:00 AM 3/4/11 2:00 AM 0 0 1035 443 0 

137 3/4/11 2:00 AM 3/4/11 3:00 AM 1992 0 126 688 0 

204 3/4/11 3:00 AM 3/4/11 4:00 AM 1059 1059 0 688 0 

199 3/4/11 4:00 AM 3/4/11 5:00 AM 2118 0 0 0 688 

172 3/4/11 5:00 AM 3/4/11 6:00 AM 2000 0 118 688 0 

168 3/4/11 6:00 AM 3/4/11 7:00 AM 2118 0 0 0 688 

117 3/4/11 7:00 AM 3/4/11 8:00 AM 1995 0 123 0 688 

217 3/4/11 8:00 AM 3/4/11 9:00 AM 2000 0 118 688 0 

169 3/4/11 9:00 AM 3/4/11 10:00 AM 1059 1059 0 688 0 

157 3/4/11 10:00 AM 3/4/11 11:00 AM 2000 0 118 688 0 

138 3/4/11 11:00 AM 3/4/11 12:00 PM 1059 1059 0 688 0 

132 3/4/11 12:00 PM 3/4/11 1:00 PM 0 0 1035 446 0 

126 3/4/11 1:00 PM 3/4/11 2:00 PM 2118 0 0 0 688 

177 3/4/11 2:00 PM 3/4/11 3:00 PM 2071 0 151 722 0 

184 3/4/11 3:00 PM 3/4/11 4:00 PM 2222 0 0 0 722 

189 3/4/11 4:00 PM 3/4/11 5:00 PM 0 0 1035 447 0 

222 3/4/11 5:00 PM 3/4/11 6:00 PM 2067 0 156 722 0 

92 3/4/11 6:00 PM 3/4/11 7:00 PM 2071 0 151 722 0 

140 3/4/11 7:00 PM 3/4/11 8:00 PM 2071 0 151 0 722 

124 3/4/11 8:00 PM 3/4/11 9:00 PM 2071 0 151 722 0 

123 3/4/11 9:00 PM 3/4/11 10:00 PM 1111 1111 0 722 0 

85 3/4/11 10:00 PM 3/4/11 11:00 PM 2222 0 0 722 0 

94 3/4/11 11:00 PM 3/5/11 12:00 AM 2071 0 152 722 0 

124 3/5/11 12:00 AM 3/5/11 1:00 AM 2219 0 207 788 0 

76 3/5/11 1:00 AM 3/5/11 2:00 AM 2219 0 207 788 0 

86 3/5/11 2:00 AM 3/5/11 3:00 AM 2108 0 225 738 0 

124 3/5/11 3:00 AM 3/5/11 4:00 AM 2108 0 225 738 0 

79 3/5/11 4:00 AM 3/5/11 5:00 AM 1137 1137 0 738 0 

156 3/5/11 5:00 AM 3/5/11 6:00 AM 0 2273 0 738 0 

113 3/5/11 6:00 AM 3/5/11 7:00 AM 2108 0 225 0 738 

155 3/5/11 7:00 AM 3/5/11 8:00 AM 2108 0 225 738 0 

207 3/5/11 8:00 AM 3/5/11 9:00 AM 2108 0 225 738 0 
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Mode 
Time Period Discharge (igpm) 

From To Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

121 3/5/11 9:00 AM 3/5/11 10:00 AM 1807 0 0 0 587 

157 3/5/11 10:00 AM 3/5/11 11:00 AM 0 0 1035 450 0 

205 3/5/11 11:00 AM 3/5/11 12:00 PM 1914 0 0 0 622 

209 3/5/11 12:00 PM 3/5/11 1:00 PM 1893 0 22 622 0 

138 3/5/11 1:00 PM 3/5/11 2:00 PM 1893 0 22 0 622 

158 3/5/11 2:00 PM 3/5/11 3:00 PM 1893 0 22 0 622 

87 3/5/11 3:00 PM 3/5/11 4:00 PM 1893 0 22 0 622 

123 3/5/11 4:00 PM 3/5/11 5:00 PM 0 0 1034 452 0 

190 3/5/11 5:00 PM 3/5/11 6:00 PM 0 0 1035 439 0 

127 3/5/11 6:00 PM 3/5/11 7:00 PM 1484 1484 0 459 0 

156 3/5/11 7:00 PM 3/5/11 8:00 PM 1893 0 22 622 0 

70 3/5/11 8:00 PM 3/5/11 9:00 PM 0 1914 0 622 0 

101 3/5/11 9:00 PM 3/5/11 10:00 PM 1914 0 0 622 0 

94 3/5/11 10:00 PM 3/5/11 11:00 PM 1893 0 22 622 0 

92 3/5/11 11:00 PM 3/6/11 12:00 AM 1914 0 0 0 622 

215 3/6/11 12:00 AM 3/6/11 1:00 AM 1996 0 116 687 0 

167 3/6/11 1:00 AM 3/6/11 2:00 AM 0 2116 0 687 0 

137 3/6/11 2:00 AM 3/6/11 3:00 AM 1998 0 117 687 0 

117 3/6/11 3:00 AM 3/6/11 4:00 AM 1998 0 117 0 687 

132 3/6/11 4:00 AM 3/6/11 5:00 AM 2000 0 118 688 0 

100 3/6/11 5:00 AM 3/6/11 6:00 AM 2118 0 0 688 0 

114 3/6/11 6:00 AM 3/6/11 7:00 AM 1059 1059 0 688 0 

67 3/6/11 7:00 AM 3/6/11 8:00 AM 2118 0 0 0 688 

129 3/6/11 8:00 AM 3/6/11 9:00 AM 1059 1059 0 688 0 

81 3/6/11 9:00 AM 3/6/11 10:00 AM 2000 0 118 688 0 

176 3/6/11 10:00 AM 3/6/11 11:00 AM 2000 0 118 688 0 

151 3/6/11 11:00 AM 3/6/11 12:00 PM 2000 0 118 0 688 

171 3/6/11 12:00 PM 3/6/11 1:00 PM 2000 0 118 688 0 

116 3/6/11 1:00 PM 3/6/11 2:00 PM 2000 0 118 0 688 

197 3/6/11 2:00 PM 3/6/11 3:00 PM 2000 0 118 688 0 

117 3/6/11 3:00 PM 3/6/11 4:00 PM 2000 0 118 688 0 

118 3/6/11 4:00 PM 3/6/11 5:00 PM 2118 0 0 0 688 

89 3/6/11 5:00 PM 3/6/11 6:00 PM 1059 1059 0 688 0 

105 3/6/11 6:00 PM 3/6/11 7:00 PM 1059 1059 0 688 0 

130 3/6/11 7:00 PM 3/6/11 7:00 PM 0 0 1035 444 0 

57 3/6/11 7:00 PM 3/6/11 8:00 PM 1992 0 126 688 0 

152 3/6/11 8:00 PM 3/6/11 9:00 PM 2000 0 118 688 0 
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Mode 
Time Period Discharge (igpm) 

From To Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

197 3/6/11 9:00 PM 3/6/11 10:00 PM 2118 0 0 688 0 

107 3/6/11 10:00 PM 3/6/11 11:00 PM 2069 0 153 722 0 

81 3/6/11 11:00 PM 3/7/11 12:00 AM 2071 0 151 0 722 

120 3/7/11 12:00 AM 3/7/11 1:00 AM 1111 1111 0 722 0 

211 3/7/11 1:00 AM 3/7/11 2:00 AM 1111 1111 0 722 0 

187 3/7/11 2:00 AM 3/7/11 3:00 AM 2222 0 0 722 0 

129 3/7/11 3:00 AM 3/7/11 4:00 AM 2071 0 151 0 722 

118 3/7/11 4:00 AM 3/7/11 5:00 AM 2222 0 0 722 0 

78 3/7/11 5:00 AM 3/7/11 6:00 AM 2071 0 151 0 722 

70 3/7/11 6:00 AM 3/7/11 7:00 AM 2222 0 0 0 722 

118 3/7/11 7:00 AM 3/7/11 8:00 AM 2071 0 151 722 0 

116 3/7/11 8:00 AM 3/7/11 9:00 AM 0 0 1035 446 0 

70 3/7/11 9:00 AM 3/7/11 10:00 AM 1213 1213 0 788 0 

124 3/7/11 10:00 AM 3/7/11 11:00 AM 2108 0 225 738 0 

195 3/7/11 11:00 AM 3/7/11 12:00 PM 2108 0 225 738 0 

121 3/7/11 12:00 PM 3/7/11 1:00 PM 0 0 1035 448 0 

110 3/7/11 1:00 PM 3/7/11 2:00 PM 2273 0 0 0 738 

65 3/7/11 2:00 PM 3/7/11 3:00 PM 2107 0 225 0 738 

163 3/7/11 3:00 PM 3/7/11 4:00 PM 2273 0 0 738 0 

177 3/7/11 4:00 PM 3/7/11 5:00 PM 2107 0 225 738 0 

243 3/7/11 5:00 PM 3/7/11 6:00 PM 1807 0 0 0 587 

89 3/7/11 6:00 PM 3/7/11 7:00 PM 1914 0 0 622 0 

127 3/7/11 7:00 PM 3/7/11 8:00 PM 1914 0 0 0 622 

86 3/7/11 8:00 PM 3/7/11 9:00 PM 1914 0 0 622 0 

131 3/7/11 9:00 PM 3/7/11 10:00 PM 1893 0 22 622 0 

125 3/7/11 10:00 PM 3/7/11 11:00 PM 1893 0 22 622 0 

130 3/7/11 11:00 PM 3/8/11 12:00 AM 1914 0 0 622 0 

151 3/8/11 12:00 AM 3/8/11 1:00 AM 0 0 1035 451 0 

110 3/8/11 1:00 AM 3/8/11 2:00 AM 0 0 1035 438 0 

157 3/8/11 2:00 AM 3/8/11 3:00 AM 1251 1251 525 605 0 

167 3/8/11 3:00 AM 3/8/11 4:00 AM 625 957 0 622 0 

175 3/8/11 4:00 AM 3/8/11 5:00 AM 0 0 1035 451 0 

111 3/8/11 5:00 AM 3/8/11 6:00 AM 0 0 1035 439 0 

122 3/8/11 6:00 AM 3/8/11 7:00 AM 1484 1484 0 0 460 

182 3/8/11 7:00 AM 3/8/11 8:00 AM 1893 0 22 622 0 

100 3/8/11 8:00 AM 3/8/11 9:00 AM 2111 0 0 687 0 

73 3/8/11 9:00 AM 3/8/11 10:00 AM 2116 0 0 0 687 
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Table C.2: Node Pressures Obtained From Solution 4 

Mode 
Time Period Pressures (psi) 

From To QE Corman PCS Aurora Vanscoy Agrium 

181 3/1/11 11:00 AM 3/1/11 12:00 PM 178 82 71 119 105 26 

216 3/1/11 12:00 PM 3/1/11 1:00 PM 178 82 71 119 105 26 

128 3/1/11 1:00 PM 3/1/11 2:00 PM 178 82 71 119 105 26 

151 3/1/11 2:00 PM 3/1/11 3:00 PM 178 82 71 119 105 26 

72 3/1/11 3:00 PM 3/1/11 4:00 PM 198 102 91 142 128 48 

148 3/1/11 4:00 PM 3/1/11 5:00 PM 198 102 91 142 128 48 

223 3/1/11 5:00 PM 3/1/11 6:00 PM 198 102 91 142 128 48 

137 3/1/11 6:00 PM 3/1/11 7:00 PM 198 102 91 142 128 48 

99 3/1/11 7:00 PM 3/1/11 8:00 PM 178 82 71 119 105 26 

144 3/1/11 8:00 PM 3/1/11 9:00 PM 198 102 91 142 128 48 

190 3/1/11 9:00 PM 3/1/11 10:00 PM 198 102 91 142 128 48 

124 3/1/11 10:00 PM 3/1/11 11:00 PM 198 102 91 142 128 48 

42 3/1/11 11:00 PM 3/2/11 12:00 AM 235 139 128 178 164 85 

173 3/2/11 12:00 AM 3/2/11 1:00 AM 178 82 71 119 105 26 

90 3/2/11 1:00 AM 3/2/11 2:00 AM 198 102 91 142 128 48 

155 3/2/11 2:00 AM 3/2/11 3:00 AM 178 82 71 119 105 26 

119 3/2/11 3:00 AM 3/2/11 4:00 AM 198 102 91 142 128 48 

170 3/2/11 4:00 AM 3/2/11 5:00 AM 198 102 91 142 128 48 

124 3/2/11 5:00 AM 3/2/11 6:00 AM 191 91 79 124 110 30 

167 3/2/11 6:00 AM 3/2/11 7:00 AM 191 91 79 124 110 30 

49 3/2/11 7:00 AM 3/2/11 8:00 AM 191 91 79 124 110 30 

143 3/2/11 8:00 AM 3/2/11 9:00 AM 191 91 79 124 110 30 

157 3/2/11 9:00 AM 3/2/11 10:00 AM 191 91 79 124 110 30 

195 3/2/11 10:00 AM 3/2/11 11:00 AM 191 91 79 124 110 30 

47 3/2/11 11:00 AM 3/2/11 12:00 PM 191 91 79 124 110 30 

86 3/2/11 12:00 PM 3/2/11 1:00 PM 191 91 79 124 110 30 

164 3/2/11 1:00 PM 3/2/11 2:00 PM 191 91 79 124 110 30 

91 3/2/11 2:00 PM 3/2/11 3:00 PM 191 91 79 124 110 30 

141 3/2/11 3:00 PM 3/2/11 4:00 PM 165 31 15 94 42 30 

126 3/2/11 4:00 PM 3/2/11 5:00 PM 175 69 53 94 80 30 

175 3/2/11 5:00 PM 3/2/11 6:00 PM 161 60 47 91 77 30 

95 3/2/11 6:00 PM 3/2/11 7:00 PM 161 60 47 91 77 30 

155 3/2/11 7:00 PM 3/2/11 8:00 PM 187 86 72 117 103 32 

169 3/2/11 8:00 PM 3/2/11 9:00 PM 187 86 72 117 103 32 

174 3/2/11 9:00 PM 3/2/11 10:00 PM 187 86 72 117 103 32 

182 3/2/11 10:00 PM 3/2/11 11:00 PM 161 60 47 91 77 32 
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Mode 
Time Period Pressures (psi) 

From To QE Corman PCS Aurora Vanscoy Agrium 

126 3/2/11 11:00 PM 3/3/11 12:00 AM 187 86 72 117 103 32 

71 3/3/11 12:00 AM 3/3/11 1:00 AM 215 128 121 177 163 88 

174 3/3/11 1:00 AM 3/3/11 2:00 AM 198 107 99 153 139 63 

143 3/3/11 2:00 AM 3/3/11 3:00 AM 198 107 99 153 139 63 

79 3/3/11 3:00 AM 3/3/11 4:00 AM 198 107 99 153 139 63 

157 3/3/11 4:00 AM 3/3/11 5:00 AM 238 148 139 193 179 103 

196 3/3/11 5:00 AM 3/3/11 6:00 AM 198 107 99 153 139 63 

148 3/3/11 6:00 AM 3/3/11 7:00 AM 211 121 113 167 153 77 

91 3/3/11 7:00 AM 3/3/11 8:00 AM 198 107 99 153 139 63 

122 3/3/11 8:00 AM 3/3/11 9:00 AM 211 121 113 167 153 77 

63 3/3/11 9:00 AM 3/3/11 10:00 AM 211 121 113 167 153 77 

83 3/3/11 10:00 AM 3/3/11 11:00 AM 211 121 113 167 153 77 

181 3/3/11 11:00 AM 3/3/11 12:00 PM 211 121 113 167 153 77 

144 3/3/11 12:00 PM 3/3/11 1:00 PM 198 107 99 153 139 63 

141 3/3/11 1:00 PM 3/3/11 2:00 PM 211 121 113 167 153 77 

189 3/3/11 2:00 PM 3/3/11 3:00 PM 198 107 99 153 139 63 

80 3/3/11 3:00 PM 3/3/11 4:00 PM 199 103 92 142 128 49 

133 3/3/11 4:00 PM 3/3/11 5:00 PM 199 103 91 142 128 49 

152 3/3/11 5:00 PM 3/3/11 6:00 PM 199 103 91 142 128 49 

116 3/3/11 6:00 PM 3/3/11 7:00 PM 199 103 91 142 128 49 

88 3/3/11 7:00 PM 3/3/11 8:00 PM 198 102 91 142 128 48 

85 3/3/11 8:00 PM 3/3/11 9:00 PM 198 102 91 142 128 48 

132 3/3/11 9:00 PM 3/3/11 10:00 PM 198 102 91 142 128 48 

92 3/3/11 10:00 PM 3/3/11 11:00 PM 198 102 91 142 128 48 

157 3/3/11 11:00 PM 3/4/11 12:00 AM 198 102 91 142 128 48 

62 3/4/11 12:00 AM 3/4/11 1:00 AM 198 102 91 142 128 48 

92 3/4/11 1:00 AM 3/4/11 2:00 AM 198 102 91 142 128 48 

137 3/4/11 2:00 AM 3/4/11 3:00 AM 198 102 91 142 128 48 

204 3/4/11 3:00 AM 3/4/11 4:00 AM 235 139 128 178 164 85 

199 3/4/11 4:00 AM 3/4/11 5:00 AM 178 82 71 119 105 26 

172 3/4/11 5:00 AM 3/4/11 6:00 AM 198 102 91 142 128 48 

168 3/4/11 6:00 AM 3/4/11 7:00 AM 178 82 71 119 105 26 

117 3/4/11 7:00 AM 3/4/11 8:00 AM 198 102 91 142 128 48 

217 3/4/11 8:00 AM 3/4/11 9:00 AM 198 102 91 142 128 48 

169 3/4/11 9:00 AM 3/4/11 10:00 AM 235 139 128 178 164 85 

157 3/4/11 10:00 AM 3/4/11 11:00 AM 198 102 91 142 128 48 

138 3/4/11 11:00 AM 3/4/11 12:00 PM 235 139 128 178 164 85 
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Mode 
Time Period Pressures (psi) 

From To QE Corman PCS Aurora Vanscoy Agrium 

132 3/4/11 12:00 PM 3/4/11 1:00 PM 235 139 128 178 164 85 

126 3/4/11 1:00 PM 3/4/11 2:00 PM 178 82 71 119 105 26 

177 3/4/11 2:00 PM 3/4/11 3:00 PM 191 91 79 124 110 30 

184 3/4/11 3:00 PM 3/4/11 4:00 PM 168 69 56 102 88 27 

189 3/4/11 4:00 PM 3/4/11 5:00 PM 168 69 56 102 88 27 

222 3/4/11 5:00 PM 3/4/11 6:00 PM 191 91 79 124 110 30 

92 3/4/11 6:00 PM 3/4/11 7:00 PM 191 91 79 124 110 30 

140 3/4/11 7:00 PM 3/4/11 8:00 PM 191 91 79 124 110 30 

124 3/4/11 8:00 PM 3/4/11 9:00 PM 191 91 79 124 110 30 

123 3/4/11 9:00 PM 3/4/11 10:00 PM 234 135 122 168 154 73 

85 3/4/11 10:00 PM 3/4/11 11:00 PM 168 69 56 102 88 27 

94 3/4/11 11:00 PM 3/5/11 12:00 AM 191 91 79 124 110 30 

124 3/5/11 12:00 AM 3/5/11 1:00 AM 175 69 53 94 80 30 

76 3/5/11 1:00 AM 3/5/11 2:00 AM 175 69 53 94 80 30 

86 3/5/11 2:00 AM 3/5/11 3:00 AM 187 86 72 117 103 32 

124 3/5/11 3:00 AM 3/5/11 4:00 AM 187 86 72 117 103 32 

79 3/5/11 4:00 AM 3/5/11 5:00 AM 233 133 119 164 150 68 

156 3/5/11 5:00 AM 3/5/11 6:00 AM 161 60 47 91 77 68 

113 3/5/11 6:00 AM 3/5/11 7:00 AM 187 86 72 117 103 32 

155 3/5/11 7:00 AM 3/5/11 8:00 AM 187 86 72 117 103 32 

207 3/5/11 8:00 AM 3/5/11 9:00 AM 187 86 72 117 103 32 

121 3/5/11 9:00 AM 3/5/11 10:00 AM 215 128 121 177 163 88 

157 3/5/11 10:00 AM 3/5/11 11:00 AM 215 128 121 177 163 88 

205 3/5/11 11:00 AM 3/5/11 12:00 PM 198 107 99 153 139 63 

209 3/5/11 12:00 PM 3/5/11 1:00 PM 211 121 113 167 153 77 

138 3/5/11 1:00 PM 3/5/11 2:00 PM 211 121 113 167 153 77 

158 3/5/11 2:00 PM 3/5/11 3:00 PM 211 121 113 167 153 77 

87 3/5/11 3:00 PM 3/5/11 4:00 PM 211 121 113 167 153 77 

123 3/5/11 4:00 PM 3/5/11 5:00 PM 211 121 113 167 153 77 

190 3/5/11 5:00 PM 3/5/11 6:00 PM 211 121 113 167 153 77 

127 3/5/11 6:00 PM 3/5/11 7:00 PM 211 121 113 167 153 77 

156 3/5/11 7:00 PM 3/5/11 8:00 PM 211 121 113 167 153 77 

70 3/5/11 8:00 PM 3/5/11 9:00 PM 198 107 99 153 139 63 

101 3/5/11 9:00 PM 3/5/11 10:00 PM 198 107 99 153 139 63 

94 3/5/11 10:00 PM 3/5/11 11:00 PM 211 121 113 167 153 77 

92 3/5/11 11:00 PM 3/6/11 12:00 AM 198 107 99 153 139 63 

215 3/6/11 12:00 AM 3/6/11 1:00 AM 199 103 92 142 128 49 
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Mode 
Time Period Pressures (psi) 

From To QE Corman PCS Aurora Vanscoy Agrium 

167 3/6/11 1:00 AM 3/6/11 2:00 AM 178 82 71 120 106 26 

137 3/6/11 2:00 AM 3/6/11 3:00 AM 199 103 91 142 128 49 

117 3/6/11 3:00 AM 3/6/11 4:00 AM 199 103 91 142 128 49 

132 3/6/11 4:00 AM 3/6/11 5:00 AM 198 102 91 142 128 48 

100 3/6/11 5:00 AM 3/6/11 6:00 AM 178 82 71 119 105 26 

114 3/6/11 6:00 AM 3/6/11 7:00 AM 235 139 128 178 164 85 

67 3/6/11 7:00 AM 3/6/11 8:00 AM 178 82 71 119 105 26 

129 3/6/11 8:00 AM 3/6/11 9:00 AM 235 139 128 178 164 85 

81 3/6/11 9:00 AM 3/6/11 10:00 AM 198 102 91 142 128 48 

176 3/6/11 10:00 AM 3/6/11 11:00 AM 198 102 91 142 128 48 

151 3/6/11 11:00 AM 3/6/11 12:00 PM 198 102 91 142 128 48 

171 3/6/11 12:00 PM 3/6/11 1:00 PM 198 102 91 142 128 48 

116 3/6/11 1:00 PM 3/6/11 2:00 PM 198 102 91 142 128 48 

197 3/6/11 2:00 PM 3/6/11 3:00 PM 198 102 91 142 128 48 

117 3/6/11 3:00 PM 3/6/11 4:00 PM 198 102 91 142 128 48 

118 3/6/11 4:00 PM 3/6/11 5:00 PM 178 82 71 119 105 26 

89 3/6/11 5:00 PM 3/6/11 6:00 PM 235 139 128 178 164 85 

105 3/6/11 6:00 PM 3/6/11 7:00 PM 235 139 128 178 164 85 

130 3/6/11 7:00 PM 3/6/11 7:00 PM 235 139 128 178 164 85 

57 3/6/11 7:00 PM 3/6/11 8:00 PM 198 102 91 142 128 48 

152 3/6/11 8:00 PM 3/6/11 9:00 PM 198 102 91 142 128 48 

197 3/6/11 9:00 PM 3/6/11 10:00 PM 178 82 71 119 105 26 

107 3/6/11 10:00 PM 3/6/11 11:00 PM 191 91 79 124 110 30 

81 3/6/11 11:00 PM 3/7/11 12:00 AM 191 91 79 124 110 30 

120 3/7/11 12:00 AM 3/7/11 1:00 AM 234 135 122 168 154 73 

211 3/7/11 1:00 AM 3/7/11 2:00 AM 234 135 122 168 154 73 

187 3/7/11 2:00 AM 3/7/11 3:00 AM 168 69 56 102 88 27 

129 3/7/11 3:00 AM 3/7/11 4:00 AM 191 91 79 124 110 30 

118 3/7/11 4:00 AM 3/7/11 5:00 AM 168 69 56 102 88 27 

78 3/7/11 5:00 AM 3/7/11 6:00 AM 191 91 79 124 110 30 

70 3/7/11 6:00 AM 3/7/11 7:00 AM 168 69 56 102 88 27 

118 3/7/11 7:00 AM 3/7/11 8:00 AM 191 91 79 124 110 30 

116 3/7/11 8:00 AM 3/7/11 9:00 AM 191 91 79 124 110 30 

70 3/7/11 9:00 AM 3/7/11 10:00 AM 232 126 110 151 137 53 

124 3/7/11 10:00 AM 3/7/11 11:00 AM 187 86 72 117 103 32 

195 3/7/11 11:00 AM 3/7/11 12:00 PM 187 86 72 117 103 32 

121 3/7/11 12:00 PM 3/7/11 1:00 PM 187 86 72 117 103 32 
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Mode 
Time Period Pressures (psi) 

From To QE Corman PCS Aurora Vanscoy Agrium 

110 3/7/11 1:00 PM 3/7/11 2:00 PM 161 60 47 91 77 32 

65 3/7/11 2:00 PM 3/7/11 3:00 PM 187 86 72 117 103 32 

163 3/7/11 3:00 PM 3/7/11 4:00 PM 161 60 47 91 77 32 

177 3/7/11 4:00 PM 3/7/11 5:00 PM 187 86 72 117 103 32 

243 3/7/11 5:00 PM 3/7/11 6:00 PM 215 128 121 177 163 88 

89 3/7/11 6:00 PM 3/7/11 7:00 PM 198 107 99 153 139 63 

127 3/7/11 7:00 PM 3/7/11 8:00 PM 198 107 99 153 139 63 

86 3/7/11 8:00 PM 3/7/11 9:00 PM 198 107 99 153 139 63 

131 3/7/11 9:00 PM 3/7/11 10:00 PM 211 121 113 167 153 77 

125 3/7/11 10:00 PM 3/7/11 11:00 PM 211 121 113 167 153 77 

130 3/7/11 11:00 PM 3/8/11 12:00 AM 198 107 99 153 139 63 

151 3/8/11 12:00 AM 3/8/11 1:00 AM 198 107 99 153 139 63 

110 3/8/11 1:00 AM 3/8/11 2:00 AM 198 107 99 153 139 63 

157 3/8/11 2:00 AM 3/8/11 3:00 AM 198 107 99 153 139 63 

167 3/8/11 3:00 AM 3/8/11 4:00 AM 238 148 139 193 179 103 

175 3/8/11 4:00 AM 3/8/11 5:00 AM 238 148 139 193 179 103 

111 3/8/11 5:00 AM 3/8/11 6:00 AM 238 148 139 193 179 103 

122 3/8/11 6:00 AM 3/8/11 7:00 AM 238 148 139 193 179 103 

182 3/8/11 7:00 AM 3/8/11 8:00 AM 211 121 113 167 153 77 

100 3/8/11 8:00 AM 3/8/11 9:00 AM 179 83 72 120 106 27 

73 3/8/11 9:00 AM 3/8/11 10:00 AM 178 82 71 120 106 26 
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Table C.3: Pump Discharge and Node Demands Obtained From Solution 4 

Mode 
Time Period 

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 
From To 

181 3/1/11 11:00 AM 3/1/11 12:00 PM 0 1 0 1 0 

216 3/1/11 12:00 PM 3/1/11 1:00 PM 0 1 0 0 1 

128 3/1/11 1:00 PM 3/1/11 2:00 PM 1 1 0 1 0 

151 3/1/11 2:00 PM 3/1/11 3:00 PM 0 1 0 1 0 

72 3/1/11 3:00 PM 3/1/11 4:00 PM 1 1 0 1 0 

148 3/1/11 4:00 PM 3/1/11 5:00 PM 1 1 0 1 0 

223 3/1/11 5:00 PM 3/1/11 6:00 PM 1 1 0 0 1 

137 3/1/11 6:00 PM 3/1/11 7:00 PM 0 1 0 1 0 

99 3/1/11 7:00 PM 3/1/11 8:00 PM 1 1 0 1 0 

144 3/1/11 8:00 PM 3/1/11 9:00 PM 1 1 0 1 0 

190 3/1/11 9:00 PM 3/1/11 10:00 PM 1 1 0 1 0 

124 3/1/11 10:00 PM 3/1/11 11:00 PM 1 1 0 1 0 

42 3/1/11 11:00 PM 3/2/11 12:00 AM 1 1 0 1 0 

173 3/2/11 12:00 AM 3/2/11 1:00 AM 0 1 0 1 0 

90 3/2/11 1:00 AM 3/2/11 2:00 AM 1 0 0 1 0 

155 3/2/11 2:00 AM 3/2/11 3:00 AM 0 1 0 1 0 

119 3/2/11 3:00 AM 3/2/11 4:00 AM 1 1 0 1 0 

170 3/2/11 4:00 AM 3/2/11 5:00 AM 1 1 0 1 0 

124 3/2/11 5:00 AM 3/2/11 6:00 AM 1 1 0 1 0 

167 3/2/11 6:00 AM 3/2/11 7:00 AM 1 1 0 1 0 

49 3/2/11 7:00 AM 3/2/11 8:00 AM 1 1 0 1 0 

143 3/2/11 8:00 AM 3/2/11 9:00 AM 1 1 0 1 0 

157 3/2/11 9:00 AM 3/2/11 10:00 AM 1 1 0 1 0 

195 3/2/11 10:00 AM 3/2/11 11:00 AM 1 1 0 1 0 

47 3/2/11 11:00 AM 3/2/11 12:00 PM 1 0 0 1 0 

86 3/2/11 12:00 PM 3/2/11 1:00 PM 1 0 0 1 0 

164 3/2/11 1:00 PM 3/2/11 2:00 PM 0 1 1 1 0 

91 3/2/11 2:00 PM 3/2/11 3:00 PM 1 1 0 1 0 

141 3/2/11 3:00 PM 3/2/11 4:00 PM 1 1 0 1 0 

126 3/2/11 4:00 PM 3/2/11 5:00 PM 1 1 0 1 0 

175 3/2/11 5:00 PM 3/2/11 6:00 PM 1 1 0 1 0 

95 3/2/11 6:00 PM 3/2/11 7:00 PM 1 0 0 1 0 

155 3/2/11 7:00 PM 3/2/11 8:00 PM 0 1 0 1 0 

169 3/2/11 8:00 PM 3/2/11 9:00 PM 1 1 0 1 0 

174 3/2/11 9:00 PM 3/2/11 10:00 PM 1 1 0 1 0 

182 3/2/11 10:00 PM 3/2/11 11:00 PM 1 1 0 1 0 
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Mode 
Time Period 

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 
From To 

126 3/2/11 11:00 PM 3/3/11 12:00 AM 1 1 0 1 0 

71 3/3/11 12:00 AM 3/3/11 1:00 AM 1 0 0 1 0 

174 3/3/11 1:00 AM 3/3/11 2:00 AM 1 1 0 1 0 

143 3/3/11 2:00 AM 3/3/11 3:00 AM 1 1 0 1 0 

79 3/3/11 3:00 AM 3/3/11 4:00 AM 1 0 0 1 0 

157 3/3/11 4:00 AM 3/3/11 5:00 AM 1 1 0 1 0 

196 3/3/11 5:00 AM 3/3/11 6:00 AM 1 1 0 1 0 

148 3/3/11 6:00 AM 3/3/11 7:00 AM 1 1 0 1 0 

91 3/3/11 7:00 AM 3/3/11 8:00 AM 1 1 0 1 0 

122 3/3/11 8:00 AM 3/3/11 9:00 AM 1 0 0 1 0 

63 3/3/11 9:00 AM 3/3/11 10:00 AM 1 0 0 1 0 

83 3/3/11 10:00 AM 3/3/11 11:00 AM 1 1 0 1 0 

181 3/3/11 11:00 AM 3/3/11 12:00 PM 0 1 0 1 0 

144 3/3/11 12:00 PM 3/3/11 1:00 PM 1 1 0 1 0 

141 3/3/11 1:00 PM 3/3/11 2:00 PM 1 1 0 1 0 

189 3/3/11 2:00 PM 3/3/11 3:00 PM 1 1 0 1 0 

80 3/3/11 3:00 PM 3/3/11 4:00 PM 1 0 0 1 0 

133 3/3/11 4:00 PM 3/3/11 5:00 PM 0 1 0 1 0 

152 3/3/11 5:00 PM 3/3/11 6:00 PM 1 1 0 1 0 

116 3/3/11 6:00 PM 3/3/11 7:00 PM 1 1 0 1 0 

88 3/3/11 7:00 PM 3/3/11 8:00 PM 1 0 0 1 0 

85 3/3/11 8:00 PM 3/3/11 9:00 PM 1 0 0 1 0 

132 3/3/11 9:00 PM 3/3/11 10:00 PM 0 1 1 1 0 

92 3/3/11 10:00 PM 3/3/11 11:00 PM 1 1 0 1 0 

157 3/3/11 11:00 PM 3/4/11 12:00 AM 1 1 0 1 0 

62 3/4/11 12:00 AM 3/4/11 1:00 AM 1 1 0 1 0 

92 3/4/11 1:00 AM 3/4/11 2:00 AM 1 1 0 1 0 

137 3/4/11 2:00 AM 3/4/11 3:00 AM 0 1 0 1 0 

204 3/4/11 3:00 AM 3/4/11 4:00 AM 0 1 0 0 1 

199 3/4/11 4:00 AM 3/4/11 5:00 AM 0 1 0 0 1 

172 3/4/11 5:00 AM 3/4/11 6:00 AM 0 1 0 1 0 

168 3/4/11 6:00 AM 3/4/11 7:00 AM 0 1 0 1 0 

117 3/4/11 7:00 AM 3/4/11 8:00 AM 1 1 0 1 0 

217 3/4/11 8:00 AM 3/4/11 9:00 AM 1 1 0 0 1 

169 3/4/11 9:00 AM 3/4/11 10:00 AM 1 1 0 1 0 

157 3/4/11 10:00 AM 3/4/11 11:00 AM 1 1 0 1 0 

138 3/4/11 11:00 AM 3/4/11 12:00 PM 0 1 0 1 0 
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Mode 
Time Period 

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 
From To 

132 3/4/11 12:00 PM 3/4/11 1:00 PM 0 1 1 1 0 

126 3/4/11 1:00 PM 3/4/11 2:00 PM 1 1 0 1 0 

177 3/4/11 2:00 PM 3/4/11 3:00 PM 1 1 0 1 0 

184 3/4/11 3:00 PM 3/4/11 4:00 PM 1 1 0 1 0 

189 3/4/11 4:00 PM 3/4/11 5:00 PM 1 1 0 1 0 

222 3/4/11 5:00 PM 3/4/11 6:00 PM 1 1 0 0 1 

92 3/4/11 6:00 PM 3/4/11 7:00 PM 1 1 0 1 0 

140 3/4/11 7:00 PM 3/4/11 8:00 PM 1 1 0 1 0 

124 3/4/11 8:00 PM 3/4/11 9:00 PM 1 1 0 1 0 

123 3/4/11 9:00 PM 3/4/11 10:00 PM 1 0 0 1 0 

85 3/4/11 10:00 PM 3/4/11 11:00 PM 1 0 0 1 0 

94 3/4/11 11:00 PM 3/5/11 12:00 AM 1 0 0 1 0 

124 3/5/11 12:00 AM 3/5/11 1:00 AM 1 1 0 1 0 

76 3/5/11 1:00 AM 3/5/11 2:00 AM 1 1 0 1 0 

86 3/5/11 2:00 AM 3/5/11 3:00 AM 1 0 0 1 0 

124 3/5/11 3:00 AM 3/5/11 4:00 AM 1 1 0 1 0 

79 3/5/11 4:00 AM 3/5/11 5:00 AM 1 0 0 1 0 

156 3/5/11 5:00 AM 3/5/11 6:00 AM 1 1 0 1 0 

113 3/5/11 6:00 AM 3/5/11 7:00 AM 1 0 0 1 0 

155 3/5/11 7:00 AM 3/5/11 8:00 AM 0 1 0 1 0 

207 3/5/11 8:00 AM 3/5/11 9:00 AM 1 1 0 0 1 

121 3/5/11 9:00 AM 3/5/11 10:00 AM 1 0 0 1 0 

157 3/5/11 10:00 AM 3/5/11 11:00 AM 1 1 0 1 0 

205 3/5/11 11:00 AM 3/5/11 12:00 PM 1 1 0 0 1 

209 3/5/11 12:00 PM 3/5/11 1:00 PM 1 1 0 0 1 

138 3/5/11 1:00 PM 3/5/11 2:00 PM 0 1 0 1 0 

158 3/5/11 2:00 PM 3/5/11 3:00 PM 1 1 0 1 0 

87 3/5/11 3:00 PM 3/5/11 4:00 PM 1 1 0 1 0 

123 3/5/11 4:00 PM 3/5/11 5:00 PM 1 0 0 1 0 

190 3/5/11 5:00 PM 3/5/11 6:00 PM 1 1 0 1 0 

127 3/5/11 6:00 PM 3/5/11 7:00 PM 1 1 0 1 0 

156 3/5/11 7:00 PM 3/5/11 8:00 PM 1 1 0 1 0 

70 3/5/11 8:00 PM 3/5/11 9:00 PM 1 1 0 1 0 

101 3/5/11 9:00 PM 3/5/11 10:00 PM 1 1 0 1 0 

94 3/5/11 10:00 PM 3/5/11 11:00 PM 1 0 0 1 0 

92 3/5/11 11:00 PM 3/6/11 12:00 AM 1 1 0 1 0 

215 3/6/11 12:00 AM 3/6/11 1:00 AM 0 1 0 0 1 
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Mode 
Time Period 

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 
From To 

167 3/6/11 1:00 AM 3/6/11 2:00 AM 1 1 0 1 0 

137 3/6/11 2:00 AM 3/6/11 3:00 AM 0 1 0 1 0 

117 3/6/11 3:00 AM 3/6/11 4:00 AM 1 1 0 1 0 

132 3/6/11 4:00 AM 3/6/11 5:00 AM 0 1 1 1 0 

100 3/6/11 5:00 AM 3/6/11 6:00 AM 1 1 0 1 0 

114 3/6/11 6:00 AM 3/6/11 7:00 AM 1 1 0 1 0 

67 3/6/11 7:00 AM 3/6/11 8:00 AM 1 1 0 1 0 

129 3/6/11 8:00 AM 3/6/11 9:00 AM 0 1 0 1 0 

81 3/6/11 9:00 AM 3/6/11 10:00 AM 1 0 0 1 0 

176 3/6/11 10:00 AM 3/6/11 11:00 AM 1 1 0 1 0 

151 3/6/11 11:00 AM 3/6/11 12:00 PM 0 1 0 1 0 

171 3/6/11 12:00 PM 3/6/11 1:00 PM 0 1 0 1 0 

116 3/6/11 1:00 PM 3/6/11 2:00 PM 1 1 0 1 0 

197 3/6/11 2:00 PM 3/6/11 3:00 PM 1 1 0 1 0 

117 3/6/11 3:00 PM 3/6/11 4:00 PM 1 1 0 1 0 

118 3/6/11 4:00 PM 3/6/11 5:00 PM 1 1 0 1 0 

89 3/6/11 5:00 PM 3/6/11 6:00 PM 1 0 0 1 0 

105 3/6/11 6:00 PM 3/6/11 7:00 PM 1 1 0 1 0 

130 3/6/11 7:00 PM 3/6/11 7:00 PM 0 1 0 1 0 

57 3/6/11 7:00 PM 3/6/11 8:00 PM 1 1 0 1 0 

152 3/6/11 8:00 PM 3/6/11 9:00 PM 1 1 0 1 0 

197 3/6/11 9:00 PM 3/6/11 10:00 PM 1 1 0 1 0 

107 3/6/11 10:00 PM 3/6/11 11:00 PM 1 1 0 1 0 

81 3/6/11 11:00 PM 3/7/11 12:00 AM 1 0 0 1 0 

120 3/7/11 12:00 AM 3/7/11 1:00 AM 1 0 0 1 0 

211 3/7/11 1:00 AM 3/7/11 2:00 AM 1 1 0 0 1 

187 3/7/11 2:00 AM 3/7/11 3:00 AM 0 1 0 1 0 

129 3/7/11 3:00 AM 3/7/11 4:00 AM 0 1 0 1 0 

118 3/7/11 4:00 AM 3/7/11 5:00 AM 1 1 0 1 0 

78 3/7/11 5:00 AM 3/7/11 6:00 AM 1 1 0 1 0 

70 3/7/11 6:00 AM 3/7/11 7:00 AM 1 1 0 1 0 

118 3/7/11 7:00 AM 3/7/11 8:00 AM 1 1 0 1 0 

116 3/7/11 8:00 AM 3/7/11 9:00 AM 1 1 0 1 0 

70 3/7/11 9:00 AM 3/7/11 10:00 AM 1 1 0 1 0 

124 3/7/11 10:00 AM 3/7/11 11:00 AM 1 1 0 1 0 

195 3/7/11 11:00 AM 3/7/11 12:00 PM 1 1 0 1 0 

121 3/7/11 12:00 PM 3/7/11 1:00 PM 1 0 0 1 0 
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Mode 
Time Period 

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 
From To 

110 3/7/11 1:00 PM 3/7/11 2:00 PM 1 1 0 1 0 

65 3/7/11 2:00 PM 3/7/11 3:00 PM 1 1 0 1 0 

163 3/7/11 3:00 PM 3/7/11 4:00 PM 0 0 1 1 0 

177 3/7/11 4:00 PM 3/7/11 5:00 PM 1 1 0 1 0 

243 3/7/11 5:00 PM 3/7/11 6:00 PM 1 1 0 0 1 

89 3/7/11 6:00 PM 3/7/11 7:00 PM 1 0 0 1 0 

127 3/7/11 7:00 PM 3/7/11 8:00 PM 1 1 0 1 0 

86 3/7/11 8:00 PM 3/7/11 9:00 PM 1 0 0 1 0 

131 3/7/11 9:00 PM 3/7/11 10:00 PM 0 1 1 1 0 

125 3/7/11 10:00 PM 3/7/11 11:00 PM 1 1 0 1 0 

130 3/7/11 11:00 PM 3/8/11 12:00 AM 0 1 0 1 0 

151 3/8/11 12:00 AM 3/8/11 1:00 AM 0 1 0 1 0 

110 3/8/11 1:00 AM 3/8/11 2:00 AM 1 1 0 1 0 

157 3/8/11 2:00 AM 3/8/11 3:00 AM 1 1 0 1 0 

167 3/8/11 3:00 AM 3/8/11 4:00 AM 1 1 0 1 0 

175 3/8/11 4:00 AM 3/8/11 5:00 AM 1 1 0 1 0 

111 3/8/11 5:00 AM 3/8/11 6:00 AM 1 0 0 1 0 

122 3/8/11 6:00 AM 3/8/11 7:00 AM 1 0 0 1 0 

182 3/8/11 7:00 AM 3/8/11 8:00 AM 1 1 0 1 0 

100 3/8/11 8:00 AM 3/8/11 9:00 AM 1 1 0 1 0 

73 3/8/11 9:00 AM 3/8/11 10:00 AM 1 0 0 1 0 
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Table C.4: Pump Scheduling (ON = 1, OFF = 0) Obtained From Solution 4 

Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

181 0 1 0 1 0 

216 0 1 0 0 1 

128 1 1 0 1 0 

151 0 1 0 1 0 

72 1 1 0 1 0 

148 1 1 0 1 0 

223 1 1 0 0 1 

137 0 1 0 1 0 

99 1 1 0 1 0 

144 1 1 0 1 0 

190 1 1 0 1 0 

124 1 1 0 1 0 

42 1 1 0 1 0 

173 0 1 0 1 0 

90 1 0 0 1 0 

155 0 1 0 1 0 

119 1 1 0 1 0 

170 1 1 0 1 0 

124 1 1 0 1 0 

167 1 1 0 1 0 

49 1 1 0 1 0 

143 1 1 0 1 0 

157 1 1 0 1 0 

195 1 1 0 1 0 

47 1 0 0 1 0 

86 1 0 0 1 0 

164 0 1 1 1 0 

91 1 1 0 1 0 

141 1 1 0 1 0 

126 1 1 0 1 0 

175 1 1 0 1 0 

95 1 0 0 1 0 

155 0 1 0 1 0 

169 1 1 0 1 0 

174 1 1 0 1 0 

182 1 1 0 1 0 

126 1 1 0 1 0 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

71 1 0 0 1 0 

174 1 1 0 1 0 

143 1 1 0 1 0 

79 1 0 0 1 0 

157 1 1 0 1 0 

196 1 1 0 1 0 

148 1 1 0 1 0 

91 1 1 0 1 0 

122 1 0 0 1 0 

63 1 0 0 1 0 

83 1 1 0 1 0 

181 0 1 0 1 0 

144 1 1 0 1 0 

141 1 1 0 1 0 

189 1 1 0 1 0 

80 1 0 0 1 0 

133 0 1 0 1 0 

152 1 1 0 1 0 

116 1 1 0 1 0 

88 1 0 0 1 0 

85 1 0 0 1 0 

132 0 1 1 1 0 

92 1 1 0 1 0 

157 1 1 0 1 0 

62 1 1 0 1 0 

92 1 1 0 1 0 

137 0 1 0 1 0 

204 0 1 0 0 1 

199 0 1 0 0 1 

172 0 1 0 1 0 

168 0 1 0 1 0 

117 1 1 0 1 0 

217 1 1 0 0 1 

169 1 1 0 1 0 

157 1 1 0 1 0 

138 0 1 0 1 0 

132 0 1 1 1 0 

126 1 1 0 1 0 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

177 1 1 0 1 0 

184 1 1 0 1 0 

189 1 1 0 1 0 

222 1 1 0 0 1 

92 1 1 0 1 0 

140 1 1 0 1 0 

124 1 1 0 1 0 

123 1 0 0 1 0 

85 1 0 0 1 0 

94 1 0 0 1 0 

124 1 1 0 1 0 

76 1 1 0 1 0 

86 1 0 0 1 0 

124 1 1 0 1 0 

79 1 0 0 1 0 

156 1 1 0 1 0 

113 1 0 0 1 0 

155 0 1 0 1 0 

207 1 1 0 0 1 

121 1 0 0 1 0 

157 1 1 0 1 0 

205 1 1 0 0 1 

209 1 1 0 0 1 

138 0 1 0 1 0 

158 1 1 0 1 0 

87 1 1 0 1 0 

123 1 0 0 1 0 

190 1 1 0 1 0 

127 1 1 0 1 0 

156 1 1 0 1 0 

70 1 1 0 1 0 

101 1 1 0 1 0 

94 1 0 0 1 0 

92 1 1 0 1 0 

215 0 1 0 0 1 

167 1 1 0 1 0 

137 0 1 0 1 0 

117 1 1 0 1 0 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

132 0 1 1 1 0 

100 1 1 0 1 0 

114 1 1 0 1 0 

67 1 1 0 1 0 

129 0 1 0 1 0 

81 1 0 0 1 0 

176 1 1 0 1 0 

151 0 1 0 1 0 

171 0 1 0 1 0 

116 1 1 0 1 0 

197 1 1 0 1 0 

117 1 1 0 1 0 

118 1 1 0 1 0 

89 1 0 0 1 0 

105 1 1 0 1 0 

130 0 1 0 1 0 

57 1 1 0 1 0 

152 1 1 0 1 0 

197 1 1 0 1 0 

107 1 1 0 1 0 

81 1 0 0 1 0 

120 1 0 0 1 0 

211 1 1 0 0 1 

187 0 1 0 1 0 

129 0 1 0 1 0 

118 1 1 0 1 0 

78 1 1 0 1 0 

70 1 1 0 1 0 

118 1 1 0 1 0 

116 1 1 0 1 0 

70 1 1 0 1 0 

124 1 1 0 1 0 

195 1 1 0 1 0 

121 1 0 0 1 0 

110 1 1 0 1 0 

65 1 1 0 1 0 

163 0 0 1 1 0 

177 1 1 0 1 0 
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Mode Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 

243 1 1 0 0 1 

89 1 0 0 1 0 

127 1 1 0 1 0 

86 1 0 0 1 0 

131 0 1 1 1 0 

125 1 1 0 1 0 

130 0 1 0 1 0 

151 0 1 0 1 0 

110 1 1 0 1 0 

157 1 1 0 1 0 

167 1 1 0 1 0 

175 1 1 0 1 0 

111 1 0 0 1 0 

122 1 0 0 1 0 

182 1 1 0 1 0 

100 1 1 0 1 0 

73 1 0 0 1 0 

  



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

332 

Table C.5: Operating-Modes for the Solutions (1-7) Chosen in the Case Study 

Time Period Solution 
1 

Solution 
2 

Solution 
3 

Solution 
4 

Solution 
5 

Solution 
6  

Solution 
7 From To 

3/1/11 11:00 AM 3/1/11 12:00 PM 173 191 138 181 188 90 179 

3/1/11 12:00 PM 3/1/11 1:00 PM 151 182 234 216 185 120 151 

3/1/11 1:00 PM 3/1/11 2:00 PM 26 87 38 128 84 124 32 

3/1/11 2:00 PM 3/1/11 3:00 PM 60 106 81 151 103 224 57 

3/1/11 3:00 PM 3/1/11 4:00 PM 27 53 48 72 56 63 27 

3/1/11 4:00 PM 3/1/11 5:00 PM 44 158 101 148 161 89 44 

3/1/11 5:00 PM 3/1/11 6:00 PM 194 230 176 223 227 116 194 

3/1/11 6:00 PM 3/1/11 7:00 PM 152 149 244 137 152 101 152 

3/1/11 7:00 PM 3/1/11 8:00 PM 129 153 168 99 150 84 129 

3/1/11 8:00 PM 3/1/11 9:00 PM 140 113 195 144 110 272 140 

3/1/11 9:00 PM 3/1/11 10:00 PM 168 120 244 190 117 140 168 

3/1/11 10:00 PM 3/1/11 11:00 PM 132 162 250 124 159 237 129 

3/1/11 11:00 PM 3/2/11 12:00 AM 24 61 15 42 64 160 24 

3/2/11 12:00 AM 3/2/11 1:00 AM 181 205 260 173 202 75 178 

3/2/11 1:00 AM 3/2/11 2:00 AM 95 164 148 90 161 68 98 

3/2/11 2:00 AM 3/2/11 3:00 AM 32 95 232 155 92 196 32 

3/2/11 3:00 AM 3/2/11 4:00 AM 45 51 49 119 54 152 51 

3/2/11 4:00 AM 3/2/11 5:00 AM 198 184 177 170 187 48 198 

3/2/11 5:00 AM 3/2/11 6:00 AM 139 124 110 124 121 88 136 

3/2/11 6:00 AM 3/2/11 7:00 AM 69 120 231 167 123 175 66 

3/2/11 7:00 AM 3/2/11 8:00 AM 123 75 117 49 78 111 123 

3/2/11 8:00 AM 3/2/11 9:00 AM 62 87 62 143 90 111 68 

3/2/11 9:00 AM 3/2/11 10:00 AM 201 126 183 157 123 204 198 

3/2/11 10:00 AM 3/2/11 11:00 AM 178 118 119 195 121 109 163 

3/2/11 11:00 AM 3/2/11 12:00 PM 180 90 149 47 93 181 180 

3/2/11 12:00 PM 3/2/11 1:00 PM 95 85 99 86 82 248 86 

3/2/11 1:00 PM 3/2/11 2:00 PM 86 122 83 164 125 202 86 

3/2/11 2:00 PM 3/2/11 3:00 PM 52 115 86 91 118 104 52 

3/2/11 3:00 PM 3/2/11 4:00 PM 70 69 154 141 72 245 70 

3/2/11 4:00 PM 3/2/11 5:00 PM 64 115 251 126 118 11 58 

3/2/11 5:00 PM 3/2/11 6:00 PM 241 160 234 175 157 163 238 

3/2/11 6:00 PM 3/2/11 7:00 PM 89 140 89 95 143 68 89 

3/2/11 7:00 PM 3/2/11 8:00 PM 237 171 257 155 168 252 237 

3/2/11 8:00 PM 3/2/11 9:00 PM 242 212 158 169 209 272 242 

3/2/11 9:00 PM 3/2/11 10:00 PM 180 127 157 174 130 180 180 

3/2/11 10:00 PM 3/2/11 11:00 PM 175 205 187 182 202 5 163 
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Time Period Solution 
1 

Solution 
2 

Solution 
3 

Solution 
4 

Solution 
5 

Solution 
6  

Solution 
7 From To 

3/2/11 11:00 PM 3/3/11 12:00 AM 119 191 128 126 194 202 119 

3/3/11 12:00 AM 3/3/11 1:00 AM 39 125 124 71 122 228 36 

3/3/11 1:00 AM 3/3/11 2:00 AM 185 153 204 174 150 209 185 

3/3/11 2:00 AM 3/3/11 3:00 AM 100 97 171 143 94 38 97 

3/3/11 3:00 AM 3/3/11 4:00 AM 71 119 89 79 116 226 71 

3/3/11 4:00 AM 3/3/11 5:00 AM 149 194 164 157 191 105 149 

3/3/11 5:00 AM 3/3/11 6:00 AM 233 231 172 196 234 37 236 

3/3/11 6:00 AM 3/3/11 7:00 AM 179 146 157 148 143 234 182 

3/3/11 7:00 AM 3/3/11 8:00 AM 17 76 14 91 79 147 17 

3/3/11 8:00 AM 3/3/11 9:00 AM 12 1 57 122 1 118 24 

3/3/11 9:00 AM 3/3/11 10:00 AM 17 85 109 63 88 7 17 

3/3/11 10:00 AM 3/3/11 11:00 AM 150 186 126 83 183 272 147 

3/3/11 11:00 AM 3/3/11 12:00 PM 240 222 56 181 219 270 240 

3/3/11 12:00 PM 3/3/11 1:00 PM 180 176 155 144 173 98 180 

3/3/11 1:00 PM 3/3/11 2:00 PM 197 214 222 141 211 46 197 

3/3/11 2:00 PM 3/3/11 3:00 PM 197 239 215 189 242 218 197 

3/3/11 3:00 PM 3/3/11 4:00 PM 82 112 126 80 109 142 82 

3/3/11 4:00 PM 3/3/11 5:00 PM 223 182 141 133 179 57 223 

3/3/11 5:00 PM 3/3/11 6:00 PM 161 116 167 152 119 88 161 

3/3/11 6:00 PM 3/3/11 7:00 PM 22 86 66 116 83 197 19 

3/3/11 7:00 PM 3/3/11 8:00 PM 44 71 75 88 74 62 44 

3/3/11 8:00 PM 3/3/11 9:00 PM 28 88 86 85 91 251 28 

3/3/11 9:00 PM 3/3/11 10:00 PM 137 137 149 132 134 266 140 

3/3/11 10:00 PM 3/3/11 11:00 PM 155 167 149 92 164 82 152 

3/3/11 11:00 PM 3/4/11 12:00 AM 131 125 266 157 128 121 125 

3/4/11 12:00 AM 3/4/11 1:00 AM 22 103 93 62 106 269 34 

3/4/11 1:00 AM 3/4/11 2:00 AM 48 83 157 92 86 170 36 

3/4/11 2:00 AM 3/4/11 3:00 AM 18 82 21 137 79 272 15 

3/4/11 3:00 AM 3/4/11 4:00 AM 272 272 269 204 272 171 272 

3/4/11 4:00 AM 3/4/11 5:00 AM 207 171 192 199 168 201 204 

3/4/11 5:00 AM 3/4/11 6:00 AM 257 272 260 172 272 47 257 

3/4/11 6:00 AM 3/4/11 7:00 AM 244 214 256 168 211 130 244 

3/4/11 7:00 AM 3/4/11 8:00 AM 71 93 142 117 96 92 71 

3/4/11 8:00 AM 3/4/11 9:00 AM 158 194 161 217 197 235 155 

3/4/11 9:00 AM 3/4/11 10:00 AM 82 169 100 169 172 272 91 

3/4/11 10:00 AM 3/4/11 11:00 AM 60 105 131 157 108 1 63 

3/4/11 11:00 AM 3/4/11 12:00 PM 29 134 104 138 131 184 29 
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Time Period Solution 
1 

Solution 
2 

Solution 
3 

Solution 
4 

Solution 
5 

Solution 
6  

Solution 
7 From To 

3/4/11 12:00 PM 3/4/11 1:00 PM 41 80 212 132 83 228 41 

3/4/11 1:00 PM 3/4/11 2:00 PM 166 142 83 126 139 163 169 

3/4/11 2:00 PM 3/4/11 3:00 PM 244 147 247 177 144 247 244 

3/4/11 3:00 PM 3/4/11 4:00 PM 132 146 61 184 143 96 132 

3/4/11 4:00 PM 3/4/11 5:00 PM 173 182 188 189 179 200 176 

3/4/11 5:00 PM 3/4/11 6:00 PM 186 171 183 222 168 170 180 

3/4/11 6:00 PM 3/4/11 7:00 PM 202 154 211 92 151 191 202 

3/4/11 7:00 PM 3/4/11 8:00 PM 217 196 100 140 193 97 220 

3/4/11 8:00 PM 3/4/11 9:00 PM 100 139 33 124 136 117 82 

3/4/11 9:00 PM 3/4/11 10:00 PM 174 153 180 123 150 95 177 

3/4/11 10:00 PM 3/4/11 11:00 PM 21 47 69 85 44 9 36 

3/4/11 11:00 PM 3/5/11 12:00 AM 33 126 66 94 129 125 33 

3/5/11 12:00 AM 3/5/11 1:00 AM 103 106 124 124 109 242 106 

3/5/11 1:00 AM 3/5/11 2:00 AM 39 72 83 76 75 211 39 

3/5/11 2:00 AM 3/5/11 3:00 AM 52 67 110 86 70 121 49 

3/5/11 3:00 AM 3/5/11 4:00 AM 77 77 23 124 80 31 77 

3/5/11 4:00 AM 3/5/11 5:00 AM 112 126 162 79 123 118 109 

3/5/11 5:00 AM 3/5/11 6:00 AM 119 122 207 156 125 79 119 

3/5/11 6:00 AM 3/5/11 7:00 AM 104 104 116 113 107 87 107 

3/5/11 7:00 AM 3/5/11 8:00 AM 101 170 119 155 167 212 89 

3/5/11 8:00 AM 3/5/11 9:00 AM 217 199 205 207 196 260 217 

3/5/11 9:00 AM 3/5/11 10:00 AM 44 62 47 121 65 206 44 

3/5/11 10:00 AM 3/5/11 11:00 AM 178 221 200 157 218 141 178 

3/5/11 11:00 AM 3/5/11 12:00 PM 118 167 118 205 170 97 118 

3/5/11 12:00 PM 3/5/11 1:00 PM 236 169 236 209 166 74 230 

3/5/11 1:00 PM 3/5/11 2:00 PM 216 173 236 138 176 272 228 

3/5/11 2:00 PM 3/5/11 3:00 PM 223 193 217 158 196 271 217 

3/5/11 3:00 PM 3/5/11 4:00 PM 33 43 50 87 40 265 36 

3/5/11 4:00 PM 3/5/11 5:00 PM 19 112 79 123 115 180 19 

3/5/11 5:00 PM 3/5/11 6:00 PM 260 221 187 190 224 148 263 

3/5/11 6:00 PM 3/5/11 7:00 PM 88 63 84 127 66 117 88 

3/5/11 7:00 PM 3/5/11 8:00 PM 180 180 162 156 177 245 168 

3/5/11 8:00 PM 3/5/11 9:00 PM 23 82 26 70 85 87 23 

3/5/11 9:00 PM 3/5/11 10:00 PM 140 113 57 101 110 261 140 

3/5/11 10:00 PM 3/5/11 11:00 PM 224 167 206 94 164 206 221 

3/5/11 11:00 PM 3/6/11 12:00 AM 69 94 54 92 97 244 54 

3/6/11 12:00 AM 3/6/11 1:00 AM 255 185 162 215 182 251 240 
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Time Period Solution 
1 

Solution 
2 

Solution 
3 

Solution 
4 

Solution 
5 

Solution 
6  

Solution 
7 From To 

3/6/11 1:00 AM 3/6/11 2:00 AM 118 160 41 167 163 112 118 

3/6/11 2:00 AM 3/6/11 3:00 AM 258 237 261 137 234 217 252 

3/6/11 3:00 AM 3/6/11 4:00 AM 67 139 91 117 142 216 64 

3/6/11 4:00 AM 3/6/11 5:00 AM 171 204 180 132 207 241 171 

3/6/11 5:00 AM 3/6/11 6:00 AM 123 138 135 100 141 203 123 

3/6/11 6:00 AM 3/6/11 7:00 AM 88 97 255 114 94 178 88 

3/6/11 7:00 AM 3/6/11 8:00 AM 1 43 15 67 46 20 1 

3/6/11 8:00 AM 3/6/11 9:00 AM 138 156 178 129 153 256 120 

3/6/11 9:00 AM 3/6/11 10:00 AM 108 139 117 81 136 65 105 

3/6/11 10:00 AM 3/6/11 11:00 AM 206 176 235 176 179 14 206 

3/6/11 11:00 AM 3/6/11 12:00 PM 189 162 195 151 165 186 195 

3/6/11 12:00 PM 3/6/11 1:00 PM 178 223 209 171 220 56 178 

3/6/11 1:00 PM 3/6/11 2:00 PM 123 57 114 116 54 216 123 

3/6/11 2:00 PM 3/6/11 3:00 PM 178 139 203 197 136 21 178 

3/6/11 3:00 PM 3/6/11 4:00 PM 237 144 28 117 147 74 237 

3/6/11 4:00 PM 3/6/11 5:00 PM 138 172 165 118 169 60 138 

3/6/11 5:00 PM 3/6/11 6:00 PM 118 115 50 89 112 272 118 

3/6/11 6:00 PM 3/6/11 7:00 PM 76 80 82 105 77 47 76 

3/6/11 7:00 PM 3/6/11 7:00 PM 81 54 87 130 57 51 81 

3/6/11 7:00 PM 3/6/11 8:00 PM 77 26 147 57 29 272 77 

3/6/11 8:00 PM 3/6/11 9:00 PM 262 262 176 152 259 272 262 

3/6/11 9:00 PM 3/6/11 10:00 PM 230 191 261 197 188 137 230 

3/6/11 10:00 PM 3/6/11 11:00 PM 229 188 31 107 185 167 229 

3/6/11 11:00 PM 3/7/11 12:00 AM 86 128 131 81 125 230 80 

3/7/11 12:00 AM 3/7/11 1:00 AM 119 122 134 120 119 70 119 

3/7/11 1:00 AM 3/7/11 2:00 AM 262 233 265 211 230 139 265 

3/7/11 2:00 AM 3/7/11 3:00 AM 156 132 138 187 135 231 153 

3/7/11 3:00 AM 3/7/11 4:00 AM 176 77 248 129 74 229 176 

3/7/11 4:00 AM 3/7/11 5:00 AM 19 25 234 118 22 128 13 

3/7/11 5:00 AM 3/7/11 6:00 AM 57 81 108 78 84 81 57 

3/7/11 6:00 AM 3/7/11 7:00 AM 180 84 120 70 81 158 180 

3/7/11 7:00 AM 3/7/11 8:00 AM 49 26 25 118 29 243 40 

3/7/11 8:00 AM 3/7/11 9:00 AM 91 136 100 116 139 195 97 

3/7/11 9:00 AM 3/7/11 10:00 AM 138 111 157 70 114 272 138 

3/7/11 10:00 AM 3/7/11 11:00 AM 127 130 112 124 133 115 118 

3/7/11 11:00 AM 3/7/11 12:00 PM 173 188 216 195 191 209 173 

3/7/11 12:00 PM 3/7/11 1:00 PM 223 163 220 121 160 229 223 
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Time Period Solution 
1 

Solution 
2 

Solution 
3 

Solution 
4 

Solution 
5 

Solution 
6  

Solution 
7 From To 

3/7/11 1:00 PM 3/7/11 2:00 PM 71 101 130 110 104 135 71 

3/7/11 2:00 PM 3/7/11 3:00 PM 89 62 84 65 65 182 86 

3/7/11 3:00 PM 3/7/11 4:00 PM 180 207 205 163 204 207 180 

3/7/11 4:00 PM 3/7/11 5:00 PM 193 204 187 177 207 177 196 

3/7/11 5:00 PM 3/7/11 6:00 PM 221 137 212 243 140 129 221 

3/7/11 6:00 PM 3/7/11 7:00 PM 67 55 19 89 52 253 61 

3/7/11 7:00 PM 3/7/11 8:00 PM 168 100 185 127 97 183 168 

3/7/11 8:00 PM 3/7/11 9:00 PM 121 95 76 86 92 227 130 

3/7/11 9:00 PM 3/7/11 10:00 PM 143 158 146 131 155 18 143 

3/7/11 10:00 PM 3/7/11 11:00 PM 76 112 60 125 115 96 76 

3/7/11 11:00 PM 3/8/11 12:00 AM 98 176 46 130 179 176 89 

3/8/11 12:00 AM 3/8/11 1:00 AM 129 135 141 151 138 199 138 

3/8/11 1:00 AM 3/8/11 2:00 AM 159 96 13 110 93 154 159 

3/8/11 2:00 AM 3/8/11 3:00 AM 71 89 79 157 86 227 71 

3/8/11 3:00 AM 3/8/11 4:00 AM 103 133 94 167 130 120 103 

3/8/11 4:00 AM 3/8/11 5:00 AM 179 164 204 175 161 272 179 

3/8/11 5:00 AM 3/8/11 6:00 AM 193 85 184 111 88 272 193 

3/8/11 6:00 AM 3/8/11 7:00 AM 181 166 187 122 169 131 181 

3/8/11 7:00 AM 3/8/11 8:00 AM 219 141 234 182 138 39 234 

3/8/11 8:00 AM 3/8/11 9:00 AM 62 122 7 100 125 272 65 

3/8/11 9:00 AM 3/8/11 10:00 AM 81 162 102 73 159 50 84 
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Table C.6: Operating-Modes for the Solutions (8-14) Chosen in the Case Study 

Time Period Solution 
8 

Solution 
9 

Solution 
10 

solution 
11 

Solution 
12 

Solution 
13 

Solution 
14 From To 

3/1/11 11:00 AM 3/1/11 12:00 PM 150 166 265 265 209 158 106 

3/1/11 12:00 PM 3/1/11 1:00 PM 213 235 250 242 268 238 160 

3/1/11 1:00 PM 3/1/11 2:00 PM 59 192 118 144 219 104 181 

3/1/11 2:00 PM 3/1/11 3:00 PM 57 272 69 97 272 87 114 

3/1/11 3:00 PM 3/1/11 4:00 PM 30 223 178 178 134 30 48 

3/1/11 4:00 PM 3/1/11 5:00 PM 44 60 240 241 220 85 172 

3/1/11 5:00 PM 3/1/11 6:00 PM 173 242 272 272 170 161 118 

3/1/11 6:00 PM 3/1/11 7:00 PM 238 177 243 243 173 209 89 

3/1/11 7:00 PM 3/1/11 8:00 PM 132 58 76 77 61 149 124 

3/1/11 8:00 PM 3/1/11 9:00 PM 192 195 145 148 162 173 108 

3/1/11 9:00 PM 3/1/11 10:00 PM 238 238 196 197 141 180 94 

3/1/11 10:00 PM 3/1/11 11:00 PM 129 115 124 121 133 90 100 

3/1/11 11:00 PM 3/2/11 12:00 AM 24 162 185 185 105 60 85 

3/2/11 12:00 AM 3/2/11 1:00 AM 178 220 110 110 92 181 245 

3/2/11 1:00 AM 3/2/11 2:00 AM 142 104 176 176 233 143 72 

3/2/11 2:00 AM 3/2/11 3:00 AM 32 42 84 85 38 56 125 

3/2/11 3:00 AM 3/2/11 4:00 AM 69 91 5 9 170 105 105 

3/2/11 4:00 AM 3/2/11 5:00 AM 201 184 78 57 272 159 122 

3/2/11 5:00 AM 3/2/11 6:00 AM 116 166 126 118 188 139 58 

3/2/11 6:00 AM 3/2/11 7:00 AM 222 232 166 168 48 180 88 

3/2/11 7:00 AM 3/2/11 8:00 AM 120 270 146 146 272 111 123 

3/2/11 8:00 AM 3/2/11 9:00 AM 71 126 155 155 229 101 155 

3/2/11 9:00 AM 3/2/11 10:00 AM 207 134 141 141 270 192 178 

3/2/11 10:00 AM 3/2/11 11:00 AM 169 272 262 262 145 181 99 

3/2/11 11:00 AM 3/2/11 12:00 PM 137 30 245 241 145 123 83 

3/2/11 12:00 PM 3/2/11 1:00 PM 99 181 77 68 26 122 56 

3/2/11 1:00 PM 3/2/11 2:00 PM 101 272 170 170 35 119 83 

3/2/11 2:00 PM 3/2/11 3:00 PM 58 268 180 181 255 88 210 

3/2/11 3:00 PM 3/2/11 4:00 PM 148 138 151 148 236 154 180 

3/2/11 4:00 PM 3/2/11 5:00 PM 64 227 69 84 58 70 129 

3/2/11 5:00 PM 3/2/11 6:00 PM 237 272 202 197 233 181 148 

3/2/11 6:00 PM 3/2/11 7:00 PM 68 226 214 175 177 116 224 

3/2/11 7:00 PM 3/2/11 8:00 PM 254 267 269 269 258 261 225 

3/2/11 8:00 PM 3/2/11 9:00 PM 242 260 194 189 170 212 190 

3/2/11 9:00 PM 3/2/11 10:00 PM 154 127 181 181 189 150 105 

3/2/11 10:00 PM 3/2/11 11:00 PM 193 101 181 181 189 199 261 
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9 

Solution 
10 
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11 

Solution 
12 

Solution 
13 

Solution 
14 From To 

3/2/11 11:00 PM 3/3/11 12:00 AM 113 173 181 181 104 143 140 

3/3/11 12:00 AM 3/3/11 1:00 AM 115 99 178 180 114 122 149 

3/3/11 1:00 AM 3/3/11 2:00 AM 201 255 192 191 14 194 105 

3/3/11 2:00 AM 3/3/11 3:00 AM 109 81 117 117 77 111 127 

3/3/11 3:00 AM 3/3/11 4:00 AM 80 202 171 171 250 95 55 

3/3/11 4:00 AM 3/3/11 5:00 AM 149 120 249 246 160 149 88 

3/3/11 5:00 AM 3/3/11 6:00 AM 215 252 220 220 200 209 160 

3/3/11 6:00 AM 3/3/11 7:00 AM 163 191 210 209 203 161 166 

3/3/11 7:00 AM 3/3/11 8:00 AM 14 105 268 272 35 53 133 

3/3/11 8:00 AM 3/3/11 9:00 AM 30 245 227 227 98 66 41 

3/3/11 9:00 AM 3/3/11 10:00 AM 29 28 218 250 180 61 186 

3/3/11 10:00 AM 3/3/11 11:00 AM 138 41 114 117 52 120 196 

3/3/11 11:00 AM 3/3/11 12:00 PM 243 272 125 125 142 218 216 

3/3/11 12:00 PM 3/3/11 1:00 PM 158 193 159 159 138 141 216 

3/3/11 1:00 PM 3/3/11 2:00 PM 197 266 159 159 90 149 166 

3/3/11 2:00 PM 3/3/11 3:00 PM 194 272 248 248 126 200 126 

3/3/11 3:00 PM 3/3/11 4:00 PM 85 224 258 258 31 121 191 

3/3/11 4:00 PM 3/3/11 5:00 PM 223 72 148 162 165 190 182 

3/3/11 5:00 PM 3/3/11 6:00 PM 164 134 210 212 205 146 56 

3/3/11 6:00 PM 3/3/11 7:00 PM 66 184 54 55 202 58 212 

3/3/11 7:00 PM 3/3/11 8:00 PM 81 26 72 72 101 80 148 

3/3/11 8:00 PM 3/3/11 9:00 PM 28 161 158 156 122 70 177 

3/3/11 9:00 PM 3/3/11 10:00 PM 146 265 178 178 181 146 156 

3/3/11 10:00 PM 3/3/11 11:00 PM 140 112 188 193 86 113 124 

3/3/11 11:00 PM 3/4/11 12:00 AM 248 105 191 181 128 152 165 

3/4/11 12:00 AM 3/4/11 1:00 AM 99 114 183 181 101 112 14 

3/4/11 1:00 AM 3/4/11 2:00 AM 39 272 159 164 178 61 161 

3/4/11 2:00 AM 3/4/11 3:00 AM 15 175 229 229 180 56 135 

3/4/11 3:00 AM 3/4/11 4:00 AM 260 137 221 213 85 266 227 

3/4/11 4:00 AM 3/4/11 5:00 AM 180 223 202 204 214 180 225 

3/4/11 5:00 AM 3/4/11 6:00 AM 257 111 188 190 180 203 144 

3/4/11 6:00 AM 3/4/11 7:00 AM 253 165 101 101 201 208 183 

3/4/11 7:00 AM 3/4/11 8:00 AM 74 188 190 190 272 71 107 

3/4/11 8:00 AM 3/4/11 9:00 AM 176 106 218 218 70 182 124 

3/4/11 9:00 AM 3/4/11 10:00 AM 106 64 178 178 79 124 54 

3/4/11 10:00 AM 3/4/11 11:00 AM 66 219 97 97 78 57 81 

3/4/11 11:00 AM 3/4/11 12:00 PM 32 263 158 158 136 61 81 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

339 

Time Period Solution 
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9 
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10 

solution 
11 

Solution 
12 

Solution 
13 

Solution 
14 From To 

3/4/11 12:00 PM 3/4/11 1:00 PM 212 243 124 128 29 146 228 

3/4/11 1:00 PM 3/4/11 2:00 PM 89 196 170 153 80 94 105 

3/4/11 2:00 PM 3/4/11 3:00 PM 241 40 185 181 218 151 70 

3/4/11 3:00 PM 3/4/11 4:00 PM 132 85 157 157 181 114 88 

3/4/11 4:00 PM 3/4/11 5:00 PM 188 120 197 197 212 206 138 

3/4/11 5:00 PM 3/4/11 6:00 PM 189 204 172 172 120 171 135 

3/4/11 6:00 PM 3/4/11 7:00 PM 193 84 171 173 98 148 92 

3/4/11 7:00 PM 3/4/11 8:00 PM 220 136 105 106 141 208 128 

3/4/11 8:00 PM 3/4/11 9:00 PM 85 207 134 134 155 115 142 

3/4/11 9:00 PM 3/4/11 10:00 PM 180 206 181 181 181 150 63 

3/4/11 10:00 PM 3/4/11 11:00 PM 39 168 272 241 96 75 70 

3/4/11 11:00 PM 3/5/11 12:00 AM 33 238 152 154 253 84 170 

3/5/11 12:00 AM 3/5/11 1:00 AM 127 142 152 154 175 160 156 

3/5/11 1:00 AM 3/5/11 2:00 AM 39 255 197 198 186 117 118 

3/5/11 2:00 AM 3/5/11 3:00 AM 49 191 197 201 218 67 65 

3/5/11 3:00 AM 3/5/11 4:00 AM 35 180 143 143 109 126 105 

3/5/11 4:00 AM 3/5/11 5:00 AM 109 127 76 69 158 70 66 

3/5/11 5:00 AM 3/5/11 6:00 AM 116 93 128 128 107 128 116 

3/5/11 6:00 AM 3/5/11 7:00 AM 110 130 91 92 73 110 104 

3/5/11 7:00 AM 3/5/11 8:00 AM 113 196 157 181 68 74 155 

3/5/11 8:00 AM 3/5/11 9:00 AM 217 166 230 230 250 190 126 

3/5/11 9:00 AM 3/5/11 10:00 AM 44 272 242 242 142 83 124 

3/5/11 10:00 AM 3/5/11 11:00 AM 181 241 70 70 181 139 177 

3/5/11 11:00 AM 3/5/11 12:00 PM 112 272 183 181 93 85 154 

3/5/11 12:00 PM 3/5/11 1:00 PM 224 89 243 243 197 188 116 

3/5/11 1:00 PM 3/5/11 2:00 PM 230 89 67 72 16 192 192 

3/5/11 2:00 PM 3/5/11 3:00 PM 205 179 197 196 127 166 146 

3/5/11 3:00 PM 3/5/11 4:00 PM 42 247 214 180 14 87 58 

3/5/11 4:00 PM 3/5/11 5:00 PM 25 97 220 220 60 58 138 

3/5/11 5:00 PM 3/5/11 6:00 PM 202 269 258 258 42 197 96 

3/5/11 6:00 PM 3/5/11 7:00 PM 94 73 70 70 236 124 158 

3/5/11 7:00 PM 3/5/11 8:00 PM 177 95 192 192 39 147 156 

3/5/11 8:00 PM 3/5/11 9:00 PM 32 178 190 181 44 62 94 

3/5/11 9:00 PM 3/5/11 10:00 PM 60 79 128 127 48 35 74 

3/5/11 10:00 PM 3/5/11 11:00 PM 200 131 143 148 223 170 127 

3/5/11 11:00 PM 3/6/11 12:00 AM 63 229 158 159 235 111 188 

3/6/11 12:00 AM 3/6/11 1:00 AM 171 266 159 158 213 180 140 
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11 

Solution 
12 

Solution 
13 

Solution 
14 From To 

3/6/11 1:00 AM 3/6/11 2:00 AM 121 155 185 221 84 103 181 

3/6/11 2:00 AM 3/6/11 3:00 AM 255 97 97 97 29 216 251 

3/6/11 3:00 AM 3/6/11 4:00 AM 64 208 59 67 252 43 162 

3/6/11 4:00 AM 3/6/11 5:00 AM 180 153 143 144 252 178 108 

3/6/11 5:00 AM 3/6/11 6:00 AM 120 157 157 158 209 84 144 

3/6/11 6:00 AM 3/6/11 7:00 AM 249 19 165 174 27 184 40 

3/6/11 7:00 AM 3/6/11 8:00 AM 33 131 161 163 43 19 94 

3/6/11 8:00 AM 3/6/11 9:00 AM 178 74 139 143 115 162 82 

3/6/11 9:00 AM 3/6/11 10:00 AM 114 213 180 180 228 159 132 

3/6/11 10:00 AM 3/6/11 11:00 AM 200 240 270 265 204 202 166 

3/6/11 11:00 AM 3/6/11 12:00 PM 192 272 222 224 50 210 153 

3/6/11 12:00 PM 3/6/11 1:00 PM 178 190 242 240 154 170 236 

3/6/11 1:00 PM 3/6/11 2:00 PM 123 175 213 224 91 111 101 

3/6/11 2:00 PM 3/6/11 3:00 PM 194 254 208 208 27 160 150 

3/6/11 3:00 PM 3/6/11 4:00 PM 28 170 268 252 181 126 110 

3/6/11 4:00 PM 3/6/11 5:00 PM 171 105 128 133 240 138 134 

3/6/11 5:00 PM 3/6/11 6:00 PM 115 119 178 178 206 112 200 

3/6/11 6:00 PM 3/6/11 7:00 PM 88 117 211 206 268 106 72 

3/6/11 7:00 PM 3/6/11 7:00 PM 87 227 150 149 220 70 163 

3/6/11 7:00 PM 3/6/11 8:00 PM 133 263 178 181 252 101 159 

3/6/11 8:00 PM 3/6/11 9:00 PM 191 129 77 77 76 177 125 

3/6/11 9:00 PM 3/6/11 10:00 PM 264 272 182 181 106 219 197 

3/6/11 10:00 PM 3/6/11 11:00 PM 229 66 101 103 72 215 109 

3/6/11 11:00 PM 3/7/11 12:00 AM 86 99 178 178 48 92 212 

3/7/11 12:00 AM 3/7/11 1:00 AM 140 157 196 196 50 122 84 

3/7/11 1:00 AM 3/7/11 2:00 AM 262 166 223 225 134 215 215 

3/7/11 2:00 AM 3/7/11 3:00 AM 153 246 202 201 181 117 160 

3/7/11 3:00 AM 3/7/11 4:00 AM 245 185 199 178 216 128 117 

3/7/11 4:00 AM 3/7/11 5:00 AM 13 197 168 169 81 61 172 

3/7/11 5:00 AM 3/7/11 6:00 AM 54 30 121 121 27 99 147 

3/7/11 6:00 AM 3/7/11 7:00 AM 123 49 262 265 27 120 145 

3/7/11 7:00 AM 3/7/11 8:00 AM 22 201 178 178 187 58 95 

3/7/11 8:00 AM 3/7/11 9:00 AM 97 210 245 245 258 133 197 

3/7/11 9:00 AM 3/7/11 10:00 AM 148 163 181 181 272 108 64 

3/7/11 10:00 AM 3/7/11 11:00 AM 118 52 180 180 130 148 127 

3/7/11 11:00 AM 3/7/11 12:00 PM 167 233 180 180 233 182 191 

3/7/11 12:00 PM 3/7/11 1:00 PM 214 272 181 181 178 145 109 
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12 

Solution 
13 

Solution 
14 From To 

3/7/11 1:00 PM 3/7/11 2:00 PM 130 151 134 139 83 141 92 

3/7/11 2:00 PM 3/7/11 3:00 PM 86 197 207 208 117 75 130 

3/7/11 3:00 PM 3/7/11 4:00 PM 202 257 258 272 180 201 136 

3/7/11 4:00 PM 3/7/11 5:00 PM 199 180 207 220 184 181 115 

3/7/11 5:00 PM 3/7/11 6:00 PM 224 168 202 202 270 212 246 

3/7/11 6:00 PM 3/7/11 7:00 PM 61 268 213 213 126 62 72 

3/7/11 7:00 PM 3/7/11 8:00 PM 168 36 96 96 210 165 200 

3/7/11 8:00 PM 3/7/11 9:00 PM 79 163 69 93 272 58 113 

3/7/11 9:00 PM 3/7/11 10:00 PM 131 77 144 159 266 114 110 

3/7/11 10:00 PM 3/7/11 11:00 PM 73 196 119 128 253 109 147 

3/7/11 11:00 PM 3/8/11 12:00 AM 52 59 119 119 232 109 195 

3/8/11 12:00 AM 3/8/11 1:00 AM 138 211 76 76 77 135 142 

3/8/11 1:00 AM 3/8/11 2:00 AM 153 214 110 118 201 123 127 

3/8/11 2:00 AM 3/8/11 3:00 AM 79 171 108 108 169 104 130 

3/8/11 3:00 AM 3/8/11 4:00 AM 103 272 97 108 198 142 80 

3/8/11 4:00 AM 3/8/11 5:00 AM 198 272 192 181 162 197 155 

3/8/11 5:00 AM 3/8/11 6:00 AM 193 192 101 117 181 181 93 

3/8/11 6:00 AM 3/8/11 7:00 AM 178 272 110 110 169 142 186 

3/8/11 7:00 AM 3/8/11 8:00 AM 228 252 178 178 85 207 156 

3/8/11 8:00 AM 3/8/11 9:00 AM 53 90 159 130 68 95 94 

3/8/11 9:00 AM 3/8/11 10:00 AM 99 181 145 148 185 102 91 
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Table C.7: Operating-Modes for the Solution (15) Chosen in the Case Study 

Time Period 
Solution 15 

From To 

3/1/11 11:00 AM 3/1/11 12:00 PM 154 

3/1/11 12:00 PM 3/1/11 1:00 PM 230 

3/1/11 1:00 PM 3/1/11 2:00 PM 100 

3/1/11 2:00 PM 3/1/11 3:00 PM 161 

3/1/11 3:00 PM 3/1/11 4:00 PM 70 

3/1/11 4:00 PM 3/1/11 5:00 PM 153 

3/1/11 5:00 PM 3/1/11 6:00 PM 132 

3/1/11 6:00 PM 3/1/11 7:00 PM 163 

3/1/11 7:00 PM 3/1/11 8:00 PM 162 

3/1/11 8:00 PM 3/1/11 9:00 PM 152 

3/1/11 9:00 PM 3/1/11 10:00 PM 182 

3/1/11 10:00 PM 3/1/11 11:00 PM 173 

3/1/11 11:00 PM 3/2/11 12:00 AM 67 

3/2/11 12:00 AM 3/2/11 1:00 AM 170 

3/2/11 1:00 AM 3/2/11 2:00 AM 197 

3/2/11 2:00 AM 3/2/11 3:00 AM 44 

3/2/11 3:00 AM 3/2/11 4:00 AM 82 

3/2/11 4:00 AM 3/2/11 5:00 AM 209 

3/2/11 5:00 AM 3/2/11 6:00 AM 123 

3/2/11 6:00 AM 3/2/11 7:00 AM 236 

3/2/11 7:00 AM 3/2/11 8:00 AM 163 

3/2/11 8:00 AM 3/2/11 9:00 AM 119 

3/2/11 9:00 AM 3/2/11 10:00 AM 189 

3/2/11 10:00 AM 3/2/11 11:00 AM 188 

3/2/11 11:00 AM 3/2/11 12:00 PM 23 

3/2/11 12:00 PM 3/2/11 1:00 PM 39 

3/2/11 1:00 PM 3/2/11 2:00 PM 204 

3/2/11 2:00 PM 3/2/11 3:00 PM 133 

3/2/11 3:00 PM 3/2/11 4:00 PM 121 

3/2/11 4:00 PM 3/2/11 5:00 PM 72 

3/2/11 5:00 PM 3/2/11 6:00 PM 114 

3/2/11 6:00 PM 3/2/11 7:00 PM 149 

3/2/11 7:00 PM 3/2/11 8:00 PM 202 

3/2/11 8:00 PM 3/2/11 9:00 PM 181 

3/2/11 9:00 PM 3/2/11 10:00 PM 208 

3/2/11 10:00 PM 3/2/11 11:00 PM 199 
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Time Period 
Solution 15 

From To 

3/2/11 11:00 PM 3/3/11 12:00 AM 105 

3/3/11 12:00 AM 3/3/11 1:00 AM 152 

3/3/11 1:00 AM 3/3/11 2:00 AM 134 

3/3/11 2:00 AM 3/3/11 3:00 AM 173 

3/3/11 3:00 AM 3/3/11 4:00 AM 145 

3/3/11 4:00 AM 3/3/11 5:00 AM 110 

3/3/11 5:00 AM 3/3/11 6:00 AM 170 

3/3/11 6:00 AM 3/3/11 7:00 AM 144 

3/3/11 7:00 AM 3/3/11 8:00 AM 107 

3/3/11 8:00 AM 3/3/11 9:00 AM 118 

3/3/11 9:00 AM 3/3/11 10:00 AM 11 

3/3/11 10:00 AM 3/3/11 11:00 AM 132 

3/3/11 11:00 AM 3/3/11 12:00 PM 171 

3/3/11 12:00 PM 3/3/11 1:00 PM 151 

3/3/11 1:00 PM 3/3/11 2:00 PM 170 

3/3/11 2:00 PM 3/3/11 3:00 PM 151 

3/3/11 3:00 PM 3/3/11 4:00 PM 180 

3/3/11 4:00 PM 3/3/11 5:00 PM 124 

3/3/11 5:00 PM 3/3/11 6:00 PM 95 

3/3/11 6:00 PM 3/3/11 7:00 PM 147 

3/3/11 7:00 PM 3/3/11 8:00 PM 139 

3/3/11 8:00 PM 3/3/11 9:00 PM 137 

3/3/11 9:00 PM 3/3/11 10:00 PM 179 

3/3/11 10:00 PM 3/3/11 11:00 PM 203 

3/3/11 11:00 PM 3/4/11 12:00 AM 143 

3/4/11 12:00 AM 3/4/11 1:00 AM 88 

3/4/11 1:00 AM 3/4/11 2:00 AM 127 

3/4/11 2:00 AM 3/4/11 3:00 AM 157 

3/4/11 3:00 AM 3/4/11 4:00 AM 233 

3/4/11 4:00 AM 3/4/11 5:00 AM 141 

3/4/11 5:00 AM 3/4/11 6:00 AM 272 

3/4/11 6:00 AM 3/4/11 7:00 AM 208 

3/4/11 7:00 AM 3/4/11 8:00 AM 130 

3/4/11 8:00 AM 3/4/11 9:00 AM 127 

3/4/11 9:00 AM 3/4/11 10:00 AM 84 

3/4/11 10:00 AM 3/4/11 11:00 AM 161 

3/4/11 11:00 AM 3/4/11 12:00 PM 74 
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3/4/11 12:00 PM 3/4/11 1:00 PM 107 

3/4/11 1:00 PM 3/4/11 2:00 PM 26 

3/4/11 2:00 PM 3/4/11 3:00 PM 182 

3/4/11 3:00 PM 3/4/11 4:00 PM 126 

3/4/11 4:00 PM 3/4/11 5:00 PM 158 

3/4/11 5:00 PM 3/4/11 6:00 PM 122 

3/4/11 6:00 PM 3/4/11 7:00 PM 81 

3/4/11 7:00 PM 3/4/11 8:00 PM 160 

3/4/11 8:00 PM 3/4/11 9:00 PM 241 

3/4/11 9:00 PM 3/4/11 10:00 PM 107 

3/4/11 10:00 PM 3/4/11 11:00 PM 112 

3/4/11 11:00 PM 3/5/11 12:00 AM 121 

3/5/11 12:00 AM 3/5/11 1:00 AM 151 

3/5/11 1:00 AM 3/5/11 2:00 AM 101 

3/5/11 2:00 AM 3/5/11 3:00 AM 25 

3/5/11 3:00 AM 3/5/11 4:00 AM 52 

3/5/11 4:00 AM 3/5/11 5:00 AM 76 

3/5/11 5:00 AM 3/5/11 6:00 AM 141 

3/5/11 6:00 AM 3/5/11 7:00 AM 117 

3/5/11 7:00 AM 3/5/11 8:00 AM 207 

3/5/11 8:00 AM 3/5/11 9:00 AM 106 

3/5/11 9:00 AM 3/5/11 10:00 AM 150 

3/5/11 10:00 AM 3/5/11 11:00 AM 203 

3/5/11 11:00 AM 3/5/11 12:00 PM 156 

3/5/11 12:00 PM 3/5/11 1:00 PM 209 

3/5/11 1:00 PM 3/5/11 2:00 PM 73 

3/5/11 2:00 PM 3/5/11 3:00 PM 97 

3/5/11 3:00 PM 3/5/11 4:00 PM 70 

3/5/11 4:00 PM 3/5/11 5:00 PM 4 

3/5/11 5:00 PM 3/5/11 6:00 PM 149 

3/5/11 6:00 PM 3/5/11 7:00 PM 70 

3/5/11 7:00 PM 3/5/11 8:00 PM 111 

3/5/11 8:00 PM 3/5/11 9:00 PM 91 

3/5/11 9:00 PM 3/5/11 10:00 PM 119 

3/5/11 10:00 PM 3/5/11 11:00 PM 215 

3/5/11 11:00 PM 3/6/11 12:00 AM 84 

3/6/11 12:00 AM 3/6/11 1:00 AM 104 
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3/6/11 1:00 AM 3/6/11 2:00 AM 106 

3/6/11 2:00 AM 3/6/11 3:00 AM 224 

3/6/11 3:00 AM 3/6/11 4:00 AM 110 

3/6/11 4:00 AM 3/6/11 5:00 AM 144 

3/6/11 5:00 AM 3/6/11 6:00 AM 24 

3/6/11 6:00 AM 3/6/11 7:00 AM 150 

3/6/11 7:00 AM 3/6/11 8:00 AM 52 

3/6/11 8:00 AM 3/6/11 9:00 AM 195 

3/6/11 9:00 AM 3/6/11 10:00 AM 162 

3/6/11 10:00 AM 3/6/11 11:00 AM 174 

3/6/11 11:00 AM 3/6/11 12:00 PM 144 

3/6/11 12:00 PM 3/6/11 1:00 PM 161 

3/6/11 1:00 PM 3/6/11 2:00 PM 115 

3/6/11 2:00 PM 3/6/11 3:00 PM 199 

3/6/11 3:00 PM 3/6/11 4:00 PM 157 

3/6/11 4:00 PM 3/6/11 5:00 PM 167 

3/6/11 5:00 PM 3/6/11 6:00 PM 136 

3/6/11 6:00 PM 3/6/11 7:00 PM 143 

3/6/11 7:00 PM 3/6/11 7:00 PM 60 

3/6/11 7:00 PM 3/6/11 8:00 PM 75 

3/6/11 8:00 PM 3/6/11 9:00 PM 175 

3/6/11 9:00 PM 3/6/11 10:00 PM 272 

3/6/11 10:00 PM 3/6/11 11:00 PM 161 

3/6/11 11:00 PM 3/7/11 12:00 AM 209 

3/7/11 12:00 AM 3/7/11 1:00 AM 156 

3/7/11 1:00 AM 3/7/11 2:00 AM 272 

3/7/11 2:00 AM 3/7/11 3:00 AM 148 

3/7/11 3:00 AM 3/7/11 4:00 AM 210 

3/7/11 4:00 AM 3/7/11 5:00 AM 150 

3/7/11 5:00 AM 3/7/11 6:00 AM 90 

3/7/11 6:00 AM 3/7/11 7:00 AM 57 

3/7/11 7:00 AM 3/7/11 8:00 AM 62 

3/7/11 8:00 AM 3/7/11 9:00 AM 101 

3/7/11 9:00 AM 3/7/11 10:00 AM 83 

3/7/11 10:00 AM 3/7/11 11:00 AM 124 

3/7/11 11:00 AM 3/7/11 12:00 PM 79 

3/7/11 12:00 PM 3/7/11 1:00 PM 170 



Ph.D. Thesis – Dhafar Al-Ani                                     McMaster - Mechanical Engineering 

346 

Time Period 
Solution 15 

From To 

3/7/11 1:00 PM 3/7/11 2:00 PM 102 

3/7/11 2:00 PM 3/7/11 3:00 PM 107 

3/7/11 3:00 PM 3/7/11 4:00 PM 239 

3/7/11 4:00 PM 3/7/11 5:00 PM 79 

3/7/11 5:00 PM 3/7/11 6:00 PM 176 

3/7/11 6:00 PM 3/7/11 7:00 PM 48 

3/7/11 7:00 PM 3/7/11 8:00 PM 143 

3/7/11 8:00 PM 3/7/11 9:00 PM 130 

3/7/11 9:00 PM 3/7/11 10:00 PM 166 

3/7/11 10:00 PM 3/7/11 11:00 PM 66 

3/7/11 11:00 PM 3/8/11 12:00 AM 185 

3/8/11 12:00 AM 3/8/11 1:00 AM 93 

3/8/11 1:00 AM 3/8/11 2:00 AM 140 

3/8/11 2:00 AM 3/8/11 3:00 AM 106 

3/8/11 3:00 AM 3/8/11 4:00 AM 166 

3/8/11 4:00 AM 3/8/11 5:00 AM 221 

3/8/11 5:00 AM 3/8/11 6:00 AM 95 

3/8/11 6:00 AM 3/8/11 7:00 AM 185 

3/8/11 7:00 AM 3/8/11 8:00 AM 208 

3/8/11 8:00 AM 3/8/11 9:00 AM 94 

3/8/11 9:00 AM 3/8/11 10:00 AM 72 
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