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Energy Peer-to-Peer Trading in Virtual Microgrids

in Smart Grids: A Game-Theoretic Approach
Kelvin Anoh, (Member IEEE), Sabita Maharjan, (Member IEEE), Augustine Ikpehai, (Member IEEE), Yan

Zhang, (Senior Member IEEE), Bamidele Adebisi, (Senior Member IEEE)

Abstract—Non-commodity costs, such as network maintenance,
emission and transmission charges are major parts of energy
bills. As distributed energy generation continues to penetrate
into smart grids, enabling energy trading close to producers can
minimize such costs. To achieve this, prosumers can be logically
grouped into virtual microgrids (VMGs) using communication
systems. In order to optimise prosumer benefits, we model the
energy trading interactions among producers and consumers in
a VMG as a Stackelberg game. Wherein the producers are the
leaders and consumers are the followers, the study considers
renewable (RES) and non-renewable energy (nRES) resources.
As RES are unpredictable and thus unschedulable, we also
describe cost and utility models considering load uncertainity
demands. The results show that under Stackelberg equilibrium
(SE), the costs incurred by a consumer for procuring either
the RES or nRES are significantly reduced while the derived
utility by producer is maximized. We further show that when the
number of prosumers in the VMG increases, the CO2 emission
cost and consequently the energy cost are minimized at the SE.
Lastly, we evaluate the peer-to-peer (P2P) energy trading scenario
involving noncooperative energy prosumers with and without
social welfare. The results show that the P2P energy prosumers
attain higher benefits with social welfare.

Index Terms—CO2 emission, communication, energy trading,
non-cooperative game, non-renewable energy, peer-to-peer,
Stackelberg game, virtual microgrid.

NOMENCLATURE

αi second order greenhouse penalty constant for i
βi first order greenhouse penalty constant for i
ǫii uncertainty load demand quantity of i
γi constant keeping ln(·) from tending to −∞
λi Lagrangian multiplier associated with prosumer i
A set of all producers

B set of all consumers

D dual decomposition variable

Emin
j minimum amount of energy required by j

G energy trading graph

L(·) Lagrangian of (·)
N set of indices of producers i

P
(g)
j grid energy price sold to prosumer j

P
(g)
t unit of energy transfer price by the grid
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S optimal value of W
T trading period

V utility derived as producer objective

W social welfare

Zi energy cost objective of consumer

µi step size

∇f(x) subgradient of f(x)
Ci

E total cost of excess energy sold by producer i

E
(c)
i energy consumed by prosumer i

E
(g)
i energy generated by producer i

Emin
i energy consumed by i’s non-flexible load

eii energy generated and consumed locally by i
Eij energy sold by prosumer i to j
Eji energy sold by prosumer j to i
f(x) function of x
kij willingness of i to sell to j
N Total number of prosumers

ni set of indices of customers of producer i

P
(b)
ji energy price paid by prosumer j to i

P
(v)
t,ji energy transmission price paid by prosumer j to i

P g grid price

P s
i selling price of prosumer i

P v
t,i i’s excess energy transmission price by i

Pg,i price of energy generated by prosumer i
Pt,i price of generated energy transferred by prosumer i
qi total energy generated and bought

Ui total utility of prosumer i
Γ Stackelberg game

E set of energy trading graph edges

P set of energy trading nodes (or peers)

∂(z) partial derivative of z

E
(b)
ij excess energy units producer i sold to j

subscript ij denotes the flow of commodity from i to j
subscript ji denotes the flow of price (cost) paid by j to i

I. INTRODUCTION

In the UK, non-commodity charges account for 55-65%

of energy bills [1] and network charges alone account for

about 25% of that figure [2]. Peer-to-peer (P2P) energy trading

offers a unique approach to produce and sell energy at the

edge of the network and can help in reducing such charges.

When these prosumers are coordinated using communication

systems [3], [4], significant power network values could be

achieved including reduced pollution and, increased energy

network efficiency and security [5].

Reliable communication systems play vital roles in smart

grids [3], [6]. For example, communication infrastructure can

be leveraged to regroup prosumers into logical clusters called

virtual microgrids (VMGs) in order to improve performance

and aid network management cost reduction [3], [4], [7].
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When realised, optimal grouping can improve efficiency of

the energy network by allowing the prosumers to trade locally,

thereby reducing the non-commodity charges.

The interactions of uncoordinated P2P energy prosumers in

a large area can be both varied and complicated. Thus, optimal

trading strategies, such as game theory, are needed to optimize

resources and costs to enhance prosumer benefits [6], [8], [9].

In this study, we explore the art of optimising energy trading

cost using game theory in VMGs. The main contributions are:

• a clustering scheme for heterogeneous prosumers seeking

to trade energy within their locality. The model not only

supports existing communication systems but also fits

well with emerging 5G and edge computing technologies.

• a game theoretical framework to model the interactions

between producers and consumers in a VMG for

prosumers equipped with renewable energy resources.

We also formulate a Stackelberg game with producers as

leaders and consumers as followers, and optimize both

the cost for consumers and the utility for producers. We

prove that a unique Stackelberg equilibrium (SE) exists.

• given that power generation from renewable energy

resources (RES) are not predictable and thus

unschedulable, we formulate the energy trading cost and

utility models in terms of load demand uncertainty for

VMG energy trading system equipped with RES only

and that are also grid-connected.

• Lastly, we solve the social welfare problem under

P2P energy trading scenario for non-cooperative energy

prosumers. The result shows reduced energy trading costs

for the consumer and enhanced utility for the producer

compared to the SE with the added advantage of reduced

emission for increasing number of prosumers.

The remaining part of this paper is organized as follows:

In Section II, we provide literature review and describe the

system model in Section III. We formulate the problem in

Section IV. In Section V, we evaluate the social benefits of

non-cooperative energy trading while we present our main

results in Section VI. Section VII concludes the paper.

II. RELATED WORK

P2P energy trading scheme has recently gained traction

with diverse motivations [3], [4], [6], [7], [10]–[14]. The

motivations include modelling the psychological behaviour of

the traders, the problems of feed-in tariff (FiT), the imposition

of energy dispatch limits on distributed energy generators

(DEG) by some local governments [13], [15] and incentives

[16], [17]. These plethora of research literature that use P2P

algorithm in the energy sector can be generally grouped into

three areas [13], [18]; electric vehicles [19], microgrid [3],

[20] and distribution network [21]. This study focuses on the

microgrid area. It uses the evolving IoT and edge computing

technologies [22], [23] to form VMGs to manage DEGs.

The idea is inspired by the microgeneration of energy at

the edge of the distribution network [24], as renewable energy

generation is now prevalent in residential and commercial

buildings, and the pervasive nature of wireless communication

technologies. Without altering the physical topology of power

network, VMG scheme allows logical grouping of prosumers

using communication systems as the key enabler [3], [4] as

shown in Fig. 1. Coordinating prosumers locally in VMGs

could provide significant advantages to power systems, such as

increasing network efficiency and security, reducing pollution

and alleviating the burden of investing in upstream energy

generation and transmission [5]. In terms of communication

networks, the costs of traversing a wide (or metropolitan) area

network to complete energy transactions is overcome.

We approach the study of interactions among the prosumers

as a noncooperative game. In the game, players make

decisions independently [25] with the leader (e.g. seller)

making the first move. The players in VMGs are managed

using communication systems. Unlike [26] that considered the

interactions between microgrid operators (or aggregators [27])

and prosumers of a homogeneous energy trading system as

a noncooperative game, we consider the case heterogeneous

energy prosumers since they cannot be practicably isolated.

Noncooperative game theoretic approaches including the

Nash game, Stackelberg game and others to study energy

trading is widely reported [9], [15], [25]–[30]. Some of

these studies involve where the utility companies attempt to

maximize their revenue while the consumers are interested

in maximizing their own pay-offs [28]. Nash game has also

been applied to study energy trading in DSM, where there

is one utility company and multiple consumers [9]. In [30],

the authors derived a Nash equilibrium (NE) to maximize

utility for geographically distributed energy storage units and

unfairness between high and low capacity consumers at NE

[27]. Apart from Nash game, Stackelberg game has been used

to maximize seller utility and to minimize user costs [29].

NE is a specific solution for noncooperative games where

each player in the game can not get a higher payoff by

deviating unilaterally. Noncooperative game equilibrium is a

more general concept that includes NE but extends to include

other equilibrium concepts as well such as SE.

The authors in [20] studied P2P energy trading to balance

local generation and demand for grid-connected renewable

energy generators. In [31], Stackelberg game was applied

to optimize energy trading among multiple prosumers and

multiple consumers. The study in [3] examined distributed

energy trading involving multiple prosumers and multiple

generators for multiple VMGs. These consumers may range

from local energy generators from renewable sources such as

wind, solar or geothermal, to residential units, commercial

units, industry and cooperative sellers. Each VMG could

involve a VPP for prosumers with storage facilities.

III. SYSTEM MODEL

Consider reducing the cost incurred by the energy consumer

and maximizing utility for the producer. A prosumer can act as

an energy generator or consumer at different trading intervals.

Since there are multiple producers and consumers involved,

attaining optimal pricing as well as utility for the consumers

and producers respectively, can be complicated. We introduce

a game theory-based approach to optimize energy trading costs

in a single VMG. This important area has not been reported
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Figure 1: Energy prosumers formed into virtual clusters; each virtual cluster shows N -prosumers that connect to RAN via an ETA. Note that the prosumers
are heterogeneous in terms of energy resources and generation capacity.

in other studies investigating VMG such as [3], [4], [32], [33].

A. Background

Communication systems play a crucial role informing VMG

as shown in Fig. 1. The computational agents can reside

in local edge computing systems or in a cloud [22], [23].

Assuming a wireless communication systems, the radio access

network (RAN) is equipped with eNode-B (eNB) and MEC

facilities; e.g. the emerging 5G standard [34], [35]. The RAN

is connected to the network cloud and enables prosumers to

identify local energy trading neighbours in its VMG. In this

case, the prosumers connect to the MEC via the eNB in a

machine-type communication (MTC) fashion. The software

configured on the MEC which achieves the transactional

service together with the external communication hardware

will be referred to as energy trading agent (ETA).

In terms of communication network, VMG relieves data

transfer over the core network and encourages information

processing within the edge communication infrastructure using

the evolving MEC. In terms of power network, it encourages

local energy trading as prosumers can find buyers and sellers

within its neighbourhood. In terms of the environment, energy

loss due to long distance transmission will be reduced and thus

CO2 emission will be cut down.

In this study, the ETA coordinates the transaction messaging

services between producers and consumers. Examples of

communication infrastructure that may implement the ETA

include NB-IoT, LoRaWAN, Wi-Fi, WIMAX, or LTE-MTC

[36], [37]. The prosumers have finite energy generation

capacity and also need to act as energy consumers at times.

This phenomenon makes the peers interdependent. The energy

prosumers are also equipped with communication (hardware)

and application (software) with which they exchange energy

trading messages with other prosumers over the ETA. The

combined hardware and software infrastructure are referred to

as energy trading client (ETC). We assume that the ETC is

able to connect wirelessly to the ETA via the eNB. Except

for the recent study [22] on the cost uncertainties due to

communication systems in a single VMG, no other study has

investigated the problem of optimising energy trading costs

and utility for prosumers in a given VMG. This problem is

addressed in this study, by first considering the energy trading

interactions among prosumers as a game.

B. System Design

Consider energy P2P trading in a single VMG as shown in

the Fig. 1, wherein there are {A = {Ai : ∀i ∈ N}} producers

and {B = {Bj : ∀j ∈ ni}} consumers; ni ⊆ N is a set of

indices of consumers that buy energy from producer i, N =
{1, 2, · · · , N} and N is the number of prosumers. Both Ai and

Bj are physically connected in a power distribution network,

and are also allowed to trade energy. The peer connectivity

may be denoted using an energy trading graph G = (P,E)
with set of edges E ⊂ P × P and P = {P1, · · · , PN}
is a set of peers. Prosumers can act (and are referred to)

as consumers when they need to buy energy. In the model,

Ai sets up its own energy price and the consumer has the

liberty to choose who to purchase energy from. Typically, the

energy price defined by Ai is cheaper than the grid-price at

the prevailing transaction interval. Thus, the price set by Ai

depends on the prices set by other Ai’s and the grid. This type

of coupling between prosumers’ trading strategies necessitates

the use of game theory to model the interaction between the

producers and consumers. Specifically, we adopt a multi-leader

multi-follower Stackelberg game.

Given the prices set by {Ai : ∀i ∈ N}, {Bj : ∀j ∈ ni}

chooses its own energy price {P
(b)
ji ∈ P s

i : ∀i ∈ N , j ∈ ni}

and {P
(b)
ji ≤ P s

i : ∀i ∈ N , j ∈ ni}, where P
(b)
ji is the price
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Figure 2: Energy and price flow (transmissions) during P2P energy trading
(from prosumer i to j and vice versa).

which the consumer can afford to buy from producer i and

P s
i is the selling price of the producer. Also, we note that

{P
(b)
ji ∈ (P s

i

⋃

P g) : ∀i ∈ N , j ∈ ni} which implies that

the price paid by consumer j is drawn from either P s
i or

P g , where P g is the price set by the grid. Based on P
(b)
ji set

by Bj , Ai unveils the quantity of energy (E
(g)
i − eii) that it

is willing to sell after satisfying its non-flexible load Emin
i ;

E
(g)
i is the amount of energy generated by producer i and

{eii : ∀i ∈ N} is the amount of energy that the producer

chooses to consume. The energy and price flows are illustrated

in Fig. 2. It shows that when the producer and consumer agree

to trade, the energy (E
(b)
ij ) is sent from producer i to consumer

j and the money (P
(b)
ji ) flows from consumer j to producer i.

The Stackelberg game is characterised by i) sequential actions

in which the leader makes the first move, followed by optimal

reaction from the followers ii) information asymmetry such

that the amount of energy on offer is not revealed until the

price is mutually agreed. In our model the producer is the

leader and the consumer is the follower; these positions can

be taken by any prosumer depending on its circumstance at a

given trading period. We consider a game where P2P energy

prosumers compete to satisfy their own goal. In this scenario,

the producer evaluates its non-flexible load requirement and

estimates any excess amount of energy for trading depending

on the pricing information that it receives from the consumer.

The consumer then considers the grid price to determine its

own bid for the excess energy from other prosumers within

the ETA service area.

Denote ni := {j : (Pi, Pj) ∈ E} to be all the set of peers

that can sell energy to Pi (i.e. ingoing-neighbours) and n−
i :=

{j : (Pi, Pj) ∈ E} to be the set of all peers that can buy energy

from Pi (i.e. outgoing-neighbours). The energy trading model

described in [3] involves outgoing energy Eij ≥ 0 to prosumer

i and incoming energy Eji ≥ 0 to prosumer i. Let the energy

consumed by i be E
(c)
i , then from [3]

E
(g)
i +

∑

j∈ni

Eji = E
(c)
i +

∑

j∈n
−

i

Eij ∀i ∈ N , (1)

where ni ⊆ N is the set of neighbours of prosumer i.
The expression in (1) denotes the well-known energy balance

model which indicates that the total energy generated must be

equivalent to the total energy consumed. In terms of energy

generated, we can rewrite (1) as

E
(g)
i = E

(c)
i +

∑

j∈ni

(Eji − Eij) , ∀i ∈ N . (2)

By letting the price of every unit of energy (kWh) generated

by prosumer i be linear multiple of the quantity, then

CT =
∑

i∈N

E
(g)
i Pg,i +

∑

i∈N

E
(g)
i Pt,i (3)

where Pg,i represents the price of energy generated and Pt,i

represents the price of energy transferred by prosumer i.
Note that if a given quantity of energy is generated locally

and consumed locally, then Pt,i = 0. The model in (3)

represents the cost of energy locally generated and that bought

externally from another prosumer. Our interest is in a single

VMG and since each prosumer is selfish and concerned with

optimizing own energy production cost, the optimal energy

cost of generating E
(g)
i units of energy can be expressed as

C⋆
T = min

{Pg,i,Pt,i}

∑

i∈N

E
(g)
i Pg,i +

∑

i∈N

E
(g)
i Pt,i. (4)

If prosumer i always buys energy, then one of the ways of

minimizing its generation cost is by minimizing the energy

trading cost, e.g. by generating, trading locally or choosing

cheapest seller. Given a microgrid with many prosumers to

buy the energy from, the consumer can achieve its goal of

minimizing the cost for Eij units of energy by choosing the

cheapest price offer among the ni ⊆ N prosumers present in

the trading area. On the other hand, prosumer j is interested

in maximizing the utility it derives from consuming only eii.
The interdependence of consumer and producer coupled with

the complex exchange of trading information (i.e. quantity and

price) can be modelled as a Stackelberg game. In the game,

the consumer pursues minimizing energy trading cost while

the producer (seller) seeks to maximize the benefit it derives

from consuming eii only out of E
(g)
i that it produces.

IV. PROBLEM FORMULATION

In this section, we formulate energy trading cost models for

prosumers equipped with renewable (RES) and non-renewable

energy resources (nRES).

A. Energy Cost Models (Buyer)

There are three components of total energy cost model [3].

These include the cost of energy generated and consumed

locally and the cost of all the energy bought from other

prosumers, which can be represented as E
(b)
ij P

(b)
ji , where E

(b)
ij

is the quantity of energy that prosumer j buys from other

prosumers i. Lastly, E
(b)
ij P

(v)
t,ji is the energy transmission cost,

where P
(v)
t,ji is the energy transmission price paid by consumer

j to producer i per kWh for E
(b)
ij units of energy bought over a

unit distance. In addition to these, we account for the emission

cost Iji(qij), ∀i ∈ N , j ∈ ni. Hence, by combining Iji(qij),

E
(b)
ij P

(b)
ji and E

(b)
ij P

(v)
t,ji, the total cost can be expressed as

Ci
E =

∑

j∈ni

Iji(qij) +
∑

j∈ni

E
(b)
ij P

(b)
ji +

∑

j∈ni

E
(b)
ij P

(v)
t,ji+

∑

j∈ni

(Emin
j − E

(b)
ij )P

(g)
j +

∑

j∈ni

(Emin
j − E

(b)
ij )P

(g)
t (5)

where Emin
j is the minimum energy requirement of the

consumer j, P
(g)
t is the unit transfer price of the grid per

unit distance. Note, (5) suggests that consumer j can purchase

(Emin
j −E

(b)
ij ) to satisfy its minimum load from grid when its

peers do not have surplus energy or P
(b)
ji ≥ P

(g)
j ; assuming
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P
(v)
t,ji ≈ P

(g)
t . We make clear distinction on the energy sources

to facilitate the carbon target being pursued around the globe.

We define the emission cost as [38]

Iji(qij) = α2
jiqij + βjiqij , ∀i ∈ N , j ∈ ni (6)

where αji and βji are emission penalty variables and qij is

the total amount of energy generated and bought. Note that as

energy flows from prosumer i to j and cost (price i.e. money)

from prosumer j to i, we have denoted the variables as qij
and αij , respectively. In that case, substituting (6) into (5) the

total energy cost for the consumer takes the form

Ci
E =

∑

j∈ni

α2
jiqij +

∑

j∈ni

βjiqij +
∑

j∈ni

E
(b)
ij P

(b)
ji +

∑

j∈ni

E
(b)
ij P

(v)
t,ji

+
∑

j∈ni

(Emin
j − E

(b)
ij )P

(g)
j +

∑

j∈ni

(Emin
j − E

(b)
ij )P

(g)
t . (7)

For RES producer, αji = 0, βji = 0, thus Iji(qij) = 0. If the

producer generates energy from nRES, then both αji > 0
and βji > 0. Sample realistic energy cost models follow

two-step conservation rate or quadratic cost function [39].

At each trading period, the consumer minimizes the energy

trading cost for buying E
(b)
ij units of energy over a unit

distance at a transmission price Pt while the producer pursues

to maximize utility it derives from selling E
(b)
ij units of energy.

Note that since the renewable energy source is unpredictable,

the renewable energy generators are unscheduleable.

B. Utility of the Energy Producer (Seller)

Suppose that the producer consumes {eii : 0 ≤ eii ≤ E
(g)
i }

amount of energy, the total utility derived from consuming

a certain quantity of energy is realized from combining the

local utility of the prosumer and the revenue it generates after

selling its excess energy, i.e. (E
(g)
i − eii). From (2), we can

express the excess energy that can be sold by prosumer i as

E
(g)
i − eii =

∑

j∈ni

(Eji − Eij) , ∀i ∈ N . (8)

When (E
(g)
i − eii) > Emin

i , the prosumer has extra energy

and may be interested to sell. When (E
(g)
i − eii) ≤ Emin

i ,

the prosumer may require to procure additional amount of

energy.These two conditions may attract the prosumers to

engage in an energy P2P trading.

The total utility of a prosumer for consuming only eii units

of energy out of what it generates can be expressed as

Ui(eii, E
(b)
ij ) =

∑

j∈ni

kij ln (γi + eii) +
∑

j∈ni

E
(b)
ij P

(b)
ji , (9)

where kij is the willingness [40] of prosumer i to sell

to prosumer j and γi is a constant. We have adopted the

ln(·)-based utility model because it leads to proportional fair

demand response, and is well accepted and widely used model

[28], [29], [41]. With γi > 0, the log(·)-based utility part in

(9) does not tend to −∞ when eii = 0; an example of γi = 1.

If we replace E
(b)
ij by (E

(g)
i − eii), then total utility becomes

Ui(eii, E
(b)
ij ) =

∑

j∈ni

kij ln (γi + eii) +
∑

j∈ni

(E
(g)
i − eii)P

(b)
ji .

(10)

The model in (10) can be explained as having two variables;

the first variable kij ln(γi + eii) represents the local utility

derived by the prosumer for consuming eii units of E
(g)
i

while P
(b)
ji (E

(g)
i − eii) is the revenue it receives for selling

the excess energy it generates after satisfying its local load

requirements. From (10), it is easy to show that producers

with higher willingness to sell (E
(g)
i − eii) tend to achieve

higher utility than prosumers with lower willingness.

Supposing a strictly RES trading system and considering

that RES is unschedulable, we can as well discuss both (7)

and (10) with respect to load uncertainty demand quantity,

ǫii. In that case, we rewrite (7) as follows

Ui(ǫii) =
∑

j∈ni

kij ln (γi + êii)) +
∑

j∈ni

Ê
(b)
ij P

(b)
ji , (11)

where Ê
(b)
ij = (E

(g)
i − êii) and êii = (eii+ǫii). Also, in terms

of the load uncertainty the cost in (7) can be rewritten as

Ĉi
E =

∑

j∈ni

Ê
(b)
ij P

(b)
ji +

∑

j∈ni

Ê
(b)
ij P

(v)
t,ji +

∑

j∈ni

(Emin
j − Ê

(b)
ij )P

(g)
j

+
∑

j∈ni

(Emin
j − Ê

(b)
ij )P

(g)
t . (12)

Since (11) and (12) appeal to RES only, we shall continue

our discussion with the more general models, i.e. (7) and (10).

Notice that the uncertainty of producer’s loads and that RES

is unschedulable will affect the energy balance, in particularly,

the amount of energy consumed by the prosumer, namely eii
in (8) by ǫii units of energy.

C. Stackelberg Game Formulation

In this study, producers are prosumer with surplus energy

to sell and knows the grid price. Consumers have need to

buy energy to satisfy their minimum load requirement and are

interested in minimizing the cost of such energy "production".

In a Stackelberg game, leaders act first; in this study producers

(or leaders) announce the availability of, and willingness to

sell, their surplus energy. Consumers, as followers, follow this

announcement by announcing the price they are able to pay.

In Stackelberg game, while both the leader and the follower

pursue their own interests, the leader of the game reacts to the

behaviour of the follower to advertise own quantity of excess

energy that it is willing to sell. The leader and follower are

interested in optimizing their benefits and costs respectively.

Thus, let us start with the leader’s side.

The producer is interested in maximizing the utility it

derives from consuming only eii units of energy out of E
(g)
i

units it generates. That is, (9) takes the form

U⋆
i (eii, E

(b)
ij ) = max

eii
Ui(eii, E

(b)
ij ) ∀i ∈ N (13)

where U⋆
i is the optimal utility derived by prosumer i for

consuming eii units of energy it generates and also selling the

remaining quantity i.e. (E
(g)
i − eii). In that case, we estimate

the first order optimal quantity of energy it can sell to the

consumer by taking the first derivative of (10) and find that

(see Appendix A)

eii =
∑

j∈ni

kij

P
(b)
ji

− γi, 0 ≤ eii ≤ E
(g)
i ∀i ∈ N . (14)
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Note that kij > P
(b)
ji in (35), so that kij/P

(b)
ji >> 1. This

ensures that the energy consumed must satisfy eii ∈ R
+.

Having received the amount of excess energy that the

producer is willing to sell to the consumer, the consumer

computes and gives the best price it can pay. To estimate the

optimal price the consumer can pay, it has to solve the problem

Ci⋆
E = min

P
(b)
ji

Ci
E ∀i ∈ N , ∀j ∈ ni. (15)

Note that the energy consumption of each prosumer is

decoupled; i.e. it does not depend on how much the other

peers consume. This implies that the trading optimization

problem can be decomposed into ni sub-problems and solved

independently. The price realized from solving (15) becomes

the best price the consumer is willing to pay for the excess

amount of energy (E
(g)
i − eii) from the producer.

The consumer minimizes the cost of energy it buys by

solving (15) as in (39) to obtain (see Appendix B)

P
(b)†
ji =

√

√

√

√

(−α2
ji − βji − P

(v)
t,ji + P

(g)
j + P

(g)
t )

(E
(g)
i + γi)

. (16)

In this case, P
(b)†
ji is the best response that the consumer can

buy the excess energy (E
(g)
i − eii) from the producer. The

optimal energy consumed by the producer will be

e†ii =
∑

j∈ni

kij

P
(b)†
ji

− γi ∀i ∈ N (17)

SE for P2P Energy Resources: Consider a game Γ played

by N producers and ni consumers, by choosing (e†ii,P
(b)†
ji )

strategies, which can be expressed as

Γ = {A ∪ B, {ei}i∈N ,P(g), {P(b)}, {P(s)}, {Ui}i∈N ,CE}
(18)

where {P(b)} ∈ {P(s)}∪P(g) is the set of energy prices that

the consumer is able to pay and {ei}i∈N is the set of strategies

of producer i with {eii : 0 ≤ eii ≤ E
(g)
i }. The consumers

set their own strategies from obtaining P
(b)
ji ∈ (P(b) ∪ P(g))

which are usually constrained as P
(b)
ji ≤ P

(s)
i ≤ P(g). The

Stackelberg game Γ with a set of strategies (e†ii, P
(b)†
ji ), attains

equilibrium if and only if the chosen strategies satisfy the

following criteria:

Ui(e
†
ii, P

(b)†
ji ) ≥ Ui(eii, P

(b)†
ji ) ∀i ∈ N , ∀j ∈ ni (19)

also Ci
E(e

†
ii, P

(b)†
ji ) ≤ Ci

E(e
†
ii, P

(b)
ji ) ∀i ∈ N , ∀j ∈ ni. (20)

where P
(b)†
ji ∈ P

(b)
ji and e†ii ∈ eii. Once the game attains the

equilibrium, no member of the game will be able to deviate

from the current strategy (e†ii,P
(b)†
ji ) because by doing so, the

player cannot achieve additional gain. To verify the existence

and uniqueness of the strategy chosen by a producer, we take

the second derivative of (9) i.e.,

∂2Ui

∂e2ii
= −

∑

j∈ni

kij

(eii + γi)
2 ∀i ∈ N (21)
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Figure 3: Producer utilities for RES and nRES at varying prices. Note that

P
(b)
ji,r is the unit price of RES and P

(b)
ji,nr is for nRES.

which is strictly concave (i.e. ∂2Ui

∂e2
ii

< 0). It follows that for

any price that the consumer chooses that satisfies P
(b)
ji > 0,

there exists a unique eii chosen by the producer that satisfies

Emin
i ≤ eii ≤ E

(g)
i . Similarly by taking the second derivative

of (15), for the cost paid by the consumer, it can be seen that

(see Appendix C)

∂2Ci
E

∂P
(b)2
ji

= P
(g)
j

∑

j∈ni

kij

P
(b)3
ji

+ P
(g)
t

∑

j∈ni

kij

P
(b)3
ji

−
∑

j∈ni

kijP
(v)
t,ji

P
(b)3
ji

+
∑

j∈ni

α2
i kij

P
(b)3
ji

+
∑

j∈ni

βikij

P
(b)3
ji

. (22)

Since αji and βji are usually small, for example α = 5×10−2

and β = 0.1 [42], then the last two terms in (22) tend to zero

so that the cost model is strictly convex (i.e.
∂2Ci

E

∂P
(b)2
ji

> 0). It

follows that a unique (i.e. optimal) price exists to procure a

unit of excess energy sold by the producer. Also there exist

unique amounts of energy that each consumer will buy from

each producer; thus constituting unique SE (e†ii, P
(b)†
ji ).

D. Characteristics of Proposed Cost Model at SE

Fig. 3 shows the impacts of varying energy prices on the

utility of the producer at a given willingness, k = 810. For

example, at low energy prices, the producers achieve low

utility for trading with RES; this increases with increasing

energy prices. This phenomenon is similarly true for nRES.

However, we note that due to the emission costs charged for

nRES, the producer achieves 20% utility higher for RES when

compared to nRES. Notice also that as the local consumption

of the energy produced increases, the utilities derived by the

producer reduces for both RES and nRES.

Considering the emission costs, we now demonstrate

emission reduction when the producers and consumers play the

game at SE. These results are compared in Fig. 4 taking into

consideration the amount of energy bought, the willingness

(k = 810) of a producer and the number of prosumers that

exist in a trading area. In the simulation, we set α = 5×10−2

and β = 0.1 as in [42]. We see that when the prosumers engage

in playing the game, the emission cost is significantly reduced.
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Figure 4: Comparison of total emission costs considering the optimal energy
price for varying number of consumers

Suppose that there exists a threshold of energy generation in

the given VMG (i.e. all the prosumers can generate a total

of E energy units), as expected, we also observe that as the

number of the prosumers in the area increases, the emission

cost reduces. This is because, there exists opportunities for

increased local generation and consumption. In addition, if the

consumer must buy energy from a local producer, the distance

covered in the trade is significantly reduced thus affecting the

emission cost.

V. SOCIAL WELFARE OF P2P PROSUMERS IN VMG

Social welfare (SW) is usually studied for collaborative

and non-collaborative prosumers aspiring to maximize benefits

[27]. From the foregoing non-cooperative game discussion,

we will further evaluate the energy trading cost and utility

performances with respect to the SW. We shall start with

analytical definition of SW considering the formulated utility

and cost models. SW of non-cooperating prosumers has been

studied using game theoretic [27] and blockchain [19], [43]

tools. Here, we model the SW of these prosumers engaging

in P2P energy trading within a single VMG as [44]

W =
∑

i∈N

Ui(eii, E
(b)
ij )− Ci

E(E
(b)
ij , P

(b)
ji ). (23)

For the given price, each prosumer attempts to adjust its power

consumption to maximize its benefit. In that case, the SW of

the prosumers participating in the game is

S = max
eii

∑

i∈N

Ui(eii, E
(b)
ij )− Ci

E(E
(b)
ij , P

(b)
ji ) (24a)

subject to:
∑

j∈ni

E
(b)
ij ≤ E

(g)
i , E

(b)
ij 6= 0, ∀i ∈ N . (24b)

Constraint (24b) exclusively eliminates the prosumers with no

excess energy (i.e. E
(b)
ij = 0) from participating in the trade.

The constraint is ascertained by the ETA as a precondition for

the prosumer to participate. The Lagrangian of (24) can be

expressed as follows

L(eii, E
(g)
i , E

(b)
ij , λi) =

∑

i∈N

Ui(eii, E
(b)
ij )−

∑

i∈N

Ci
E(E

(b)
ij , P

(b)
ji )

−
∑

i∈N

λi

(

∑

j∈ni

E
(b)
ij − E

(g)
i

)

(25)

where λi is the Lagrangian multiplier. The Lagrangian can

be rewritten in terms of producer’s and consumer’s respective

objectives. For example, we let the model (25) be written as

L
(

eii, E
(g)
i , E

(b)
ij ,λi

)

=
∑

i∈N

(

Ui(eii, E
(b)
ij )−

∑

i∈N

∑

j∈ni

λiE
(b)
ij

)

+
∑

i∈N

λiE
(g)
i −

∑

i∈N

Ci
E

(

E
(b)
ij , P

(b)
ji

)

. (26)

The common approach to solve this type of problem is by

decomposing (26) into a dual problem [41], [44]. Using the

dual decomposition principle [41], we can express (26) as

D (λi) = maxL(eii, E
(g)
i , E

(b)
ij , λi). (27)

As the producer and the consumer have different objectives,

(26) can be decomposed into two sub-problems as

D (λi) =
∑

i∈N

Vi(λi) + Zi(λi) (28)

where Vi(λi) = max
eii

(Ui(eii, E
(b)
ij )− λiE

(b)
ij ), (29)

Zi(λi) =max
P

(b)
ji

∑

i∈N

λiE
(g)
i −

∑

i∈N

Ci
E(E

(b)
ij , P

(b)
ji ). (30)

If the prosumer charges the consumer at price P
(b)
ji = λ⋆

i

(i.e. strong duality), it can be shown that the total energy

procured by the consumers will be equivalent to the quantity

of the excess energy sold by the producer. This is a dual

decomposition problem that can be summarized as

D (λ⋆
i ) = min

λi≥0
D (λi) . (31)

While producers solve (29), the consumer tries to minimize

costs charged to it by solving (30). At the optimal condition,

the prosumer charges the consumer λ⋆
i per kWh for the (E

(g)
i −

eii) energy units it purchases.

Although (24) is convex and can be solved centrally, e.g.

by the ETA, a major setback is that the willingness parameter

(kij) is private, thus the ETA may not have enough information

to do so. Furthermore, solving the problem centrally would

lead to computational inefficiency and latency, and therefore

stale energy prices. Thus, given the distributed nature of the

prosumers, one of the ways to solve the dual problem is by

gradient projection method [44] in a distributed fashion. Let

a function f(x) : Rn → R, the subgradient of f(x) is the

gradient of f(x) at x (i.e. ∇f(x)) if f(x) is differentiable

[45]; in this case the subdifferential of D(λi
τ ) at λi

τ is ∂D(λi
τ ).

It follows that we can iteratively obtain the pricing update as

follows at different trading intervals

λi
τ+1 =

[

λi
τ − µi ∂D(λ

i
τ)

∂λi

]+

, ∀i ∈ N , ∀τ = 1, · · · , T (32)

where µi is the step size and [x]
+

, max(0, x). When the

producers solve (29) and reveal the optimal quantity of energy

it would consume e⋆i (λ
i
τ ) given the new price update λi

τ , then

the consumer solves (30) and provides the optimal price it

would pay as P
(b)⋆
i (λi

τ ). It follows that the price update is:

λi
τ+1 =

[

λi
τ + µi

(

∑

j∈ni

E
(b)
ij (λi

τ )− E
(g)
i (λi

τ )
)]+

∀i ∈ N

(33)
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Figure 5: Comparison of renewable energy costs for playing the Stackelberg
game and the conventional case.

Hence, based on (24), the total social welfare benefit of the

prosumer can be expressed as

W⋆(eii, P
(b)
ji ) =

∑

i∈N

Ui(e
⋆
ii, E

(b)
ij )− Ci

E(E
(b)
ij , P

(b)⋆
ji ), (34)

where W⋆(·) is the social welfare of the nRES prosumers, e⋆ii
is the optimal amount of energy consumed which is realized by

the producer by solving (29) while P
(b)⋆
ji is the optimal price

that the consumer is willing to pay to acquire E
(b)
ij which it

realizes by solving (30).

VI. ILLUSTRATIVE RESULTS

Using the scenarios described above for RES and nRES,

we explore the case of one VMG among the VMGs of the

large energy trading area described in [3], [4]. The VMG is

characterised by N -prosumers. Our interest is to evaluate the

energy trading costs of a consumer for buying either RES

or nRES, or both and how the cost can be minimized for

the consumer and utility maximized for the producer in the

VMG. We assume that all the prosumers within the single

VMG are served by only one ETA such as LoRaWAN or

any other LP-WAN technology [36]. Each consumer connects

the prosumer facility to the ETA using an ETC as shown

in Fig. 1. We assume the LoRaWAN network is stable and

that the single VMG is composed of 10 prosumers with up

to 80 kWh energy generation capacities. These datasets are

generated as uniformly distributed random variables using

MATLAB tool. Using (16) and (17) in (7), we evaluate the

optimal energy trading costs for RES and nRES. We adopt the

energy pricing parameter, namely P
(g)
j = 16p for each unit

of energy produced [3] and P
(b)
ji = 12p. The transmission

cost charged to generators in the UK is P
(g)
t ≈ 25p ( [46]

pp. 30), then P
(v)
t ≈ P

(g)
t ≈ 25p. Furthermore, we adopt

the environmental pollution parameters α = 2 × 10−2 and

β = 10−1 as in [42]. To ensure that kij/P
(b)
ji >> 1 condition

is met, we choose kij >> P
(b)
ji such as in [29]. We also invoke

the optimal pricing criteria realized at SE so as to compare

the outcome results with that of the conventional price. By

the term conventional, we imply random trading peer-to-peer
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Figure 6: Pricing and producer consumption updates for different energy
trading periods.

energy trading mechanism that does not involve any smart

trading mechanism such as the proposed game theory.

Algorithm 1 Social welfare scheme for P2P energy prosumers

1: Initialization: P
(b)
ji , E

(g)
i , E

(b)
ij , kij , P

(v)
t , P

(g)
t , βji, E

(b)
ij ,

2: αji, µ
i, λi

τ , T ⊲ consumer, prosumer and grid parameters

3: for τ = 1 to T do

4: Solve (32) to realize λi⋆
τ as in (33) at τ th trading

interval

5: Using the result in (32), solve (29) and (30),

respectively

6: Obtain e⋆ii from the solution of (29). ⊲ producer

energy consumption from the Stackelberg game.

7: Obtain P ⋆
ji from the solution of (30). ⊲ consumer

price from the Stackelberg game.

8: Compute the optimal U⋆
i (e

⋆
ii, E

(b)
ij ) using the

Stackelberg game parameters e⋆ii for the producer

9: Compute the optimal Ci⋆
E (E

(b)
ij , P

(b)⋆
ji ) using the

Stackelberg game parameter P
(b)⋆
ji for the consumer

10: Find the social welfare using W (U⋆
i , C

i⋆
E )

11: if (E
(g)
i (λi

τ )−
∑

j∈ni
E

(b)
ij (λi

τ )) > e†ii, ∀i ∈ N then

12: Compute new price update:

13: λi
τ+1 =

[

λi
τ +µi

(
∑

j∈ni
E

(b)
ij (λi

τ )−E
(g)
i (λi

τ )
)]+

14: if the stopping criteria is met: then

15: break the loop of iteration

16: end if

17: end if

18: end for

At first, we follow the time-varying pricing update model in

(33) to obtain the optimal price using Algorithm 1. The loop

is iterated over τ = 1, · · · , T trading periods. The stopping

criteria is established as the point where the slack variable in

(33) is less than the best amount of energy consumed by the

producer, i.e. (E
(g)
i (λi

τ ) −
∑

j∈ni
E

(b)
ij (λi

τ )) ≤ e†ii, ∀i ∈ N .

This is because, the prosumer must consume e†ii energy units

to satisfy its local loads. The results of this iterative process

is shown in Fig. 6. Clearly, it shows that the prices decay as

the trading period increases. On the other hand, the producer
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Figure 7: Evaluation of non-renewable energy trading costs for consumers
playing the Stackelberg game against the conventional case.
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Figure 8: Performance comparison of emission costs of non-renewable
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consumes more energy at such low prices period and sells

more at higher price period. However, the producer is at best

satisfaction at the point of intersection of the price and its

consumption, a kind of the phenomenal equilibrium price.

Fig. 5 presents the energy trading cost for our proposed

Stackelberg game-based model with RES. It shows that with

producers and consumers playing the Stackelberg game, the

energy trading cost incurred by the consumer is significantly

reduced at SE. Investigating the optimal cost rigorously, the

consumer requires to buy a small unit of energy when the

willingness to sell is small in order to satisfy its non-flexible

loads but indulges in revenue generation when the preference

increases (i.e. as a producer). These are also true for nRES

energy trading case as shown in Figs. 7-8. Notice that due to

the penalty from emissions as shown in Fig. 8, the trading

cost is higher for nRES prosumers (Fig. 7) than that of RES

prosumers (Fig. 5). Next, we consider the utilities derived by

producers of the non-cooperative game considering the cases

of SW and no-SW scenarios in P2P energy trading frameworks

as shown in Fig. 9. It is found that energy trading peers

using SW within the VMG achieve higher utility than the

conventional prosumers. This can be explained on the premise

of secrecy of information/lack of information sharing. Each
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Figure 9: Comparison of utilities derived by prosumers from
non-cooperative game with and without social welfare.
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Figure 10: Comparison of energy trading costs realised from
non-cooperative game with and without social welfare.

prosumer maintains its own local energy trading information

on the amount of energy and price. This phenomenon further

extends to the consumer as shown in Fig. 10. Due to SW,

consumers in the non-cooperative P2P energy trading game

pay lower energy cost than the conventionally trading P2P

consumers. It follows that incorporating these results into (34),

non-cooperative P2P prosumers achieve higher social welfare

than conventional P2P energy prosumers.

VII. CONCLUSION

In this study, we optimized the social benefits of P2P

energy trading in virtual microgrids. We considered energy

prosumers that can take up the roles of producers or

consumers. When operating as consumers, they attempt

to minimize energy trading cost while as producers, they

seek to maximize their revenues/profits. The complicated

interactions of the producer-consumer set-up was investigated

as a non-cooperative Stackelberg game, and we showed that a

Stackelberg equilibrium exist and is unique. We also found that

at Stackelberg equilibrium, reducing the energy trading cost

reduces the CO2 emission too. Additionally, we observed that

prosumer utility depends on the willingness to sell energy and

amount of energy it chooses to consume. Lastly, we showed

that in non-cooperative game analysed using Stackelberg game
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considering social welfare, prosumers achieve 47% higher

utility than playing the conventional Stackelberg game without

social welfare.
APPENDIX

A. Appendix A

By taking the first derivative of (10), we obtain

∂Ui

∂eii
=

∑

j∈ni

kij
γi + eii

−
∑

j∈ni

P
(b)
ji = 0

⇒ eii =
∑

j∈ni

kij

P
(b)
ji

− γi ∀i ∈ N . (35)

By replacing E
(b)
ij with (E

(g)
i −eii) in (7), the energy trading

cost charged to the consumer is

Ci
E =

∑

j∈ni

α2
jiqij +

∑

j∈ni

βjiqij +
∑

j∈ni

(E
(g)
i − eii)P

(b)
ji +

∑

j∈ni

(E
(g)
i − eii)P

(v)
t,ji +

∑

j∈ni

(Emin
j − (E

(g)
i − eii))P

(g)
j

+
∑

j∈ni

(Emin
j − (E

(g)
i − eii))P

(g)
t (36)

Substituting the eii in (35) into (36), we get

Ci
E =

∑

j∈ni

α2
jiqij +

∑

j∈ni

βjiqij +
∑

j∈ni

(E
(g)
i −

kij

P
(b)
ji

+ γi)P
(b)
ji +

∑

j∈ni

(E
(g)
i −

kij

P
(b)
ji

+ γi)P
(v)
t,ji +

∑

j∈ni

(Emin
j − (E

(g)
i −

kij

P
(b)
ji

+γi))P
(g)
j +

∑

j∈ni

(Emin
j − (E

(g)
i −

kij

P
(b)
ji

+ γi))P
(g)
t (37)

B. Appendix B

Since each prosumer has the ability to produce and

consume, we let qij = E
(g)
i + E

(b)
ij , total amount of energy

produced; by using the term ’produced’, we imply the

combination of energy locally generated and that bought from

other prosumers. In this case, we can rewrite (6) as

Iji(qij) = α2
ji(E

(g)
i + E

(b)
ij ) + βji(E

(g)
i + E

(b)
ij )

= α2
ji(2E

(g)
i −

kij

P
(b)
ji

+ γi) + βji(2E
(g)
i −

kij

P
(b)
ji

+ γi). (38)

Combining (38) and (7), we can rewrite (15) as

Ci⋆
E =

∂Ci
E

∂P
(b)
ji

= 0 ⇒ −
∑

j∈ni

α2
i kij

P
(b)2
ji

−
∑

j∈ni

βikij

P
(b)2
ji

+
∑

j∈ni

(E
(g)
i

+ γi) +
∑

j∈ni

kijP
(v)
t,ji

P
(b)2
ji

− P
(g)
j

∑

j∈ni

kij

P
(b)2
ji

− P
(g)
t

∑

j∈ni

kij

P
(b)2
ji

= 0

⇒

∑

j∈ni

P
(b)†
ji =

√

√

√

√

∑

j∈ni
kij(−α2

ji − βji − P
(v)
t,ji + P

(g)
j + P

(g)
t )

(E
(g)
i + γi)

.

P
(b)†
ji =

√

√

√

√

kij(−α2
ji − βji − P

(v)
t,ji + P

(g)
j + P

(g)
t )

(E
(g)
i + γi)

. (39)

C. Appendix C

We can express the second derivative of (39) as

−
∑

j∈ni

α2
i kij

P
(b)3
ji

−
∑

j∈ni

βikij

P
(b)3
ji

+
∑

j∈ni

kijP
(v)
t,ji

P
(b)3
ji

− P
(g)
j

∑

j∈ni

kij

P
(b)3
ji

− P
(g)
t

∑

j∈ni

kij

P
(b)3
ji

= 0. (40)

Then, rearranging terms:

∂2Ci
E

∂P
(b)2
ji

= −P
(g)
j

∑

j∈ni

kij

P
(b)3
ji

− P
(g)
t

∑

j∈ni

kij

P
(b)3
ji

+
∑

j∈ni

kijP
(v)
t,ji

P
(b)3
ji

−
∑

j∈ni

α2
i kij

P
(b)3
ji

−
∑

j∈ni

βikij

P
(b)3
ji

= 0. (41)

which can be rewritten as

∂2Ci
E

∂P
(b)2
ji

= P
(g)
j

∑

j∈ni

kij

P
(b)3
ji

+ P
(g)
t

∑

j∈ni

kij

P
(b)3
ji

−
∑

j∈ni

kijP
(v)
t,ji

P
(b)3
ji

+
∑

j∈ni

α2
i kij

P
(b)3
ji

+
∑

j∈ni

βikij

P
(b)3
ji

= 0. (42)
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