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Energy partition at the collapse of spherical cavitation bubbles
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Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we
present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical
cavitation bubbles are produced in microgravity, which suppresses the buoyant pressure gradient that otherwise
deteriorates the sphericity of the bubbles. We measure the radius of the rebound bubble and estimate the
shock energy as a function of the initial bubble radius (2–5.6 mm) and the liquid pressure (10–80 kPa). Those
measurements uncover a systematic pressure dependence of the energy partition between rebound and shock.
We demonstrate that these observations agree with a physical model relying on a first-order approximation of the
liquid compressibility and an adiabatic treatment of the noncondensable gas inside the bubble. Using this model
we find that the energy partition between rebound and shock is dictated by a single nondimensional parameter
ξ = �pγ 6/[pg0

1/γ (ρc2)1−1/γ ], where �p = p∞ − pv is the driving pressure, p∞ is the static pressure in the
liquid, pv is the vapor pressure, pg0 is the pressure of the noncondensable gas at the maximal bubble radius,
γ is the adiabatic index of the noncondensable gas, ρ is the liquid density, and c is the speed of sound in the
liquid.
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I. INTRODUCTION

Research on cavitation is currently experiencing a rebirth
within hydrodynamics. While traditionally associated with
turbine erosion [1], cavitation bubbles are now exploited as
tools in surgery [2], microchip cleaning [3], water treatment
[4], and microfluidics [5,6]. This wide spectrum of new
applications relies on the diversity of processes associated with
the collapse of cavitation bubbles. Detailed studies revealed
that these processes include (i) the formation of rebound
bubbles [7], (ii) acoustic shocks [8], (iii) thermal effects,
leading to chemical reactions [9] and luminescence [10,11],
and (iv) microjets [12–14]. However, today there is no theory
predicting the fraction of energy transferred into each of these
processes. In the quest for such a theory, it seems wise to
start with spherically collapsing bubbles, which produce no
jets [14]. We also note that thermal processes typically absorb
negligible energy fractions [7]. The problem then reduces to
how the energy is split between rebound and shock in the
spherical collapse.

This paper presents an experimental and theoretical in-
vestigation of the energy partition between rebound bubbles
and shocks. We first describe the experiment, which uses a
mirror-focused laser pulse in combination with microgravity
conditions to produce bubbles of extremely high spherical
symmetry. We then analyze measurements of the rebound
sizes and the shock pressures of spherical bubbles produced in
various experimental conditions. Interestingly, the energy ratio
between rebound bubble and shock wave is found to decrease
with the liquid pressure. We show that these observations can
be explained using the Keller-Miksis collapse equation for
a compressible liquid [15] in combination with an adiabatic
treatment of the noncondensable gas. Finally, we use this
model to predict the energy partition between rebound and
shock in a wide range of experimental conditions.

II. EXPERIMENTAL SETUP

The cavitation bubbles are obtained by focusing a high-
energy laser in water (Fig. 1). The laser source is a Q-
switched Nd:YAG laser (Quantel CFR 400) delivering pulses
having 230 mJ maximum energy, 8 ns duration, and a
wavelength of 532 nm. The laser beam of 5 mm in diameter
is expanded ten times before being focused by an off-axis
parabolic mirror with a focal length of 54.5 mm, which is
fixed inside the water container. The use of a parabolic
mirror rather than an optical lens improves the focus by
avoiding refraction and spherical aberration. The convergence
angle is 53◦ and the focal point is located at the center of
the water container. Owing to this large angle, the plasma
generated at water breakdown is more compact and spherical
than in previous studies [16]. The ensuing bubbles are so
spherical that the faint hydrostatic pressure gradient due to
gravity induces visible jets against the gravity vector [14]. To
avoid this source of asymmetry the experiment is performed
in microgravity conditions [European Space Agency (ESA),
52nd parabolic flight campaign]. The flights consist of a
total of 93 parabolic trajectories, flown by the aircraft A300
zero-g. Each parabola offers 20 s of microgravity (acceleration
<0.01g). Given those unique conditions, our experiment
produces millimetric cavitation bubbles of extremely high
sphericity.

The bubble is observed with a high-speed camera (Photron
Fastcam SA1.1) at a rate of up to 250 000 frames/s with
an exposure time of 370 ns. A 3 W light-emitting diode
(LED) light with a small opening angle of 6◦ is used to
illuminate the bubble from the back and visualize the shock
wave by shadowgraphy. The shock waves emitted at the
generation and the collapse of the bubble are monitored by
a piezoresistive dynamic pressure sensor. The pressure in the
vessel is controlled by a vacuum pump.
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FIG. 1. (Color online) Sketch of the experimental setup aboard
the A300 zero-g aircraft.

III. EXPERIMENTAL RESULTS

In the course of the flights, the bubble dynamics at three
distinct water pressures p∞ (10, 30, and 80 kPa) is observed.
For each pressure, the laser pulse energy is varied from 55
to 230 mJ, resulting in maximal bubble radii Rmax from 2
to 5.6 mm. Figure 2 shows the normalized radius R/Rmax

for a representative selection of bubbles as a function of the
normalized time t/τc, where τc is the bubble collapse time
according to Rayleigh theory [1], τc = 0.915Rmax

√
ρ/�p,

with ρ being the density of the liquid and �p being the
“driving pressure,” i.e., the difference between the static liquid
pressure p∞ and the pressure pv of the condensable vapor
inside the bubble. The value of pv is calculated with the
Antoine equation from the temperature of the water measured
for each of the three flight days. The three temperatures are,
respectively, 16.8, 23.9, and 20.9 ◦C, corresponding to pv

of 1910, 2950, and 2460 Pa. All the curves are remarkably
superposed during the first collapse, and are consistent with
the Rayleigh theory (solid line in the figure). However, the
dynamics of the rebound is very different depending on the
pressure in the liquid p∞ (see also Fig. 3). The high-speed
movies reveal that the normalized maximum radius of the first
rebound bubble Rreb/Rmax decreases with p∞. To interpret this
result in terms of energy, we calculate the potential energy of
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FIG. 2. (Color online) The normalized radius for a representative
selection of bubbles as a function of the normalized time, for different
pressure levels p∞. The experimental data (dots) are consistent with
the Rayleigh theory (solid black line).

a bubble as [13]

Epot =
∫ R

0
4πr2�p dr = 4π

3
R3�p, (1)

where R is the bubble radius. In particular, we define the initial
bubble energy E0 and the rebound energy Ereb as

E0 = 4π

3
R3

max �p and Ereb = 4π

3
R3

reb �p. (2)

Figure 4 reveals that Ereb scales with E0 for given liquid
pressures p∞.

To complete the picture, we consider the energy carried
away by the spherical shock produced at the first bubble
collapse. Given a shock pressure p(t), measured at a distance
d from the bubble center, the shock energy is given by [16]

ESW = 4πd2

ρc

∫
p(t)2dt, (3)

where ρ is the water density and c is the speed of sound in
water. In our experiment, the duration of the shock transition,
i.e., the characteristic time scale of p(t) (<100 ns), is much
shorter than the characteristic response time (10 μs) of the
pressure sensor. Nevertheless, a rough estimation of the shock
energy remains possible under the assumption of a linear
response. Explicitly, if we define h(t) as the sensor’s impulse
response, the response of the sensor s(t) is expressed as s(t) =
h(t) ∗ p(t), where “∗” denotes the convolution. We assume that
the pressure p(t) has a universal shape in the sense that p(t) =
pmaxp̃(t), where p̃(t) is the same function for all bubbles. The
signal can then be expressed as s(t) = h(t) ∗ pmaxp̃(t), and
hence

∫
s(t)dt = pmax

∫
h(t) ∗ p̃(t)dt ∝ pmax. In other words,

pmax is proportional to the integrated response. Substituting
into Eq. (3), we finally obtain [17]

ESW ∝
∫

p2
maxp̃(t)2dt ∝ p2

max ∝
( ∫

s(t)dt

)2

. (4)

The constant of proportionality in Eq. (4), which is
unknown, is estimated such that the shock energy ESW equals
the initial energy E0 in the extreme cases, where only a
negligible rebound bubble is observed. The measured shock
energy ESW versus the initial potential energy E0 are presented
in Fig. 5. Unlike the rebound energy Ereb (Fig. 4), ESW

is roughly proportional to E0 with no clear dependence on
pressure. As we will show below, this is well explained by
the fact that our experiments all lie in a “shock-saturated”
regime, where the shock absorbs most of the available energy
(ESW ≈ E0).

IV. THEORETICAL MODEL

Hereafter, a theoretical model is developed to compute
the energies of the rebound bubble and the shock wave as
a function of various experimental parameters. The standard
model for the evolution of spherical cavitation bubbles, i.e., the
Rayleigh-Plesset equation, cannot produce rebound bubbles
and shock waves. To calculate the rebound motion it is
necessary to include a noncondensable gas inside the bubble.
We here assume that this gas is compressed and decompressed
adiabatically, i.e., that is without heat transfer across the bubble
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FIG. 3. Selected high-speed images of a cavitation bubble at two different water pressures. The images are scaled so that the bubble appears
with the same normalized Rmax on the figure. (a) p∞ = 30 Pa, Rreb/Rmax = 0.22, (b) p∞ = 10 Pa, Rreb/Rmax = 0.57.

surface. According to the adiabatic theory, the pressure pg(t)
of this noncondensable gas is then given by [18]

pg = pg0

(
Rmax

R

)3γ

, (5)

where pg0 is the pressure at the maximal initial bubble
radius Rmax, R(t) is the evolving bubble radius, and γ is
the adiabatic index also known as “heat capacity ratio.”
Second, to incorporate shock waves, we require a model for
the bubble evolution in a compressible liquid. We here use
the Keller-Miksis model [15], which is an extension of the
Rayleigh equation to compressible liquids, accurate to first
order in the speed of sound c. As shown by Prosperetti [19],
this model belongs to a more general class of first-order models
and can be rewritten as

R̈ = (pg − �p)(1 + ṽ) + Rṗg/c − (3 − ṽ)Ṙ2ρ/2

(1 − ṽ)Rρ
, (6)

where ṽ(t) ≡ Ṙ(t)/c. Note that we deliberately neglect the
effects of surface tension and viscosity for two reasons. First,
these effects are quite irrelevant for the large bubbles in
our experiment. Second, surface tension and viscosity are
generally insignificant at the last stage of the bubble collapse,
since inertial forces increase more rapidly than viscous forces
and surface tension as R(t) → 0. The latter can therefore be
neglected to calculate rebounds and shocks.

Equations (5) and (6), fitted with the initial conditions
R(0) = Rmax, Ṙ(0) = 0, pg(0) = pg0, and ṗg(0) = 0, consti-
tute a model for the collapse and the rebound of a spherical
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FIG. 4. Measured potential energy of the rebound bubble as a
function of the initial bubble energy, for different pressure levels p∞.

bubble, while including compression waves (shocks). We use
the Runge-Kutta method to solve this model numerically. The
radius R(t) is calculated as the bubble first collapses and then
rebounds until it reaches its maximal rebound radius Rreb.

Given a time solution of Eqs. (5) and (6) we can then
calculate various energies. The initial bubble energy E0 and
the energy of the rebound bubble Ereb are computed directly
using Eq. (2). It is important to note that the temperature of the
noncondensable gas changes during the adiabatic compression
and decompression. The gas temperature at the rebound point
is different from the initial temperature. Hence the internal
energy U = (4π/3)R3pg/(γ − 1) of the noncondensable gas
changes. We can calculate this energy change �U simply by
subtracting the final value of U from the initial one,

�U = 4π

3(γ − 1)

(
pg0R

3
max − pg,rebR

3
reb

)
. (7)

The adiabatic nature of the process implies that �U must
be equal to the total work done by the liquid onto the
noncondensable gas. This work can be calculated as

�U =
∫

δW = −
∫

pgdV = −
∫

4πR2Ṙpg dt, (8)

where the time integral runs from the initial bubble radius
through the collapse point to the maximal rebound radius. To
check the accuracy of our numerical solution we compute �U

using both Eqs. (7) and (8).
Given �U , the initial energy E0, and the potential energy

of the rebound Ereb, the compression energy of the shock wave
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FIG. 5. Estimated energy in the shock wave as a function of the
initial bubble energy, for different pressure levels p∞.
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ESW can be computed from energy conservation as

ESW = E0 − Ereb − �U. (9)

Finally, we introduce the energy fractions

εreb ≡ Ereb/E0, εSW ≡ ESW/E0, εU ≡ �U/E0. (10)

Equation (9) implies the normalization εreb + εSW + εU = 1.
How do εreb, εSW, and εU depend on the six model

parameters Rmax, �p, pg0, γ , ρ, and c? We first note that
the four energies E0, Ereb, ESW, and �U all scale as R3

max.
This can be shown by rewriting the model as a function
of the normalized radius r(t) ≡ R(t)/Rmax. Therefore εreb,
εSW, and εU are independent of Rmax. To test the remain-
ing five model parameters we ran 2.7 × 105 independent
computations of εreb, εSW, and εU by taking logarithmi-
cally spaced parameters from the following intervals: �p ∈
[1,100] kPa, pg0 ∈ [0.1,100] Pa, ρ ∈ [500,1500] kg m−3, c ∈
[1000,2000] m s−1, γ ∈ [1.3,1.5]. By systematically studying
the variation of εreb, εSW, and εU as a function of the five
parameters, we can draw two main conclusions. First, the
internal energy fraction is negligible because εU < 0.01 in all
situations. Second, all variations of εreb and εSW as a function
of the five model parameters �p, pg0, γ , ρ, and c can be
explained by using a single nondimensional parameter

ξ = �pγ 6

pg0
1/γ (ρc2)1−1/γ

. (11)

In fact, Fig. 6 shows the 2.7 × 105 values of εreb and εSW as
a function of ξ , revealing a tight correlation. The parameter ξ

was found by first constructing the nondimensional parameter
�p (pg0)a(ρc2)−a−1 from the four dimensional parameters
�p, pg0, ρ, and c. The computed results are then grouped
depending on the value of γ . a is determined for each group as
the value that maximizes the Pearson correlation coefficient for
εreb ∈ [0.2,0.8]. We restrict εreb to the interval where a small

FIG. 6. (Color online) Fraction of energy in the rebound εreb and
in the shock wave εSW as a function of the nondimensional parameter
ξ . The solid curves are the results from the theoretical model.
The discrete black symbols are the values obtained experimentally,
along with the measurement error bars. The white symbols are data
extracted from the literature.

variation in ξ leads to a large variation of εreb, thus where
we want the relation to be the most univocal. The values of a

obtained depend on γ as a = 1/γ with an error of ±10%. As
the curves obtained for each value of γ are still horizontally
shifted, the second step is to introduce the factor γ β . β = 6
is then determined by maximizing the Pearson correlation
coefficient on εreb ∈ [0.2,0.8] for all values of γ .

V. DISCUSSION

A. Comparison between model predictions and experiment

The theoretical model allows us to explain why, according
to our experimental results, the energy of the rebound depends
on the pressure in the liquid while the energy of the shock wave
seems to scale with the initial potential energy only. However,
to compare the experimental results with the theoretical ones,
we need a value for pg0 in addition to the measured �p and
Rmax and the known ρ, c, and γ . Since pg0 is not directly
measurable, we simply assume this pressure to be constant.
We estimated its value by fitting the model to the experimental
results. For each measurement, the value of pg0 leading to
the observed Rreb is calculated with an iterative process. The
results are averaged and we obtain pg0 = 7.0 ± 3.5 Pa. The
relatively small variance a posteriori justifies the assumption
of a constant value for pg0. The experimental points are plotted
in Fig. 6, where the values of ξ are calculated using pg0. We
observe that all our experimental data lies in a regime where
εSW ≈ 1. So when ξ varies because of the change of �p, the
relative difference is important for εreb but not for εSW. As εreb

and εSW represent the slopes of the curves in Figs. 4 and 5,
respectively, the difference in p∞ is significant for the rebound,
but insignificant for the shock.

We observe, both theoretically and experimentally, the
relation Ereb + ESW = E0. The results using the theoretical
model show that �U in Eq. (9) is negligible, which implies
Ereb + ESW = E0. And when adding the experimental data
from Figs. 4 and 5, we obtain Ereb + ESW = E0, within a
scatter of ±20%. This scatter is reasonable considering the
uncertainty introduced with the rough estimation of ESW.

B. Comparison with earlier work

The main issue with the treatment of the rebound is that
the pressure of noncondensable gas pg0 is usually needed
in the equation of motion. As pg0 is not measurable and its
origin is not clear yet, it is difficult to estimate it and thus to
validate a model. So in a concern of evaluating our theoretical
model, we look at previous studies for comparison. In the
experimental and numerical work of Kröninger et al. [20],
and in the numerical work of Sadighi-Bonabi et al. [21]
and Fujikawa et al. [22], we found estimates of pg0 or
enough information to obtain them. The data extracted from
these articles are plotted in Fig. 6. We observe that despite
the different treatments of the thermodynamics inside the
bubble (Ref. [20] used a van der Waals equation, Ref. [21]
considered hydrochemical reactions, and Ref. [22] considered
conductive heat transfer and condensation or evaporation)
our model reproduces reasonably well their results. Yet, the
drawback of our model is that the temperature at the collapse
is overestimated because of the neglected thermal transport.
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This could be improved by the addition of heat transfer or
chemical reactions, but at the cost of the simplicity of the
model.

Akhatov et al. [7] propose a mathematical model supported
by experimental measurements of the rebound of a spherical
cavitation bubble. Because of the difference in the model used
(the pressure of noncondensable gas is derived from a phase
transition equation), we could not derive a value for pg0 for
quantitative comparison of our results. Nonetheless, qualita-
tively, the conclusions are the same. Akhatov et al. observed
that the ratio between the radius of the rebound and the initial
bubble is constant when only varying the initial radius of the
bubble, which confirms the univocal relation between ξ and
εreb. They also showed numerically that for given experimental
conditions, when the concentration of the noncondensable
gas in the bubble increases, the radius of the rebound bubble
increases, too. This also agrees with our conclusions. Indeed,
the increase of the concentration of noncondensable gas means
a smaller value of ξ which implies, according to Fig. 6, an
increase of εreb and thus of the rebound radius.

C. Negligible role of gravity

We have already demonstrated (see Obreschkow et al. [14])
that gravity can affect the collapse of a cavitation bubble
in the form of the occurrence of a vapor jet (see Fig. 7).
The volume of the vapor jet normalized to the maximum
volume of the rebound was found to be proportional to the
nondimensional parameter ζ = |∇p|R0/�p, where ∇p is the
hydrostatic pressure gradient. Therefore we also performed
the experiments in this paper with the same parameters at
normal gravity (1g) and hypergravity (1.8g). The values of the
nondimensional parameter were ζ ∈ [2.5 × 10−3,7 × 10−3].
Unlike for the vapor jet, we do not observe a significant
difference in the energy partition when the gravity changes.
The relative difference between the values of εreb at 0g

and at �1g are smaller than the standard deviations of the
measurements at 0g. We deduce that the energy transferred
into the vapor jet is negligible compared to the energy in the
rebound and in the shock. In consequence, the results of this
paper also apply to bubbles collapsing in a hydrostatic pressure
gradient for ζ < 7 × 10−3.

Note that in the studies cited here [7,20–22] and plotted
in Fig. 6, the nondimensional parameter is ζ � 7 × 10−3: We
found, respectively, 1.5 × 10−4, 7.5 × 10−5, 3.0 × 10−6, and

collapse rebound

1g1mm

0g

FIG. 7. Collapse and rebound of a bubble in 0g (upper) and 1g

(lower). Note the shock visible at the collapse, and the vapor jet on
the rebound for 1g [14].

1.4 × 10−4. We thus consider that the comparison of our results
with these data is justified.

D. Implications

A systematic experimental and theoretical investigation of
the rebound and shock energy at the collapse of a spherical
cavitation bubble is presented. This led us to identify a single
nondimensional parameter ξ , which links the experimental
conditions to the fraction of energy in the rebound bubble and
in the shock wave. This finding has important implications
for many engineering applications. Depending on the desired
requirements, we can tune the experimental parameters in
order to obtain a value for ξ that favors either the rebound or the
shock. For example, in micropumping, an enhanced rebound
is desired to increase efficiency, because the volume of the
bubble affects the displacement of the liquid [6]. Conversely,
for applications that rely on cavitation erosion, stronger shocks
would be preferred to accelerate the process.

The methodology presented here to estimate pg0 also
opens perspectives for understanding the origin of the non-
condensable gas in the bubble at the collapse. So far the
noncondensable gas has been assumed to be a combination
of trapped vapor, laser breakdown products, and gas initially
present in the water [7]. A method to verify this would be
to systematically vary the experimental conditions and assess
their effect on pg0. Our model could then be used to extract
the values of pg0 by fitting the experimental results with the
theoretical ones. In the same line of thought, we could estimate
water properties, such as the concentration of dissolved gas
and nuclei, solely based on observing the rebound of natural
or artificially generated cavitation bubbles. These results could
be complemented with observations of extreme cases such as
cryogenic fluids, where the experimental parameters (“driving
pressures” �p, adiabatic index γ , density ρ, and speed of
sound c) are very different compared to the case of a bubble
in water [23,24].

VI. CONCLUSION

We observe experimentally that the pressure of the liquid
affects the energy partition between the rebound and the shock
wave at the collapse of a highly spherical laser-induced bubble.
This unique experiment is performed in microgravity condi-
tions in order to avoid the formation of a microjet due to the
hydrostatic pressure gradient at the collapse of the millimetric
bubble. A theoretical model for the collapse of spherical bub-
bles is proposed, relying on a compressible equation of motion
and an adiabatic treatment of the noncondensable gas inside the
bubble. The partition of the energy between rebound and shock
is calculated for a wide range of parameters. It appears that, in
addition to the pressure in the liquid, the physical properties
of the liquid and the pressure of noncondensable gas inside
the bubble affect the energy partition. These parameters can
be combined into a single nondimensional parameter ξ , which
dictates the energy partition.

The ability to predict the energy partition between rebound
and shock is valuable in many engineering applications. The
operating conditions can be adjusted to favor rebound or shock
depending on the requirements. Using the method developed
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in this paper, it is also possible to estimate the pressure of
the noncondensable gas in the bubble by fitting, with an
iterative process, the experimental observations of the radius
of the rebound bubble with the theoretical results. However,
as the pressure of the noncondensable gas is not directly
measurable, this method still has to be quantitatively validated
with further experiments.
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